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Highlights
Contemporary climate change is causing
poleward range shifts of species globally.

In the ocean, tropical species are
expanding into temperate regions as
they warm, whereas temperate species'
ranges are receding, leading to changes
in community composition in a phenom-
enon known as tropicalisation.

Tropicalisation has a multitude of
ecological and evolutionary conse-
quences for species, communities,
and whole ecosystems, and is alter-
Tropicalisation is amarine phenomenon arising fromcontemporary climate change,
and is characterised by the range expansion of tropical/subtropical species and the
retraction of temperate species. Tropicalisation occurs globally and can be
detected in both tropical/temperate transition zones and temperate regions. The
ecological consequences of tropicalisation range from single-species impacts
(e.g., altered behaviour) to whole ecosystem changes (e.g., phase shifts in intertidal
and subtidal habitats). Our understanding of the evolutionary consequences of
tropicalisation is limited, but emerging evidence suggests that tropicalisation
could induce phenotypic change as well as shifts in the genotypic composition of
both expanding and retracting species. Given the rapid rate of contemporary
climate change, research on tropicalisation focusing on shifts in ecosystem func-
tioning, biodiversity change, and socioeconomic impacts is urgently needed.
ing global biodiversity patterns.

Tropicalisation research has primarily
focused on ecological impacts, but
our understanding of its evolutionary
consequences remains limited.

A comprehensive strategy that integrates
genetic and ecological research is es-
sential to better understand the drivers
and consequences of tropicalisation.
Such a holistic approach is pivotal for
predicting changes in ecosystem func-
tioning and consequent biodiversity and
socioeconomic impacts.
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Introducing tropicalisation
Tropicalisation (see Glossary) is a recent, global phenomenon characterised by poleward range
expansions of marine tropical (or subtropical) species and range retractions or a decreased abun-
dance of temperate species in biogeographic transition regions and temperate areas (Figure 1)
[1,2]. Such range shifts are caused by contemporary climate change and lead to altered species
interactions that have knock-on effects on ecosystem functioning and stability [3,4]. The term
'tropicalisation' was initially coined to describe an increase in tropical species in the Mediterranean
Sea [5]. Since then it has been widely used to denote the increase in the ratio of tropical to temper-
ate species in resident marine temperate communities [2]. Tropicalisation is marine-specific ([6] for
a rare terrestrial example) and encompasses poleward shifts of whole communities. Tropicalisation
can alter community assemblages over decadal timescales [1,2] and lead to long-term ecological
and evolutionary consequences (discussed in following sections). Similar phenomena include
borealisation and desertification (Box 1) that, together with tropicalisation, contribute to the
global redistribution of biota and rearrangement of ecological communities [7].

In general, marine range shifts occur at a much faster rate than those in terrestrial ecosystems [8,9],
mainly because marine species often live closer to their thermal thresholds and experience fewer
barriers to dispersal than terrestrial species [8,9]. In a region undergoing tropicalisation, range retrac-
tions occur at a slower rate than range expansions [10]. Tropicalisation is often first detected by the
periodic arrival of new tropical species into biogeographic transition regions or temperate regions
[11], as well as by reduced ecological performance (e.g., reduced growth rates, fecundity, or resilience
to stressors) of temperate species [12]. As a result, range-retracting species often persist and co-occur
with range-expanding species but may occur at lower abundances [13]. Consequently, tropicalisation
quickly creates novel communities containing a mix of tropical, subtropical, and temperate species
[1,6,14]. Ultimately, tropicalisation alters eco-evolutionary dynamics more rapidly than range shifts in
biogeographic regions where species have had a longer history of interaction [4,15].
Trends in Ecology & Evolution, Month 2023, Vol. xx, No. xx https://doi.org/10.1016/j.tree.2023.10.006 1
© 2023 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://orcid.org/0000-0003-1675-2090
https://doi.org/10.1016/j.tree.2023.10.006
http://creativecommons.org/licenses/by/4.0/
CellPress logo


TrendsTrends inin EcologyEcology & EvolutionEvolution

Figure 1. The range of taxa and geographic areas where tropicalisation has been detected. An increase in tropical species (red 'up' arrow) indicates that
studies show range expansions and an increase in the abundances of tropical species. Reduction in temperate species (blue 'down' arrow) indicates that studies have
shown a reduction in temperate species abundance, local extinctions, and range retractions. Lessepsian migration (i.e., species movement through an artificial canal) is
marked (green broken arrow) because it facilitates tropicalisation of theMediterranean Sea via the Suez Canal and poses a unique challenge in detangling human-facilitated
range expansions and climate-induced expansions of tropical species within this region (Box 3). Data for this figure were extracted from 138 peer-reviewed papers
published between 2004 and 2023. Studies include those documenting tropicalisation specifically, as well as independent records of increases in tropical species and
reduction in temperate species which collectively contribute to regional tropicalisation (Table S1 in the supplemental information online). Illustration created using QGIS
3.24.1 and Affinity Designer 1.10.5.
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Documenting tropicalisation and gaining a holistic understanding of its consequences relies on a
range of scientific methods (Box 2) and disciplines. By reviewing scientific works spanning com-
munity and functional ecology, biogeography, and molecular and evolutionary biology we identify
global patterns of tropicalisation, explore tropicalisation drivers, and evaluate the role of ecosys-
tem functioning in shaping tropicalisation patterns. We then describe the observed and predicted
ecological and evolutionary consequences of tropicalisation and emphasise pressing knowledge
gaps. Finally, we highlight the socioeconomic implications of tropicalisation and outline urgent re-
search areas for future work.

Global patterns of tropicalisation
Tropicalisation occurs along most of the nearshore tropical–temperate transition regions of the
globe (Figure 1 and see Table S1 in the supplemental information online). This phenomenon is
particularly well documented in Australia and the Mediterranean Sea where studies span a
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Box 1. Navigating the nomenclature of climate-induced shifts of whole communities

The global redistribution of biota as a result of climate-induced range shifts follows temperature gradients, typically latitu-
dinally (but sometimes longitudinally) [117], altitudinally [118], or with depth [119]. Tropicalisation is amarine-specific exam-
ple of a poleward shift of tropical communities that occurs because of climate-induced range shifts at mid to low latitudes
where tropical and temperate biogeographic regions coincide. However, biota redistribution is a global phenomenon that
spans all latitudes and has occurred repeatedly throughout Earth's history. We discuss similar nomenclature for two other
climate-induced shifts of whole communities.

The expansion of temperate species into Arctic polar regions has been coined 'borealisation' [30,120]. Similar to
tropicalisation, borealisation leads to the breakdown of biogeographic barriers [121]. In contrast to tropicalisation,
borealisation applies to both marine [120] and terrestrial [122] ecosystems, although reference to marine ecosystems
appears to be more common. The redistribution of temperate and polar communities is also apparent in the Southern
Hemisphere [123], although it has been less studied than in the Northern Hemisphere. However, to our knowledge a term
equivalent to 'borealisation' does not exist for the Southern Hemisphere.

'Desertification' predominantly applies to terrestrial areas, typically situated near the equator, but can also include non-
equatorial regions surrounding barren habitats (e.g., South Africa) [124]. In contrast to tropicalisation and borealisation,
desertification refers primarily to biodiversity loss associated with both contemporary climate change and human activities
(in particular improper agricultural practices) which lead to degradation and reduced productivity of land (i.e., global expan-
sion of deserts) [124]. Interestingly, the term 'desertification' has occasionally been used to describe mass losses of
macroalgal forests that result in a drastic reduction of primary productivity and the formation of barren habitats [125].
The term 'marine desertification' may also be applicable to the loss of biota in tropical regions, which is particularly relevant
to loss in equatorial regions where it is already thought to be too hot for some taxa [104].

Glossary
Borealisation: expansion of boreal
regions driven by the expansion of
northern temperate communities into
Arctic areas, and the retraction of Arctic
communities.
Desertification: expansion of deserts
and barren bioregions as a result of
climate warming, and anthropogenic
activities (particularly poor farming
practices) leading to degradation and
reduced productivity of land.
DNA barcoding: the use of sequence
data from a 'barcoding gene' (often a
section of the mitochondrial cytochrome
oxidase
subunit I gene for animals) that is
sufficiently variable to distinguish species
using molecular species delimitation
methods.
Ecosystem functioning: processes
and interactions occurring within an
ecosystemwhich enable it tomaintain its
structure, dynamics, and productivity.
Ecosystem functioning includes trophic
interactions and the provision of
ecosystem services which maintain
ecosystem stability.
Ecosystem phase shift: a significant
and often irreversible change in the
structure, function, and composition of
an ecosystem.
Environmental DNA: DNA found in the
environment that can be isolated and
sequenced to detect living and recently
dead species.
Founder effects: a phenomenon in
population genetics where a loss of
genetic diversity is observed in a
population newly established from a
subset of individuals of the original
population.
Functional niche: the specific function
and interactions of a species within its
ecosystem, including its unique
adaptations, behaviour, and resource
utilisation strategies that allow it to fulfil its
ecological niche.
Genotype: the genetic make-up of an
organismwhich determines its traits and
characteristics.
Marine heatwave: an extreme climatic
event where the sea-surface
temperature increases to abnormally
high levels for a prolonged period of
time.
Microevolution: an evolutionary
change within a species.
Phenotype: an observable trait of an
organism that is shaped by its genetic
makeup (genotype) and the
environment.
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wide range of taxa and spatial scales. There are also several tropicalisation studies from Japan
[16], but the taxonomic coverage is limited to cnidarians, fishes, and macroalgae (Figure 1 and
see Tables S1 and S2 the supplemental information online).

Several regions where one could expect tropicalisation (e.g., [1,16,17]) remain understudied. For
example, the eastern coast of South America and southeastern Africa are expected to be
tropicalisation hotspots [1] because they are heavily influenced by warm-water boundary cur-
rents (discussed in following sections), but only a handful of studies on tropicalisation have been
conducted in these regions (see Tables S1–3 the supplemental information online). Conversely, re-
gions without warm boundary currents such as southwestern Africa are experiencing tropicalisation,
albeit research in this region is limited (Figure 1 and see Tables S1–3 the supplemental information
online). This raises the question whether the scarcity of studies in these and other regions
(e.g., the Pacific coast of South America) is indicative of an absence of tropicalisation or is a result
of insufficient exploration. Further investigation into these understudied regions will be imperative
to gain a general framework of the physical drivers and dynamics of tropicalisation.

Physical drivers of tropicalisation
Biogeographic transition zones that separate tropical/subtropical and temperate regions are
often marked by large gradients in physical conditions that prevent dispersal, such as abrupt
changes in sea-surface temperature or oceanographic currents [18]. Contemporary climate
change is rapidly altering these gradients, facilitating the poleward movement of tropical species,
and reinforcing the retraction of temperate species [1,7,19].

Warm-water boundary currents are currently heating faster than the global seawater average,
and consequently their surrounding regions are expected to be tropicalisation hotspots [1]. For
example, the Eastern Australian current has aided microbial tropicalisation [20] and the Kuroshio
Current has contributed to the tropicalisation of southwestern Japan by facilitating the poleward
dispersal of corals [16], tropical fishes [16,17], and tropical macroalgae [21]. Another example
comes from anomalous poleward currents associated with El Niño that have facilitated the
tropicalisation of copepod communities in Baja California [22]. Conversely, the increasing
Trends in Ecology & Evolution, Month 2023, Vol. xx, No. xx 3
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Box 2. Documenting tropicalisation

Documenting tropicalisation and its consequences relies on knowledge of spatiotemporal biodiversity patterns. The iden-
tification of range expansions and retractions often requires different data sources and documenting approaches (Figure I).
The range of methodologies that can be applied to the study of tropicalisation include field, laboratory, and in silico
approaches. The choice of approach will depend on the specific study region and objectives.

Field-based sampling approaches typically require taxonomic expertise, extensive funding, multiple sampling events over
extended periods of time, and access to reliable historical species distribution data (e.g., [46]).

Laboratory-based methods can remove the need for taxonomic expertise by using DNA sequence differences to iden-
tify species (DNA barcoding) but require specialist laboratory skills (e.g., [82]); in the absence of taxonomic expertise,
access to accurate reference databases for species identifications is required. Although not yet used in the context of
tropicalisation, environmental DNAmetabarcoding could be an effective method for documenting whole-community
changes [126].

In silicomethods are particularly useful for documenting tropicalisation over large spatial scales (e.g., [112]) and modelling
studies can predict future tropicalisation dynamics [17]. They are, however, constrained by the availability of data over both
spatial and temporal scales. We recommend that tropicalisation studies combine complementary methodologies to
effectively and reliably study tropicalisation.

TrendsTrends inin EcologyEcology & EvolutionEvolution

Figure I. Summary of different approaches and methods that can be used to study tropicalisation. Study
examples and the metadata underpinning this graphical summary are available in Table S1 in the supplemental
information online. Illustration created using Affinity Designer 1.10.5.

Phenotypic plasticity: the ability of an
organism to change its observable
characteristics (phenotype) in response
to an external stimulus.
Thermal threshold: the temperature
limit (either lower or upper) beyond
which the physiological processes of an
organism are inhibited.
Tropicalisation: a product of multiple
climate-induced range shifts, including
the expansion of tropical species
towards the poles and concomitant loss
of temperate species from warming
areas, which alters and is reinforced by
changes in species interactions andmay
lead to changes inmarine biogeographic
structure.
Warm-water boundary currents:
narrow, deep, and fast-flowing ocean
currents on the western side of ocean
basins which carry warm water
polewards from the equator.
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frequency and magnitude ofmarine heatwaves has resulted in direct loss of temperate species
such as seaweeds [23] and seagrasses [24]. Establishment of tropical species in temperate re-
gions is often restricted by winter temperatures [25–27]. For example, freezing temperatures cur-
rently limit poleward range expansion of the black mangrove, Avicennia germinans, in North
America [28,29] which limits the survival of tropical vagrant reef fishes [26].

The role of species traits and niches in tropicalisation
Although tropicalisation is largely driven by changing environmental conditions [1,7,30], taxon-
specific traits influence range shifts [31]. Thermal tolerance [29,32], acclimation ability [33], dispersal
capabilities [34], behavioural changes [35], and niche specialisation [34,36] all influence tropicalisation
dynamics. Moreover, functional niche availability [36] and habitat availability [11,37] in temperate
regions influence the expansion dynamics of tropical species. Niche specialisation further influences
tropicalisation dynamics. Generalists are more likely to find a suitable niche at the new range edge
than specialist species [38,39], and consequently undergo range expansions faster than specialists
[38,39]. Generalist species are also able to modify their behaviour to allow coexistence in tropicalised
communities [36,40]. For example, in southeastern Australia range-expanding tropical fishes and
resident temperate species that are capable of foraging on the same species modify their food
choice to allow coexistence without increasing competition for food [40]. In that same region,
range-expanding tropical fish and temperate residents have been observed to modify feeding and
shoaling behaviours to allow resource partitioning and coexistence [35]. This suggests that generalist
fish species may be able to persist in regions undergoing tropicalisation due to niche segregation.
Whether this tropicalisation pattern exists in other taxa remains unknown.

Ecological consequences of tropicalisation
Herbivory and competition underpin ecosystem stability
The role of herbivory and competition in shaping tropicalisation patterns has been studied pre-
dominantly in fishes and foundation species such as macroalgae and coral [1,4]. Herbivory pres-
sure and species richness of herbivorous fish communities are noticeably higher in tropical
regions compared to temperate regions [41,42]. Tropicalisation therefore leads to an increase
in the intensity and spatial extent of herbivory [16,43,44] and facilitates ecosystem phase shifts
away from macroalgal communities [1,4,45]. However, emerging evidence suggests that ele-
vated herbivory pressure is not the only factor maintaining algae-free states on tropicalised
reefs, and the filling of previously unoccupied functional niches by expanding tropical herbivores
also contributes [46]. Although temperate herbivores can exert significant herbivory pressure on
adult macroalgae [44], tropical herbivores often feed upon algal turf containing macroalgal re-
cruits, thus preventing recruitment and recovery [47,48].

Temperate seagrass meadows and associated communities are also rapidly changing with ongo-
ing tropicalisation [27]. Although temperate seagrasses are declining in some regions undergoing
tropicalisation (e.g., Posidonia oceanica in the Mediterranean Sea [49]), tropical species are prolif-
erating in others (e.g., Halophila decipiens in southeast Brazil [50]). Globally, seagrasses are pre-
dicted to undergo significant range reductions, leading to higher levels of endemism or reduced
species diversity in some regions [51]. Communities hosted by these foundation species are also
undergoing changes. For example, seagrass meadows of the northern Gulf of Mexico have expe-
rienced a significant increase in tropical fishes [52], but little is known about how such changes will
alter interspecific interactions in these ecosystems. In the Mediterranean Sea, the herbivorous
fishes Sarpa salpa, Siganus rivulatus, and Siganus luridus shift their feeding preferences from
seagrasses to seaweeds with increasing levels of tropicalisation [53]. This suggests that in some
regions tropicalisation may release seagrass meadows from herbivory pressure while placing tem-
perate macroalgae under further stress [53]. However, to better understand the impacts of
Trends in Ecology & Evolution, Month 2023, Vol. xx, No. xx 5
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herbivory on seagrass meadows in the context of tropicalisation, more research is needed on a
wider range of herbivorous taxa and across larger spatial scales. For example, in Western
Australia, dugongs (Dugong dugong) and green turtles (Chelonia mydas) consume significant vol-
umes of seagrasses [27]. With ongoing ocean warming, dugongs are expected to undergo sub-
stantial range expansions and green sea turtle abundances are expected to increase, leading to
elevated herbivory pressure on Australia's seagrasses [27]. Although less studied in the context
of tropicalisation, sea urchins can also exert significant top-down control on both seagrass
[27,54] and algal communities [42,55,56], and ultimately facilitate tropicalisation.

Changes to trophic interactions as a consequence of tropicalisation can have cascading effects on
ecosystems. For instance, increased herbivory pressure leading to loss of macroalgae allows coral
settlement by reducing competition for space, leading to algae–coral phase shifts [16,57]. Where
corals do not settle, turf habitats can persist [48,58] and maintain greater diversity of fishes than
some non-tropicalised macroalgal systems [58]. Such increase in species diversity is likely to
lead to new competitive interactions. For example, resource competition can lead to resident tem-
perate and range-expanding tropical territorial fishes occupying suboptimal microhabitats in tran-
sition regions [26]. Furthermore, changes in interspecific competition caused by tropicalisation
can also lead to reduced fitness of resident temperate species (e.g., reductions in body size
[59]), ultimately affecting their potential for population growth.

Tropicalisation is also causing phase shifts away from salt marshes to more mangrove-dominated
ecosystems [29,60]. Mangroves outcompete salt marshes by suppressing the biomass of salt
marsh plants [61]. The replacement of salt marshes by mangroves has cascading ecological con-
sequences. First, because the two ecosystems have structural and functional differences, phase
shifts from salt marsh to mangrove habitats will inevitably lead to changes in community assem-
blages and impact on species interactions [62–64]. For instance, mangrove plants are lower-quality
food sources than salt marshes, and this negatively impacts on energy storage by some herbivo-
rous invertebrates [63]. Furthermore, given that salt marshes andmangroves are a transition region
between the terrestrial and marine ecosystems, phase shifts also impact on terrestrial fauna [64].
For example, the replacement of salt marsh plants by the black mangrove A. germinans in the
Gulf of Mexico is associated with reduced insect diversity and biomass [64]. In addition, salt
marsh to mangrove shifts alter the sediment properties and local microclimate, which can in turn
influence the seasonal dynamics of nearby seagrass systems [60,65]. Nevertheless, both salt
marshes and mangroves provide crucial ecosystem services (see Socioeconomic consequences
of tropicalisation section) [60,62,63]. However, whether the net effect of mangrove expansion is
seen as positive or negative will depend on local factors and perceptions [60,62].

Predator–prey interactions
Altered predator–prey interactions are an inevitable consequence of tropicalisation. We know from
the extensive literature on predator–prey interactions in marine ecosystems that single predator
species can have strong top-down impacts on the structure and diversity of local marine commu-
nities (i.e., 'keystone' predators [66]). However, whether top-down impacts arising from range-
expanding tropical predators into temperate regions will have similarly strong ecological conse-
quences is unknown. Nevertheless, predation pressure and consumption rates often increase to-
wards lower- and mid-latitude regions [67,68], and recent studies of marine fish and invertebrates
support this hypothesis [69–71]. These biogeographic shifts in predation are thought to be due to a
combination of turnover in predator species composition and their functional traits, which can
include body size, prey selectivity, dispersal capabilities, and rates and/or modes of feeding
[71–73]. For example, some eastern Pacific tropical gastropod predators are expanding into tem-
perate regions, and they tend to be large-bodied generalists with higher dispersal potential than
6 Trends in Ecology & Evolution, Month 2023, Vol. xx, No. xx
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their cool-water counterparts [72]. Thus, we can not only expect tropical predators to expand into
temperate regions but theywill also likely have different functional traits, modes of feeding, and con-
sumption rates than resident, temperate predators. Although understudied to date, we expect that
these differences could result in enhanced and novel predation pressure on temperate prey, which
may lead to top-down impacts on local communities undergoing tropicalisation.

Invasion science can also provide invaluable insights into the potential ecological impacts of
range-shifting tropical predators [74]. For example, invading predators can increase interspecific
competition among resident prey species through elevated predator avoidance [75]. Native prey
may also be naïve to the cues from newly introduced predators [76], leading to reduced antipred-
ator behaviours [77,78]. As such, invasive predators often have greater detrimental impacts on
lower trophic-level species than native predators [78].

Evolutionary consequences of tropicalisation
Shifts in genetic composition
Recently range-expanding species are often characterised by founder effects and low ge-
netic diversity in leading-edge populations [79–82]. However, growing evidence suggests
that tropical range-expanding species do not necessarily experience reduced genetic diversity
at the new range margins [82,83]. In turn, temperate species may have had a longer history of
occupying temperate–tropical transition regions than the recently expanding tropical species,
allowing more mutations to accumulate in temperate species. Consequently, in a region under-
going tropicalisation, resident temperate species are more likely to have experienced past vi-
cariant events and exhibit population structure than expanding tropical species. In this
context, range retractions of temperate species may lead to genetic erosion by loss of genet-
ically divergent populations [82,84]. In addition, marine heatwaves can create selection pres-
sures that cause the loss of genotypes unable to withstand the thermal stress [3,85]. This
loss of genetic diversity in temperate species can have microevolutionary consequences
and may be subsequently followed by the proliferation of more thermally resistant individuals
[3,85]. Although some species may therefore not experience a range retraction, they may dis-
play a loss of genetic diversity, leading to reduced adaptive potential to other climatic or anthro-
pogenic perturbations [86].

Understanding how genetic diversity may change in response to tropicalisation is crucial for effec-
tive biodiversity management. High intraspecific genetic diversity is associated with enhanced
ecosystem functioning [87] and increased adaptive potential of species [88]. In fact, including in-
traspecific genetic diversity in predictions of climate change vulnerability is likely to lead to more
accurate species distribution modelling [89]. Incorporating genetic diversity into conservation
planning for tropicalisation is therefore becoming increasingly important [90,91].

Hybridisation
Hybridisation arising from tropicalisation has been observed in congeneric coastal fishes where
the tropical, range-expanding Argyrosomus coronus has crossed with the subtropical
A. inodorus [92]. Moreover, the crossing between subspecies of acorn barnacles Tetraclita
japonica japonica and T. japonica formosanamay be a result of a recent poleward range expan-
sion of T. japonica formosana [93]. Although a growing number of studies show evidence for a
causal role of hybridisation in successful colonisations, and more generally in driving population
range expansion [94], the fitness consequences of hybridisation arising from tropicalisation
remain unknown. We know that hybridisation with resident congenerics may enhance the estab-
lishment success of invasive species by improving offspring adaptation through genetic rescue,
or by enhancing the probability of finding a mate in the new range where population densities
Trends in Ecology & Evolution, Month 2023, Vol. xx, No. xx 7
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Figure 2. The ecological, evolutionary, and socioeconomic consequences of tropicalisation. The ecosystems and
examples illustrated here are hypothetical, but examples of each have been extracted from 102 peer-reviewed studies published
between 2015 and 2023 (Table S2 in the supplemental information online). Illustration created using Affinity Designer 1.10.5.
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are low [95]. Taken together, the existing evidence (albeit limited) suggests that hybridisation may
facilitate tropicalisation [96], but this hypothesis requires further investigation.

Tropicalisation as a driver of phenotypic change
Because ecology and evolution interact reciprocally [97], tropicalisation can be expected to cause
phenotypic change arising from altered species interactions (Figure 2). Such changes are likely
to be species- and community-specific. For example, the more similar the phenotypes of range-
expanding tropical species are to the resident temperate species within the same trophic level,
the greater the chance that increased competition will have fitness consequences [98] and/or
cause character displacement [99,100]. Moreover, increased predation pressure (from range-
expanding tropical predators) could enhance the effects of competition on divergent selection, in-
directly leading to character displacement in prey species [101].

The influx of tropical predators is likely to exert selection pressure on resident prey species, and
this may drive the evolution of antipredator defences [102] or induce a phenotypically plastic
response. For example, the temperate barnacle species (Tetraclita rubescens) only exhibits
8 Trends in Ecology & Evolution, Month 2023, Vol. xx, No. xx
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Box 3. Human-mediated range expansions (HMREs) and tropicalisation

HMREs can be defined as an increase in range size of non-indigenous species (NIS) as a result of human activities such as
shipping, agriculture, and aquaculture. The main difference between HMRE and tropicalisation is that the spread of NIS
requires intentional or unintentional artificial transport of species [74]. The spread of NIS can occur across all regions of
the globe, whereas tropicalisation specifically occurs around adjacent tropical–temperate regions. Species interactions
as a result of HMRE are often truly novel, with no shared evolutionary history between species [19,74]. By contrast,
because climate-induced range shifts have also occurred in the deeper past (e.g., over glacial/interglacial cycles) there
may be shared evolutionary histories between species in a region undergoing tropicalisation. Therefore, temperate species
may be preadapted to range-expanding tropical species (e.g., interactions between temperate prey and tropical predators
[72]), which will not necessarily be the case in novel species interactions arising from HMRE. Despite these clear differ-
ences between HMRE and tropicalisation, there are situations where disentangling them becomes challenging. This is
the case of the massive influx of previously allopatric tropical species into the Mediterranean Sea as a result of the opening
of the Suez Canal, known as Lessepsian migration (see Figure 1 in main text) [5]. Tropical species are expanding from the
Red Sea into the Mediterranean Sea, but this is only possible due to the artificial removal of a natural land barrier. The mat-
ter is further complicated by the heavy maritime traffic passing through the Suez Canal, which leads to HMRE facilitated by
ongoing sea warming [127]. The influx of tropical species into the region (as a result of both natural and artificial dispersal)
has resulted in tropicalisation of the Mediterranean Sea by NIS [1,5].
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predator-induced defences ('bent morphs') in populations that overlap with range-expanding
warm-water predators in a region undergoing tropicalisation [72]. Whether this is a phenotypically
plastic or microevolutionary response is unknown, but it provides evidence of partial resilience of
this temperate species to the indirect impacts of tropicalisation. It also suggests that some tem-
perate species may not be naïve towards range-expanding predators, suggesting a shared a his-
tory of interaction in the deeper past (e.g., over glacial–interglacial cycles [103]), bringing up an
important difference when drawing parallels with tropicalisation and invasion science (Box 3).

Macro-eco-evolutionary consequences of tropicalisation
The processes underlying tropicalisation are expected to alter latitudinal patterns of biodiversity
[104,105] that have been established for millions of years [106–108]. In general, warm global con-
ditions (greenhouse worlds) have been associated with temperate peaks in species richness
whereas cooler climatic regimes (icehouse worlds) were associated with tropical peaks in rich-
ness [106]. In fact, greenhouse worlds may even be associated with dips or flat species richness
towards the equator [106], presumably due to harsh thermal conditions at low latitudes. These
patterns from the deeper past may give clues to how tropicalisation will ultimately impact global
biodiversity. For example, we know that range expansions are occurring faster than retractions
in the context of tropicalisation [10], and these can lead to an increase in local and regional spe-
cies richness at tropical–temperate transition zones as a result of increased range overlap
[7,58,105]. Meanwhile, higher water temperatures towards the equator may exceed the physio-
logical limits of some tropical species, causing local extinctions and reductions in abundance at
low latitudes [7]. If species richness begins to dip towards the equator [7], tropicalisation may
lead to a bimodal pattern of latitudinal diversity. Indeed, species distribution modelling based
on climate-warming projections predict this pattern [105]. More recently, researchers used a global
dataset of pelagic and benthic species over three time periods to provide empirical support, and
the most recent period (1995–2005) shows a clear dip at the equator and peaks in richness to-
wards tropical–temperate transition regions [104]. This is reflective of trends associatedwith green-
house worlds in the deeper past [106]. Therefore, the past appears to be a good predictor of how
tropicalisation will likely impact on global species richness patterns in future scenarios.

The macroevolutionary literature provides insights into how modern tropicalisation may influence
diversity dynamics. In recent years macroevolutionary dynamicmodels have been used to explain
the modern latitudinal diversity gradient [109]. One prominent hypothesis, the 'out of the tropics'
model, recognises the importance of 'bridge species' [110] which are species of tropical origin
that have expanded their thermal ranges to be able to disperse across tropical–temperate
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Outstanding questions
How will tropicalisation alter global
patterns of biodiversity? As the edges
of tropical bioregions shift polewards,
potentially causing mid-latitude re-
gions to increase in species richness,
will low-latitude equatorial regions ex-
perience loss in species richness? Are
patterns from the deeper past a good
model for how tropicalisation will affect
global diversity, now and in the future?

Will tropicalisation induce
microevolutionary changes and/or
phenotypically plastic responses as a
result of altered species interactions
(e.g., predator–prey dynamics)?

Tropicalisation is a global phenomenon,
but studies from some regions
where we could expect tropicalisation
(e.g., South America) are limited. Are
some regions of the world buffered
against tropicalisation, or does this
reflect a lack of research in some geo-
graphic areas?

Do tropical and temperate taxa modify
their behaviour to allow coexistence
with tropical range-shifting species in
a region undergoing tropicalisation?
Although research suggests that fish
behaviour can change, studies on
other taxa are lacking.

What is the role of functional
diversity in shaping the patterns and
consequences of tropicalisation?
The role of vertebrate herbivores has
been studied extensively, but how is
tropicalisation reshaping predator–
prey dynamics?

What are the long-term impacts of the
genetic erosion on temperate species
caused by tropicalisation? Howwill ge-
netic erosion impact future adaptive
potential?

Could regions of cold-water upwelling
and other cool-water areas within tran-
sition zones be targeted as Marine
Protected Areas to act as refugia for
temperate species?

Can effective ecosystem management
allow us to harness the positive
socioeconomic impacts of
tropicalisation while effectively
mitigating its negative impacts?
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boundaries. Thus, modern tropical species that expand into temperate regionsmay be thought of
as modern analogues of bridge species because they have the thermal flexibility to cope with
lower temperatures during winter and the higher seasonality of temperate regions.

Socioeconomic consequences of tropicalisation
Tropicalisation is already having substantial socioeconomic consequences (Figure 2).
Tropicalisation of fishery catches is apparent globally [111]; regions undergoing tropicalisation
are experiencing increases in overall fishery landings [25,112] associated with increased fish
biomass and enhanced nursery habitat [4]. However, despite the increased landings, the same
regions may also lose commercially important temperate species [113] and experience an
increase in non-target species catches [114]. Range-expanding tropical species can also carry
parasites into the new ecosystems [115], but whether these can spread to other species (including
commercially important taxa) remains unknown.

Not all socioeconomic consequences of tropicalisation are negative. For example, mangrove ecosys-
tems sequestermore carbon than the temperate salt marshes they are replacing [116]. Consequently,
tropicalisation involving the growth and spread of mangrove treesmay increase overall carbon storage
and sequestration in the region [116]. In addition, the expansion of charismatic tropical foundation spe-
cies, such as coral communities and their associated fauna, is expected to have a positive impact on
the local economy through an increase in dive-based tourism [4,17]. However, this pattern is unlikely to
happen for regions undergoing kelp loss without the proliferation of charismatic tropical taxa [4].

Concluding remarks
Tropicalisation is a global phenomenon that has significant ecological, evolutionary, and socioeco-
nomic consequences (Figure 2) [4,86]. Most studies to date have concentrated on the ecological
consequences of tropicalisation, and range from altered species interactions (namely herbivory
and competition) and behaviour to whole ecosystem phase shifts. The evolutionary consequences
of tropicalisation remain understudied but include phenotypic and genotypic changes (including
hybridisation), as well as broad-scale changes in global diversity dynamics.

Despite the global nature of tropicalisation, some regions of the world have been poorly studied.
Investigation into these regions (e.g., tropical–temperate regions of Africa, South America, and
Asia) is crucial for gaining a general framework of the physical drivers and the complex dynamics
of tropicalisation at a global scale. A more holistic understanding of tropicalisation, its drivers, and
its consequences is urgently needed given the emerging socioeconomic consequences of
tropicalisation and rapid rate of climate change. By exploring these research frontiers (see
Outstanding questions), we can better equip ourselves to mitigate the negative impacts of
tropicalisation and preserve ecosystems before irrevocable change occurs.
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