
Received: 16 June 2023 Revised: 27 September 2023 Accepted: 10 November 2023

DOI: 10.1002/eqe.4045

RESEARCH ARTICLE

A convolutional neural network deep learning method
for model class selection

Marios Impraimakis

Department of Civil, Maritime and
Environmental Engineering, University of
Southampton, Southampton, UK

Correspondence
Marios Impraimakis, Department of Civil,
Maritime and Environmental
Engineering, University of Southampton,
Southampton SO16 7QF, UK.
Email:
m.impraimakis@southampton.ac.uk

Abstract
The response-only model class selection capability of a novel deep convolutional
neural network method is examined herein in a simple, yet effective, manner.
Specifically, the responses from a unique degree of freedom along with their
class information train and validate a one-dimensional convolutional neural net-
work. In doing so, the network selects the model class of new and unlabeled
signals without the need of the system input information, or full system iden-
tification. An optional physics-based algorithm enhancement is also examined
using the Kalman filter to fuse the system response signals using the kinematics
constraints of the acceleration and displacement data. Importantly, the method
is shown to select the model class in slight signal variations attributed to the
damping behavior or hysteresis behavior on both linear and nonlinear dynamic
systems, as well as on a 3D building finite element model, providing a powerful
tool for structural health monitoring applications.
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1 INTRODUCTION

The model class selection is an integral part of the system identification and monitoring process given that either the
analytical or the numerical system models are, inevitably, only an approximation of the real system. It is particularly
useful for engineering systems since it is difficult to be determined solely by the physics due to their empirical nature.
The importance of the model class selection, specifically, is highlighted by the fact that a more complicated model fits

the data better than one which has fewer adjustable uncertain parameters, but it is likely results in data over-fitting and
poor future predictions. This is attributed to the parameter fitting which depend too much on the detail of the data and
the measurement noise.
To address those challenges, a long history of approaches exists. Akaike1 introduced a likelihood function which penal-

izes the parameterization of themodels, andGrigoriu et al.2 suggested to penalize the complicatedmodels over the simpler
ones. Beck and Yuen3 proposed the ranking of the model classes based on their response conditional probabilities which
are calculated by the Bayes’ theorem and the asymptotic expansion of each model class evidence, while Katafygiotis and
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Beck4 introduced an algorithm to investigate themodel identifiability in structural model updating using a network of tra-
jectories which finds all other output-equivalent optimal models. Importantly, Ching and Chen5 developed a simulation-
based approach for the simultaneous Bayesian model updating, model class selection, and model averaging. Muto and
Beck6 implemented, later, the transitional Markov Chain Monte Carlo method for nonlinear structures under seismic
loading. Additionally, Cheung and Beck7 proposed a general method for calculating the model evidence based on the pos-
terior samples of the Markov Chain Monte Carlo approach, while Beck8 investigated the Laplace’s method of asymptotic
approximation and the Markov Chain Monte Carlo methods for a structural health monitoring benchmark problem.
Furthermore, Raftery et al.9 developed themethod of dynamicmodel averaging for online model class selection. Chatzi

et al.10 proposed and experimentally validated a twofold criterion based on the smoothness of the parameter prediction
and the accuracy of the estimation. Yuen and Mu11 developed a novel model class selection component into the extended
Kalman filter algorithm, to simultaneously provide the model class selection and the parametric identification in a
real-time manner. Importantly, Kontoroupi and Smyth12 explored how the Bayesian model selection and the unscented
Kalman filter scheme for joint state and parameter estimation can be integrated into a single method using each model’s
probability-plausibility computation. The Bayesian model class selection and the unscented Kalman filter joint scheme
with the penalty-type Kullback–Leibler divergence was also investigated,13 and the research is still ongoing.14–25
However, the current model class selection methodologies, apart from the class selection, incorporate also the

system identification for each model. The main challenge here is derived from the effort of performing this task
for partial unobservable systems, such as large systems under very limited information, or systems with unknown
inputs. Similarly, this task is not trivial in empirical systems with nonlinear behavior where no acceptable closed-form
equation representation exists.
A way to address those challenges is examined here using a generalized response-only and (after the training) real-time

procedure based on the deep learning capabilities which selects automatically the system model class without having to
identify its parameters, measure and estimate all dynamic states, or knowing the system input. The convolutional neural
network approach is therefore employed of the deep learning library of methods. Importantly, the convolutional neural
networks have already shown an impressive performance on selecting the class of visual imagery data26 via an ability
to recognize patterns. Here, a one-dimensional version is examined for the vibration signals, which has shown a great
potentially for damage detection in one or more dimensions.27–44 The ability to provide the model class selection using a
unique degree of freedom (DOF) response measurement, without system identification, and by using a neural network
classification approach makes this approach distinctive from the current methodologies.
Themethodology, specifically, results in a fast and accurate nonparametric vibration-based tool formodel class selection

which directly classify the model based solely on response signals. An algorithm enchantment is also investigated when
the dynamic state estimates of a Kalman filter as developed by Smyth and Wu45 and implemented as a physics-enhanced
kinematics constraint,46 train a network to recognize their patterns and classify the new and unlabeled signals. In this way,
the advantages of the Kalman filtering47–55 are explored to improve the performance of the convolutional neural network.
Due to the convolutional neural network ability to learn and extract the optimal features with a proper training, the
proposed approach achieves an impressive model class selection accuracy despite the response-only nature of the signals.
The work is organized as follows: the Bayesian model class selection and the limitations are overviewed in Section 2.

In Section 3, the standard convolutional neural network architecture is provided, as well as a comparison of the one-
dimensional and the multi-dimensional convolutional neural network versions with a focus on the model class selection.
In Section 4, the Kalman filter fusion is formulated for response-only, unknown input, and unknown model class sys-
tems. Section 5 provides the summary and the detailed algorithmic tables. Importantly, Sections 6, 7, and 8 investigate
numerical applications on both linear and nonlinear dynamic systems, as well as on a 3D building finite element model.
Subsequently, Section 9 presents a discussion, future research suggestions, and sensitivity analysis for the training process.
Finally, the conclusions are provided in Section 10.

2 BAYESIANMODEL CLASS SELECTION

To select themodel class𝕄𝑖 in a Bayesian framework, one needs to use their prior probability distribution, and then assess
their posterior probability plausibility. Let𝕄 be the space of the models𝕄𝑖∶𝑖𝑚𝑎𝑥

. The posterior probability 𝑃(𝕄𝑖 |𝐲,𝕄) of
the model class𝕄𝑖 is defined using the Bayes theorem as:

𝑃(𝕄𝑖 |𝐲,𝕄) =
𝑝(𝐲 |𝕄𝑖) ⋅ 𝑃(𝕄𝑖 |𝕄)

𝑝(𝐲 |𝕄)
(1)
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where, 𝑃(𝕄𝑖 |𝕄) is the prior probability of𝕄𝑖 , 𝐲 is the measurement vector, and 𝑝(𝐲 |𝕄𝑖) is the evidence given the model
𝕄𝑖 . The denominator is replaced by the summation of the prior probability and the likelihood for every model class,
written as:

𝑃(𝕄𝑖 |𝐲,𝕄) =
𝑝(𝐲 |𝕄𝑖) ⋅ 𝑃(𝕄𝑖 |𝕄)∑𝑖𝑚𝑎𝑥

𝑖

{
𝑝(𝐲 |𝕄𝑖) ⋅ 𝑃(𝕄𝑖 |𝕄)

} (2)

Let 𝜃𝑗 ∈ 𝕄𝑖 be the parameter 𝑗 of the model𝕄𝑖 . The posterior probability distribution 𝑝(𝜃𝑗 |𝐲,𝕄𝑖) of 𝜃𝑗 is written as:

𝑝(𝜃𝑗 |𝐲,𝕄𝑖) =
𝑝(𝐲 | 𝜃𝑗,𝕄𝑖) ⋅ 𝑝(𝜃𝑗 |𝕄𝑖)

∫
𝜃𝜃𝜃
𝑝(𝐲 | 𝜃𝑗,𝕄𝑖) ⋅ 𝑝(𝜃𝑗 |𝕄𝑖) 𝑑𝜃

=
𝑝(𝐲 | 𝜃𝑗,𝕄𝑖) ⋅ 𝑝(𝜃𝑗 |𝕄𝑖)

𝑝(𝐲 |𝕄𝑖)
(3)

where,𝑝(𝐲 | 𝜃𝑗,𝕄𝑖) is the likelihood given the parameter 𝜃𝑗 and themodel𝕄𝑖, and𝑝(𝜃𝑗 |𝕄𝑖) is the prior probability density
function of 𝜃𝑗 given themodel𝕄𝑖 . Here, computing the evidence 𝑝(𝐲 |𝕄𝑖) for eachmodel𝕄𝑖 is not trivial. Specifically, the
high-dimensional integral is usually analytically intractable, for instance when nonconjugate prior probabilities and/or
latent variables exist.
To this end, stochastic simulation methods are used. Particularly, the Markov chain Monte Carlo methods generate

samples from the posterior distribution, and then compute the likelihood using the following identity of a rearranged
Bayes theorem for every 𝜃𝑗:

𝑙𝑛(𝑝(𝐲 |𝕄𝑖)) = 𝑙𝑛
(
𝑝(𝐲 | 𝜃𝑗,𝕄𝑖)

)
+ 𝑙𝑛

(
𝑝(𝜃𝑗 |𝕄𝑖)

)
− 𝑙𝑛

(
𝑝(𝜃𝑗 |𝐲,𝕄𝑖)

)
(4)

where, the natural logarithm 𝑙𝑛(∙) is applied to avoid numerical overflows. Equation (4) is also written as6:

𝑙𝑛(𝑝(𝐲 |𝕄𝑖)) = ∫
𝜃𝜃𝜃

𝑙𝑛
(
𝑝(𝐲 | 𝜃𝑗,𝕄𝑖)

)
𝑝(𝜃𝑗 |𝐲,𝕄𝑖)𝑑𝜃𝑑𝜃𝑑𝜃 − ∫

𝜃𝜃𝜃

𝑙𝑛

(
𝑝(𝜃𝑗 |𝐲,𝕄𝑖)

𝑝(𝜃𝑗 |𝕄𝑖)

)
𝑝(𝜃𝑗 |𝐲,𝕄𝑖)𝑑𝜃𝑑𝜃𝑑𝜃 (5)

where, the first expectation term measures the posterior average data fit of the parameter set 𝕄𝑖 , while the
penalty-type second one represents the Kullback–Leibler divergence56 between the parameter posterior and prior
probability distributions.
Finally, the identificationwith the highest evidence 𝑙𝑛(𝑝(𝐲 |𝕄𝑖))

12 or the least Kullback–Leibler divergence13 is selected
as the one with the most plausible model class.
However, this approach requires a parametric model-based implementation of the model class selection, which

inevitably require a parameter estimation and the system input knowledge for input-output identification. Contrastingly
in the convolutional neural network approach, a response-only nonparametric signal-based approach is implemented by
using the machine learning means to directly select the model class by recognizing signal patterns.

3 CONVOLUTIONAL NEURAL NETWORK ARCHITECTURE

The convolutional neural networks are a type of deep learning artificial neural network methods with an ability to rec-
ognize patterns in visual data. They are composed of multiple building blocks which automatically and adaptively learn
spatial hierarchies of features.
The one-dimensional convolutional neural networks (1D CNN) have been proven to be highly effective in a variety of

signal processing tasks. The fundamental building block of a 1D CNN is the convolutional layer. The convolutional layer
applies a set of filters to the input signal, producing a set of feature maps. The filters have a fixed size and slide over the
input signal, computing a dot product at each location. In doing so, the resulting feature maps capture different aspects
of the input signal, such as local trends and patterns. In practice, a 1D CNN may have multiple convolutional layers with
different filter sizes and number of filters. Each layer can apply a different set of filters to the input signal, allowing the
network to capture different aspects of the signal at different scales.
The examined one-dimensional convolutional neural network compares to the multi-dimensional counterparts as

follows. A one-dimensional configuration fuses the feature extraction and the learning phases of the dynamic states.
One-dimensional arrays are used instead of two-dimensional matrices for both the kernels and the feature maps.
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Additionally, the network architecture has the hidden neurons of the convolution layers which perform both the convo-
lution and the sub-sampling operations. The fully-connected layers are identical to the hidden layers of the multi-layer
perceptrons where the classification task is mainly realized. Accordingly, the multi-dimensional matrix manipulations,
namely the convolution and the lateral rotation, are replaced by their one-dimensional counterparts, namely the
convolution and the reverse operations. Finally, the parameters for the kernel size and the sub-sampling are scalars.
Importantly, this simplified structure of the convolution neural network requires only one-dimensional convolutions and
therefore, a mobile and low-cost hardware implementation for near real-time applications. The algorithmic details of the
1D CNN are provided in Section 5.
A short description of the additional layers in the convolutional neural network architecture is provided. Input Layer:

The layer where the input is specified. Convolutional Layer: The layer where the filters are applied to the input, usually
between a subarray of the input array and the filter, and where the neurons connect to the input subarray. In this layer,
the number of feature maps is also determined. Batch Normalization Layer: The layer where the normalization of the
activations and gradients occurs leading to a simpler optimization training problem. It is usually followed by a nonlinear
activation function. Pooling Layer: The layer where the down-sampling operation is applied to reduce the spatial size
of the feature map and to remove the redundant spatial information. This leads to an increase of the number of filters in
deeper convolutional layers without increasing the required amount of computation per layer. Fully Connected Layer:
The layer where the neurons connect to the neurons in the preceding layer to combine all the features learned by the
previous layers and identify the larger patterns. Importantly, the last fully connected layer combines the features to classify
the data and is equal to the number of classes in the input data. Softmax Layer: The layer where the activation function
normalizes the output of the fully connected layer. The output of this layer consists of positive numbers that sum to
one, which are then used as classification probabilities by the classification layer. Classification Layer: The final layer
where the probabilities are returned by the activation function for each input to assign the mutually exclusive classes and
compute the loss. Importantly, the training of the network is implemented usually by a stochastic gradient descent with
a specified number of epochs, where an epoch is a full training cycle on the entire training data set.
In this work, the one-dimensional convolutional approach is applied to select the model class. The examined approach

fuses both the feature extraction and the classification blocks into a single and compact learning body. The advantage is
the ability to extract optimal model class-sensitive features automatically from the response-only signals.

4 RESPONSE-ONLY AND UNKNOWNMODEL CLASS DYNAMIC STATE
ESTIMATION USING THE KALMAN FILTER

For a further improvement of the 1D CNN performance with response-only signals when additional signals are avail-
able, the Kalman filter data fusion technique may be used by Smyth and Wu.45,46 The Kalman filter algorithm, given a
series of noisy measurements observed over time, estimates optimally the system dynamic states using a joint probability
distribution over the states for each timeframe. The algorithm works in two steps: the first step is the prediction of the
dynamic states using the dynamic process model which also propagates the uncertainty of the dynamic states. The second
update step incorporates the measurements to calibrate the dynamic state estimation using a weighted average strategy,
where more weight is given to the estimates with higher certainty. The algorithm is recursive and it is used online and,
potentially, with real-time data.
Even for simple systems though, the knowledge of the system parameters and input is needed to predict future steps.

This leads to an unavailability of filtering the signals when response-only and unknown model class scenarios are
examined. To this end, the dynamic states are filtered using acceleration and displacement measurements45,46 as:{

�̇�

�̈�

}
=

[
0 1

0 0

]{
𝑥

�̇�

}
+

{
0

1

}
𝑎 +

{
0

1

}
𝜂𝑎 (6)

𝑦 = 𝑑 = [1 0]

{
𝑥

�̇�

}
+ 𝜂𝑑 (7)

where, 𝑎 and 𝑑 are the acceleration and displacement measurements, respectively, and 𝜂𝑎 and 𝜂𝑑 are their associated
noise. It is assumed that 𝜂𝑎 and 𝜂𝑑 are white noise Gaussian processes. By introducing the state variables,

𝐱 =

{
𝑥1
𝑥2

}
=

{
𝑥

�̇�

}
(8)
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Equations (6) and (7), without the noise terms, are written in matrix form as:

�̇� = 𝐀𝐱 + 𝐁𝑎 (9)

𝑦 = 𝐇𝐱 (10)

If acceleration measurements are available at intervals of Δ𝑡, the process Equation (9) and the observation Equation (10)
are discretized as:

𝐱(𝑘 + 1) = 𝐀𝐝 𝐱(𝑘) + 𝐁𝐝 𝑎(𝑘) (11)

𝑦(𝑘 + 1) = 𝐇𝐱(𝑘 + 1) (12)

namely, {
𝑥1(𝑘 + 1)

𝑥2(𝑘 + 1)

}
=

[
1 Δ𝑡

0 1

]{
𝑥1(𝑘)

𝑥2(𝑘)

}
+

{
Δ𝑡2 ∕ 2

Δ𝑡

}
𝑎(𝑘) +

{
Δ𝑡2 ∕ 2

𝛿𝑡

}
𝜂𝑎(𝑘) (13)

𝑦 = [1 0]

[
𝑥1(𝑘 + 1)

𝑥2(𝑘 + 1)

]
+ 𝜂𝑑(𝑘 + 1) (14)

where 𝑘 step stands for the 𝑘 ⋅ Δ𝑡 time instance.
In the approach of Equation (13), a physics-enhanced fusion of the displacement and the acceleration signals is imple-

mented. Specifically, the object kinematics equation is employed as the system pseudo-model to provide the physical
relationship between the displacement and acceleration data, without incorporating any knowledge of the actual system
model and its class. Equation (13) is simpler written using the well-known body-motion equations as:

Physical Kinematics Model =

⎧⎪⎨⎪⎩
𝑥2 = 𝑥2 +

1

2
𝑎 ⋅ Δ𝑡

𝑥1 = 𝑥1 + 𝑥2 ⋅ Δ𝑡 +
1

2
𝑎 ⋅ Δ𝑡2

(15)

where, the acceleration 𝑎 is assumed to be constant between each sequential steps; an assumption which does not lead to
divergences due to the small value of Δ𝑡.
Overall, this fusion algorithm uses the Kalman filter which, given acceleration and displacement measurements, pro-

vides optimally the displacement and the velocity dynamic states. Importantly, the displacementmeasurement is provided
by the integration of the acceleration signal on linear systems.
The obtained results can be used instead of raw signals to train, validate, and test the convolutional neural network for

model class selection. Notably, those response-only signals are used as input data to the network, and they should not be
confused with the output of the network.
Finally, the one-dimensional convolutional neural network procedure for model class selection is implemented as

follows. The dynamic states of a unique system responses are loaded to train and validate the network. Importantly,
these signals are already labeled with the model class. The one-dimensional convolutional neural network architecture
is defined where the input size of the training data is specified as the number of their classes. Subsequently, the network
training optimization algorithm is specified which included a mini-batch approach with an adequate number of epochs.
For online purposes with a unique response training signal, the mini-batch size is set equal to 1, otherwise larger values
also are used. Once the network is trained, it is used to evaluate the new and unlabeled signals, and select their model
class. Importantly, no additional data such as the system input or the system parameters are needed.

5 PROCEDURE SUMMARY

The overall procedure is illustrated here where each step is detailed in Table 1:

1. Initialize the measurement filtering (optional for improved performance incorporating more data). Set the
initial probability distributions for the dynamic states of each mode class response signal.
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TABLE 1 Kalman filter convolutional neural network (Kalman filter C-Net).

Step 1 (optional):
∙ Initialize the dynamic state estimation:
∙ 𝑘 = 0 (Time step)
∙ 𝐱𝐤 = 𝔼[𝐱𝟎] (𝔼 stands for Expectation)
∙ 𝐏𝐤 = 𝔼[(𝐱𝟎 − 𝐱𝐤)(𝐱𝟎 − 𝐱𝐤)

𝑇] (Covariance matrix)
Step 2 (optional):
∙ Predict and estimate the dynamic states:
∙ 𝐱𝐤+𝟏 = 𝐀𝐝 𝐱𝐤 + 𝐁𝐝 𝑎𝑘 (prediction)
∙ 𝐏𝐤+𝟏 = 𝐀𝐝 𝐏𝐤 𝐀

𝐓
𝐝
+ 𝐐𝐝

∙ 𝐉 = 𝐏𝐤+𝟏 𝐇
𝐓 (𝐑𝐝 + 𝐂𝐏𝐤+𝟏 𝐇

𝐓)−1

∙ 𝐱𝐤+𝟏 = 𝐱𝐤+𝟏 + 𝐉 (𝐲𝐤+𝟏 − 𝐇𝐱𝐤+𝟏) (estimation)
∙ 𝐏𝐤+𝟏 = (𝐈 − 𝐉𝐇)𝐏𝐤+𝟏 (𝐈 − 𝐉𝐇)𝑇 + 𝐉𝐑𝐝 𝐉

𝑇

∙ Repeat Step 2 for 𝑘 = 𝑘 + 1 until 𝑘𝑚𝑎𝑥

Step 3:
∙ Initialize randomly all weights for the neural network
∙ Forward propagate the input data:
∙ 𝐳𝐡

𝐣
= 𝑏ℎ

𝑗
+
∑ℎ−1

𝑖=1
𝐷(𝑣𝑖𝑗, 𝐬

𝐡−𝟏
𝐢

)

∙ 𝐮𝐡
𝐣
= 𝐹(𝐳𝐡

𝐣
) and 𝐬𝐡

𝐣
= 𝐮𝐡

𝐣
downsampling

∙ Compute the delta error at the output layer and back-propagate it:
∙ 𝐸 =

∑𝑁ℎ

ℎ=1
(𝐮

𝐍𝐡

𝐡
− 𝐫𝐡)

2

∙ 𝜕 𝐸 ∕ 𝜕 𝑣ℎ−1
𝑖𝑗

= Δℎ
𝑗
𝐮𝐡−𝟏
𝐢

and 𝜕 𝐸 ∕ 𝜕 𝑏ℎ
𝑗
= Δℎ

𝑗

∙ 𝜕 𝐸 ∕ 𝜕 𝑠ℎ
𝑗
=
∑𝑁ℎ+1

ℎ=1
Δℎ+1
ℎ

𝑣𝑗ℎ

Step 4:
∙ Post-process to compute the weight and bias sensitivities:
∙ Δ

𝑗

ℎ
= 𝜕 𝐸 ∕ 𝜕 𝐮𝐡

𝐣
⋅ 𝜕 𝐮𝐡

𝐣
∕ 𝜕 𝐳𝐡

𝐣
(further back propagation)

∙ Update the weights and biases with the accumulation of sensitivities:
∙ 𝑣ℎ−1

𝑖𝑗
(𝑡 + 1) = 𝑣ℎ−1

𝑖𝑗
(𝑡) − 𝜖 ⋅ 𝜕 𝐸 ∕ 𝜕 𝑣𝑖𝑗 (adaptive 𝜖 ≈ 0.001)

∙ 𝑏ℎ
𝑗
(𝑡 + 1) = 𝑏ℎ

𝑗
(𝑡) − 𝜖 ⋅ 𝜕 𝐸 ∕ 𝜕 𝑏ℎ

𝑗

Step 5:
∙Move to each next layer until the network is fully trained. Classify the unlabeled signals from Step 3 using the trained
network.

2. Filter the dynamic states online (optional for improved performance incorporating more data). Predict the
dynamic states using the acceleration measurements and the discrete state-space modeling. Estimate the dynamic
states using the displacementmeasurements. The displacementmeasurementsmay have a different rate than accelera-
tionmeasurements.45,46 Importantly, for linear systems double-integrate the accelerationmeasurements. Also,Repeat
the filtering for the full signal duration. Repeat the Kalman filter procedure for all time steps to provide the full
input.

3. Feed the network. Provide the one-dimensional convolutional neural network with the raw signals or filtered sig-
nals from Step 2 associated with their model class. At this point, generate randomly the weights of the network.
Also, Initialize the network training. Start the network training where the signal data are propagated between the
layers.

4. Implement the back-propagation algorithm in the network training. Post-process the signal data for the estima-
tion of the weights and bias sensitivities. Update the weights and biases with the accumulation of sensitivities. Finally,
move to each next layer.

5. Select the model class. Use the trained network to classify the unlabeled signals. Specifically, provide the new,
unused, and unlabeled raw or filtered signals from Step 2 as an input to the network to output the model class.
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TABLE 2 Damping kernel functions 𝑔(𝑡) for the generalized damping model classes.

Kernel function 𝒈(𝒕) Constraints
∙ 𝜇1𝑒

−𝜇1𝑡 𝜇1, 𝑡 ≥ 0

∙ (𝜇2)
2 𝑡𝑒−𝜇2𝑡 𝜇2, 𝑡 ≥ 0

∙ 2

√
𝜇3
𝜋
𝑒−𝜇3𝑡

2

𝜇3, 𝑡 ≥ 0

∙

{
1∕𝜇

4

0

0 < 𝑡 < 𝜇4

𝑡 > 𝜇4𝑛𝑜

∙

⎧⎪⎨⎪⎩
1

𝜇5
[1 + cos(

𝜋𝑡

𝜇5
)]

0

0 < 𝑡 < 𝜇5

𝑡 > 𝜇5𝑛𝑜

∙ 𝛿(𝑡) 𝑡 ≥ 0

∙ any 𝑔(𝑡) | Energy dissipation > 0
∫ ∞

0
𝑔(𝑡)𝑑𝑡 = 1,

𝑡 ≥ 0

In Table 1, 𝐳𝐡
𝐣
is the network input at layer ℎ and neuron 𝑗, 𝑏𝑗 is a scalar bias, and 𝐬𝐢 is the output of the neuron 𝑖 at

the layer ℎ − 1. Also, 𝑣𝑖𝑗 is the kernel weight from the neuron 𝑖 at layer ℎ − 1 to the neuron 𝑗 at layer ℎ, and 𝐮𝐡
𝐣
is the

intermediate output. Related to the back propagation of the error starting from the output fully connected layer,𝑁ℎ is the
number of classes in the input data, and 𝐫𝐡 corresponds to the target and output vector. Finally, the delta of the neuron
𝑗 at layer ℎ, Δℎ, is used to update the bias of that neuron, as well as, all the weights of the neurons in the previous layer
connected to that neuron.

6 APPLICATION TO LINEAR DYNAMIC SYSTEMS

For the linear numerical application consider the case of the damping model classes in structural dynamics. The standard
equation of motion of a 𝑛 DOF structural-mechanical system, in the case of proportional damping, is written as:

𝐌�̈�(𝑡) + 𝐂 �̇�(𝑡) + 𝐊 𝐱(𝑡) = 𝐟 (𝑡) (16)

where,𝐌 and𝐊 are themass and stiffnessmatrices, respectively, and𝐂 is the proportional to𝐌 and/or𝐊 dampingmatrix
that satisfies the orthogonality property. This means that if 𝚽 is the matrix that contains the eigenvectors of the system,
then 𝐂 = 𝚽𝑇𝐂𝚽 is a diagonal matrix and thus, a decoupling procedure can be implemented. Here, 𝐱(𝑡) and 𝐟 (𝑡) are the
response of the system and the force applied to the system, respectively.
With regard to damping the form of Equation (16) is restrictive, and for a general consideration of structural-mechanical

systems, alternatively damping model classes are considered. This is implemented by one or more convolution integrals
over a kernel function 𝑔(𝑡). In doing so, the damping depends on the past history of the motion. The equation of motion
then is written as an integro-differential equation:

𝐌�̈�(𝑡) + 𝐂

𝑡

∫
0

𝑔(𝑡 − 𝜏) �̇�(𝜏) 𝑑𝜏 + 𝐊 𝐱(𝑡) = 𝐟 (𝑡) (17)

where, this formulation is a generalization of the standard dampingmodeling since by using the Kronecker delta function
𝛿(𝑡) as the kernel function 𝑔(𝑡), Equation (17) reduces to Equation (16).
For the choice of the damping kernel functions, many candidate functions may be considered. Observations, though,

from real systems57 suggest that the exponential function can often adequatelymodel the damping, and is a natural choice.
Table 2 shows several candidate kernel functions13,58 which have been shown to adequately model the damping behav-

ior of structural-mechanical systems. Here, 𝜇𝑖 is damping model parameter which is properly calibrated by system
identification procedures.13
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The system of Equation (17) is then examined with various model classes. Specifically, the system matrices for the
synthetic measurement generation are:

𝐌 =

[
𝑚1 0

0 𝑚2

]
=

[
1 0

0 1

]
, 𝐂 =

[
𝑐1 + 𝑐2 −𝑐2
−𝑐2 𝑐2

]
=

[
1 + 2 −2

−2 2

]
,

𝐊 =

[
𝑘1 + 𝑘2 −𝑘2
−𝑘2 𝑘2

]
=

[
9 + 11 −11

−11 11

]
(18)

with the initial conditions are 𝐱(0) = [1 1]𝑇 and �̇�(0) = [0 0.5]𝑇 . White noise is chosen for the force 𝐟 (𝑡) =

[𝑓1(𝑡) 𝑓2(𝑡)]
𝑇 of mean value 0 and variance 9. Importantly, the initial conditions and/or the force should be chosen

to excite the system sufficiently.
Three model classes are considered with three different kernel functions, namely:

1. 𝑔(𝑡) = 𝜇1𝑒
−𝜇1𝑡 with 𝜇1 = 1.5 (Model A)

2. 𝑔(𝑡) = 2

√
𝜇3
𝜋
𝑒−𝜇3𝑡

2 with 𝜇3 = 1.5 (Model B)

3. 𝑔(𝑡) = 𝛿(𝑡) (Model C)

To create synthetic measurements, the integration method of Katsikadelis13,59,60 is implemented as:

𝐳𝐤 = 𝐅𝐤 ⋅ 𝐳𝐤−𝟏 + 𝐁𝐤 ⋅ 𝐮𝐤 (19)

where:

i) 𝐳𝐤−𝟏 = [�̈�𝐤−𝟏 �̇�𝐤−𝟏 𝐰𝐤−𝟏 𝐱𝐤−𝟏]
𝑇

ii) 𝐮𝐤 = [𝐟𝐤 𝟎𝟏×𝐧 𝟎𝟏×𝐧 𝐟𝐰𝐤
]𝑇

iii) 𝐰𝐤−𝟏 =
∑𝑘−2

𝑖=1
𝑊𝑖 ⋅ (�̇�𝐢 + �̇�𝐢−𝟏) ∕ 2 +𝑊𝑘−1 ⋅ (�̇�𝐤−𝟏 + �̇�𝐤−𝟐) ∕ 2

iv) 𝑊𝑖 = ∫ (𝑖)Δ𝑡

(𝑖−1)Δ𝑡
𝑔(𝑘 ⋅ Δ𝑡 − 𝜏) 𝑑𝜏

v) 𝐟𝐰𝐤
=
∑𝑘−1

𝑖=1
𝑊𝑖 ⋅ (�̇�𝐢 + �̇�𝐢−𝟏) ∕ 2

vi) 𝐅𝑘 =

⎡⎢⎢⎢⎢⎣
𝐌𝐧×𝐧 𝟎𝑛×𝑛 𝐂𝑛×𝑛 𝐊𝑛×𝑛

Δ𝑡2∕4 ⋅ 𝐈𝑛×𝑛 −Δ𝑡 ⋅ 𝐈𝑛×𝑛 𝟎𝑛×𝑛 𝐈𝑛×𝑛
−Δ𝑡∕2 ⋅ 𝐈𝑛×𝑛 𝐈𝑛×𝑛 𝟎𝑛×𝑛 𝟎𝑛×𝑛

𝟎𝑛×𝑛 −𝑊𝑘∕2 ⋅ 𝐈𝑛×𝑛 𝐈𝑛×𝑛 𝟎𝑛×𝑛

⎤⎥⎥⎥⎥⎦

−1 ⎡⎢⎢⎢⎢⎣
𝟎𝐧×𝐧 𝟎𝑛×𝑛 𝟎𝑛×𝑛 𝟎𝑛×𝑛

−Δ𝑡2∕4 ⋅ 𝐈𝑛×𝑛 𝟎𝑛×𝑛 𝟎𝑛×𝑛 𝐈𝑛×𝑛
Δ𝑡∕2 ⋅ 𝐈𝑛×𝑛 𝐈𝑛×𝑛 𝟎𝑛×𝑛 𝟎𝑛×𝑛
𝟎𝑛×𝑛 𝑊𝑘∕2 ⋅ 𝐈𝑛×𝑛 𝟎𝑛×𝑛 𝟎𝑛×𝑛

⎤⎥⎥⎥⎥⎦
vii) 𝐁𝑘 =

⎡⎢⎢⎢⎢⎣
𝐌𝐧×𝐧 𝟎𝑛×𝑛 𝐂𝑛×𝑛 𝐊𝑛×𝑛

Δ𝑡2∕4 ⋅ 𝐈𝑛×𝑛 −Δ𝑡 ⋅ 𝐈𝑛×𝑛 𝟎𝑛×𝑛 𝐈𝑛×𝑛
−Δ𝑡∕2 ⋅ 𝐈𝑛×𝑛 𝐈𝑛×𝑛 𝟎𝑛×𝑛 𝟎𝑛×𝑛

𝟎𝑛×𝑛 −𝑊𝑘∕2 ⋅ 𝐈𝑛×𝑛 𝐈𝑛×𝑛 𝟎𝑛×𝑛

⎤⎥⎥⎥⎥⎦

−1

Here, the time discretization frequency is set equal to 100 Hz, therefore Δ𝑡 is 0.01. The same holds for the sampling
frequency of the synthetic measurements. Finally, to consider the effect of measurement noise, each response signal
is contaminated by a Gaussian white noise sequence with a 10% root-mean-square noise-to-signal ratio. Different ini-
tial conditions are applied to the system to generate multiple responses for training and validation. The duration of the
acceleration and displacement signal measurement for each model class is 40 s.
To Kalman filter all previous signals, the process covariance 𝐐𝐝 and the measurement covariance 𝐑𝐝 matrices are

chosen to be constant during the identification process and equal to 10−9 ⋅ 𝐈𝟐×𝟐 and 10−3 ⋅ 𝐈𝟏×𝟏, respectively. For larger
values, the algorithm needs more data and time to converge, or it may even diverge.
The convolutional neural network architecture is defined as follows in Figure 1: An input layer with the three signals

for each one of the three model classes A, B, and C, associated with their model class label. A convolutional layer is set
with filter size equal to 2048 and number of neurons that connect to the same region of the input equal to 128 with casual
padding. A rectifier layer, termed also as ReLu is also set, as well as a batch normalization layer with mini-Batch size
equal to 1 for online purposes, and an additional convolutional layer with filter size equal to 2048 and number of neurons
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F IGURE 1 Examined C-Net architecture for all numerical applications.

that connect to the same region of the input equal to 256 with casual padding. An additional rectifier layer is set along
with an additional batch normalization layer with mini-Batch size equal to 1, and a global average pooling layer. Finally,
a fully connected layer is set with a number of classes equal to 3, a softmax layer, and a classification layer. Importantly,
an investigation of the number of the filter size and the number of neurons within the convolutional layer is shown in
Section 9. Last but not least, the number of themaximumepochs in the optimization process is set equal to 15. Importantly,
to design the architecture, although still an active research problem,61 a simple CNN architecture is examined that has one
hidden layer with onemax pooling layer before the classification one. Based on the results and by controlling the trade-off
between accuracy and training speed, the number of kernels and layers is increased until a satisfactory performance is
reached. This work uses similar architecture building philosophy to the damage detection applications28,32 without any
special adjustments that would potentially favor the model class selection problem.
Two signal inputs are examined in Figures 2–3. In these figures, the first and second row refer to the displacement and

acceleration raw signal used in the Kalman filter for all models. The third row refers to the network model class selection
trained with unfiltered signals (C-Net) where the data generated by model A denoted by 1, model B denoted by 2, and
model C denoted by 3 are attributed to each model A, B, or C. Similarly, the fourth row refers to the network model class
selection trained with the Kalman filtered signals (Kalman filter C-Net). Additionally, the fifth row refers to the accuracy
in the training process for both networks with respect to the number of optimization iterations, while the sixth row refers
to the loss in the training process for both networks with respect to the number of optimization iterations. In total, 9 new
velocity and displacement signals are classified, where ideally the first 3 signals belong to Model A, the second 3 signals
belong to Model B, and the last 3 signals belong to Model C.
In Figure 2, the performance of the networks using only the DOF 2 displacement signals in the training and validation

process is shown. The C-Net correctly selects themodel class for each signal. The Kalman filter C-Net also correctly selects
the model class for each signal, but with a shorter training period and loss minimization than C-Net.
In Figure 3, the performance of the networks using only theDOF 2 velocity signals in the training and validation process

is shown. Both networks select correctly the model class for each signal expect one. Importantly, the Kalman filter C-Net
converges faster.
Importantly, in this application, it may seem that the model is quite simple and, perhaps, does not need such a complex

network in the prediction,meaning the convolution neural network is not efficiently designed. In reality though, removing
layers from the network results in a poorer performance where the predictions are wrong.
Additionally, it may seem that the model classes are too idealized since the model class can be well depicted by the

mathematical formulas in Table 2. In reality though, those models have been experimentally demonstrated that they
represent the behavior of real dynamic systems, that is, chap. 8 of Adhikari.57

7 APPLICATION TO NONLINEAR DYNAMIC SYSTEMS

For the nonlinear numerical application consider initially the problem of a mass in free fall62 landing on a generalized
damped basematerial. The stiffness and damping elements of the basematerial are active only when the body is in contact
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F IGURE 2 System of Section 6: Results for the linear dynamic system when training and validating with the DOF 2 displacement
signals. First and second row: the displacement and acceleration raw signals in m/s and m/s2, respectively. Third row: C-Net model class
prediction where ideally A->1, B->2, and C->3. Fourth row: Kalman filter C-Net model class prediction. Fifth and six row: accuracy and loss
in the training process for both networks.
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F IGURE 3 System of Section 6: Results for the linear dynamic system when training and validating with the DOF 2 velocity signals.
First and second row: the displacement and acceleration raw signals in m/s and m/s2, respectively. Third row: C-Net model class prediction
where ideally A->1, B->2, and C->3. Fourth row: Kalman filter C-Net model class prediction. Fifth and six row: accuracy and loss in the
training process for both networks. DOF, degree of freedom.
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with it. The equation of motion is nonlinear and it is expressed as:

𝑚 �̈�(𝑡) + 𝐺(𝑥(𝑡), 𝜃) = 𝑓(𝑡) (20)

and if, for instance, the effectiveness of a twofold model is examined, then the equation of motion is written as:

𝑚 �̈�(𝑡) + ℍ(𝑥(𝑡)) ⋅

⎧⎪⎨⎪⎩𝑐 ⋅
𝑡

∫
0

𝛿(𝑡 − 𝜏) �̇�(𝜏) 𝑑𝜏 + 𝑐 ⋅

𝑡

∫
0

𝑔(𝑡 − 𝜏) �̇�(𝜏) 𝑑𝜏 + 𝑘 𝑥(𝑡)

⎫⎪⎬⎪⎭ = 𝑓(𝑡) (21)

where, ℍ(𝑥(𝑡)) is the Heaviside step function. Assume here, 𝑚 = 1 Kg, 𝑐 = 3 N s/m, 𝑘 = 1000 N/m, 𝑓(𝑡) = −𝑚𝑔 with
𝑔 = 9.81 𝑚∕𝑠2 for the gravity acceleration. The initial conditions are 𝐱(0) = 0.1 and �̇�(0) = 0. White noise is chosen for
the force 𝐟 (𝑡) of mean value 0 and variance 9. Importantly, the initial conditions and/or the force should be chosen to
excite the system sufficiently.
Two model classes are considered for the 𝑔(𝑡) in Equation (21) with two different kernel functions, namely:

1. 𝑔(𝑡) = 𝜇1𝑒
−𝜇1𝑡 with 𝜇1 = 100 (Model A)

2. 𝑔(𝑡) = 2

√
𝜇3
𝜋
𝑒−𝜇3𝑡

2 with 𝜇3 = 100 (Model B)

To create synthetic measurements, the integration method of Katsikadelis13,59,60 is implemented as in Section 6 where,
for nonlinear systems, the state transition matrix 𝐅𝐤 and the input matrix 𝐁𝐤 are modified and in the stead of 𝐂𝑛×𝑛 and
𝐊𝑛×𝑛, the zero matrix 𝟎𝑛×𝑛 is inserted. Also, the new input is:

𝐮𝐤 = [(𝐟𝐤 − 𝐟𝐧𝐤 ) 𝟎𝟏×𝐧 𝟎𝟏×𝐧 𝐟𝐰𝐤
]𝑇 (22)

where, a system of equations provides the numerical solution of the nonlinear system, namely:{
𝐳𝐤 = 𝐅𝐤 ⋅ 𝐳𝐤−𝟏 + 𝐁𝐤 ⋅ 𝐮𝐤

𝐟𝐧𝐤 = 𝐆(𝐳𝐤, 𝜃𝑘𝜃𝑘𝜃𝑘)
(23)

Here, the time discretization frequency is set equal to 100 Hz, therefore Δ𝑡 is 0.01. The same holds for the sampling
frequency of the synthetic measurements. Finally, to consider the effect of measurement noise, each response signal is
contaminated by a Gaussian white noise sequence with a 10% root-mean-square noise-to-signal ratio. The duration of the
acceleration and displacement signal measurement for each model class is 100 s.
To Kalman filter the signals, the process covariance 𝐐𝐝 and the measurement covariance 𝐑𝐝 matrices are chosen to

be constant during the identification process and equal to 10−9 ⋅ 𝐈𝟐×𝟐 and 10−3 ⋅ 𝐈𝟏×𝟏, respectively. For larger values, the
algorithm needs more data and time to converge, or it may even diverge.
Subsequently, the network architecture is defined similarly to Section 6.
Two signal inputs are examined in Figures 4–5 with the same layout description as in Section 6. In total, 10 new velocity

and displacement signals are classified, where ideally the first 5 signals belong toModel A, and the second 5 signals belong
to Model B.
In Figure 4, the performance of the networks using only the DOF 1 displacement signals in the training and validation

process is shown. The C-Net correctly selects the model class for each signal apart from one which is misclassified as
Model A despite belonging to Model B. The Kalman filter C-Net also provides the same selection accuracy, but with a
shorter training period and loss minimization.
In Figure 5, the performance of the networks using only the DOF 1 velocity signals in the training and validation process

is shown. The C-Net selects correctly the class of seven signals, but misselects three of them. Contrastingly, the Kalman
filter C-Net misselects only 1 signal out 10. In this examination, the Kalman filter C-Net shows a superior performance
compared to C-Net in the selection accuracy, apart from solely a faster convergence.
Furthermore, for the nonlinear numerical application to other model class types and not only in damping kernels such

as on the stiffness matrix,63 consider a 6-story shear type model extending the application of Kontoroupi and Smyth.12,47
Here, the first DOF is associated with a nonlinear hysteretic behavior based on the Bouc–Wen model64 which has shown
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F IGURE 4 System of Section 7: Results for the free fall nonlinear system when training and validating with the DOF 1 displacement
signals. First and second row: the displacement and acceleration raw signals in m/s and m/s2, respectively. Third row: C-Net model class
prediction where ideally A->1 and B->2. Fourth row: Kalman filter C-Net model class prediction. Fifth and six row: accuracy and loss in the
training process for both networks. DOF, degree of freedom.
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F IGURE 5 System of Section 7: Results for the free fall nonlinear system when training and validating with the DOF 1 velocity signals.
First and second row: the displacement and acceleration raw signals in m/s and m/s2, respectively. Third row: C-Net model class prediction
where ideally A->1 and B->2. Fourth row: Kalman filter C-Net model class prediction. Fifth and six row: accuracy and loss in the training
process for both networks. DOF, degree of freedom.
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a great practical potential in structural engineering.65–78 Three candidate models are considered here which differ in the
expression of the hysteretic component 𝑟1, namely:

1. �̇�1 = 𝐴 �̇�1 − (𝛽 |�̇�1| 𝑟𝑛−11
𝑟1 + 𝛾 �̇�1 |𝑟1|𝑛) (Model A - without degradation64)

2. �̇�1 =
𝐴 �̇�1 − (𝛽 |�̇�1| 𝑟𝑛−11

𝑟1 + 𝛾 �̇�1 |𝑟1|𝑛)
𝜂(𝑡)

with �̇�1 = 𝑟1 �̇�1, 𝜂(𝑡) = 1 + 𝛿𝜂 𝜖1(𝑡) (Model B - with degradation79)

3. �̇�1 =
1 − (𝛽 𝑠𝑖𝑛𝑔(�̇�1) |𝑟1|𝑛−1 𝑟1 + 𝛾 |𝑟1|𝑛)

1 +

√
2

𝜋

𝑠(𝑡)

𝜎
𝑒𝑥𝑝[−

𝑟2
1

2 𝜎2
] [1 − (𝛽 𝑠𝑖𝑛𝑔(�̇�1) |𝑟1|𝑛−1 𝑟1 + 𝛾 |𝑟1|𝑛)] with 𝑠(𝑡) = 𝛿𝜎 𝜖1(𝑡) (Model C - with pinching80)

To create synthetic measurements, the fourth-order Runge–Kutta integration method is used with𝑚𝑖 = 1, 𝑘𝑖 = 9, 𝑐𝑖 =
0.25, 𝐴 = 1, 𝛽 = 2, 𝛾 = 1, 𝑛 = 2, 𝛿𝜂 = 0.4, 𝜎 = 0.1, and 𝛿𝜎 = 0.4. Here, the time discretization frequency is set equal to 50
Hz, therefore Δ𝑡 is 0.02. The same holds for the sampling frequency of the synthetic measurements. Finally, to consider
the effect of measurement noise, each response signal is contaminated by a Gaussian white noise sequence with a 10%
root-mean-square noise-to-signal ratio.
To train the network, three earthquake inputs are considered, namely the Tabas of September 16, 1978 at Tabas (1.080

g), the Northridge of January 17, 1994 at Sylmar Converter Station (0.827 g), and the Kobe of January 17, 1995 at JMA (0.818
g), available from the Sylmar Converter Station (PEER strong motion database81). Only those three are used for training
the convolutional neural network, while three more are used for the validation step.
To Kalman filter the signals, the process covariance 𝐐𝐝 and the measurement covariance 𝐑𝐝 matrices are chosen to

be constant during the identification process and equal to 10−9 ⋅ 𝐈𝟐×𝟐 and 10−3 ⋅ 𝐈𝟏×𝟏, respectively. For larger values, the
algorithm needs more data and time to converge, or it may even diverge.
Subsequently, the network architecture is defined similarly to Section 6.
Two signal inputs are examined in Figures 6–7 with the same layout description as in Section 6. In total, 9 new velocity

and displacement signals are classified, where ideally the first 3 signals belong to Model A, the second 3 signals belong to
Model B, and the final 3 signals belong to Model C.
In Figure 6, the performance of the networks using only the DOF 1 displacement signals in the training and validation

process is shown. The C-Net correctly selects the model class for each signal apart from one which is misclassified as
Model A despite belonging to Model B. The Kalman filter C-Net also provides the same selection accuracy, but with a
shorter training period and loss minimization.
In Figure 7, the performance of the networks using only the DOF 1 velocity signals in the training and validation process

is shown. The C-Net selects correctly the class of eight signals, but misselects one of them. The Kalman filter C-Net also
provides the same selection accuracy, but with a shorter training period and loss minimization.

8 APPLICATION TO A 3D BUILDING FINITE ELEMENTMODEL

For the 3Dbuilding finite elementmodel application consider the problemof theN-storey building of Figure 8 simulated in
OpenSees,82 which has showa great potential for capturing the realistic behavior of structures.83–86 This problem examines
the capability of the approachwhen due to the large number of DOFs, the networkmay not capture all the dynamic system
changes and become inaccurate.
The model has six DOFs at each node of a studied 2-storey and 2-bay at each direction 3D model. Each column has

a length of 14 feet (4.3 m) with section W27x114, each beam has a length of 24 feet (7.3 m) with section W24x94, and
each girder has a length of 24 feet with section W24x94. The ground boundary are assumed fixed, and the material prop-
erties are 29, 000 Ksi (200 GPa) for the Elastic modulus, 0.3 for the Poisson ratio, and 60 Ksi (413.6 MPa) for the yield
stress. A hardening material law is chosen.87 The weight of all components is taken into account, and reinforced-concrete
floor slabs are simulated with 150 pcf (2403 Kg/m3) concrete density and scale factor 2 for dead loads. Importantly, the
forceBeamColumn element is used for all components.88
Two model classes are considered for the Rayleigh damping89 proportional to the matrix (Model A where, 𝐂 = 𝛼1𝐌),

or proportional to both the mass and the stiffness matrix (Model B where, 𝐂 = 𝛼1𝐌 + 𝛼2 𝐊) with the Reyleigh damping
parameters 𝛼1 and 𝛼2.
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F IGURE 6 System of Section 7: Results for the hysteretic nonlinear system when training and validating with the DOF 1 displacement
signals. First and second row: the displacement and acceleration raw signals in m/s and m/s2, respectively. Third row: C-Net model class
prediction where ideally A->1, B->2, and C->3. Fourth row: Kalman filter C-Net model class prediction. Fifth and six row: accuracy and loss
in the training process for both networks. DOF, degree of freedom.
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F IGURE 7 System of Section 7: Results for the hysteretic nonlinear system when training and validating with the DOF 1 velocity signals.
First and second row: the displacement and acceleration raw signals in m/s and m/s2, respectively. Third row: C-Net model class prediction
where ideally A->1, B->2, and C->3 Fourth row: Kalman filter C-Net model class prediction. Fifth and six row: accuracy and loss in the
training process for both networks. DOF, degree of freedom.
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F IGURE 8 3D building finite element model system of Section 8 with material nonlinearity excited by earthquake inputs for the
nonlinear history response calculation using OpenSees. DOF, degree of freedom.

To create synthetic measurements, the Newmark integration method is used to simulate the response with either the
Newton with initial tangent or the Newton with line search method for the material nonlinearity, depending on the
convergence issues.
Here, the time discretization frequency is set equal to 50 Hz, therefore Δ𝑡 is 0.02. The same holds for the sampling

frequency of the response measurements. Finally, to consider the effect of measurement noise, each response signal is
contaminated by a Gaussian white noise sequence with a 10% root-mean-square noise-to-signal ratio.
To train the network, three earthquake inputs are considered, namely, the Imperial Valley of May 18, 1940 at El Centro

(0.341 g), the Northridge of January 17, 1994 at Sylmar Converter Station (0.827 g), and the Kobe of January 17, 1995 at JMA
(0.818 g), available from the Sylmar Converter Station (PEER strong motion database81).
Only those three responses are used for training the convolutional neural network, while three more are used for the

validation step. In this application, it is shown solely the C-Net performance to compare the training with acceleration
signals which are not available in a filtered fashion by this Kalman filter approach. Importantly, to better illustrate the
feasibility of the research in real buildings, the seismic responses of model is usually compared with some deformation
index, such as story drift ratio, which can represent the deformation state of the structure. In the examined application
this range is 0%–2%. However, in this work is not reported in detail to follow the unique DOF measurement approach for
model class selection as examined earlier. The network architecture is defined similarly to Section 6.
Three signal inputs are examined in Figures 9–11 with similar layout description as in Section 6. In total, 10 new dis-

placement, velocity, and acceleration signals are classified, where ideally the first 5 signals belong to Model A, and the
second 5 signals belong to Model B.
In Figure 9, the performance of the network is shown using only the top corner building DOF displacement signals. The

C-Net correctly selects the model class for each signal apart from one which is misclassified as Model A despite belonging
to Model B, and one which is misselected as Model B although belonging to Model A.
In Figure 10, the performance of the network is shown using only the top corner building DOF velocity signals. The

C-Net correctly selects the model class for each signal apart from one which is misclassified as Model A despite belonging
to Model B.



IMPRAIMAKIS 19

F IGURE 9 System of Section 8: Results for the 3D building finite element model when training and validating with the top corner DOF
displacement signals (Kobe plot). First row: the displacement raw signals in𝑚. Second row: C-Net model class prediction where ideally A->1
and B->2. Third and fourth row: accuracy and loss in the training process. DOF, degree of freedom.

Finally, in Figure 11, the performance of the network is shown using only the top corner building DOF acceleration
signals. The C-Net correctly selects the model class for each signal apart from two which are misclassified.

9 DISCUSSION

The presented work provided a simple, yet effective, way to select the model class in structural dynamics. It did not
aim to present a machine learning algorithm advancement, rather than to apply the vast capabilities of such tools90–95
to the model class selection problem, for the first time to the best of the author’s knowledge. To this end, the efficiency
and robustness of the method was tested to both low-DOF systems and to a complex system, such as a 3D building
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F IGURE 10 System of Section 8: Results for the 3D building finite element model when training and validating with the top corner
DOF velocity signals (Kobe plot). First row: the displacement raw signals in m/s. Second row: C-Net model class prediction where ideally
A->1 and B->2. Third and fourth row: accuracy and loss in the training process. DOF, degree of freedom.

finite element model. Further examinations and comparisons are also provided in the section to shed light into
the method.
Specifically, the comparison between C-Net and Kalman filter C-Net may seem not fair. In the Kalman filter

C-Net, the availability of the dynamic states provides more information compared to pure C-net, and this leads
to a better accuracy since it has deeper information. In reality, the purpose of this work is not to improve the
C-Net, but to provide a way to exploit more data if available. Importantly for the explanation of the results, the
Kalman filter approach provides improved training performance since it exploits the estimated dynamic states
which have less noise; however this impact is irrelevant when poor filter size and number of neurons is used for
the network.
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F IGURE 11 System of Section 8: Results for the 3D building finite element model when training and validating with the top corner DOF
acceleration signals (Kobe plot). First row: the displacement raw signals in m/s2. Second row: C-Net model class prediction where ideally
A->1 and B->2. Third and fourth row: accuracy and loss in the training process. DOF, degree of freedom.

Relating to the visualization of the results, the horizontal axes of the model class selection may confuse at a first glance.
They provide though the prediction of the network relating to themodel that the signal was generated, and themodel that
the signal was classified. In this view, the count number of correct and wrong prediction is seen.
Along these lines, the topic “model class selection” should be clarified better as it touches many engineering fields. In

reality, this work did notmake any distinction between the field of application, and the potential is open for fields different
than the structural identification. For the structural health monitoring field, specifically, the method provides the model
that will be further used to identify the structure, without having to perform the identification for each one model first.
Specifically for structural health monitoring applications, the number of candidate models is usually low, and the

method manages to provide a reliable prediction. However, for other fields, such as if one wanted to predict a model
class for a nonlinear oscillator with some combination of polynomial stiffness terms, one would require 2𝑛 − 1 candidate
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model classes to comprehensively consider up to 𝑛𝑡ℎ order polynomial terms. With regards to this point, future research
is recommended for application on those field investigating the number of the models which results in the method to fail,
and how the number of candidate models effects the accuracy of the model class predictions. The reason lies into the fact
that the number of candidate models would be prone to proliferation in a way that could potentially be detrimental to
prediction performance.
Another concern is related to themodel class selection capability without the need to identify the parameters. However,

for Table 2, it is stated that parameter calibration is performed using system identification techniques, and this seems to
be somewhat of a contradiction. In reality, those parameters were used to generate the signals to train the network, and
they were not used or identified during the CNN model class selection process.
Regarding the network algorithm parameters, the examinations so far showed a recommendation of as high as possible

values for the filter size and the number of neurons in the convolutional layers. The first one defines the kernel where the
data are multiplied by, while the second one determines the number of feature maps.
However, this recommendation sounds restrictive or suboptimal since it leads to higher weights for back-propagation,

and ultimately to higher computational cost.
Despite this, the computational cost of this approach is bearable. This is attributed to three main reasons: the one-

dimensional nature of the data, the unique signal training approachwhichmay be implemented, and the Kalman filtering
of the signals to remove the noise.
The higher values for the filter size and the number of neurons recommendation is notmandatory though. The usermay

achieve the same accuracy with a much lower value of them, and with reduced computational cost. However, for a low
number of them, a reduced accuracy is observed despite that the training process wrongly seems to reach a 100% accuracy.
To demonstrate this, consider the examined linear and nonlinear systems. Compared to the previous numerical

applications of Sections 6 and 7, only the filter size is changed to 3 and the number of neurons to 8.
Two signal inputs are examined in Figures 12–13 with the same layout description as in Section 6. In total, 9 new velocity

and displacement signals are classified for the linear system, and 10 new velocity and displacement signals for the non-
linear system. Ideally for the linear dynamic system, the first 3 signals belong to Model A, the second 3 signals belong to
Model B, and the last 3 signals belong to Model C. For the free fall nonlinear system, the first 5 signals belong to Model A,
and the second 5 signals belong to Model B.
In Figure 12, the performance of the networks in the linear dynamic system using only the DOF 1 displacement signal

parts in the training and validation process is shown. Both networks misselect five out of nine signals. Interestingly, both
training processes reach a 100% accuracy despite that the loss is high. The loss can be then used as an indication that
higher filter size and neural number are needed. Importantly, both networks have nine out nine correct selections for
higher filter size and neuron number values, as shown in Section 6.
In Figure 13, the performance of the networks in the nonlinear system using only theDOF 1 displacement signal parts in

the training and validation process is shown. Both networks misselect 3 or 4 out of 10 signals. Interestingly, both training
processes reach a 100 % accuracy despite that the loss is high. The loss can be then used also in nonlinear systems as an
indication that higher filter size and neural number are needed. Importantly, both networks have a higher number of
correct class selections for higher filter size and neuron number values, as shown in Section 7.
Here, the sensitivity investigation is performed for a low number of model classes which potentially means that for

a larger number of them, larger deviations are expected when the filter size and number of neurons is low. Importantly
training the network withmultiple number of signals overcomes the inaccuracies derived from low filter size and number
of neurons, but increases the computational cost.
Last but not least, the training results and accuracy shows the normal variability of the convolutional neural networks

results. In this unique response training approach, this limitation phenomenon is enhanced and additional research is
recommended. Importantly, all the applications presented in this work are based on a very limited amount of data for
training. In a scenario where a large amount of them (many signals train the network after many earthquake events for
the same structure) higher accuracy is expected. However, this is not always available in real-life applications, which led
to the low data or unique signal training investigation within this work.
Another concern is related to the investigation into the extrapolation capabilities of the approach since only the outputs

measured from a system. The examinations so far showed the potential of the method when the structural model remains
the same. However, this assumption may not be true if a change happen to the system, some damage for instance, or any
other modification on the structure.
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F IGURE 1 2 System of Section 6 in discussion Section 9: Results for the linear dynamic system when training and validating with the
DOF 1 displacement signals, but with a poor filter size and number of neurons. First and second row: the displacement and acceleration raw
signals in m/s and m/s2, respectively. Third row: C-Net class prediction where ideally A->1, B->2, and C->3. Fourth row: Kalman filter C-Net
prediction. Fifth and sixth row: accuracy and loss in the training process for both networks. DOF, degree of freedom.
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F IGURE 13 System of Section 7 in discussion Section 9: Results for the nonlinear system when training and validating with the DOF 1
displacement signals, but with a poor filter size and number of neurons. First and second row: the displacement and acceleration raw signals
in m/s and m/s2, respectively. Third row: C-Net class prediction where ideally A->1 and B->2. Fourth row: Kalman filter C-Net prediction.
Fifth and six row: accuracy and loss in the training process for both networks. DOF, degree of freedom.
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F IGURE 14 System of Section 8 in discussion Section 9: Results for the 3D building finite element model when training and validating
with the top corner DOF displacement signals, but selecting the model class of signals outside the training set (a change on boundary
conditions is examined). First row: the displacement raw signals in𝑚. Second row: C-Net model class prediction where ideally A->1 and
B->2. Third and fourth row: accuracy and loss in the training process. DOF, degree of freedom.

To explore this, consider the examined 3D building. Compared to the previous numerical applications of Section 8, only
some of the ground boundary conditions are changed to allow rotation, instead of fixed nodes (termed “outside training
set” response in Figures 14–16). This simulates a damage scenario at the foundation of the structure, for instance.
Three signal inputs are examined in Figures 14–16 with the same layout description as in Section 8. In total, 10 new

displacement, velocity, and acceleration signals are classified, where ideally the first 5 signals belong to Model A, and the
second 5 signals belong to Model B.
In Figure 14, the performance of the network is shown using only the top corner building DOF displacement signals.

The C-Net misselects 7 out of 10 signals. Compared to Figures 12–13, both training processes reach a 100 % accuracy and
the loss is low. The loss, then, cannot be used as an indication that the prediction is wrong. The same conclusion is derived
in Figure 15 and 16 for the performance of the network using only the top corner building DOF velocity or acceleration
signals, respectively.
As a result, the approach is not capable of some form of extrapolation to predict model classes for systems with forcings

outside of the training dataset to ensure good performance.When employed on a real engineering systemwhere the system
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F IGURE 15 System of Section 8 in discussion Section 9: Results for the 3D building finite element model when training and validating
with the top corner DOF velocity signals, but selecting the model class of signals outside the training set (a change on boundary conditions is
examined). First row: the displacement raw signals in m/s. Second row: C-Net model class prediction where ideally A->1 and B->2. Third and
fourth row: accuracy and loss in the training process. DOF, degree of freedom.

may change, one must have some prior belief about the expected forcing patterns in order to generate comprehensive
training datasets, and retrain the network for future good prediction. It follows, as a future recommendation, that one
requires some prior belief regarding anticipated forcings in order to use the approach, and the method can be combined
with respect to Bayesian model selection approaches with Bayesian latent force estimation.96,97 This is a pertinent test for
model class selection approaches in engineering applications as there could be high-cost or safety critical ramifications if
a model class is confidently predicted incorrectly.
A final concern is related to the uncertainty quantificationwhere themodel class selectionmethodology should provide.

Namely, a desirable property for model class prediction approaches to possess that accurately representing the uncer-
tainty around predictions. In the framework of convolutional neural networks, this may achieved by retraining the model
multiply times and take the average and the rest statistical properties of the network prediction.
Last but not least, regarding using other types of neural networks such as the long short-termmemory ones,98 an investi-

gationwasmade. The long short-termmemory neural networks arewidely recognized as a powerfulmachine learning tool
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F IGURE 16 System of Section 8 in discussion Section 9: Results for the 3D building finite element model when training and validating
with the top corner DOF acceleration signals, but selecting the model class of signals outside the training set (a change on boundary
conditions is examined). First row: the displacement raw signals in m/s2. Second row: C-Net model class prediction where ideally A->1 and
B->2. Third and fourth row: accuracy and loss in the training process. DOF, degree of freedom.

for both classification and regression problems. They belong to the wider library of the recurrent neural networks which
use feedback loops with recurrent connections between the nodes of the network to make them capable of modeling
sequences of signals, such as the structural vibration raw signal 𝐲.
The intuition behind the them is to create an additional module in a neural network that learns when to remember

and when to forget some characteristic of the provided vibration signal. In other words, the network, effectively learns
which patterns might be needed in the signal and when that information is no longer needed. This poses an advantage for
structural model selection among a group 𝕄 of them when an unexpected excitation excites the structure which, as not
attributed to model response to ambient environment, does not play an important role in the final model selection, and
can be neglected. Importantly, this unexpected excitation is potentially of unknownmagnitude, and the network does not
need to have this information to perform the model selection.
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The discussed, though, long short-term memory gates make the training more difficult and increase the training time
of the network. To reduce training time and improve network performance, a simplified but improved gated recurrent
unit architecture network99 may also introduced for structural model selection. The gated recurrent unit chooses a new
type of hidden unit that merges the forget gate and the vibration signal 𝐲 gate into a single update gate, and mixes also
the cellular and the hidden state into one state. The number of gates is decreased compared to long short-term memory
which are termed update gate and reset gates. The final model is simpler than the standard long short-term memory
resulting in a faster convergence for structural health monitoring applications. The author switched both convolutional
layers with long short-term memory and gated recurrent unit ones, keeping the same architecture, and both of them
always underperformed the convolutional one architecture. Additional research is therefore recommended on how those
layers and architectures can compete the convolutional one in model class selection problems.
Finally, future directions are also provided in the area of using clustering techniques to judge which model class a

signal belongs to, if it provides in an easier way to solve this problem, and what are the limitations compared to this
work. Importantly though, the clustering approach does not incorporate a labeling philosophy to associate the signals to
some models.

10 CONCLUSIONS

The response-only model class selection capability of a novel deep convolutional neural network method was examined
herein in a simple, yet effective, manner. Specifically, the responses from a unique DOF along with their class information
trained and validated a one-dimensional convolutional neural network. In doing so, the network selected the model class
of new and unlabeled signals without the need of the system input information, or full system identification. An optional
physics-based algorithm enhancement was also examined using the Kalman filter to fuse the system response signals
using the kinematics constraints of the acceleration and displacement data.
Overall, this method allowed for the model class selection with:

1. Real-time application when the network has been trained.
2. Automatic and response-only outcome without the need of the system input information.
3. A unique DOF application without full system identification, or the dynamic state estimation of potentially partially

unobservable systems.
4. The absent of a strict mathematical representation of the system nonlinear behavior.
5. The use of filtered signals instead of the common approach with raw-data in convolutional neural networks.
6. Independent to the system type application.

Importantly, themethodwas shown to select themodel class in slight signal variations attributed to the damping behav-
ior or hysteresis behavior on both linear and nonlinear dynamic systems, as well as on a 3D building finite element model,
providing a powerful tool for structural health monitoring applications. Related to the limitations, this approach does not
provide information on the system input, parameter and dynamic state estimation, while it is also vulnerable to the proper
training in a region close the unknown model.
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