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Monitoring winter wheat crop traits change during crop 

development using Sentinel-1 backscatters.

Abstract

It is important for farmers to monitor the development changes in winter wheat (Triticum 

aestivum L.) crop structure to assess plant response to crop management and 

environmental changes. Even in cloudy conditions, radar satellite imagery has the 

potential to provide near real-time and reliable information about crop development that 

surpasses optical satellite imagery. In this study, Sentinel-1A/1B backscattering 

parameters for co-polarization (VV), cross-polarization (VH), differences of dual 

polarizations (VH-VV), and combination of dual polarizations (VH+VV) were evaluated to 

estimate changes in shoot density (SD), green area index (GAI), aboveground dry 

biomass (AGDB), plant height (PH), and leaf nitrogen content (LNC) throughout the winter 

wheat growing season. In order to eliminate noise caused by inverse scattering, local 

weighted scatterplot smoothing (LOWESS) was applied to backscatter parameters during 

post-processing. The correlation of backscatter parameters to the in-situ winter wheat 

plant traits in the fields were assessed in the Republic of Ireland and the United Kingdom 

over two crop growing cycles. The Sentinel-1 backscatter parameters were correlated to 

SD, GAI, AGDB, PH, and LNC using Support Vector Regression (SVR), Random Forest 

Regression (RFR), and K-Nearest Neighbors Regression (KNNR). The results presented 

good prediction of GAI, AGDB, PH, and LNC were possible with R2 between 0.72 to 0.95 

when modelled using datasets from specific growth stages indicative of morphological 
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changes in plant and R2 between 0.69 to 0.94 when modelled using datasets from full 

growth stages. It was concluded that it would be possible to develop continuous 

monitoring of winter wheat throughout the growing season that would not be influenced 

by cloud cover. Subsequent work will examine the best way to use these data for optimum 

crop husbandry.

Keywords: Machine Learning, Radar Backscatter, Precision Agriculture, Crop Monitoring, 

Remote Sensing.

1. Introduction

Development of winter wheat occurs over a series of morphological stages that culminate 

at maturity and harvest of the grain crop. Optimum plant husbandry requires knowledge 

of current crop conditions during each growth stage. For the application of plant growth 

regulators, it is important to observe changes in plant morphological characteristics so as 

to prevent crop damage and improve crop growth (Nasir et al., 2019; Voronov et al., 2021). 

Moreover, the morphological characteristics of plants also serve as indicators of plant 

response to environmental conditions (Lopez Laphitz et al., 2016; Bano et al., 2019). To 

ensure optimum yield and return on investment during the harvest season, farmers must 

estimate crop traits accurately and in a timely manner. This valuable information about 

crop conditions and variation in plant morphology, allows them to respond precisely and 

specifically to problems as they arise (Veloso et al., 2017).
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In agriculture, remote sensing technology is widely used for monitoring and studying crop 

growth status and forecasting crop production (Atzberger, 2013). Radar spaceborne 

images could play a more important role in agriculture because when compared to optical 

spaceborne images for monitoring crop growth, they can be used during cloudy conditions 

and during the absence of sunlight (Liu et al., 2019). In addition, the backscatter is 

sensitive to the surface dielectric constant and plant geometry, enhancing its potential for 

application in agriculture crop monitoring (McDonald et al., 1999; Macelloni et al., 2001).

With the availability of Copernicus Sentinel-1A and 1B satellite, the frequency of the 

image availability increased to 1.5 - 4 days for the Republic of Ireland (IE), 1.5 -3 days for 

the United Kingdom (UK), and 6 days for other regions outside the Europe region. The 

Sentinel-1 C-band Synthetic-Aperture-Radar (SAR) instrument can collect images with 

spatial resolution up to 5m x 5m in StripMap mode with swaths of up to four kilometers 

wide. Plant traits are highly variable phenomena in time and space. Sentinel-1 has a high 

spatial-temporal resolution and active C-band observations that are sensitive to 

vegetation dynamics, making it an excellent option for monitoring crops at the field and 

regional scales (Monsivais-Huertero et al., 2020).        

Sentinel-1 satellite images have been utilized in many studies to monitor the growth in 

biomass of winter wheat (Kumar et al., 2018), green area index (Veloso et al., 2017), leaf 

area index (Ouaadi et al., 2021), plant height (Kumar et al., 2018), crop water content 

(Han et al., 2019), and phenology (Schlund & Erasmi, 2020). However, all these studies 

have used a relatively small study area and only involved single or few orbit passes 

images which can bypass the backscatter bias due to incidence angle difference and 

geometry effects (Arias et al., 2022). Gorrab et al., (2021) reported that no impact of using 
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2 orbit passes and incidence angles in estimating winter wheat vegetation variables in 

their experiment. Their experiment also compared VV, VH, VH+VV, and VH-VV 

backscatter with cumulative values and found out that the cumulative backscatter of 

VH+VV best estimated wheat height (R2=0.89) and total dry mass (R2=0.74). Cumulative 

backscatter of VV gave the best estimation of total fresh mass (R2=0.51) and cumulative 

backscatter of VH gave the best estimation of water content (R2=0.47). It was, however, 

necessary to calibrate the model using imagery acquired in multiple orbital directions and 

at a wide range of incidence angles to model the large study area beyond a single orbit 

pass or narrow range of incidence angles.

The objective of the work reported here was to establish the feasibility of developing a 

winter wheat growth monitoring method covering a wide geographical area using 

Sentinel-1 images, particularly with different incidence angles, varying in orbit directions 

and multiple orbits passes to achieve high spatial-temporal resolution. This research 

builds on the work of (Goh et al., 2022) to enhance the performance of existing winter 

wheat growth monitoring models using Sentinel-2 especially the temporal resolution to 

identify winter wheat underperformance growth zone.

The research, (1) implemented data reduction using a backscatter smoothing algorithm 

at post-processing (2) analyzed the trend of winter wheat plant traits over different growth 

stages. (3) investigated the potential of Sentinel-1 VV, VH, VH-VV, and VH+VV 

backscattering parameters to estimate SD, GAI, AGDB, PH, and LNC using a multivariate 

supervised machine learning approach RFR, SVR, and KNNR and, (4) compared the 

modeling of complete growth stages, specific growth stages of plant morphological 
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changes, and primary growth stages to determine the prediction power of Sentinel-1 

backscatters to the changes to plant morphology. 

2. Materials

2.1 Study Area

The study area (Fig.1) covered two countries, IE and the UK, including 75 winter wheat 

fields over a geodesic measurement with an east-west length of approximately 640 km 

and a north-south length of approximately 300 km. The field sizes sampled ranged from 

2 ha to 76 ha, which correspond to the recommended field size for retrieving biophysical 

parameters from Sentinel-1 data using calculation in Patel & Srivastava, (2013). All winter 

wheat fields were relatively flat. The annual weather data for the sampling period are 

detailed in (Table 1). The soil texture ranged from clay loam to loam in IE, from clay loam 

to silt loam in the northern and eastern UK, clay loam to loam in the western UK, silt loam, 

and chalky in the southern UK.
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Fig.1: Location of study sites across the Republic of Ireland (IE) and the United Kingdom (UK)
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Table 1: Annual mean temperature, rainfall, and sunshine across IE and UK in 2020 and 2021

Country Year Mean Temperature Mean Rainfall Mean Sunshine

IE 2020 10.0 º C 1400 mm 1446 hours

IE 2021 10.4 º C 1196 mm 1412 hours

UK 2020 9.6 º C 1308 mm 1495 hours

UK 2021 9.3 º C 1077 mm 1391 hours

Note. The weather data for IE in 2020 and 2021 are from the Climatology and Observations Division of 

Met Eireann, (https://www.met.ie/climate/past-weather-statements). The data for the UK in 2020 and 2021 

are from the national meteorological service for the UK, 

(https://www.metoffice.gov.uk/research/climate/maps-and-data/summaries/index).

2.2 In-situ Data Measurement

The winter wheat was sown in the study area between September and December and 

harvested between the end of July and August. In-situ data are essential for the analysis 

of the Sentinel-1 backscatter in relation to the actual crop condition on the ground. During 

the winter wheat crop development period in 2020 and 2021, 75 fields were sampled on 

dates to characterize four major growth stages of winter wheat namely tillering, stem 

elongation, heading and flowering, and fruiting, The in-field growth stages were estimated 

using a growing degree days calculator and further confirmed by the farmers before 

visiting the field for crop sampling. The growth stages in this study were described using 

the BBCH scale (named after Biologische Bundesanstalt, Bundessortenamt, und 

CHemische Industrie) (Meier et al., 2009). Each field was sampled using five 0.5m x 0.5m 

quadrats. Quadrats were randomly located about 15m apart and at least 20m from the 

nearest field boundary to avoid the edge effect. The total samples size was 1500. The 
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actual growth stage was recorded by observing the plant morphology of each quadrat 

and matching the BBCH scale description. Four crop biophysical variables namely, SD, 

GAI, PH, and Leaf Nitrogen Concentration (LC%) were measured within quadrat. Four 

more sampling locations were selected randomly with each approximately 15-20m apart.  

Above-ground fresh biomass (AGFB), AGDB, Leaf dry biomass (LDB) and plant water 

content (PWC), and LNC were subsequently determined in the laboratory.  Other than 

crop biophysical variables, quadrat coordinates (latitude and longitude), sample photos 

for each quadrat, and farmer field observation notes were recorded. The in-situ data 

measurement methods are described in (Table 2).

Table 2: Measurements method of in-situ data during winter wheat crop development period in 2020 and 

2021.

In Situ Data Method

Quadrat location Latitude and Longitude to nearest 0.00001 degrees

Growth Stage (GS) Plant morphology of each quadrat was matched with the BBCH scale 

description and the specific BBCH code was recorded. Growth stage 

based on BBCH scale 

Shoots Density (SD) Total count of shoots per quadrat.

Green Area Index (GAI) The ratio of green leaf and stem area to the area of ground, an average 

of three measurements from BASF GAI smartphone application per 

quadrat.

Plant Height (PH) Average of three above-ground plant height measurements per quadrat 

using self-retracting metal tape. 

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=4422047

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

wed



9 | P a g e

Leaf N Concentration (LC%) Average of ten readings measured by SPAD-502Plus chlorophyll meter 

from uppermost leaves per quadrat. Calculate the final value using Eq.1

from (KONICA MINOLTA, 2009) 

LC% = 0.079(SPAD value) -0.154          Eq. 1

Aboveground Fresh 

Biomass (AGFB) 

Destructive sampling of fresh plants per quadrat. The fresh plants were 

weighed using a digital weighing scale with a maximum capacity of 5000g 

to obtain AGFB. The fresh plant was further split into leaves, stems, and 

spikes.

Aboveground Dry Biomass 

(AGDB)

The total weight of oven-dried leaves, stems, and spikes (dried in the oven 

at 70 ºC for 48 hours until constant weight) were obtained respectively 

and also added up to calculate the total aboveground dry biomass.

Leaf Dry Biomass (LDB) Weight of oven-dried plant leaves per quadrat.

Plant Water Content (PWC) Subtraction of Aboveground Fresh Biomass and Aboveground Dry 

Biomass.

Leaf Nitrogen Content 

(LNC)

Value of Leaf N Concentration multiplies with the Leaf Dry Biomass using 

Eq.2 to get Leaf N Content (Li et al., 2018). 

                       LNC=LDB x LC%      Eq. 2   

     

2.3 Sentinel-1 Images

Sentinel-1A and Sentinel-1B Level-1 Ground Range Detected (GRD) images from 1st 

March to 30th June 2020 and 1st March to 30th June 2021 were acquired for the 75 winter 

wheat fields. The GRD scenes consist of dual band cross-polarization, vertical 

transmission (VV), and horizontal reception (VH). The pre-processing of each scene was 

done using Sentinel-1 toolbox’s functions as follows, (1) apply an orbit file (2) GRD border 

noise removal (3) thermal noise removal (4) radiometric calibration (5) terrain flattening 
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(6) terrain correction using SRTM 30-meter DEM, resample pixel spacing to 10m spatial 

resolution (7) subset to the winter wheat field boundary (8) convert backscatter coefficient 

(σ°) to decibels (dB) using log scaling. Each Sentinel-1 images corresponded to one of 

nine orbit passes with incidence angles ranging from 30.28º - 45.27º are shown in (Fig. 

2).  

Fig. 2: All Sentinel-1 images corresponded to multiple orbit passes, different orbit directions, and multiple 

incidence angles acquired for the study fields in IE and UK. ASC stands for “Ascending” and DSC stands 

for “Descending”.
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3. Methods

3.1 Backscatter post-processing using data reduction algorithm. 

There is radiometric uncertainty or noise in the Sentinel-1 backscatter due to the 

calibration of Sentinel-1A and 1B (Schwerdt et al., 2017), variations in multiple orbit 

passes and incidence angles (Kaplan et al., 2021), surface roughness (Anderson & Croft, 

2009), dielectric constant (crop canopy water, soil moisture, dew, and precipitation) 

(Khabbazan et al., 2019), geometric arrangement (Yan et al., 2018), or frozen soil 

(Baghdadi et al., 2018). However, these factors are not fully understood in different parts 

of the world and are not always reproduced by other experiments or backscattering 

models. Thus, we performed a data reduction method, using a locally weighted scatterplot 

smoothing (LOWESS) algorithm for noise reduction of radiometric uncertainty across 

phenology stages within a wide geographical extent. 

The algorithm was used in many applications for noise reduction in remote sensing 

derived values (Derkacheva et al., 2020;  Zhang et al., 2022). LOWESS was developed 

by  Cleveland, (1979). It is a method of fitting a linear or quadratic function to data points 

that is least squared distance from them. The amount of subset data points is defined for 

each weighted least square using the span parameter which is between 0 and 1. The 

optimal span number is depending on the total number of data points for smoothing 

variance trends and can be obtained using chooseLowessSpan function in R package 

(R Core Team, 2022). 

In this research, the backscatters extracted from FlaxClose field in dense time series (Fig. 

3a-d) show the fluctuation trend over the growing period using all available Sentinel-1 
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imagery with multiple incidence angles and orbit passes. In contrast, (Fig. 3e-h) presents 

the backscatters time series classified by four different incidence angle and orbit pass. 

By splitting the backscatter based on single incidence angle and orbit pass, the trends 

significantly less fluctuation over the growing season. The VH polarizations in (Fig. 3e) 

illustrates the influence of incidence angle reduced through application of terrain flattening 

to normalize the incidence angle of the Sentinel-1 imagery. However, the VV polarization 

in (Fig. 3f) shows the influence of the incidence angle remains.  This finding is consistent 

with the finding of (Arias et al., 2022). The LOWESS was applied to the VH, VV, VH-VV 

and VH+VV backscatters parameter (Fig. 3i-l) to improve and reveal a better trend to 

describe the winter wheat growth. This method was replicated to the rest of 74 winter 

wheat fields. 

（a） （b）

（c） （d）

（e） （f）

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=4422047

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

wed



13 | P a g e

 

Fig. 3: The dense time series of backscatters for FlaxClose winter wheat fields in the UK. The backscatters 
(a) VH (b) VV (c) VH-VV (d)VH+VV of combined multiple incidence angles and orbit passes. The 
backscatters (e) VH (f) VV (g) VH-VV (h) VH+VV of splitted incidence angles 31º, 37º, 40º, 45º and orbit 
passes Ascending 30,103, Descending 52,154. The smoothen backscatters using LOWESS for (i) VH (j) 
VV (k) VH-VV (l) VH+VV.    

 

3.2 Quantify backscatter parameters over plant traits using supervised machine 

learning algorithms.

The supervised machine learning models used were (1) Support Vector Machine (SVM) 

was originally developed to solve the classification problem (Cristianini & Shawe-Taylor, 

2000) and then extended for solving regression problems. Support Vector Regression 

(SVR) can solve linear and nonlinear problems without changing predictor variables. It 

has been used for crop biophysical properties estimation (Yao et al., 2015; Kganyago et 

al., 2021). The best kernel configuration in this study was radial basis kernel function 

(RBF) in the R package. (2) Random Forest Regression (RFR) which is a widely used 

（k） （l）

（i） （j）

（g） （h）
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non-linear regression using multiple decision trees for predicting the output (Breiman, 

2001). RFR has been proven to be a useful exploratory and predictive tool for estimating 

crop properties (L. Wang et al., 2016; Mandal et al., 2019). In this study, we tuned the two 

parameters most likely to affect the final accuracy of the model, namely the number of 

randomly selected variables for each subset data point (mtry) and the number of trees to 

grow (ntree). Through tuneGridRF, we tuned mtry from 1 to 10 and selected the best 

mtry value based on the lowest RMSE. The default ntree = 500 has been applied in the 

model. (3) K-Nearest Neighbours Regression (KNNR) is another non-linear regression 

that is simple to implement (Baf et al., 2013). The algorithm is much faster than SVR and 

RF because it learns from the training dataset and makes real-time predictions when a 

new data point is added to the model. This algorithm has been advanced for the 

estimation of crop biophysical properties (Mansaray et al., 2020). These three machine 

learning approaches were optimized using 10-fold cross validation and the interaction 

depth at 3.  

The processed VV, VH, VH-VV, and VH+VV backscatter parameters of Sentinel-1 were 

used as predictors, and the SD, GAI, AGDB, PH, and LNC as response variables. The 

VV, VH, VH-HV and VH+VV backscatter parameters for the five pixels aligned to the five 

sampling quadrats per field per visit were the input data for the supervised machine 

learning models. The robustness of the supervised machine learning models was 

evaluated in three scenarios, crop trait estimation models developed using (1) datasets 

in full growth stage (Fig. 4), (2) datasets in growth stages indicative morphological change 

(Fig. 5) and (3) datasets in each principal growth stages (Fig. 6). These three scenarios 

not only evaluate the robustness of the machine learning algorithms, but also examine 
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the predictive power of Sentinel-1 backscatter parameter to crop traits in different time 

windows.   

These models were validated by splitting the data into training and testing datasets with 

the ratio of ¾ and ¼ respectively. The training dataset was used to calibrate the three 

supervised machine learning models, whereas the testing dataset was used to investigate 

the performance and prediction power of the models. The coefficient of determination (R2), 

root mean square errors (RMSE) and normalized root mean square error (NRMSE%) 

were computed to quantify the prediction power of the Sentinel-1 backscatter.  The 

greatest R2, smallest RMSE, and NRMSE closes to zero indicated good predictive model 

performance. 
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Fig. 4: Crop traits estimation models for full growth stages. Shoot density, green area index and 

aboveground dry biomass models were developed using data collected during BBCH21-87, leaf nitrogen 

content model using data collected during BBCH30-87 and plant height model using data collected during 

BBCH31-87.

Fig. 5: Crop traits estimation models for specific growth stages indicative morphology change. Shoot density 

model was developed using data in BBCH21-30, green area index model in BBCH21-59, aboveground dry 

biomass model in BBCH21-87, leaf nitrogen content model in BBCH30-39 and plant height model in 

BBCH31-71.    
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Fig. 6: Crop traits estimation models for each key growth stages, tillering (BBCH21-30), stem elongation 

(BBCH31-39), heading and flowering (BBCH40-71) and fruiting (BBCH72-87).

3.3 Trends in crop traits through the growing season

The trend of each in-situ plant trait during the growing season were evaluated to 

understand the morphological changes at different growth stages. The trends are useful 

as reference to determine the three scenarios (Fig. 4),(Fig. 5) and (Fig. 6) used to 

evaluate the supervised machine learning models. There was no change to the AGDB 

dataset because its morphology development started at BBCH21, beginning of tillering 

stage and continued throughout the full growth stages (Fig. 9). The morphology 
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development of SD reduced after end of tillering at BBCH30 (Fig. 7), GAI reached a 

maximum then stopped at ear emerged BBCH59 and declined thereafter (discussed 

below, presented in (Fig. 8), PH developed while the stem was growing until the beginning 

of flowering stage BBCH61 and stagnated thereafter (Fig. 10). The change of LNC 

increases from BBCH30-39 during the stem elongation and canopy expansion (Fig. 11). 

Each crop trait will be considered in detail for developing the estimation models.

3.4 In-situ Shoot Density (SD)

The emergence of the side shoots at the leaf stem junction of winter wheat plant starts at 

BBCH21 and reaches its maximum after the end of tillering at BBCH30 (Fig. 7). The SD 

after BBCH30 varied from 613 shoots/m2 to a maximum of 1500 shoots/m2. The real-time 

assessment of SD per unit area could help to monitor winter wheat growth and yield (Tilley 

et al., 2019). Considering that each shoot can form a spike, it is an essential trait that 

could assist farmers in understand the management factors required to improve wheat 

yield (Bastos et al., 2020). After the stem elongation at BBCH31, SD decreases and 

fluctuates until ripening at BBCH87 (Fig. 7). The target final SD to achieve maximum 

potential yield in the UK is at least 460 shoots/m2 (Sylvester-Bradley et al., 2018) and 

480-600 shoots/m2 in the IE (Lynch et al., 2016) by BBCH31.
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Fig. 7: The trend of observed winter wheat shoot density at different growth stages.

3.5 In-situ Green Area Index (GAI)

Crop canopy size is an essential crop variable that affects canopy photosynthesis 

capacity. To determine the radiation interception capacity of a crop, the canopy size is 

measured using GAI. GAI measured the total surface area of the green components of 

the canopy including leaves, stems, and ears divided by the ground surface area. Using 

real-time measurement of GAI, farmers can assess the crop condition and choose the 

optimal nitrogen management strategies for improved crop production (Sieling et al., 

2013). It is apparent from the observed GAI in (Fig. 8), the canopy expansion of winter 

wheat begins at tillering BBCH21 and ends after the ear emerged at BBCH59. The GAI 

reaches a maximum of 8.00 m2/m2 to 8.4 m2/m2 at flag leaf visible BBCH39 to ear 

emerging at BBCH56 (Fig. 8). If GAI declines during this period, it indicates a risk of foliar 
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disease (Bingham et al., 2009) or drought (Nezhadahmadi et al., 2013). Once the end of 

heading, the GAI starts to decrease as a result of leaves senescence.  It is important to 

monitor the growth of GAI during BBCH21-59 to find out the effective amount and timing 

of fertilizer N applied and disease control measures and less important when GAI 

senesces from June onward which is after BBCH59. 

Fig. 8: The trend of observed winter wheat green area index at different growth stages

3.6 In-situ Aboveground Dry Biomass (AGDB)

Timely and accurate estimation of AGDB is another crucial component of crop health 

assessment, decision-making on optimal crop management strategies, and grain yield 

forecasts (Jaenisch et al., 2022). (Fig. 9) indicates how the observed wheat AGDB has 

changed over the growing season. Because of cold weather and low amounts of radiation 
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intercepted, AGDB is not significant prior to stem elongation before BBCH30. At stem 

elongation BBCH31, the AGDB begins to grow rapidly while the internode of wheat begins 

to extend. The stem contributes to most of the plant AGDB until the ear emerged at 

BBCH59. The AGDB shows an increasing trend with a higher rate than before from ear 

emerged BBCH59 to end of flowering BBCH71 as both stem and ear biomass accrue 

further together. At the end of flowering stage BBCH71, the stem biomass ceases and 

only grain accumulates AGDB, resulting in a peak AGDB level during early dough 

BBCH83. Subsequently, the accumulated AGDB then decreases from its maximum due 

to canopy senescence, leaf loss, and ongoing plant respiration (Lynch et al., 2016; 

Sylvester-Bradley et al., 2018).   

 

Fig. 9: The trend of observed winter wheat Aboveground Dry Biomass at different growth stages
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3.7 In-situ Plant Height (PH)

PH is one of the predominant plant traits that affects wheat yield, morphological change, 

and lodging resistance (Y. Wang et al., 2017). Several studies found a significant negative 

correlation between wheat grain yield and PH (Islam et al., 2013; Gao et al., 2020). Taller 

wheat cultivars are more susceptible to lodging risk and a reduction in grain yield. PH is 

determined by the stem extension which begins at BBCH31. (Fig. 10) shows that the PH 

increases rapidly during the stem elongation and reaches a mean height of 64 cm at flag 

leaf visible BBCH39. After BBCH39, the PH increases at a gradual rate and reaches its 

final height between beginning of flowering at BBCH61 to end of flowering at BBCH71 in 

(Fig. 10). 

Fig. 10: The trend of observed winter wheat Plant Height at different growth stages
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3.8 In-situ Leaf Nitrogen Content (LNC)

It is essential for a farmer to have a clear understanding of the nitrogen needs in wheat 

in order to apply nitrogen fertilizer more effectively (Spaner et al., 2005). The nitrogen 

content of leaves plays an important role in maintaining photosynthetic activity and 

nitrogen supply to the grain (Vilmus et al., 2014). (Fig. 11) illustrates the differences in 

observed LNC at different growth stages in the study area. Observed leaf nitrogen uptake 

begins at BBCH30, when stem elongation begins, and peaks at BBCH37, when flag leaf 

emerges. It has significant interaction in response to plant growth regulator accumulate 

split nitrogen applications at tillering BBCH21-26, stem elongation BBCH30-32 and flag 

leaf emerged BBCH37-39 (Qin et al., 2020; Peake et al., 2020). LNC begins to decline 

after BBCH51, which marks the beginning of heading. The declination of LNC can be 

explained by transfer of the photosynthesis assimilation substances to the head and ear 

(L. Wang et al., 2018).
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Fig. 11: The trend of observed winter wheat Leaf N Content at different growth stages.  

4. Results

The analysis between the polarized backscatters parameters (VV, VH, VV-VH, and 

VV+VH) and each plant trait measurement (SD, GAI, AGDB, PH, and LNC) was 

conducted using supervised machine learning algorithms over full growth stages, plant 

morphological development stages, and key growth stage. The model’s performance 

comparison results are shown in (Table 3), (Table 4), and (Table 5). The RFR models 

demonstrated the best prediction for both training and testing datasets of all the plant 

traits over the full growth stages (Table 3). The in-situ plant traits (SD, GAI, AGDB) were 

measured for full growth stages from BBCH21-BBCH87. However, measurements for PH 
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and LNC were available after the tillering and beginning of stem elongation at BBCH31 

because no stems development and fully expanded leaves before this stage.  

Among the plant traits, Sentinel-1 backscatter parameters have the greatest potential to 

estimate and predict GAI with all the algorithms. From the testing dataset, RFR had the 

best result for predicting GAI (R2=0.94, RMSE=0.45m2/m2 and NRMSE=6%), followed by 

KNNR (R2=0.94, RMSE=0.47m2/m2 and NRMSE=6%) and SVR (R2=0.93, 

RMSE=0.50m2/m2 and NRMSE=6%). The result showed that Sentinel-1 backscatters had 

greater potential of estimating GAI than LAI (R2=0.75) in Kumar et al., (2018). This finding 

also consistent with (Duveiller et al., 2011) that GAI is a more relevant plant trait due to 

satellite sensors’ ability to capture reflectance and backscatter from changes in the 

canopy structure (Ulaby et al., 1986; Bouman & van Kasteren, 1990). AGDB has 

demonstrated good results as well as PH by using RFR for quantifying the potential of 

Sentinel-1 backscatters to estimate both plant traits with the performance of (R2=0.87, 

RMSE=3.04 t/ha, and NRMSE=8%) and (R2=0.85, RMSE=6.77 cm and NRMSE=10%) 

respectively. This study reported a higher accuracy of AGDB estimation using multivariate 

RFR model compared to univariate regression in the study of (Ferrazzoli et al., 1992) by 

using single HV polarized backscatter with R2=0.75. Moreover, the result also showed a 

positive correlation between LNC and the backscatter parameters (R2=0.69, 

RMSE=26.13 Kg N/ha, and NRMSE=10%). The backscatter parameters, on the other 

hand, exhibit the lowest prediction performance in SD (R2=0.32, RMSE=165 shoots/m2, 

and NRMSE=12%). 
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Table 3: Results of winter wheat plant traits estimation and prediction using Sentinel-1 backscatter 

parameters in training and testing datasets over full growth stages.

Training Dataset Testing DatasetPlant Traits Full Growth 

Stages

Machine 

Learning 

Models

R2 RMSE NRMSE R2 RMSE NRMSE

SVR 0.21 188 0.13 0.24 175 0.13

RFR 0.28 179 0.12 0.32 165 0.12

SD 

(Shoots/m2)

BBCH21-87

KNNR 0.27 181 0.12 0.32 166 0.13

SVR 0.93 0.52 0.06 0.93 0.50 0.06

RFR 0.94 0.47 0.06 0.94 0.45 0.06

GAI 

(m2/m2)

BBCH21-87

KNNR 0.94 0.49 0.06 0.94 0.47 0.06

SVR 0.80 3.78 0.10 0.80 3.77 0.10

RFR 0.86 3.17 0.08 0.87 3.04 0.08

AGDB

(t/ha)

BBCH21-87

KNNR 0.84 3.36 0.09 0.86 3.17 0.08

SVR 0.77 8.25 0.11 0.77 8.25 0.12

RFR 0.84 6.96 0.09 0.85 6.77 0.10

PH 

(cm)

BBCH31-87 

KNNR 0.82 7.30 0.10 0.83 7.02 0.10

SVR 0.60 28.87 0.11 0.62 29.31 0.12

RFR 0.67 26.09 0.10 0.69 26.13 0.10

LNC 

(Kg N/ha)

BBCH30-87

KNNR 0.65 26.85 0.10 0.69 26.43 0.11

The correlation between Sentinel-1 backscatters parameters and each plant trait 

measurement over its specific growth stage indicative the morphology development in 

plant is clearly shown in (Table 4). Based on results in (Table 4), the prediction 

performance of SD, GAI, and PH using testing dataset had showcased better result than 

analysis using the full growth stages dataset in (Table 3). The KNNR model showed 

equally good results as the RFR model in estimating the GAI. Same as the testing dataset, 
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the training dataset exhibited better prediction performance (Table 4) compares to dataset 

in full growth stages. However, the KNNR showed better results in estimating the SD than 

the RFR and SVR models. The overall performance ranking of supervised machine 

learning in this study is RFR>KNNR>SVR. 

Table 4: Results of winter wheat plant traits estimation and prediction using Sentinel-1 polarized 

backscatters in training and testing dataset over morphology change stages.

Training Dataset Testing DatasetPlant Traits Morphology 

Development 

Stages

Machine 

learning 

models

R2 RMSE NRMSE R2 RMSE NRMSE

SVR 0.28 239 0.18 0.31 217 0.17

RFR 0.28 238 0.18 0.33 211 0.17

SD

(Shoots/m2)

BBCH21-30

KNNR 0.29 236 0.18 0.32 213 0.17

SVR 0.95 0.47 0.07 0.95 0.47 0.07

RFR 0.95 0.46 0.06 0.95 0.46 0.06

GAI 

(m2/m2)

BBCH21-59

KNNR 0.95 0.47 0.07 0.95 0.46 0.06

SVR 0.80 3.78 0.10 0.80 3.77 0.10

RFR 0.86 3.17 0.08 0.87 3.04 0.08

AGDB (t/ha) BBCH21-87

KNNR 0.84 3.36 0.09 0.86 3.17 0.08

SVR 0.78 6.65 0.11 0.78 6.68 0.13

RFR 0.87 6.08 0.08 0.87 5.96 0.09

PH (cm) BBCH31-71

KNNR 0.81 6.16 0.10 0.83 5.95 0.11

SVR 0.64 25.85 0.14 0.66 27.08 0.16

RFR 0.73 25.57 0.10 0.69 26.96 0.11

LNC 

(Kg N/ha)

BBCH31-39

KNNR 0.67 24.63 0.14 0.71 24.31 0.14
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Further analysis of the correlation of Sentinel-1 backscatters parameters was conducted 

using the plant traits measurement over narrower time windows which are at each key 

growth stage namely tillering, stem elongation, heading & flowering, and fruiting. The 

results of (Table 5) indicate that, among the key growth stages, SD and GAI have the 

best prediction performance at tillering stage compared to other growth stages, while 

AGDB, PH, and LNC appear to have best prediction performance at the stem elongation 

stage. The best result of the plant trait model at the tillering stage is GAI with (R2=0.85, 

RMSE=0.40m2/m2, NRMSE=11%). During stem elongation, PH exhibits the best 

prediction performance than the other plant traits (R2=0.81, RMSE=5.24 cm, 

NRMSE=10%). GAI once again obtained the best prediction result among other plant 

traits at the heading and flowering stages with the result of (R2=0.84, RMSE=0.53m2/m2, 

NRMSE=10%). The LNC with (R2=0.71, RMSE=18.02 Kg N/ha, NRMSE=11%) has the 

best prediction result compared to others at fruiting stages. However, Sentinel-1 

backscatter parameters had the best performance using datasets from growth stages 

indicative the morphology development of each plant traits than the datasets using the 

full growth stages and key growth stages respectively. This is due to insufficient 

representativeness of the ground truth sampling in a narrower time window for key growth 

stage.
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Table 5: Results of winter wheat plant traits estimation and prediction using Sentinel-1 backscatter in 

training and testing datasets for key growth stages.

Training Dataset Testing DatasetPlant Traits Key Growth Stages Machine 

learning 

models

R2 RMSE NRMSE R2 RMSE NRMSE

Tillering

BBCH21-30

RFR 0.28 238 0.18 0.33 211 0.19

Stem Elongation

BBCH31- 39

RFR 0.32 173 0.16 0.30 169 0.18

Heading & Flowering

BBCH40- 71

RFR 0.12 145 0.19 0.16 139 0.17

SD

(Shoots/m2)

Fruiting

BBCH72- 87

RFR 0.27 133 0.17 0.31 129 0.18

Tillering

BBCH21-30

RFR 0.86 0.39 0.11 0.85 0.40 0.11

Stem Elongation

BBCH31- 39

RFR 0.59 0.46 0.13 0.58 0.45 0.12

Heading & Flowering

BBCH40- 71

RFR 0.83 0.53 0.10 0.84 0.53 0.10

GAI 

(m2/m2)

Fruiting

BBCH72- 87

RFR 0.54 0.45 0.18 0.55 0.44 0.18

Tillering

BBCH21-30

RFR 0.39 0.37 0.15 0.45 0.35 0.17

Stem Elongation 

BBCH31-39

RFR 0.52 1.85 0.12 0.53 1.74 0.15

AGDB (t) /ha

Heading & Flowering

BBCH40- 71

RFR 0.45 3.40 0.12 0.45 3.33 0.15

Fruiting

BBCH72- 87

RFR 0.34 5.06 0.17 0.38 4.88 0.16

Stem Elongation 

BBCH31-39

RFR 0.77 5.88 0.12 0.81 5.24 0.10PH (cm)

Heading & Flowering

BBCH40- 71

RFR 0.63 6.95 0.12 0.67 6.48 0.11
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Fruiting

BBCH72- 87

RFR 0.25 8.75 0.18 0.28 8.51 0.18

Stem Elongation 

BBCH31-39

RFR 0.73 25.57 0.10 0.69 26.96 0.11

Heading & Flowering

BBCH40- 71

RFR 0.37 30.54 0.14 0.52 27.79 0.13

LNC 

(Kg N/ha)

Fruiting

BBCH72- 87

RFR 0.66 20.19 0.15 0.71 18.02 0.13

5. Discussions

5.1  Assessment of uncertainty for best performing models

The RFR algorithm provided the most accurate prediction models for plant traits in this 

study during the growth stages when the plant traits were developing and contributing to 

the morphological changes (Table 4). (Fig. 12) shows the predicted versus observed plot 

of the winter wheat plant traits. The estimated SD for above 625 observed shoots/m2 is 

close to the fitted line, the rest deviated from the fitted line making the model unsuitable 

for predicting the SD. This finding shows that Sentinel-1 backscatters have the greatest 

prediction power to GAI. The predicted GAI using the model distributed equally around 

the fitted line in (Fig. 12b). AGDB is the second-best plant trait to have a good correlation 

with the Sentinel-1 backscatters. From the scatterplot in (Fig. 12c), there are outliers 

around observed AGDB at 10-15 t/ha and 25-30 t/ha causing the prediction values to 

deviate from the fitted line. The estimated AGDB values are closer to the fitted line for the 

observed AGDB equal to or less than 10 t/ha. The PH RFR model demonstrated reliability 

to estimate the observed PH except for a few outliers caused overestimated values when 
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observed PH between 47-55 cm and underestimated when observed PH was above 77 

cm. (Fig. 12e) illustrates RFR model overestimated observed LNC values between 100-

125 Kg/ha. 

Fig. 12: The predictive performances of the RFR method for winter wheat plant trait estimations using 

Sentinel-1 backscatters in the testing datasets. (a)shoot density (SD), (b)green area index (GAI), (c) 

aboveground dry biomass (AGDB), (d)plant height (PH), (e) leaf nitrogen content (LNC). (R2 indicates that 

the higher the prediction performance to the measured plant traits, the better the model).

（a） （b）

（c） （d）

（e）
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5.2  Variable Importance of best performing models

RFR has a built-in variable importance function to identify the dependency of the crop 

traits estimation models to the Sentinel-1 backscatter parameters. The highest the 

importance value of the backscatter parameter, the highest contribution to the model 

performance. (Fig.13a, c, e) shows the cross-polarization ratio VH-VV has high 

contribution to the SD, AGDB, and LNC models. Many previous studies have also found 

significant correlations between VH-VV to winter wheat biophysical parameters 

(Vreugdenhil et al., 2018; Mercier et al., 2020; Nasirzadehdizaji et al., 2019) and high 

sensitivities to monitor phenological stages (Veloso et al., 2017; Schlund & Erasmi, 2020). 

VH is the most influential Sentinel-1 backscatter parameter to the GAI estimation model 

(Fig.13b) but has no contribution to the SD estimation model. This is likely the result of 

volume scattering mechanisms of the crop. The study of Macelloni et al., (2001) also 

found that the VH increased with the increasing of LAI. Besides, Ferrazzoli et al., (1992) 

and (Paloscia et al., 1998) identified high correlation between VH and vegetation biomass 

of wheat. At low incidence angles, VH was most sensitive to the crop morphological 

change during crop development season (Moran et al., 2012).

VV is the only backscatter parameter that has influence on all the crop traits estimation 

models in this study. The influence of VV is primarily due to the change of the surface soil 

as the crop canopy decreased due to the increasing attenuation from the predominantly 

vertical structure of wheat stems (Nasrallah et al., 2019). The study of Brown et al. (2003) 

demonstrated that VV with high incidence angle around 40º contributed to monitoring 

fresh biomass, GAI, shoot number and growth stage of wheat. 
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The sum of VH+VV only shows significant contribution to estimate GAI and PH (Fig.13). 

The result is in contrast with Nasirzadehdizaji et al. (2019), where VH-VV (R2=0.63) has 

slightly better correlation with PH compared to VH+VV (R2=0.61). Gorrab et al. (2021)  

found that cumulative VH+VV improved estimation on PH to (R2=0.89). Compared to VH-

VV, VH+VV contributed the least or none to SD, AGDB and LNC estimation models.

 

Fig.13: Important Sentinel-1 backscatters (ranked from high to low) for estimating (a) shoot density (SD), 

(b) green area Index (GAI), (c) aboveground dry biomass (AGDB), (d) plant height (PH), and (e) leaf 

nitrogen content (LNC). 

（a） （b）

（c） （d）

（e）
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5.3  Evaluation of results and outlooks

Based on our approach, the GAI estimation with multivariate machine learning using (VH, 

VV, VH-VV, and VH+VV) showed superior performance with (R2=0.95 RMSE=0.46 m2/m2) 

over previous studies. For instance, Caballero et al., (2022) achieved (R2=0.67 

RMSE=0.88m2/m2) using VH+VV to estimate GAI. Harfenmeister et al., (2021a) applied 

combination of (VH, VV, VH/VV, Entropy, Anisotropy, and Alpha) to estimate LAI with 

(R2=0.67). Our AGDB and PH estimation models had achieved the results of (R2=0.87 

RMSE=3.08 t/ha) and (R2=0.87 RMSE=5.56 cm) respectively. Based upon the work 

performed in (Harfenmeister et al., 2021), their approach estimated dry biomass with 

(R2=0.70) and plant height (R2=0.76). As reported by Vreugdenhil et al. (2018), using 

univariate VH-VV has resulted to biomass estimation in (R2=0.64), and crop height 

(R2=0.68) of winter wheat. In Czech Republic, Tůma et al., (2022) demonstrated that 

using Radar Vegetation Index (RVI) for monitoring wheat canopy height (R2=0.39). There 

was lack of information in previous literature of using Sentinel-1 backscatters to estimate 

SD and LNC. This research demonstrated improved performance in GAI, AGDB, PH, and 

LNC estimations except SD in winter wheat growth monitoring compared to existing work 

of (Goh et al., 2022) which was using Sentinel-2. 

The analysis results help to understand the crop traits change from monitoring using the 

Sentinel-1 backscatter parameters. The accurate crop traits estimation model has great 

potential to create crop biophysical property maps which will be classified into informative 

crop management zone map at different phenology stages. Farmers and agronomists will 

be able to understand the crop condition in real time through the spatial variation in crop 
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management zone map and identify the most appropriate schedule and amount of 

fertilizer and pesticides. Ideally, the optimum nitrogen use efficiency requires matching 

fertilizer input to growth potential (Lemaire et al., 2008). The plant protection products 

should be sprayed with knowledge of the crop condition and disease intensity to gain 

positive net return (Wiik & Rosenqvist, 2010).

6. Conclusion

This study demonstrated the capability of C-Band Sentinel-1A/1B images with different 

incidence angles, various orbit directions (ascending and descending) and nine orbit 

passes to monitor winter wheat in a wide geographical extent covering IE and UK. This 

method can estimate the crop traits in wheat frequently and non-destructively at sub-field 

level. Based on our result, the RFR models clearly outperformed SVM and KNNR to 

quantify the correlation of Sentinel-1 backscatters to winter wheat plant trait due to its 

advantages of not sensitive to noise and collinearity (Cutler et al., 2007). However, it took 

longer training period than the other two algorithms. There were three scenarios we used 

(1) full phenology datasets, (2) morphology development stages, and (3) at each principal 

growth stage namely tillering, stem elongation, heading & flowering, and fruiting. To our 

knowledge, no study has considered evaluating the correlation of backscatters parameter 

to plant traits over different time windows during crop development. This could involve 

high expenditure and labor-intensive field sampling. The results suggested that the 

second scenario is most accurate in estimating the winter wheat plant trait change during 

the crop development using Sentinel-1 backscatter parameters. The sensitivity of 

Sentinel-1 backscatter parameters driven by phenological plant structural changes 
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(Vreugdenhil et al., 2018). The methodology framework of this study performed well even 

under different crop managements, soil types, climates, growing seasons, regions (IE and 

UK), and fertilizer rates. Therefore, it is possible that this methodology framework could 

be transferable to different agriculture regions. In future, this is essential for producing 

satellite-based crop trait performance variation maps to support the variable rate 

application and spray application technology in precision agriculture.  Besides, the 

combination of crop traits performance can provide reliable insight to advance in-field 

yield performance forecast as early as during tillering stages.    
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