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Abstract
Embedding randomization procedures in the Alternating Direction Method of Multi-
pliers (ADMM) has recently attracted an increasing amount of interest as a remedy
to the fact that the direct multi-block generalization of ADMM is not necessarily
convergent. Even if, in practice, the introduction of such techniques could mitigate
the diverging behaviour of the multi-block extension of ADMM, from the theoretical
point of view, it can ensure just the convergence in expectation, which may not be a
good indicator of its robustness and efficiency. In this work, analysing the strongly
convex quadratic programming case from a linear algebra perspective, we interpret the
block Gauss–Seidel sweep performed by the multi-block ADMM in the context of the
inexact Augmented Lagrangian Method. Using the proposed analysis, we are able to
outline an alternative technique to those present in the literature which, supported from
stronger theoretical guarantees, is able to ensure the convergence of the multi-block
generalization of the ADMM method.

Keywords Alternating direction method of multipliers · Inexact augmented
Lagrangian method · Randomly shuffled Gauss–Seidel
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1 Introduction

In this work we consider the solution of the Quadratic Programming (QP) problem:

min
x∈Rd

f (x) := 1

2
xT Hx + gT x (QP)
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s.t. Ax = b,

where H ∈ R
d×d is Symmetric Positive Definite (SPD in short) and A ∈ R

m×d

(d ≥ m) has full rank.
Recently, problem (QP) has been widely used as a sample problem for the conver-

gence analysis of the n-block generalization of the Alternating Direction Method of
Multipliers (ADMM) [6, 11, 22, 49, 55]. In particular, in [11], a counterexample in
the form of problem (QP) has been given to show that the direct n-block extension
of ADMM is not necessarily convergent when solving non-separable convex mini-
mization problems. This counterexample has motivated a series of very recent works,
including [8, 10, 12, 14, 19, 29, 32–35, 41, 42, 44, 53, 54], where the authors analyse
modifications of ADMM which ensure its convergence when n ≥ 3. In particular, in
[12, 44, 53] a series of randomization procedures has been introduced which is able
to guarantee the convergence in expectation of the n-block generalization of ADMM.
Since then such techniques have been proposed as a possible remedy to the fact that
the deterministic direct n-block extension of ADMM is not necessarily convergent.

The ADMM [6, 22] was originally proposed in [28] and, in its n-block version, it
embeds a n-block Gauss–Seidel (GS) decomposition [5, 27] into each iteration of the
Augmented LagrangianMethod (ALM) [36, 50]: the primal variables, partitioned into
n blocks, are cyclically updated and then a dual-ascent-type step for the dual variables
is performed.

Adopting a purely linear-algebraic approach, in the particular case of problem (QP),
ALM and ADMM can be simply interpreted in terms of matrix splitting techniques
(see [31, 56]) for the solution of the correspondingKarush–Kuhn–Tucker (KKT) linear
system (see Sects. 3 and 6).

Even if in the numerical linear algebra community the study of matrix splitting
techniques for the solution of linear systems arising from saddle point problems is
a well established line of research (see [2, Sec. 8] for an overview), this connection
seems to be only partially exploited in the works [12, 44, 53] and, despite the fact that
analogies between ADMM and GS+ALM are apparent, to the best of our knowledge,
very few works perform a precise investigation in this direction (even in the simple
case when the problem is given by Eq. (QP)).

Indeed, even if it is natural to view ADMM as an approximate version of the ALM,
as reported in [22, 23], there were no known results in quantifying this interpretation
until the very recent work [15]: here the authors investigate the connection of the
block symmetric Gauss–Seidel method [31, Sec. 4.1.1] with the inexact proximal
ALM, which represents somehow a different setting from the one investigated here.

Broadly speaking, this work aims to depict a precise picture of the synergies occur-
ring between GS and ALM in order to give rise to ADMM and, in turn, to shed new
light on the hidden machinery which controls its convergence.

For the reasons explained above, our starting point is an analysis of the ALM from
an inexact point of view and specifically tailored for problem (QP). Indeed, inexact
ALMs (iALM) have attracted the attention of many researchers in the last years and
we refer to [57, Sec. 1.4] for a very recent literature review. We mention explicitly
the works [38, 39, 43, 45], where iALM is analysed for solving linearly constrained
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convex programming problems, a very similar framework to the one analysed here.
To the best of our knowledge, our approach does not have any evident analogy to the
previously mentioned papers.

On the other hand, the connections of the ALM with monotone operators/splitting
methods are well understood [21, 51] and, our analysis, resembles this line of research
more closely: we use, in essence, a matrix splitting of the augmented KKT matrix of
(QP) to represent the ALM/iALM iterations. It is not surprising that, as a result of this
line of reasoning, we are able to relate the convergence of ALM/iALM (and their rate
of convergence to an ε-accurate primal-dual solution) to the spectral radius ρ of the
iteration map of a fixed point problem (see Eq. (9)).

A careful checking of the literature revealed some analogies of our approach with
the inexact Uzawa’s method [1]. Indeed the ALM method can be interpreted as the
Uzawa’s method applied to the augmented KKT system of problem (QP) and in the
context of the inexact Uzawa’s method, it is empirically well documented [25] and
theoretically well understood [7, 16–18, 24], that a fixed number of Successive Over-
Relaxation (SOR) [26, 58] steps per inner solve (typically 10) is needed in order to
reproduce the convergence rate of the exact algorithm.

All the inexactness criteria developed in the previously mentioned works are char-
acterized by a summability condition or a relative error condition based on the residual
previously computed.

A first important by-product of our analysis, is that we are able to prove the con-
vergence of the iALM without imposing any summability condition on the sequence
{ηk}k which controls the amount of inexactness of the iALM at k-th iteration (see The-
orem 9) also in the case when the source of inexactness is modelled using a random
variable (see Lemma 10). A second important advantage of our approach, is that we
are able to give explicit bounds for the rate of convergence of the iALM in relation to
the speed characterizing the convergence to zero of the sequence {ηk}k .

Beyond the previously mentioned advantages of our analysis, we trace the main
contribution of this work in the production of an explicit link between the accuracy
required to ensure the convergence and the specific solver used to address the mini-
mization step in the ALM, which, in the case of problem (QP), is equivalent to the
solution of a SPD linear system. Using explicit error-reduction bounds for the SOR
method [47] and its Randomly Shuffled version [48], we are able to prove that the
inexactness criterion ηk = Rk+1 (R < 1 suitably user-defined), can be satisfied by
performing a constant number of iterations (see Theorem 17). Moreover, observing
that the GS decomposition is a particular case of the SOR decomposition, we are
able to connect the very well known convergence issues [49, 55] of the direct n-block
extension of ADMM (and its randomized versions [12, 44, 53]) to the fact that one GS
sweep for iALM-step may not be sufficient to ensure enough of the accuracy in the
algorithm to deliver convergence. Finally, as an interesting result of our analysis, we
are able to propose a simple numerical strategy aiming to mitigate, if not to eliminate
entirely, the convergence issues of ADMM (see Sect. 6): this proposal, due to its solid
theoretical guarantees of convergence, could be considered as a competitive alterna-
tive to the techniques introduced to date [12, 44, 53]. We provide some preliminary
computational evidence of this fact (see Sect. 7).
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1.1 Test problems

In order to showcase the developed theory, in the remainder of this work, we will
consider the following test problems (all the numerical results presented are obtained
using Matlab� R2020b):

Problem 1 H is theKernelMatrix associatedwith the radial basis function for the data-
set heart_scale from [9] (270 instances, 13 features). In particular, we consider

(H)i j = e
− ‖xi−x j ‖

h2 with h = 0.5 and g a random vector. For the constraints, we choose
A = eT where e is the vector of all ones and b = 1.

Problem 2 Following [11], we consider H = hI3×3 with h = 0.05 and g a random
vector. For the constraints we consider the matrix

A =
⎡
⎣
1 1 1
1 1 2
1 2 2

⎤
⎦

and b a random vector (rank(A) = 3).

1.2 Notation

In the following, as it is customary in the optimization community, we will use super-
scripts to denote particular elements of a sequence (scalars, vectors, matrices). In
particular, for scalars, this choice could locally clash with the power operation of a
scalar but the meaning will be always clear from the context. To denote the whole
sequence, instead, we will use subscripts, e.g., {ηk}k ∈ R, {xk}k ∈ R

d and so on.
Given a vector v ∈ R

d , ‖v‖ denotes the Euclidean norm whereas, given a matrix
H ∈ R

d×d , ‖H‖ denotes the 2-norm. Moreover, k2(H) := ‖H‖‖H−1‖ will be used
for the condition number in 2-norm. Finally, in the following, we will freely use a
series of standard definitions from linear algebra, e.g., that of minimal polynomial,
diagonalizability and similarity, and we refer the interested reader to [37].

2 Augmented Lagrangian and KKT

If we consider the Augmented Lagrangian

Lβ(x,μ) = 1

2
xT Hx + gT x − μT (Ax − b) + β

2
‖Ax − b‖2,

the corresponding KKT conditions are

∇xLβ(x,μ) = Hx + g − ATμ + βAT Ax − βATb = 0

Ax − b = 0.
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Multiplying by β the second KKT condition, we obtain the system

[
Hβ −AT

βA 0

]

︸ ︷︷ ︸
=:A

[
x
μ

]
=
[
βATb − g

βb

]

︸ ︷︷ ︸
=:q

(1)

where Hβ := H+βAT A.As it will be clear in Sect. 3, the main reason for undergoing
the rearrangement of the KKT conditions as in (1), is that we will be able to interpret
the Augmented Lagrangian Method of Multipliers (ALM) as a stationary method
corresponding to a particular splitting of the matrix A.

Theorem 1 states the existence of a unique solution of problem (1):

Theorem 1 The matrix A is invertible for all β > 0.

Proof Observe that

A =
[
Hβ 0
βA βAH−1

β AT

] [
I −H−1

β AT

0 I

]
.

The non-singularity follows by using the fact that A is of full rank. See also [2, Sec. 3]
for different factorizations of saddle point matrices. ��

Let us define:

Definition 2 (ε-accurate primal-dual solution) We say that [x,μ]T is an ε-accurate
primal-dual solution for problem (QP) if

‖Hx + g − ATμ‖ ≤ ε and ‖Ax − b‖ ≤ ε.

Moreover, if [x,μ]T is a random variable, we say that it is an expected ε-accurate
primal-dual solution for problem (QP) if

E(‖Hx + g − ATμ)‖ ≤ ε and E(‖Ax − b‖) ≤ ε.

3 The Augmented Lagrangianmethod of Multipliers (ALM)

The general form of ALM is given by

{
xk+1 = minx∈Rd Lβ(x,μk)

μk+1 = μk − β(Axk+1 − b),

which, for problem (QP), reads as

{
xk+1 = H−1

β (ATμk + βATb − g)
μk+1 = μk − β(Axk+1 − b)

. (2)
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It is important to observe that the iterates [xk+1,μk+1]T produced by (2) are dual
feasible, i.e.,

0 = ∇xLβ(xk+1,μk) = ∇x f (xk+1) − ATμk+1 = Hxk+1 + g − ATμk+1.

It is well known that ALM can be derived applying the Proximal Point Method to
the dual of problem (QP), see [51, Sec. 6.1], but in this particular case can be also recast
in an operator splitting framework (see [51, Sec. 7], [21]): indeed, the ALM scheme
can be interpreted as a fixed point iteration obtained from a splitting decomposition
for the KKT linear algebraic system (1) (see [30, 56] and [2, Sec. 8]). Writing

A =
[
Hβ 0
βA I

]
−
[
0 AT

0 I

]
,

we can write Eq. (2) as

[
xk+1

μk+1

]
=
[

H−1
β 0

−βAH−1
β I

][
0 AT

0 I

]

︸ ︷︷ ︸
=:Gβ

[
xk

μk

]
+
[

H−1
β 0

−βAH−1
β I

]

︸ ︷︷ ︸
=:Fβ

[
βATb − g

βb

]

︸ ︷︷ ︸
q

,

i.e., as a fixed point iteration of the form

[
xk+1

μk+1

]
= Gβ

[
xk

μk

]
+ Fβq.

The following Theorem 3 (see [13, Sec. 2] for a similar result) is the cornerstone to
prove the convergence of the ALM (see Eq. (2)) and its inexact version (see Eq. (8)).

Theorem 3 The eigenvalues of Gβ are s.t. λ ∈ [0, 1) for all β > 0 and, moreover,
ρ(Gβ) → 0 for β → ∞.

Proof Let us observe that (λ, [u, v]T ) is an eigenpair of Gβ if and only if

AT v = λHβu

(1 − λ)v = λβAu. (3)

The proof is structured into three parts.
Part 1: If λ is an eigenvalue of Gβ, then λ �= 1.

By contradiction suppose that λ = 1, then from (3) we have the condition

[
Hβ −AT

βA 0

] [
u
v

]
= 0,

which leads to an absurd since A is invertible for β > 0 (see Theorem 1).
Part 2: If (λ, [u, v]T ) is an eigenpair of Gβ, then u �= 0.
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Bycontradiction, ifu = 0, then from the second equation in (3),weobtain (1−λ)v = 0
and hence an absurd using Part 1.

Part 3: If v = 0,multiplying byuT the first equation in (3), we obtainλuT Hβu = 0,
which leads to λ = 0 since Hβ is SPD.
If v �= 0, from (3), we obtain

λ(1 − λ)
uT Hβu
uTu

= λβ
uT AT Au

uTu
. (4)

If in Eq. (4) uT AT Au
uT u

= 0, reasoning as before and using Part 1, we obtain λ = 0.

Instead, if in Eq. (4) we have uT AT Au
uT u

�= 0, we obtain λ = 0 or λ = uT Hu
uT Hβu

< 1,

which completes the proof observing that, in this case, λ = uT Hu
uT Hβu

→ 0 if β → ∞
since uT AT Au �= 0. ��
Lemma 4 The matrix Gβ is diagonalizable.

Proof Let us start from observing that

Gβ =
[
0 H−1

β AT

0 I − βAH−1
β AT

]
. (5)

The proof is divided into two parts.
Part 1: We prove that the matrix I − βAH−1

β AT is invertible.

To prove this fact, it is enough to prove that βAH−1
β AT does not have unitary eigen-

values. Using Woodbury formula and defining C := (I + βAH−1AT )−1, we have

βAH−1
β AT = βAH−1AT (I − CβAH−1AT ) ⇒

βAH−1
β AT x = x ⇔ βAH−1ATCx = x.

Thesis follows by observing that βAH−1ATC and C
1
2 βAH−1ATC

1
2 are similar and

that

λ(C
1
2 βAH−1ATC

1
2 ) ⊂ (0, 1).

Part 2:We prove that theminimal polynomial ofGβ factorizes in distinct linear factors.
The proof of this fact follows by observing that the minimal polynomials of the

blocks on the diagonal of Gβ, namely the null matrix and the symmetric matrix
I − βAH−1

β AT , factorize in distinct linear factors since they are diagonalizable (see

[37, Cor 3.3.10]). Moreover, since the matrix I − βAH−1
β AT is invertible, they do

not have common factors. Hence, the product of such minimal polynomials (which
coincides with the lowest common multiple (lcm)) is the minimal polynomial of the
whole matrix.
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Indeed, this last implication holds for generic block upper triangular matrices. To
prove that, let us consider a block upper triangularmatrix F with b diagonal blocks Fii ,
i = 1, . . . , b.Let us denote,moreover, bymi (x) theminimal polynomials of the blocks
and m(x) the minimal polynomial of the whole matrix F . We have lcm(mi (x))|m(x)
because m(Fii ) = 0. Moreover, by direct computation, one can check that, defining
s(x) := ∏n

i=1 mi (x), it holds s(G) = 0. If the polynomials mi (x) are pairwise
relatively prime (i.e., they do not have common factors), then s(x) = lcm(mi (x)) and
hence s(x) = m(x) since lcm(mi (x))|m(x).

The final proof of statement, i.e., the diagonalizability of Gβ, follows by observing
that, if the minimal polynomial of a given matrix factorizes in distinct linear factors,
then the matrix is diagonalizable (see, once more, [37, Cor 3.3.10]). ��
Remark 1 (Non unitary step length) The framework presented until now allows to
consider also the case of non-unitary dual steps. Indeed, considering the splitting

A =
[
Hβ 0
βA 1

γ
I

]
−
[
0 AT

0 1
γ
I

]
,

it is easy to see that the corresponding ALM-type update is

{
xk+1 = xk+1 = H−1

β (ATμk + βATb − g)
μk+1 = μk − γβ(Axk+1 − b).

Moreover, using the techniques from Theorem 3 and Lemma 4, it can be proved that
its convergence and rate of convergence depend on the spectral radius of

I − γβAH−1
β AT .

Hence, the choice of the parameter γ could be used, in principle, to further improve
the rate of convergence of ALM. In the following we consider γ = 1.

Lemma 5 There exists a constant M ≡ M(Gβ) ≥ 1 s.t. ‖Gk
β‖ ≤ Mρ(Gβ)k for all

k ∈ N.

Proof Using Lemma 4, since Gβ is diagonalizable, we have Gk
β = X�k X−1, and

hence

‖Gk
β‖ ≤ ‖X‖‖X−1‖︸ ︷︷ ︸

=:M
‖�k‖ ≤ Mρ(Gβ)k . (6)

��
Definition 6 In the following, [x,μ]T denotes the unique solution of linear system (1)
(see Theorem 1 for existence and uniqueness). Moreover, we define, ρβ := ρ(Gβ) :=
maxλ{|λ(Gβ)|}, ek :=

[
xk − x
μk − μ

]
, dk := A

[
xk

μk

]
− q.
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Fig. 1 Behaviour of k2(A), k2(Hβ), ρ(Gβ) for different values of β (logarithmic scale on both axes).
Using Lemma 7 the ALM method (2) converges faster for smaller values of ρ(Gβ).

Lemma 7 The ALM in (2) converges for all β > 0. Moreover, we have for all k ∈ N,

‖ek‖ ≤ ‖e0‖Mρk
β

and

‖dk‖ ≤ ‖A‖‖A−1‖‖d0‖Mρk
β.

Proof From direct computation, we have

ek = Gk
βe

0,

dk = AGk
βA−1d0,

where we usedAek = dk . Thesis follows by passing to the norms and using Lemma 5.
��

In Fig. 1 we report the behaviour of the condition number in 2-norm of the matrices
A, Hβ (respectively k2(A), k2(Hβ)) and the spectral radius ρβ for different values of
β. The results obtained in Fig. 1 confirm the statement regarding ρβ in Theorem 3, i.e.,
ρβ decreases when β increases. And indeed, using Lemma 7, we can observe that the
convergence of ALM can be consistently sped-up by increasing the value of β, which
corresponds to a decrease of ρβ . On the other hand, the eventual speed-up resulting
from considering large values for β comes at the cost of solving an increasingly ill-
conditioned linear system involving Hβ (see the first equation in (2) and the behaviour
of k2(Hβ) in Fig. 1). Indeed, when β is large, the matrix Hβ is dominated by the
term βAT A (see [2, Sec. 8.1] and references therein for more details) and, if AT A
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Fig. 2 Behaviour of the quantities analysed in Lemma 8 (logarithmic scale on y-axis)

is singular, the condition number of the matrix Hβ progressively degrades when β

increases (see the behaviour of k2(Hβ) for Problem 1 in the upper panel of Fig. 1).
The following Lemma 8 states the worst case complexity of ALM.

Lemma 8 The ALM in (2) requires O(logρβ
ε) iterations to produce an ε-accurate

primal-dual solution.

Proof Observe that we have

‖Axk − b‖ ≤ 1

β
‖dk‖ ≤ 1

β
‖A‖‖A−1‖‖d0‖Mρk

β,

where in the last inequality we used Lemma 7. Since, as observed at the beginning of
this section, the iterates [xk,μk]T produced by the ALM are dual feasible, we have
‖Hxk + g − ATμk‖ ≡ 0. Hence, defining C := 1

β
‖A‖‖A−1‖‖d0‖M, we obtain

that k ≥ logρβ
(ε/C) iterations of the ALM are sufficient to deliver an ε-accurate

primal-dual solution. ��
In Fig. 2, we show the behaviour of the quantities involved in the proof of Lemma 8

(the notation used in the legend is consistent with that used in Lemma 8 except for the
fact that the numerical value of the constant C used there is normalized using M, i.e.,
in Fig. 2 we report C ≡ C/M). As Lemma 8 states and Fig. 8 shows, the function
Cρk

β is an upper bound for the quantity ‖Axk −b‖. In this example, in order to further
highlight the dependence of ρβ on β, we choose different values of β (β = 0.1 and
β = 5) such that, for Problem 1 and Problem 2, we obtain ρβ ≈ 0.05. Let us point out
that the results reported in Fig. 2 are obtained solving the linear system in (2) using a
high accuracy (a direct method using Matlab’s “backslash” operator) and, since
the iterates must be dual feasible, the residuals ‖Hxk + g − ATμk‖ are close to the
machine precision.
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4 Inexact ALM (iALM)

In this section we study in detail the iALM for problem (QP). The reader may see
[57, Sec. 1.4] for a recent survey on this subject. In particular, we assume that the first
equation in (2) is not solved exactly, i.e., xk+1 is such that

Hβxk+1 − (ATμk + βATb − g) = rk . (7)

In our framework, the iALM read as

{
xk+1 = H−1

β (ATμk + βATb − g + rk)
μk+1 = μk − β(Axk+1 − b)

, (8)

and (8) can be alternatively written as the following inexact fixed point iteration (see
[4] and [46, Sec 12.2] for more details on this topic):

[
xk+1

μk+1

]
=
[

H−1
β 0

−βAH−1
β I

][
0 AT

0 I

]

︸ ︷︷ ︸
=Gβ

[
xk

μk

]
+
[

H−1
β 0

−βAH−1
β I

]

︸ ︷︷ ︸
=Fβ

[
βATb − g + rk

βb

]

︸ ︷︷ ︸
=:qk

. (9)

On the contrary of what was observed for the exact ALM (see the beginning of Sect. 3),
the iterates produced by (8) are not dual feasible since

0 �= rk = ∇xLβ(xk+1,μk) = Hxk+1 + g − ATμk+1,

i.e., the error rk introduced in the solution of the first equation in (8) can be interpreted
as a measure of the violation of the dual feasibility condition.

In Sect. 5.1.2 we will consider the point xk+1 in (7) as a result of a randomized
procedure and, for this reason, we are going to present this section assuming that {rk}k
in (9) is a sequence of random variables (and hence all the generated {[xk,μk]T }k
are random variables). Moreover, all the results presented here can be easily restated
in a deterministic framework substituting the “almost sure (a.s.) convergence” with
“convergence” and not considering the “expectation operator”. For a review of the
probabilistic concepts we use in the following see [52, Ch. 2].

The following Theorem 9 addresses the convergence of the iALM using the inexact
fixed point formulation in (9) under the condition that ‖rk‖, i.e., the error introduced
in the solution of the first equation in (8), converges a.s. to zero.

Theorem 9 Let β > 0. If lim j→∞ ‖r j‖ = 0 a.s., then the iALM in (8) converges a.s.
to the solution of the linear system (1) and the following inequalities hold a.s. for every
k ∈ N:

‖ek‖ ≤ Mρk
β‖e0‖ + M‖Fβ‖

k−1∑
j=0

ρ
k−1− j
β ‖r j‖,
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‖dk‖ ≤ ‖A‖‖A‖−1‖d0‖Mρk
β + M‖A‖‖Fβ‖

k−1∑
j=0

ρ
k−1− j
β ‖r j‖. (10)

Proof If [x,μ]T is a solution of (1), then it satisfies the fixed point equation

[
x
μ

]
=
[

H−1
β 0

−βAH−1
β I

][
0 AT

0 I

] [
x
μ

]
+
[

H−1
β 0

−βAH−1
β I

][
βATb − g

βb

]
. (11)

Subtracting (11) from (9) we obtain

ek = Gβek−1 + Fβ

[
rk−1

0

]
a.s.

and hence

ek = Gk
βe

0 +
k−1∑
j=0

Gk−1− j
β Fβ

[
r j

0

]
a.s. (12)

Passing to the norms in (12) and using Lemma 5, we have

‖ek‖ ≤ ρk
βM‖e0‖ + M‖Fβ‖

k−1∑
j=0

ρ
k−1− j
β ‖r j‖ a.s. (13)

The a.s. convergence to zero of {‖ek‖}k follows from (13) observing that, if
limk→∞ ‖rk‖ = 0 a.s., then

lim
k→∞

k−1∑
j=0

ρ
k−1− j
β ‖r j‖ = 0 a.s.

(this is a particular case of the Toeplitz Lemma, see [46, Exercise 12.2-3] for the
deterministic case, [40] and references therein for the probabilistic case). The second
part of the statement follows by observing that

‖dk‖ = ‖Aek‖ ≤ ‖A‖‖ek‖ a.s.

and that ‖e0‖ ≤ ‖A‖−1‖d0‖. ��
Lemma 10 Suppose E(‖r j‖) ≤ R j+1 for all j ∈ N and R < 1. Then the iterates of
the iALM in (8) converge a.s. to the solution of the linear system (1). Moreover, if
R < ρβ, then O(logρβ

ε) iterations are sufficient to produce an expected ε-accurate
primal-dual solution; else, if ρβ ≤ R, then O(logR ε) iterations are sufficient (given
that ε is sufficiently small).
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Proof If E(‖r j‖) ≤ R j+1 for all j ∈ N, then
∑∞

j=0 E(‖r j‖) < ∞ and hence, using

[52, Th. 2.1.3], we have lim j→∞ ‖r j‖ = 0 a.s. Using now Theorem 9, we have that
‖dk‖ converges a.s. to zero.

Using Eq. (10) and the hypothesis E(‖r j‖) ≤ R j+1, we have

E(‖dk‖) ≤ ‖A‖‖A‖−1‖d0‖Mρk
β + M‖A‖‖Fβ‖

k−1∑
j=0

ρ
k−1− j
β R j+1. (14)

Let us observe, moreover, that

E(|‖Hxk + g − ATμk‖ − ‖βAT (Axk − b)‖|)
≤ E(‖Hβxk − ATμk + g − βATb‖) ≤ E(‖dk‖),

and hence

E(‖Hxk + g − ATμk‖) ≤ E(‖dk‖) + ‖AT ‖E(‖dk‖) ≤ C1E(‖dk‖), (15)

where we defined C1 := (1+‖AT ‖) and used the fact that ‖β(Axk −b)‖ ≤ ‖dk‖ a.s.
Case R < ρβ. Using (14), we have

E(‖dk‖) ≤ ‖A‖‖A‖−1‖d0‖Mρk
β + ρk

βM‖A‖‖Fβ‖ R

ρβ

k−1∑
j=0

(
R

ρβ

) j

≤ C2ρ
k
β,

where C2 := max{M‖A‖‖A‖−1‖d0‖, M
R

ρβ
‖A‖‖Fβ‖
1− R

ρβ

}.
Moreover, using the above inequality, we have also

E(‖Axk − b‖) ≤ 1

β
E(‖dk‖) ≤ 1

β
C2ρ

k
β,

and hence, using (15) and defining C := max{C1C2,
1
β
C2}, we obtain that k ≥

logρβ
(ε/C) iterations of iALMare sufficient to produce an expected ε-accurate primal-

dual solution.
Case ρβ ≤ R. Using (14), we have

E(‖dk‖) ≤ ‖A‖‖A−1‖‖d0‖MRk + RkkM‖A‖‖Fβ‖ ≤ C2R
kk,

where C2 := max{M‖A‖‖A−1‖‖d0‖, M‖A‖‖Fβ‖}. Let us observe that, in this case,
we have

E(‖Axk − b‖) ≤ 1

β
E(‖dk‖) ≤ 1

β
C2R

kk,
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and hence, using (15) and defining C := max{C1C2,
1
β
C2}, we obtain that to pro-

duce an expected ε-accurate primal-dual solution it suffices to perform k + logR k ≥
logR(ε/C) iterations of iALM. The last part of the statement follows by observing
that limk→∞ k+logR k

k = 1. ��
Before concluding this section, let us state the following Corollary 11, which will

be used later:

Corollary 11 Suppose E(‖r j‖) ≤ R j+1 for all j ∈ N and R < 1. If R > ρβ, then
there exists a constant L ≡ L(M,A, ρβ, R) s.t.

‖β(Axk − b)‖
Rk

≤ L < ∞ a.s. for every k ∈ N, (16)

and hence, we have

E

(‖β(Axk − b)‖
Rk

)
≤ L for every k ∈ N. (17)

Proof Using (10) we have

‖β(Axk − b)‖
Rk

≤ ‖dk‖
Rk

≤ M‖A‖‖A−1‖‖d0‖
(ρβ

R

)k + M‖A‖‖Fβ‖
k−1∑
j=0

(ρβ

R

)k−1− j
,

from which thesis follows by observing that
∑k−1

j=0(
ρβ

R )k−1− j ≤ 1
1− ρβ

R

for all k. ��

5 The solution of the linear system

In this section, given [xk,μk], we suppose that the linear system

Hβx = (ATμk + βATb − g), (18)

is solved using an iterative solver. Despite the fact that any iterative solver can be used
for the solution of the SPD system in (18), wewill focus our attention only on the block
Successive Over-Relaxation method (SOR) [26, 58] or its Randomly Shuffled version
(RSSOR) [48]. Indeed, these choices will allow us to clearly interpret the Random
n-block ADMM as an iALM, see Sect. 6. Since rk in the first equation of (8) is the
(possibly deterministic) residual associated to the linear system (18), i.e.,

Hβxk+1 − (ATμk + βATb − g) = rk,

one would be tempted to think that the increasing accuracy condition for the a.s.
convergence to zero of the expected residual rk in Lemma 10, i.e., E(‖rk‖) ≤ Rk+1,
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requires that the expected number of iterations of the chosen iterative solver increases
when the iterates of iALM proceed. In this section we will show that this is not the
case if R > ρβ. For the remaining of this work let us define

χk := ATμk + βATb − g,

and {ηk}k → 0 as the forcing sequence such that E(‖rk‖) ≤ ηk for all k ∈ N. We
use, moreover, the following inequalities: given B ∈ R

d×d SPD, if we order the
eigenvalues of B as λ1(B) ≥ . . . λd(B), then

λd(B)‖x‖2B ≤ ‖Bx‖2 ≤ λ1(B)‖x‖2B for all x ∈ R
d (19)

and

λd(B)‖x‖2 ≤ ‖B1/2x‖2 ≤ λ1(B)‖x‖2 for all x ∈ R
d . (20)

For the sake of completeness, before presenting our results, we deliver a brief survey
on the block SOR method which is based on [31, 48, 56].

5.1 A brief survey on SOR and randomly shuffled SOR

Let B ∈ C
d×d . Consider the linear system

By = χ . (21)

We can express the matrix B as the sum of block-matrices B = D − L −U where

D :=

⎡
⎢⎢⎢⎣

B1,1
B2,2

. . .

Bn,n

⎤
⎥⎥⎥⎦ , L := −

⎡
⎢⎢⎢⎢⎣

01,1 0 0 0

B2,1 02,2 0
...

...
. . .

. . . 0
Bn,1 Bn,2 . . . 0n,n

⎤
⎥⎥⎥⎥⎦

,

U := −

⎡
⎢⎢⎢⎢⎣

01,1 B1,2 B1,n

0 02,2
. . .

...
...

. . . Bn−1,n
0 0 . . . 0n,n

⎤
⎥⎥⎥⎥⎦

. (22)

Let us suppose now that the block-diagonal matrix D is invertible. The fixed point
problem corresponding to Eq. (21) can be written as

(D − ωL)y = ((1 − ω)D + ωU )y + ωχ

and the SOR method is defined as

y j+1 = (D − ωL)−1((1 − ω)D + ωU )y j + ω(D − ωL)−1χ . (23)
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The Gauss–Seidel (GS) method is recovered for ω = 1.
It is important to point out at this stage that, to interpret the block Gauss–Seidel

sweep performed by the multi-block ADMM in the context of the inexact Augmented
LagrangianMethod as in Sect. 6, wewill need the results contained in this section only
in the particular case ofω = 1 (which corresponds precisely to theGauss–Seidel case).
On the other hand, we prefer to state all the theory in the more general framework of
SOR (0 < ω < 2) as the results presented in Sect. 6 hold also for relaxation parameters
different from ω = 1. Despite the fact that the detailed study of such generalizations
of the multi-block ADMM falls out of the scope of this work, it is important to note
that they might be of great practical interest due to the enhanced rate of convergence
of SOR w.r.t. Gauss–Seidel when suitably selected relaxation parameters are chosen.

Observe that Eq. (23) can be written alternatively as

y j+1 = (I − ωD−1L)−1((1 − ω)I + ωD−1U )y j + ω(I − ωD−1L)−1D−1χ ,

(24)

and for this reason, usually, the point successive over-relaxation matrix is defined as

Lω := (I − ωD−1L)−1((1 − ω)I + ωD−1U ).

The following Corollary of the Ostrowski–Reich Theorem states the convergence
of the block SOR iteration:

Corollary 12 [56, Cor. 3.14] Let B ∈ C
n×n and D, L,U be defined as in (22). If D

is positive definite, then the block SOR method in (23) is convergent for all y0 if and
only if 0 < ω < 2 and B is positive definite.

In this work we are going to deal just with symmetric matrices and, for this reason,
we denote the factor U in (22) with LT . It is worth noting, moreover, that using the
equality (1−ω)D+ωLT = (D−ωL)−ωB,we can further rewrite the SOR iteration
in (23) as

y j+1 = (I − ω(D − ωL)−1B)y j + ω(D − ωL)−1χ . (25)

In [48], a Randomly Shuffled version of SOR (RSSOR) has been introduced and
studied: it is obtained considering P j as a random permutation matrix (with uniform
distribution and independent from the current guess y j ) and applying the SOR splitting

to the linear system P j BP j T P jx = P jχ , i.e., considering

P j BP j T = DP j − LP j − LT
P j .

The RSSOR is defined as

y j+1 = (I − ωP j T (DP j − ωLP j )
−1P j B)y j + ωP j T (DP j − ωLP j )

−1P jχ .

(26)
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Fig. 3 ρ(LP
1 ) for 100 random matrices of the form B = RT R + I ∈ R

7×7

Moreover, let us observe that after defining QP j := ωP j T (DP j − ωLP j )−1P j , (26)
can be written as a function of the random variables P1, . . . , P j , i.e.,

y j+1 =
j∏


=0

(I − QP
 B)y0 +
j∑

i=0

⎛
⎝

j∏

=i+1

(I − QP
 )

⎞
⎠ QPi χ , (27)

where we set (
∏ j


=i+1(I − QP
 )) := I if 
 + 1 > j .
Before concluding this section, let us point out that the main idea connected with

RSSOR is related to the fact that, although the spectral distribution of the matrix
PBPT does not depend on any particular permutation matrix P, the spectrum of the
lower triangular part DP −LP does depend on it. As a result, also the spectral radius of
the matrixLP

ω := (I −ωPT (DP −ωLP )−1PB) is affected by the particular choice of
P. To further highlight the aforementioned dependence and to strengthen the intuition
of the reader in this regard, in Fig. 3 we report ρ(LP

1 ) for all the permutation matrices
P and for 100 randomly generated matrices of the form B = RT R + I ∈ R

7×7 (R is
generated using the Matlab’s function “rand”).

5.1.1 Rate of convergence of SOR

This section is based on [48]. If B is SPD and is partitioned as in (22), the linear
system in (21) can be transformed as

D−1/2BD−1/2D1/2y = D−1/2χ (28)

(D is SPD since B is SPD) and hence the coefficient matrix can be decomposed as

D−1/2BD−1/2 = I − D−1/2LD−1/2 − (D−1/2LD−1/2)T , (29)

where D−1/2LD−1/2 and (D−1/2LD−1/2)T are, respectively, strictly lower triangular
and strictly upper triangular. For the above explained reasons, in this section we will
suppose that B = I − L − LT .

Observe, moreover, that the SOR method applied to the system in (28) with the
splitting (29) coincides exactly with (24) and hence, the fact that in this section we
suppose that the diagonal of B is the identity, is expected to simplify the presentation.
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The following Theorem 13 gives a precise bound for the rate of convergence of the
SOR method:

Theorem 13 [48, Th. 1] Let B a SPD matrix, then the SOR method (25) converges for
0 < ω < 2 in the energy norm associated with B according to

‖y − y j‖2B ≤
(
1 − (2 − ω)ωλ1(B)

(
1 + 1

2�log2(2d)�ωλ1(B)
)2

k2(B)

) j

‖y − y0‖2B . (30)

The rate of convergence stated in (30) depends on the dimension of the problem d
and this feature is not desirable for large scale problems.

One of the main advantages of the RSSOR consists in the fact that the expected
error reduction factor is independent from the dimension of the problem, as stated in
the following:

Theorem 14 [48, Th. 4] The expected squared energy norm error of the RSSOR iter-
ation converges exponentially with the bound

E(‖y − y j‖2B) ≤
(
1 − (2 − ω)ωλ1(B)

(1 + ωλ1(B))2k2(B)

) j

‖y − y0‖2B . (31)

for any ω ∈ (0, 2).

As already pointed out, Eq. (31) does not exhibit any dependence on the dimension
of the problem and, for this reason, the Randomly Shuffled versions of SOR should
be considered for large scale problems. Moreover, the following corollary addresses
the convergence of the iterates to the solution of the linear system:

Corollary 15 lim j→∞ ‖y − y j‖2B = 0 a.s.

Proof Using (31), we have that
∑∞

j=0 E(‖y−y j‖2B) < ∞.Thesis follows by applying
[52, Th. 2.1.3]. ��

5.1.2 Using SOR in iALM

We are ready to analyse the behaviour of SOR method in the framework of the iALM
(8). In particular, we are going to present our results for the RSSOR method (see
Eq. (26)), but analogous techniques/results apply/hold for the non-randomized version
(25). This choice is mainly driven by the reasons of timeliness: in the next Sect. 6 we
are able to interpret the recently introduced Randomized ADMM (RADMM) as a
particular case of iALM where the linear system (18) is solved (inexactly) using
RSSOR with ω = 1 (which will be denoted, in the following, as Randomly Shuffled
Gauss–Seidel (RSGS)). For this reason, in this section, we apply the results presented
in Sect. 4 in the probabilistic form considering {rk}k and {[xk,μk]T }k as sequences
of random variables.

Of course, the same results as presented here hold, with simple modifications, for
the deterministic ADMM and the classical GS method.
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In order to use the rate of convergence stated in (31), we write Hβ = D − L − LT

and transform the linear system in (18) as follows:

D−1/2HβD
−1/2D1/2x = D−1/2χk . (32)

Let us define H̃β = D−1/2HβD−1/2, χ̃k := D−1/2χk, x̃ := D1/2x.
Consider, moreover, the random variable

E

(
‖̃xk+1 − x̃k+1, j‖2

H̃β
|
[
xk

μk

])
,

where H̃β x̃
k+1 = χ̃k and {̃xk+1, j } j is the random sequence generated by RSSOR

method in (26) to approximate x̃
k+1

, i.e., the solution of problem (32).
The following Lemma 16 will be useful to state the main result of this section:

Lemma 16 Let us suppose that the RSSOR in Eq. (26) is used for the solution
of the linear system (32) with y0 = D1/2xk =: x̃k+1,0. If the random variable
(Pk+1,0, . . . , Pk+1, j ) is independent from {[xk,μk]T }k for every j, k ∈ N (beyond
the standard assumptions required on the Pk+1, j by RSSOR), then

E(‖̃xk+1 − x̃k+1, j‖H̃β
) ≤

(
1 − (2 − ω)ωλ1(H̃β)

(1 + ωλ1(H̃β))2k2(H̃β)

) j/2

E(‖̃xk+1 − x̃k+1,0‖H̃β
).

(33)

Proof Let us observe that, using (27), we can write

‖̃xk+1 − x̃k+1, j‖2
H̃β

= g

(
(Pk+1,0, . . . , Pk+1, j−1),

[
xk

μk

])
,

where g is a deterministic function.
Using the fact that, if the random variable Y is independent from X (see Freezing

Lemma, [20, Example 5.1.5]), it holds

E(g(Y , X)|X) = E(g(Y , x))|x=X ,

and using (31), we have

E

(
‖̃xk+1 − x̃k+1, j‖2

H̃β
|
[
xk

μk

])

≤
(
1 − (2 − ω)ωλ1(H̃β)

(1 + ωλ1(H̃β))2k2(H̃β)

) j

‖̃xk+1 − x̃k+1,0‖2
H̃β

a.s.
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Moreover, using the conditional Jensen’s Inequality in the left hand-side of the previous
equation (see [3, Th. 34.4]) and then passing the square root, we have

E

(
‖̃xk+1 − x̃k+1, j‖H̃β

|
[
xk

μk

])

≤
(
1 − (2 − ω)ωλ1(H̃β)

(1 + ωλ1(H̃β))2k2(H̃β)

) j/2

‖̃xk+1 − x̃k+1,0‖H̃β
a.s.

Thesis follows by considering the expectation on both sides of the above inequality
and using the properties of the conditional expectation [3, Th. 34.4]. ��

We are now ready to state the following Theorem 17 which summarizes the prop-
erties of the iALM in (8) when each sub-problem is solved using RSSOR:

Theorem 17 Let {ηk}k = Rk+1 with R > ρβ. Define

j
(k) := min{ j : E(‖rk, j‖) ≤ ηk}, (34)

where {rk, j := Hβxk+1, j − χk} j is the sequence of random residuals generated by

RSSOR initialized using xk+1,0 = xk . Then, there exists j ∈ N such that j ≥ j
(k)

for
all k.

Moreover, an expected ε-accurate primal-dual solution of problem (QP) can be
obtained in O(logR ε) iALM iterations.

Proof Using (19) in (33) and since the expectation is a linear function, we have

E(‖H̃β x̃k+1, j − χ̃k‖)

≤
(
1 − (2 − ω)ωλ1(H̃β)

(1 + ωλ1(H̃β))2k2(H̃β)

) j/2√
k2(H̃β)E(‖H̃β x̃k+1,0 − χ̃k‖)

and hence, using (20),

E(‖Hβxk+1, j − χk‖)

≤
(
1 − (2 − ω)ωλ1(H̃β)

(1 + ωλ1(H̃β))2k2(H̃β)

) j √
k2(H̃β)k2(D−1)E(‖Hβxk − χk‖),

where we defined xk+1, j := D−1/2̃xk+1, j for j ≥ 1. If in the above equation we use
the definition of rk+1, j , we have

E(‖rk+1, j‖)

≤
(
1 − (2 − ω)ωλ1(H̃β)

(1 + ωλ1(H̃β))2k2(H̃β)

) j/2√
k2(H̃β)k2(D−1)E(‖Hβxk − χk‖2),
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and hence, defining

j (k) :=
⎡
⎢⎢⎢
log(

1− (2−ω)ωλ1(H̃β )

(1+ωλ1(H̃β ))2k2(H̃β )

) 2ηk√
k2(H̃β)k2(D−1)E(‖Hβxk − χk‖)

⎤
⎥⎥⎥

,

it holds E(‖rk, j (k)‖) ≤ ηk . Observe, moreover, that using the second equation in (8),
we have

E(‖Hβxk − χk‖) = E(‖rk−1 + βAT (Axk − b))‖ ≤ E(‖rk−1‖) + ‖AT ‖E(‖β(Axk − b)‖),

and hence using the hypothesis ηk = Rk+1 and Eq. (17), we are able to state the
existence of a constant C > 0 such that

2Rk+1
√
k2(H̃β)k2(D−1)E(‖Hβxk − χk‖)

≥ C for all k.

We obtain

j :=
⎡
⎢⎢⎢
log(

1− (2−ω)ωλ1(H̃β )

(1+ωλ1(H̃β ))2k2(H̃β )

) C

⎤
⎥⎥⎥

≥ j (k) for all k. (35)

From (35), we obtain the first part of the statement observing that j (k) ≥ j
(k)

for
all k. The last part of the statement follows by observing that with this choice of ηk

the hypotheses of Lemma 10 are satisfied. ��

In the upper panels of Fig. 4 we report the quantities analysed in the proof of
Lemma 10 (also in this case the notation used in the legend is consistent with that used
in Lemma 10 except for the fact that the numerical constantC used there is normalized
using M, i.e., in Fig. 4 we report C ≡ C/M). The expectations E(‖Axk − b‖),
E(‖Hxk +g− ATμk‖) and E(‖dk‖) are approximated using the empirical mean over
15 iALM simulations, whereas, for each fixed k and j, E(‖rk, j‖) is approximated

using the empirical mean of E(E(‖rk, j‖|
[
xk

μk

]
)) over 15 trajectories for [xk,μk]T

and 15 simulations of the RSGS step. In the lower panels, we report, for each iALM

step and for each simulation, the box-plots of the obtained j
(k)

(see Eq. (34)). As

Theorem 17 states and Fig. 4 confirms, j
(k)

shows a bounded-from-above behaviour
for all the iALM iterations (the choice of the parameters β and R is reported on top
of the figure).
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Fig. 4 Upper panels: Behaviour of the quantities analysed in Lemma 10 (logarithmic scale on y-axis)
approximated using the empirical mean over 15 simulations of iALM. Lower panels: Box-plots of the

j
(k)

’s (see Eq. (34)) obtained in each simulation of iALM when RSSOR is used for the solution of (18)
using {ηk }k and {xk+1,0}k as in Theorem 17

6 Interpreting (random)ADMM as an iALM

Given a block partition of x, i.e., x = [xd1 , . . . , xdn ]T with d1 + · · · + dn = d, the
n-block ADMM (see [11] and references therein) is defined as

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

xk+1
d1

:= argminxd1∈Rd1 Lβ([xd1, xkd2 , . . . , xkdn ]T ,μk),

...

xk+1
dn

:= argminxdn∈Rdn Lβ([xk+1
d1

, xk+1
d2

, . . . , xdn ]T ,μk),

μk+1 := μk − β(Axk+1 − b).

(36)
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Fig. 5 ADMM vs iALM&GS for Problem 2 (logarithmic scale on y-axis)

If we apply the iterative method in (36) to solve problem (QP), splitting Hβ as
Hβ = D − L − LT , it is possible to re-write (36) in compact form (see [12, 53]):

[
xk+1

μk+1

]
=
[
D − L 0
βA I

]−1 [
LT AT

0 I

]

︸ ︷︷ ︸
=:GADMM

[
xk

μk

]
+
[
D − L 0
βA I

]−1 [
βATb − g

βb

]
. (37)

Since Eq. (37) can be written alternatively as

{
xk+1 = (D − L)−1LT xk + (D − L)−1(ATμk + βATb − g)
μk+1 := μk − β(Axk+1 − b),

(38)

we can observe that the first equation in (38) is precisely one step of the SOR method
with ω = 1 (see Eq. (23)), i.e., ADMM performs exactly one GS iteration for the
solution of the linear system Hβx = ATμk + βATb − g. Let us point out that in
[11] it has been proved that the n-block extension of ADMM is not always convergent
since there exist examples where the spectral radius of GADMM in Eq. (37) satisfies
ρ(GADMM ) > 1. The analysis performed in Sects. 4 and 5 reveals a simple strategy to
remedy this: performingmore steps of theGS iteration to fulfil the requirements needed
on the residuals will ensure convergence. Indeed, as proved in Sect. 5 (deterministic
case), a constant number of iterations of SOR per iALM-step is sufficient to guarantee
that the produced residuals satisfy the sufficient conditions for convergence. To further
underpin the previous claim, in Fig. 5, we report the behaviour of ‖dk‖, ‖Axk − b‖
and ‖Hxk +g− ATμk‖ for ADMM and for iALM&GSwhere, at each inner iteration,
10 GS sweeps are performed. For the particular case of Problem 2 when β = 1 and
all the blocks have size one, we have ρ(GADMM ) = 1.0148 > 1 and the ADMM is
not convergent (see the upper panel in Fig. 5). On the contrary, performing more than
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one GS sweep (lower panel of Fig. 5) is enough to observe a convergent behaviour of
all residuals.

Exactly the same observation can be made for the RADMM [12, 53]: this method
is obtained considering a block permutation matrix Pk which selects the order for

solving the block-equations and then splitting the matrix PkHβ PkT as

PkHβ P
kT = DPk − LPk − LT

Pk (39)

(the random permutation matrix is selected independently from the iterate xk and
uniformly at random among all possible block-permutation matrices). In more details,
if we consider the iterative method

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

select a permutation σ of {1, . . . , n} uniformly at random independently from xk,
xk+1
dσ(1)

:= argminxdσ(1)∈Rdσ(1) Lβ([xdσ(1) , x
k
dσ(2)

, . . . , xkdσ(n)
]T ,μk),

...

xk+1
dσ(n)

:= argminxdσ(n)
∈Rdσ(n) Lβ([xk+1

dσ(1)
, xk+1

dσ(2)
, . . . , xdσ(n)

]T ,μk),

μk+1 := μk − β(Axk+1 − b)

(40)

to solve problem (QP), using the splitting (39), we can write (40) in the fixed point
form

[
xk+1

μk+1

]
=
[
PT
k 0
0 I

] [
DPk − LPk 0

βAPT
k I

]−1 [LT
Pk
Pk Pk AT

0 I

]

︸ ︷︷ ︸
=:GPk

β

[
xk

μk

]

+
[
PT
k 0
0 I

] [
DPk − LPk 0

βAPT
k I

]−1 [
Pk(βATb − g)

βb

]
, (41)

and hence

⎧⎪⎨
⎪⎩

xk+1 = PkT [(DPk − LPk )−1LT
Pk ]Pkxk

+PkT (DPk − LPk )−1Pk(ATμk + βATb − g)
μk+1 := μk − β(Axk+1 − b).

(42)

The first equation in (42) coincides exactly with one iteration of the RSSOR with
ω = 1 (see Eq. (26)) for the solution of the linear system Hβx = ATμk + βATb− g.
On the other hand, as proved in Theorem 17, the number of RSSOR sweeps per iALM-
step sufficient to obtain an expected residual which ensures the a.s. convergence, is
uniformly bounded above by a constant.We find that this is a noteworthy improvement
of the results obtained in [12, 44, 53]. Indeed, in these works, only the the convergence
in expectation of the iterates produced by (42) has been proved, i.e., the convergence
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Fig. 6 Random ADMM vs iALM&RSGS for Problem 2 (logarithmic scale on y-axis)

to zero of ‖E(

[
xk

μk

]
) −

[
x
μ

]
‖. To be precise, using the notation introduced in (41),

the authors prove that ρβ := ρ(Gβ) < 1 where

Gβ := E(GP
β ) = 1

|P|
∑
P∈P

GP
β

and P is a specific subset of all permutation matrices (P is the subset of block per-
mutation matrices with blocks of order n in [12, 53] and, in [44], P is the subset of
the permutation matrices obtained as P = P1P2, where P1 is a block permutation
matrix with blocks of order n and P2 is a permutation corresponding to a partition of
d elements into n groups).

Overall, as already pointed out in [44, Sec. 2.2.4], the convergence in expectation
may not be a good indicator of the robustness and the effectiveness of RADMM as
there may exist problems characterized by a high ‖V(GP

β )‖, where V(GP
β ) denotes

the variance of the random variable GP
β . We find that switching from a convergence

in expectation to an a.s. convergence with provable expected worst case complexity
as stated in Theorem 17, could be beneficial for the solution of such problems.

Even in this case, to further underpin the previous claim, we report in Fig. 6
the behaviour of ‖dk‖, ‖Axk − b‖ and ‖Hxk + g − ATμk‖ for RADMM and for
iALM&RSGS where, at each inner iteration, 10 RSGS sweeps are performed. As it
is clear from the comparison between the upper panels of Figs. 5 and 6 (and expected
from the results obtained in [12, 53]), the introduction of a randomization procedure
in the ADMM scheme is able to mitigate the divergence in the case of Problem 2. At
the same time, analogously of what was observed in Fig. 5 for the deterministic case,
the benefits of performing more than one RSGS sweep per iALM-step are evident
(lower panel of Fig. 6).
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Fig. 7 Spectral radius of ADMMmatrices for the generalization of Problem 2 (logarithmic scale on y-axis)

7 Numerical results

In this section we briefly present a series of numerical results aiming to guide the
practitioners in the selection of some of the parameters involved in the optimal imple-
mentation of iALM&RSGS. As test set we introduce and use suitable generalizations
of Problem 2. The choice of such test set is motivated from the fact that it represents,
somehow, a set of pathological examples for which the convergence in expectation
might not deliver satisfactory performance. To define our test set, let us introduce the
matrix

R
d×d � Â = eeT +

⎡
⎢⎢⎢⎢⎣

0 0 · · · · · · 0
... ..

.
0 c

... 0 ..
. ...

0 c · · · c

⎤
⎥⎥⎥⎥⎦

.

We consider problem (QP) where H = hId×d ∈ R
d with h = 0.05, b, g random

vectors, and

A :=
{
Â, if m = d
Â(d − m + 1 : d, 1 : d), if m ≤ d

.

Clearly when m = d = 3 and c = 1, we recover Problem 2. In the next Fig. 7 we plot
ρ(GADMM ) for different values of c (x-axis of the figure) and m when d = 1000 and
β = 1 and when all the blocks are of order one (which will be precisely the setting
used for the numerical results presented later).

AsFig. 7 confirms, for all the consideredvalues of c andmwehaveρ(GADMM ) > 1,
feature which endows the selected class of problemswithmeaningful pathologies suit-
able for testing the goodness and the robustness of our proposal when compared to
RADMM.

As it is clear from Eq. (42), the dominant computational cost per RADMM step, is
the solution of a block-lower triangular system performed during the GS sweep. For
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Fig. 8 RandomADMMvs iALM&RSGS(J ) for selected values ofm and c (logarithmic scale on both axis)

this reason, in the remainder of this section, we will fix a prescribed number of GS
sweeps and measure the performance of iALM&RSGS when compared to RADMM.

In Figs. 8 and 9 we report ‖Axk − b‖ and ‖Hxk + g − ATμk‖ for RADMM and
for iALM&RSGS when the maximum allowed RSGS sweeps is 5000. For the sake of
brevity, we present computational results only for selected representative values of m
and c (m = 400 and c = 1, 100) but a similar behaviour is observed for all the values
m and c considered in Fig. 7. In particular, in Fig. 8 we present the comparison of
RADMM (denoted with J = 1) with iALM&RSGS when J > 1 RSGS sweeps are
performed per iALM iteration (J = 5, 25). In Fig. 9 instead, we compare RADMM
with iALM&RSGS when RSGS for the linear system (18) is stopped if the observed
residual is such that ‖rk‖ < PRk+1 (see Lemma 10) with R = 0.999 and P is a
constant depending on the initial residual ‖r0‖.
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Fig. 9 RADMM vs iALM&RSGS for selected values of m and c (logarithmic scale on both axis)

Accordingly to the theoretical analysis carried out in Sect. 6, the numerical results
presented in Figs. 8 and 9 confirm that performing more than one RSGS per iALM
iteration consistently outperforms RADMM in the reduction of the dual residual
‖Hxk + g − ATμk‖. Moreover, as the comparison between Figs. 8 and 9 shows,
the choice of the first strategy (fixed RGSG sweeps per iALM iteration) is preferable
in general since it allows to have a faster primal/dual residuals reduction.

8 Conclusions

In this work we studied the inexact Augmented Lagrangian Method (iALM) for the
solution of problem (QP). Using a splitting operator perspective, we proved that if
the amount of introduced inexactness (which could be modelled also with a random
variable) decreases (in expectation) accordingly to suitably chosen Rk where R < 1,
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then we are able to give explicit asymptotic rate of convergence of the iALM (see
Lemma 10). Moreover, even if the above mentioned condition requires an increasing
accuracy in the linear systems to be solved at each iteration, we proved that when these
linear systems are solved using the Successive-Over-Relaxation method (SOR) and
its Randomly Shuffled version (RSSOR), the number of iterations sufficient to satisfy
the convergence requirements can be uniformly bounded from above (see Sect. 5).
Finally, using the developed theory and interpreting the n-block (Random)Alternating
Direction Method of Multipliers ((R)ADMM) as an iALM which performs exactly
one (RS)SOR sweep to obtain the approximate solutions of the inner linear systems,
we provided computational evidence which demonstrates that the very well known
convergence issues of the n-block (R)ADMM could be remedied if more than one
(RS)SOR sweep for every iALM iteration were permitted (see Sect. 7).
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