Axial field permanent magnet DC motor with powder iron armature

Sharkh, Suleiman M.A. and Mohammad, Mohammad T. (2007) Axial field permanent magnet DC motor with powder iron armature IEEE Transactions on Energy Conversion, 22, (3), pp. 608-613. (doi:10.1109/TEC.2007.895870).


[img] PDF IEEE2007_paper_on_Lynch_Motor.pdf - Other
Download (763kB)


The paper describes a double-gap axial field permanent magnet (PM) dc motor whose double-layer armature wave winding is constructed of copper strips. It investigates the performance of two machines using powder iron and lamination steel materials as armature teeth. Tests are conducted to evaluate the motor torque and speed curves as well as their efficiency under different loads. Finite element analysis (FEA) and equivalent circuit models are used to determine the levels of the magnetic saturation in the motors; calculate torque, inductance, and electromotive force (EMF); and determine the distribution of losses in the machine. The results show that the powder iron armature machine has lower back EMF and torque constants, and is less efficient than the steel laminations machine, which is due to the lower permeability and saturation flux density of the powder iron material.

Item Type: Article
Digital Object Identifier (DOI): doi:10.1109/TEC.2007.895870
ISSNs: 0885-8969 (print)
Keywords: axial field, dc motor, permanent magnet (pm) motor, powder iron

ePrint ID: 48505
Date :
Date Event
September 2007Published
Date Deposited: 28 Sep 2007
Last Modified: 16 Apr 2017 18:23
Further Information:Google Scholar

Actions (login required)

View Item View Item