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Abstract 

Railway rolling noise is produced by the vibration of both the wheelsets and the track; the 

wheelsets dominate the high frequency noise and become increasingly important at high 

speed. The effect of rotation on the wheelset vibration and noise radiation is investigated 

using different wheelset models in a rolling noise prediction model for a wide range of 

speeds. Each wheelset model takes account of the rotation to a different extent. An 

axisymmetric finite element model of a flexible rotating wheelset is implemented based on a 

complex exponential formulation and expressed in either an inertial or a non-inertial frame of 

reference. The model can include the inertial Coriolis and centrifugal forces and is also 

extended to include stress stiffening. Modes of the rotating wheel with non-zero number of 

nodal diameters are split into co- and counter-rotating waves with separated natural 

frequencies. The extent of the frequency separation depends on the shape of the mode and its 

dominant component of vibration. At common train speeds the frequency shifts due to stress-

stiffening and spin-softening effects are found to be small compared with the gyroscopic 

effects due to the Coriolis forces. The effect of including the inertial Coriolis and centrifugal 

forces on the overall A-weighted sound power level is less than 0.3 dB below 400 km/h, 

while for higher train speeds, differences may exceed 1 dB in some one-third octave bands. 

Overall, these differences are small compared with other sources of uncertainty in rolling 

noise modelling, confirming that representing the wheel rotation with a moving load 

approach provides a suitable approximation for use in rolling noise predictions. 
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1 Introduction 

Rolling noise is one of the main sources of noise in modern railways and one of the major 

constraints in the planning of new railway routes. Railways, as a more environmentally 

friendly mode of travel, can play a key role in achieving the goal of becoming climate-

neutral. Thus, a better understanding of the noise generation can help in finding more 

effective mitigation measures for railway noise and in promoting the development of new 

routes.  

Rolling noise is produced by vibration of the wheels and the track due to roughness 

excitation at their surfaces; the frequency range of interest usually extends from 50 Hz to at 

least 5 kHz [1]. One of the most commonly used rolling noise prediction models is TWINS 

(Track-Wheel Interaction Noise Software) [2, 3]. This indicates that, at frequencies above 1.6 

or 2 kHz, the wheel is usually the dominant source of noise. 

Another aspect that should be considered in high-speed railways is the effect of the wheel 

rotation on the wheelset dynamics, which has only been addressed by some authors in recent 

decades. In the early rolling noise models by Remington [4, 5], the wheel was modelled using 

simple analytical models, that can only represent the non-rotating wheelset in an approximate 

manner. Thompson modelled the wheel using axisymmetric Finite Elements (FE) and a 

Fourier decomposition [6] to include the wheel resonances for different harmonics   (nodal 

diameters). He replaced the wheel rotation with a moving load that rotates around the wheel 

circumference [7]. This caused a split of the resonances (for    ) into two peaks separated 

by    , where   is the rotational angular velocity. This approach, which is included in 

TWINS, neglects the inertial gyroscopic and centrifugal effects. 

Two main approaches exist to formulate the equations of motion of a flexible rotating 

body: the Eulerian method, which makes use of an inertial (non-rotating) frame of reference 

that is fixed in space, and the Lagrangian method, that adopts a non-inertial (rotating) frame, 

where the observer is fixed to a material point on the rotor. Eulerian coordinates can be 

advantageous in railway applications as they allow the interaction with the track to be solved 

directly. Fayos et al. [8] used Eulerian coordinates to model flexible rotating structures with 

FE. This modelling approach has been applied in different railway applications, e.g. [9-13]. 

Baeza et al. [14-16] further developed both Eulerian and Lagrangian models of the rotating 

wheelset, allowing the use of axisymmetric elements to reduce the computational effort. 

Sheng et al. [17] modelled an axisymmetric rotating wheelset including the inertial 

Coriolis and centrifugal forces. They found the impact of the gyroscopic effect on the 
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resonance frequencies to be larger than the centrifugal effect, but both effects were small 

compared with the moving rotating force. The model found application in several studies 

concerning the dynamic wheel/track interaction and noise generation [18-21]. 

Andrés et al. [13] recently implemented an axisymmetric Eulerian model of a rotating 

wheelset and applied it in rolling noise calculations. Comparisons to an equivalent 3D 

vibroacoustic model of a rotating wheelset implemented in commercial software showed the 

great benefit of these model reductions. Zhong et al. [20] coupled a rotating wheel, based on 

the model in [17], with an axisymmetric boundary element model and calculated the vibration 

and sound for a unit force input at the contact point. They found that the train speed has an 

impact on the power radiated from the wheel. While comparing common modelling 

assumptions in rolling noise calculations, Cheng et al. [21] investigated this further. Their 

results showed that neglecting the wheel rotation underestimates the overall sound power 

level by about 3 dB. However, results were only shown for a single train speed and compared 

with a non-rotating wheel. The relative importance of the moving load or the inertial effects 

were not shown. Moreover, none of the above studies considered stress-stiffening effects. 

Although rotating wheel models have been presented in the literature, (e.g. [13, 21]), the 

influence of the various terms on the rolling noise has not been investigated over a wide 

range of train speeds. To give a structured assessment of this problem, this paper presents a 

rotating wheelset model, which can account for inertial effects and stress-stiffening, and 

utilizes it to quantify the changes in rolling noise spectra due to wheel rotation. The effects, 

on the vibration and sound radiation of the wheel, of the various terms due to rotation are 

investigated and the results are compared, not only with a non-rotating wheel, but also with 

the classical approximation of a moving load. 

The remainder of this paper is structured as follows. In Section 2, the model of the rotating 

wheelset is developed. Section 3 presents the rolling noise model for wheel sound radiation 

due to roughness excitation. In Section 4, the main effects of the rotation on the wheelset 

dynamics are discussed. The wheelset model is used in Section 5 to calculate the radiated 

sound power of the wheel by accounting for the different effects of the rotation and 

comparing their relative importance. 
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2 Model of the flexible rotating wheelset 

In this section, the numerical approach used to calculate the wheelset response is outlined. 

The Lagrangian and Eulerian approaches for modelling the rotating wheelset are adopted, 

based on the work of Baeza et al. [16]. The models are extended in this paper to include 

centrifugal stress stiffening and they are expressed as a Fourier series in terms of a complex 

exponential. Compared with [16], this leads to a slightly different equation of motion (EOM). 

To study the effects of the inertial forces on the wheelset dynamics, a Lagrangian model is 

used that adopts a non-inertial reference frame    , see Fig. 1. For the interaction with the 

rail, an Eulerian model is used that adopts an inertial frame      . In both cases, the  -axis is 

the axis of revolution of the wheelset; the wheelset is assumed to rotate at a constant angular 

speed  , i.e. the angular velocity vector is   (     ) . After a time  ,     is shifted by an 

angle    about the  -axis. At     and multiples of a period of revolution, the two reference 

frames coincide. The two approaches are described in the following. 

 
Fig. 1 Coordinate system of the flexible rotating wheelset in the Lagrangian (   ) and 

Eulerian (     ) frames of reference. 

2.1 Lagrangian model of the rotating wheelset 

In the Lagrangian model, the observer is fixed in the frame that rotates with the wheelset 

at an angular velocity  . Due to the symmetry around the axis of revolution, a cylindrical 

coordinate system ( , , ) is adopted, where   is the radial,   the circumferential and   the 

axial coordinate. The position   of a particle within the rotating vibrating structure can be 

decomposed by its position   in the undeformed configuration and a small displacement   

due to the vibration, which is assumed to be time-harmonic. The total velocity of a particle in 

the non-inertial frame can be calculated as [16] 
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   (   )   ̇  (1) 

which has a velocity component   (   ) due to the rigid body rotation at constant angular 

velocity   and velocity  ̇ from the flexible displacement of the vibrating structure. The 

matrix   is given by [16] 
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Using the particle velocity in Eq. (1), the kinetic energy of the rotating structure is [16] 
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where   is the density of the material,   the volume of the undeformed solid, and   is 
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]  (4) 

The total strain energy of the rotating structure, allowing for geometric non-linearity (e.g. 

pre-stress due to centrifugal forces [22, 23]) is 
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where    is the strain energy of the elastic solid,    the geometric strain energy due to pre-

stress   ,    contains the linear and     the non-linear terms of the Green-Lagrange strain 

tensor, and   is the matrix of elastic moduli. The pre-stress needs to be known prior to the 

calculation [22].  

In the axisymmetric approach, the displacements are written as a Fourier series of spatial 

harmonics in the circumferential direction   as 

 (     )  ∑ {

    (   )

    (   )

    (   )

}     
 

    

 ∑   (   ) 
   

 

    

  (6) 

where   is the harmonic order and    contains the corresponding amplitudes in radial (    ), 

circumferential (    ) and axial (    ) directions. The displacements of harmonic   are 

decomposed into a forward rotating wave (   ) and a backward rotating wave (   ); the 

forward wave is co-rotating with the wheelset while the backward wave is counter-rotating. If 

                  



  Page 8 

 

    the displacements are uniformly distributed around the wheel circumference. 

Equivalently, a Fourier series of sines and cosines can be adopted, as e.g. in [13, 16], but the 

remainder of the derivation is modified. Using Eq. (6) requires solving for negative as well as 

positive harmonics   but halves the required number of degrees of freedom for    , 

compared with the formulation using sinusoids, and directly separates the solution into 

forward and backward rotating waves. 

The kinetic energy becomes 
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where superscript   denotes the complex conjugate transpose, or Hermitian transpose. 

The kinetic energy and strain energy are calculated numerically using the Finite Element 

Method. Integration over the circumferential direction can be performed analytically, as 

∫            ,
          
                    

  

 

 (8) 

Hence, the volume integrals in the energy expressions reduce to surface integrals and only a 

2D cross-section in (   ) needs to be discretised. Applying the finite element approximation 

    
 (   )  

  and integrating over the element area    yields the total kinetic energy of 

the  -th element as 
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(9) 

where   (   ) is the element shape function matrix consisting of 2D interpolation functions, 

  
  is the element displacement vector,    is the element mass matrix,    is the element 

gyroscopic matrix,    the element centrifugal matrix, and   
  is the element centrifugal force 

vector, which is constant around the circumference and only non-zero if    . The total 

strain energy of the  -th element becomes 
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where   
 ,   

  and   
  are the element stiffness matrices and   

  is the element geometric 

stiffness matrix. The element matrices in Eqs. (9) and (10) are defined in the Appendix. The 

overall kinetic and strain energies are calculated by summation over the individual elements, 

which corresponds to the process of assembling the global matrices from the element 

matrices. In practice the summation over the harmonics is truncated to     . The global 

matrices are denoted by capital letters in the rest of the formulation. 

If geometric non-linearity is included (    ), the static displacements  ̅  due to the 

centrifugal force are calculated using the global stiffness matrix    for     as 

 ̅   
   

      
(11) 

To avoid a singular   , the system needs to be constrained at some degrees of freedom, e.g. 

at the nodes coinciding with the axis of rotation, if no other constraints are applied. From 

displacements  ̅ , the pre-stress    can be calculated to obtain the elemental geometric 

stiffness matrix   
  (see Appendix). If  ̅  is calculated for a unit angular velocity (    

rad/s), the element stress-stiffening matrix can be calculated for any speed as   
       

  

and assembled to the global matrix   .  

The elemental virtual work produced by an external point force applied to the  -th element 

that rotates with the frame, i.e. at coordinates (         ), can be written as follows 

        (       )
    ∑    

    (     )
 

 

    

    (12) 

where     is the virtual displacement vector and    the vector of nodal forces applied to the 

element. The product       yields the elemental force vector which can be assembled into a 

global force vector by summing up the contribution on each element. If loads other than a 

point force are considered, another expression of the virtual work needs to be established. 

Applying Lagrange’s equation to the kinetic and strain energy and the virtual work yields 

the EOM of the Lagrangian model for harmonic     as 

  ̈      ̇  (       
  )    

       
(13) 

and for the other harmonics     as 

  ̈      ̇  (   (  )   (  )
        

  )      
(14) 

where  ,  ,   ,   ,   ,   ,   are the global mass, gyroscopic, stiffness, stress-stiffening 

and centrifugal (or spin-softening) matrices,    is vector of the centrifugal forces that are 

                  



  Page 10 

 

constant around the circumference and not causing vibration at a frequency  , and   is the 

force vector. 

In wheel/track-interaction the contact force remains at a fixed location on the wheel 

circumference, i.e. it is applied to the angular coordinate      . The virtual work becomes 

     ∑ (   
   (     ) 

     )
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    (     )

        
 

    

  (15) 

The EOM of the Lagrangian model for a force applied at a fixed angular position for     

remains the same as Eq. (13), but for any other     it becomes 

  ̈      ̇  (   (  )   (  )
        

  )     
      (16) 

in which case the frequency of the excitation is shifted by   . 

2.2 Eulerian model of the rotating wheelset 

In the Eulerian model the observer remains stationary, hence motion is perceived 

differently from the Lagrangian model. As the two reference frames coincide at certain times, 

the displacements in the Lagrangian model   can be related to the displacements in the 

Eulerian model   as [16] 

 (     )   (        )  (17) 

in which case the corresponding Fourier series becomes 
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}          
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where     ,      and      are the radial, circumferential and axial displacements. 

Equation (  )  allows a transformation of the displacement, velocity, and acceleration 

between the two frames as 
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     (   )    

      (19c) 

Considering the case with the force that is fixed in space, after substituting Eqs. (19a) –

 (19c) into the Lagrangian EOM given by Eqs. (13) and (16), the Eulerian EOM for harmonic 

    can be written as  
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  ̈      ̇  (       
  )    

       
(20) 

and for any other harmonic     it is 

  ̈    (  (  ) ) ̇ 
 (   (  )   (  )

        
 (   (  )  (  )  ))  

    

(21) 

The difference in the observed frequency when changing between the two frames of 

reference can be seen by comparing their vibration as 

   
        

              
 (     )   (22) 

where          is the circular frequency perceived in the Eulerian frame, and    the 

circular frequency in the Lagrangian frame. Hence, a backward wave (   ) in the inertial 

frame is observed at a lower frequency and a forward wave (   ) is observed at a higher 

frequency compared with the non-inertial frame. 

2.3 Solving the equation of motion 

The Eulerian and Lagrangian models can be solved using similar methods to obtain the 

free and forced response in the inertial or non-inertial frame, respectively. To solve the EOM, 

time-harmonic motion at a circular frequency   is assumed, such    ̂    and     ̂  
    

(Lagrangian) or     ̂  
    (Eulerian). For harmonic  , the Eulerian EOM given by 

Eqs. (20) and (21) becomes 

(               (  )   (  )
        

   ) ̂   ̂  (23) 

where    includes the inertial terms related to   and    the ones related to   , and  ̂  is the 

vector of displacement amplitudes. Similarly, the Lagrangian EOM given by Eqs. (13) and 

(14) can be solved for the displacements  ̂  and the natural frequencies in the non-inertial 

frame (here:    and    are identical to   and   for all  ). 

A modal expansion can be applied as  ̂     ̃   using the mode shapes    of 

harmonic   of the non-rotating solid as the basis, with  ̃  representing the modal amplitudes. 

To calculate   , the eigenvalue problem for     is solved for each harmonic  . After pre-

multiplying with   
 , the EOM in modal coordinates becomes 

(    ̃    ( ̃     ̃ )   ̃   
  ̃ ) ̃    

  ̂  (24) 
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where  ̃ is the modal mass,  ̃  the modal stiffness,  ̃  the modal gyroscopic,  ̃  the modal 

centrifugal matrix and   
  ̂ is the modal force vector. A modal damping matrix  ̃  can be 

included with terms 

 ̃        √          
(

25) 

where    is the modal damping ratio for modes at harmonic  ,     and       are the    -th 

elements of the modal mass and stiffness matrices. Any rotor damping that depends on   or 

higher orders of   (see [23, 24]) is not included in the formulation. 

The free response for harmonic   is obtained by setting  ̃    and  ̂    and re-writing 

the second-order eigenvalue problem as a linear eigenvalue problem in      as [24] 

( [
   ̃  ̃

 ̃  
]  [

 ̃   
  ̃  

   ̃
]) {
 ̃ 
 ̇̃ 
}     

(

26) 

The forced response for harmonic   is obtained by inverting the modal dynamic stiffness 

matrix and converting the displacements from the modal to the physical domain as 

 ̂    (  
  ̃    ( ̃     ̃ )   ̃   

  ̃ )
  
  
  ̂  

(

27) 

For the non-rotating wheel,   is set to 0 and the EOM is solved as 

 ̂    (  
  ̃     ̃   ̃ )

  
  
  ̂  

(

28) 

If the rotation is replaced with a moving load  ̃ that rotates in the opposite direction around 

the perimeter of the non-rotating wheel ( ̃   ̂     ), as in [7], the forced vibration in the 

presented model with the non-rotating frame is solved as follows 

 ̂    ( (    )
  ̃   (    ) ̃   ̃ )

  
  
  ̃  

(

29) 

where   is replaced by     , while for     the response is identical to the non-rotating 

wheel. 
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3 Sound radiation of the railway wheel in rolling noise predictions 

The sound power produced by the wheelset is calculated using the procedure adopted in 

TWINS [2, 3], but using the vibration of the rotating wheelset model from Section 2 as an 

input. The rolling noise component of the wheel is evaluated, while the track model is solely 

used here to determine the contact forces. 

3.1 Interaction of the wheel and the track 

The mobilities of the rotating wheel are obtained from the Eulerian model, including the 

inertial effects due to the rotation. Additionally, a non-rotating wheel, and a rotating wheel 

that is approximated by a moving load are implemented for comparison. A Young’s modulus 

of       GPa, a Poisson ratio of      , and a density of        kg/m
3
 are used. The 

modal damping ratios from [1] were adopted, which are      
   for    ,      

   for 

| |    , and      
   for | |   . The mobilities are calculated for a frequency spacing of 

0.1 Hz, as suggested in [1, 21]. This was sufficient to ensure at least 2-3 frequency points 

occur within the half-power bandwidth of the lightly damped resonances at the relevant 

frequencies and to capture the antiresonances of the wheelset. 

The track mobilities are calculated using an infinite Timoshenko beam model with 

equivalent continuous support consisting of a spring-mass-spring system to represent the rail 

pad and a half sleeper embedded in ballast [1, 25]. The vertical and lateral mobilities are 

solved separately, and the vertical/lateral coupling is introduced as a scaled geometric 

average [2]. Damping is included in the rail, the rail pad, and the ballast in the form of a 

complex stiffness. The track parameters used are listed in Table 1.  

The mobility of the contact zone is represented by a linearized Hertzian spring, see e.g. 

[1], for a normal load of 50 kN per wheel. The wheel and rail are coupled through the lateral 

creep forces and contact stiffness, see [1, 26]. For simplicity, a combined roughness spectrum 

is adopted that corresponds to the limit in ISO 3095  [27]. A contact filter derived using the 

discrete point reacting springs (DPRS) method [28] is adopted. 

Table 1 Track parameters used in the model 

Parameter Vertical Lateral 

Rail bending stiffness 6.42 MNm
2
 1.07 MNm

2
 

Rail mass per unit length 60 kg/m 

Rail shear stiffness 617 MN 

Rail shear coefficient 0.40 

Rail rotational inertia 0.24 kgm 0.04 kgm 

Rail damping loss factor 0.02 

Rail pad stiffness 250 MN/m 50 MN/m 
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Rail pad damping loss factor 0.20 

Sleeper mass (half sleeper) 140 kg 

Ballast stiffness (half sleeper) 200 MN/m 35 MN/m 

Ballast damping loss factor  1 2 

Support spacing 0.60 m 

The wheel/track interaction is solved in the frequency domain for the coupled vertical 

(radial in the wheel) and lateral (axial in the wheel) degrees of freedom to obtain the 

respective contact forces for a vertical roughness input as [1] 

   [        ]
  ,

   
 
-  (30) 

where   ,    and    are the wheelset, rail and contact mobility matrices (each of size 2×2 at 

each frequency to include vertical, lateral, and cross mobilities), and   is the roughness 

amplitude. 

3.2 Wheel response and sound radiation  

The contact forces are now used to calculate the wheel vibration in the radial and axial 

directions for each harmonic   in the non-rotating frame as [1] 

 ̇          (31) 

where      is the mobility matrix of the wheel at harmonic  . In the non-rotating frame 

(Eulerian model), roughness at a certain frequency   will excite both forward and backward 

waves of a given mode at the same frequency, whereas in a rotating frame (Lagrangian 

model), the roughness will excite the two waves at different frequencies   | |  [1]. 

The circumferential mean square velocity of the rotating wheel for each harmonic can be 

calculated analytically, see Eq. (8), by averaging of the mean square responses of the radial 

( ̇     ̅̅ ̅̅ ̅̅ ) and axial ( ̇    ̅̅ ̅̅ ̅) component over   as 

〈 ̇ ̇  
  ̅̅ ̅̅ ̅̅ 〉  

 

  
∫  ̇ ̇  

  ̅̅ ̅̅ ̅̅
 

  

   
 

  
∫

( ̇    
   )

 
 ̇    

   

 

 

  

   
| ̇   |

 

 
  (32) 

where 〈 〉̅ denotes the spatial and temporal average and    the complex conjugate, with 

subscript   referring to the radial (   ) and axial (   ) velocity components. As the 

rotating waves do not have fixed nodal lines, the circumferential averaged response is 

identical to the mean square response at the driving point [1]. For each     of the rotating 

wheel, the response of the pair of harmonics    is added as 

                  



  Page 15 

 

〈 ̇ ̇  
  ̅̅ ̅̅ ̅̅ 〉  

| ̇    
 |

 

 
 
| ̇    
 |

 

 
  (33) 

When rotation is included, waves with    have different resonance frequencies than the 

waves with   . Thus their resonance peaks occur at a different frequency and there will not 

be a simple formation of standing waves [1]. 

For a non-rotating wheel, for    , the waves of both harmonics    and    have the 

same resonance frequency and are simultaneously excited by the contact force. They combine 

and form a standing wave, so the combined response is written as 

 ̇     ̇     
      ̇     

    

 ( ̇      ̇    )    (  )   ( ̇      ̇    )    (  )  
(34) 

which results in a standing wave with a symmetric cosine and an antisymmetric sine 

component, as in the classic axisymmetric approach of non-rotating structures [22, 29]. Only 

the symmetric component is excited by vertical and lateral forces. The circumferential mean 

square velocity of each nodal diameter     becomes 

〈 ̇ ̇  
  ̅̅ ̅̅ ̅̅ 〉  

 

  
∫

 ̇   
  ̇   
 

 

  

    (  )   
|( ̇      ̇    )|

 

 
  (35) 

while for     the circumferential mean square is identical to Eq. (32). By combining the 

harmonics, in subsequent calculations the response can be expressed as a sum over the nodal 

diameters from     to     . 

In this study, the comparison between different modelling approaches is made in terms of 

the sound power. For calculating the radiated sound power of the wheel, the approximate 

radiation efficiencies from [30] are adopted for each nodal diameter   for radial and axial 

normal velocities. The total radiated sound power is obtained by summing up the 

contributions over all harmonics as  

  ∑    (    〈 ̇     ̅̅ ̅̅ ̅̅ 〉̅̅ ̅̅ ̅̅ ̅̅        〈 ̇     ̅̅ ̅̅ ̅̅ 〉̅̅ ̅̅ ̅̅ ̅̅   )

 

   

  
(

36) 

where      is the radiation efficiency of the wheel for radial vibration and      for axial 

vibration at the nodal diameter  , 〈 ̇     ̅̅ ̅̅ ̅̅ 〉̅̅ ̅̅ ̅̅ ̅̅  is the circumferential mean square velocity of the 

radial and 〈 ̇     ̅̅ ̅̅ ̅̅ 〉̅̅ ̅̅ ̅̅ ̅̅  of the axial vibration at   and averaged over a number of wheel nodes,    

and    are the respective radiating surface areas,    and    are the density and the speed of 

sound of air, with        kg/m
3
 and        m/s. The sound radiation from the axle is not 

included in this approach.  

                  



  Page 16 

 

4 Effect of the wheel rotation on its vibration 

Before using the rotating wheel model for rolling noise calculations, the effects of the 

rotation on its modes of vibration are discussed. The Lagrangian model is used for the free 

vibration studies. Train speeds from 0 to 500 km/h are considered. This corresponds to a 

maximum angular velocity of 319 rad/s or a rotational frequency of 51 Hz (revolutions per 

second) for the wheel model with a radius of 43.5 cm at the nominal contact point, that was 

used in the studies. 

4.1 Effect of the rotation on the wheel modal frequencies 

To study the effect of the rotation on the modal frequencies, a single wheel with a straight 

web is modelled with the proposed FE model. The wheel is constrained at the inner radius of 

the hub, to account for the connection to the axle. When adding the rigid body motion, this is 

a good approximation of the full wheelset at frequencies where rolling noise from the wheels 

becomes dominant [1]. Second order elements with quadratic shape functions are used in the 

FE model and a mesh with a maximum element size of 1 cm is adopted, which is fine enough 

to represent the modes at the highest frequency of interest in the calculations. 

4.1.1 Gyroscopic and centrifugal effects 

The gyroscopic and centrifugal effects due to the inertial Coriolis ( ) and centrifugal ( ) 

terms are a result of changes in the kinetic energy when adding the rotation. Both effects are 

considered in the calculations presented here. Stress stiffening, which is due to changes in the 

strain energy, is analysed separately in Section 4.1.2; hence the stress-stiffening matrix is set 

to      here. 

Fig. 2 shows the frequency shifts in the non-inertial frame for some example modes that 

are predominantly radial (a), circumferential (b), and axial (c). Note that in railway wheels 

there is always some coupling of vibration in different directions. As a result, modes that 

predominantly vibrate in one direction also exhibit by some vibration in the other two. Modes 

for harmonics between      and     but excluding    , are included in the figure. 

The axial modes include modes with 0, 1 and 2 nodal circles. A positive value of frequency 

shift denotes an increase of the natural frequency compared with the non-rotating wheel. The 

modes are distinguished between forward (   , dashed line) and backward rotating modes 

(   , dotted line). The maximum expected shift of       (solid line) due to Coriolis 

forces is shown for comparison. 

The radial modes can have a frequency split that is almost as large as       because they 

produce large Coriolis forces. The Coriolis force acting on a rotating and vibrating particle of 
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mass   is defined by the cross-product         (     )
  ( ̇   ̇   ̇ )

 . Hence, 

Coriolis forces are only produced if the structural vibration has components perpendicular to 

the angular velocity vector  . This is the case for radial ( ̇ ) or circumferential ( ̇ ) 

velocities. Consequently, a purely radial velocity would result in          (   ̇   )
 . 

For the radial modes, if observed from the non-inertial frame, the forward rotating wave 

decreases in frequency, while the backward rotating wave increases [16, 24]. 

For the circumferential modes, the frequency shift is similar to the radial ones, but 

conversely to radial modes, the forward modes increase in frequency, while backward modes 

decrease. The Coriolis force         ( ̇     )
  for a purely circumferential velocity 

inverts the frequency shift of the two waves. 

In general, the lower order radial and circumferential modes tend to shift in frequency 

more than the higher order ones; the largest shifts are seen for     and    . That occurs 

because the higher order modes have shorter structural wavelengths in the circumferential 

direction, which means there is more circumferential motion in the radial modes and vice 

versa. 

The axial modes generally have the smallest frequency shift, with the largest difference at 

around 25% of the maximum expected      . A purely axial velocity ( ̇ ) would not 

produce any Coriolis forces when the wheel is rotating, i.e.      (     )
 . However, due to 

the coupling between the axial vibration and vibration in the other two directions, there is still 

some frequency shift in the axial modes. The shift depends on whether the coupling is 

stronger with radial or circumferential vibration. In the considered harmonics, axial modes 

with 0-nodal and 1-nodal circles shift in the same direction as the radial modes, whereas the 

2-nodal-circle modes shift in the same direction as the circumferential ones. 

In all cases, the inertial centrifugal effects due to the spin-softening matrix   lead to 

negligible frequency shifts in the range of train speeds considered. They are not separately 

shown here but they have been found to be less than 1 Hz, which is in line with [17]. Due to 

the   -dependency, the reduction in stiffness or natural frequency, also referred to as spin 

softening, may become more significant at very high angular velocities. This can be the case 

in other rotor dynamics applications such as turbomachinery, but a noticeable effect is not 

reached in conventional high-speed railways. 
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(a) 

 
(b) 

 
(c) 

Fig. 2 Frequency shift in the non-inertial frame for different types of modes of the rotating 

wheel up to train speeds of 500 km/h separated between (a) radial, (b) circumferential and 

(c) axial modes;   , forward rotating wave;   , backward rotating wave; ▬,       . 

4.1.2 Effect of stress stiffening  

The stress-stiffening effect on different mode types is investigated by including the stress-

stiffening matrix    in the Lagrangian EOM, as well as the spin-softening matrix  . The 

gyroscopic effect that causes the split of the modes is excluded by setting    . 

In Fig. 3, the frequency shift due to stress stiffening and spin softening is shown for the 

same modes as in Fig. 2 (note the different scale). The stress-stiffening effect is largest for 

axial modes. It increases the natural frequencies of both the forward and backward modes 
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almost identically at the tested train speeds. Stress stiffening changes the bending stiffness of 

the wheel because of the constant centrifugal force    that acts in the radial direction. 

Consequently, modes with a dominant axial out-of-plane vibration can be affected whereas 

radial or circumferential modes are less sensitive to this phenomenon.  

The calculations performed show that, even for axial modes, the effect of stress stiffening 

is small. The maximum frequency increase is only about 10 Hz, or 20% of the rotational 

frequency     , at a speed of 500 km/h. At more realistic speeds of a modern high-speed 

train (up to 350 km/h) it is at most 5 Hz.  

  
Fig. 3 Frequency shift due to centrifugal stress stiffening for train speeds up to 500 km/h 

on different types of wheel modes; , radial modes;   , circumferential modes;   , 

axial modes; ▬,      . 

4.1.3 Estimating the natural frequencies in the inertial frame 

For the interaction with the track, the modal frequencies of the rotating waves      are 

required in the inertial frame of reference, i.e. by using Eulerian coordinates. The lowest 

critical speed of the studied wheel is reached if the train travels at a speed of 1836 km/h 

(591 km/h for the case of the full wheelset considered below). Below this train speed, the 

angular velocity   of the wheel is smaller than the speed     (  )⁄  of the rotating waves 

with    . As   is subcritical for all modes in the considered range of train speeds, the 

forward and backward waves retain their direction of rotation when observed in the inertial 

frame [16]. 

The modal frequencies in the inertial frame can be obtained directly using the Eulerian 

model or by solving the Lagrangian model and converting them to the inertial frame. 

Alternatively, one could estimate them approximately from a non-rotating model. The results 

in Sections 4.1.1 and 4.1.2 showed that many axial modes barely change their frequency due 

to gyroscopic or centrifugal effects, while the radial forward waves decrease by up to    and 

the backward waves increase by up to    in circular frequency. For the circumferential 

modes the shifts are in the opposite direction to the radial ones. Assuming purely radial or 
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circumferential modes, the shifts from the gyroscopic and centrifugal effects are    for 

radial and    for circumferential modes. Combining this with the shift of     obtained 

from changing the frame of reference, the natural circular frequencies of the rotating wheel in 

the inertial frame may be approximated as 

   {

     | |  (     )

     (| |   ) (      )

     (| |   ) (               )

  (37) 

where      is the natural circular frequency of the non-rotating wheel (   ).  

At higher values of  , the frequency shifts for the radial and circumferential modes 

become smaller, and these estimations can become less accurate. The approximate formulae 

are most accurate if modes have uncoupled vibration, e.g. for a flat disc, where radial modes 

have almost purely radial vibration (likewise the axial and circumferential modes). For the 

more complex wheel geometry, the frequency shifts of specific modes depend on the degree 

of coupling between different directions. Nevertheless, if the exact natural frequencies of the 

rotating wheels are required, the Eulerian or Lagrangian models should be used. 

4.2 Inclusion of an axle in the wheelset model 

Modelling a single wheel with a fixed hub is often preferred to a full wheelset, to reduce 

the number of degrees of freedom in the FE model and its calculation times [1]. The presence 

of the axle introduces coupling between the two wheels for    , through axle 

torsion/extension, or for     , through axle bending [6]. This can alter the frequency shifts 

compared with the wheel alone constrained at the hub. At higher numbers of nodal diameters 

(| |   ), except for a few modes, the axle remains rigid and effectively decouples the two 

wheels in the frequency range of interest. Hence, the frequency shifts of the wheelset are 

identical to those of the single wheel shown in Fig. 2, but each mode exists as a doublet at the 

same natural frequency, in which either the left or the right wheel vibrates. Stress stiffening is 

excluded in these full wheelset calculations. 

The frequency shifts of the wheelset modes with     and      are shown in Fig. 4. 

Because of the coupling between the wheel and the axle vibration, modes cannot always be 

clearly distinguished as radial, circumferential, or axial. The modes with     do not split. 

Nevertheless, small changes in frequency (increase or decrease) with increasing speed are 

present due to gyroscopic and centrifugal effects. However, apart from a torsional mode that 

decreases by 20 Hz, the shift at 500 km/h is generally less than 1 Hz. For     , the 

frequency shifts are more widely distributed between      . 
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(a) (b) 

Fig. 4 Frequency shift in the non-inertial frame of the modes from the rotating wheelset for 

train speeds up to 500 km/h and the harmonics (a)     and (b)     ; , standing wave 

(only for    );   , forward rotating wave;   , backward rotating wave; ▬,      . 
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5 Vibration and rolling noise contribution of the rotating wheel 

The wheel contribution to rolling noise is calculated in this section. Comparisons are made 

between wheel models that are non-rotating, rotating, or that implement rotation effects in an 

approximate way by means of a moving load. Unless otherwise stated, the wheel considered 

in the previous sections is investigated, which has a straight web. Frequencies from 10 Hz to 

10 kHz are considered, to obtain results up to the 8 kHz one-third octave band. Train speeds 

from 10 to 500 km/h are included in the calculations. Although rolling noise may no longer 

be the dominant noise source for train speeds above 350 km/h [1], higher speeds are included 

for completeness and to show continuing trends. 

5.1 Rolling noise from the rotating wheel 

The vertical mobilities used to determine the contact forces for roughness excitation are 

compared in Fig. 5. The lateral and vertical/lateral cross mobilities are not shown for brevity, 

since the trends are identical. The wheel mobility obtained with the Eulerian model at 

350 km/h is shown together with a continuously supported track model and the contact 

mobility at the driving point. Harmonics up to       were considered to include 

resonances up to 10 kHz. The rigid body motion of the wheelset is added to the wheel 

mobility, calculated from the FE model with the fixed hub, as an approximation of the full 

wheelset dynamics. 

In the wheel mobility, in the Eulerian frame, resonances split into two peaks according to 

the frequency separations discussed in Section 4. This is different from the non-rotating 

wheel, where the two rotating waves add up at the same frequency forming a single 

resonance peak. When adopting the moving load to approximate the rotation, which neglects 

the gyroscopic and centrifugal effects, a separation of exactly        compared with the 

non-rotating wheel would be seen [7]. 

The Timoshenko beam model used for the rail neglects cross-section deformation, and the 

effects of discrete supports are also neglected here. However, for the comparison between the 

sound power radiated by the different wheel models, this track model is considered to be 

sufficient as it captures the main effects that the rail has in defining the contact force and 

hence the wheel vibration response [1]. 
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Fig. 5 Comparison of the magnitude of vertical driving point mobilities used in the 

interaction model; , rotating wheelset at a train speed of 350 km/h (Eulerian model); 

  , continuously supported track; ▬, wheel/rail contact stiffness. 

The sound power level (SWL) of the wheel is shown in Fig. 6 in one-third octave bands 

for the train speeds 80, 160, and 350 km/h. The result for the non-rotating wheel is compared 

with the rotating wheel calculated using the Eulerian model (without stress stiffening). With 

increasing train speed, the SWL increases due to the higher roughness amplitude at a given 

frequency.  

 
 

Fig. 6 Sound power level radiated by the wheel for train speeds of 80, 160, and 350 km/h 

comparing different wheel models; , non-rotating wheel;   , rotating wheel 

(Eulerian). 

The relative differences in SWL between the non-rotating and Eulerian wheel model can 

be seen in Fig. 7(a), including for the maximum speed of 500 km/h. Up to 125 Hz the models 

are in good agreement. Differences of around    dB occur up to 400 Hz. Above this 

frequency, the non-rotating model underestimates the Eulerian model by up to 6 dB. 

However, above 2 kHz, where the wheel has many resonances and usually produces most 

noise, the difference reduces to 2-4 dB, depending on the train speed. Generally, at higher 
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speeds the differences are larger. For the speeds considered, the moving load approximation 

has differences of less than 1 dB compared with the Eulerian model in all frequency bands, 

except for 2 dB in the 2 kHz band at 500 km/h, see Fig. 7(b). 

The underestimation when using the non-rotating wheel is due to the wheel response 

which is determined from the circumferential mean square velocity after combining the two 

responses of harmonics    coherently as they combine to form a standing wave. In most 

frequency bands, this response is smaller than for the rotating wheels. The non-rotating 

wheelset model is not generally adopted in rolling noise calculations. Instead, the wheel 

rotation effects are commonly approximated by means of a load moving around the wheel 

circumference; this is implemented in TWINS [7]. The moving load model can approximate 

the SWL of the rotating wheel much better than the non-rotating wheel at regular train 

speeds. The small differences compared with the Eulerian model are due to the additional 

frequency separation and changes in amplitude of the resonances caused by the gyroscopic 

and centrifugal effects. 

  
 

(a) (b) 

Fig. 7 Difference in SWL comparing the Eulerian model with (a) the non-rotating wheel 

model and (b) the approximation with the moving load for different train speeds; , 

80 km/h;   , 160 km/h;   , 350 km/h;   , 500 km/h 

To formulate general conclusions about the effect of wheel rotation on the sound radiation 

from the wheel, calculations have been performed to cover train speeds from 10 to 500 km/h. 

Taking the Eulerian model (without stress-stiffening effects) as a reference, the relative 

differences of the overall A-weighted SWL of the wheel are shown in Fig. 8 for different 

modelling approaches. These are (i) a non-rotating wheel, (ii) a moving load and (iii) the 

Eulerian approach that includes stress-stiffening effects. Results are shown for two different 
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wheel types, one with a straight web (as above) and another one with a curved web. Positive 

values mean an overestimation with respect to the reference Eulerian model.  

At lower speeds, neglecting the rotation causes the overall A-weighted SWL to be 

underestimated by 1-2 dB. Above 100 km/h, the differences increase to almost 3 dB for the 

wheel with the curved web but remain below 2.5 dB for the wheel with straight web. That is 

due to the increase of the SWL in the frequency bands above 1.6 kHz, which contribute more 

significantly to the overall SWL at higher train speeds, see e.g. Fig. 6.  

If the stress-stiffening effect is included in the Eulerian model, the differences are smaller 

than 0.2 dB, as the consequent frequency shifts remain small. To simplify the calculations, 

the stress-stiffening effect may therefore be neglected in rolling noise calculations. 

The moving load model of the rotating wheel gives a good approximation to the Eulerian 

model, with differences of less than 0.2 dB for the straight web; for the curved web the 

differences remain less than 0.3 dB below 400 km/h, increasing to 0.6 dB at 500 km/h. Small 

variations are seen over speed as there are slight changes in the frequency separation and 

amplitude of the resonances. The differences in individual one-third octave bands can be as 

much as 2 dB. Other wheel designs will have slightly different results, but the general 

conclusions inferred from these examples will also hold for other common wheel geometries. 

  
(a) (b) 

Fig. 8 Difference in total A-weighted sound power level for the wheel models with (a) 

straight web and (b) curved web, relative to the Eulerian model for different train speeds; ▬, 

non-rotating wheel;   , rotating wheel (moving load);   , rotating wheel (Eulerian with 

stress stiffening). 

These differences are smaller than other sources of uncertainty, such as the measurements 

of roughness within the running band [31], suggesting that effects due to rotation other than 

the moving load can be safely neglected in rolling noise modelling. The non-rotating wheel 

shows larger differences of up to 3 dB in the overall A-weighted SWL. Its use should be 

restricted to comparisons with measurements using experimental modal analysis, to obtain 

modal parameters and update the FE model accordingly. 
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5.2 Comparison of the rotating wheel with the full wheelset 

In the previous calculations, the response of the wheelset was approximated by adding 

rigid body modes to a model of a single wheel fixed at the hub (rigid axle). To investigate the 

effect of this approximation, calculations with the Eulerian model were repeated using a 

model that includes the geometry of the entire wheelset. The contribution of the axle 

vibration to the sound radiation is not accounted for, but this was found by Cheng et al. [21] 

to be negligible compared with the contribution of the wheels at frequencies above 2 kHz. 

Thus, the approximate wheel radiation efficiencies from [30] are again used. 

In Fig. 9, the SWL of the wheel with rigid axle (as in Section 5.1) is compared with the 

full wheelset with flexible axle for three speeds, 80, 160 and 350 km/h. Although more 

modes exist in the full wheelset for     and     , the effect on the sound radiation is 

only about    dB in the frequency bands above 1 kHz, where the wheel contribution 

normally dominates the rolling noise [1]. In the bands between 80 Hz and 1 kHz differences 

of up to 6 dB are present, since several wheelset modes exist in this frequency range that are 

not included in the wheel-only model. The differences also tend to be larger at higher train 

speeds. However, below 1 kHz the track is usually the dominant noise source [1]. 

 
Fig. 9 SWL predicted with the Eulerian model of a rotating wheel and a wheelset for train 

speeds of 80, 160, and 350 km/h; , wheel only;   , full wheelset. 

The overall wheel contribution is mostly dominated by the frequency bands above 1.6 

kHz, where the differences between the two modelling approaches are almost negligible. In 

terms of the overall A-weighted SWL, therefore, the noise from the full rotating wheelset is 

increased by less than 0.5 dB compared with the rotating wheel model in the prediction, see 

Fig. 10.  
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Fig. 10 Difference in SWL of a rotating wheel and a full wheelset modelled with the 

Eulerian model for train speeds from 10-500 km/h. 

It is concluded that using a wheel model constrained at the hub and with added rigid body 

motion in rolling noise predictions is not disadvantageous compared with the full wheelset 

model. 

5.3 Comparison with TWINS calculations 

In the TWINS model, the wheel response is obtained in a non-inertial frame of reference. 

This allows direct comparison with wheel vibration measurements performed with 

accelerometers mounted on the wheel web [7]. However, to calculate the sound radiation it is 

more appropriate to evaluate the vibration velocity of the wheel, and the subsequent radiation 

of sound, in an inertial frame of reference. To evaluate the difference between the two 

approaches, the calculations were repeated with a TWINS model. For consistency with the 

TWINS calculation, the results obtained using the current model are done by approximating 

the rotation effects with a moving load. 

The axial and radial wheel velocity responses obtained in both frames are shown in Fig. 

11 for train speeds of 80 and 350 km/h. The axial velocity is obtained at the centre of the web 

and the radial velocity at the nominal contact point. Differences in some frequency bands can 

be as large as 8 dB, especially below 1.6 kHz, and appear to be larger for the higher speed. 

Above 1.6 kHz, the differences reduce to about 2 dB. Because the frequencies of the 

resonances are different in the two reference frames, they can appear in different one-third 

octave bands, which causes the difference in the velocity levels. 
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(a) (b) 

Fig. 11 Comparing the wheel response at the contact point (radial) and the web (axial) in the 

two reference frames for a train speed of (a) 80 km/h and (b) 350 km/h; ▬, axial in inertial 

frame; ⁃ ⁃ ⁃, axial in non-inertial frame; , radial in inertial frame;   , radial in non-

inertial frame. 

The overall A-weighted SWL for the range of speeds considered in this study can be seen 

in Fig. 12. A positive value means an increase compared with the inertial frame that is 

adopted in this work. It shows that the effect of changing reference frame on the overall A-

weighted SWL is small, with differences up to about 0.5 dB. 

 
Fig. 12 Difference in SWL between calculations of the wheel response and consequent 

sound radiation in an inertial and in a non-inertial frame. 

The overall A-weighted SWL is not significantly affected by whether the inertial frame 

(current paper) or the non-inertial frame (TWINS) is used to calculate the wheel response, but 

there are fluctuations in some frequency bands. 
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6 Conclusions 

The effect of the rotation on predicted vibration and radiated sound from the train wheel in 

rolling noise has been investigated. Different wheel models are compared in the calculations. 

The effects of the rotation on the wheel modal frequencies were obtained from a Lagrangian 

model. An Eulerian model was used to determine the wheelset mobility and predict the 

rolling noise based on the TWINS approach. 

When the rotation is included, modes that exist as standing waves in the non-rotating 

wheel become forward and backward rotating waves, with diverging frequencies that separate 

with increasing speed. The frequency split depends on the mode shapes and can vary for 

different wheel types. In general, axial wheel modes are barely affected by the rotation (in the 

Lagrangian frame), whereas radial and circumferential modes have a larger frequency split, 

up to almost      . The reason for the divergence is the gyroscopic effect due to Coriolis 

forces, while stress stiffening or spin softening that either increase or decrease the modal 

frequency have a negligible effect at normal train speeds.  

In the calculated rolling noise from the wheel, the differences in the SWL between the 

non-rotating wheel and the model including all effects of the rotation can be as large as 6 dB 

in some frequency bands. The overall A-weighted SWL is underestimated by up to 3 dB 

when using the non-rotating wheel. The moving load approximation, however, whilst 

neglecting gyroscopic and centrifugal effects (spin softening and stress stiffening), gives 

differences of only up to 1 dB in some frequency bands for conventional train speeds. The 

overall A-weighted SWL has differences of less than 0.3 dB for train speeds below 400 km/h, 

which is small compared with other sources of uncertainty in rolling noise predictions.  

When modelling the wheelset by a single wheel with a constrained hub and adding the 

rigid body motion, differences can be expected of up to 6 dB in some frequency bands below 

1 kHz compared with a full wheelset model that includes the axle. However, the difference in 

overall A-weighted SWL is only about 0.5 dB. Similar differences are found if the wheel 

response and sound radiation are calculated in a non-inertial frame as in TWINS, rather than 

an inertial frame as in the model presented in this paper. 
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Appendix A– Element matrices of the rotating axisymmetric FE model 

In this appendix the element matrices of the axisymmetric FE rotor model are provided. 

The element mass, gyroscopic and centrifugal matrices and the centrifugal force vector in the 

expression of kinetic energy, see Eq. (9), are defined as  
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The surface integrals can be solved numerically using Gaussian Quadrature. 

The stiffness matrices are derived from the strain energy in Eq. (10). To include 

centrifugal stress stiffening, geometric non-linearity has to be included, which requires Green 

strain with higher order terms [22]. Combining the six linear strain components [29] with the 

non-linear components [32] yields the strain vector   (                    )
  as 
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, (A.5) 

where    represents the strains in the  -th direction and     the shear strains between the  -th 

and  -th directions. Without pre-stress (    ), the second term in Eq. (10) vanishes and the 

standard element stiffness matrices in the axisymmetric approach are obtained as  
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where   
  and   

  are the element strain-displacement matrices of the linear strains    defined 

as [22, 29] 
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and the matrix of elastic moduli   is  

  
 

(   )(    )

[
 
 
 
 
 
 
 
(   )      
 (   )     
  (   )    

   (
 

 
  )   

    (
 

 
  )  

     (
 

 
  )]

 
 
 
 
 
 
 

, (A.10) 

where   is the Young’s modulus and   the Poisson’s ratio. 

To include the pre-stress, geometric non-linearity needs to be included using the non-

linear strains    . After evaluating the elemental pre-stress from the static displacement field 

 ̅  at the Gaussian integration points as 

  
 ( ̅ )     

  ̅ 
   (A.11) 

the element geometric stiffness matrix can be integrated as 
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where   
  adopts the non-linear strain components, and    contains the pre-stresses within the 

element obtained from Eq. (A.11). The strain-displacement matrix   
  is given by 
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and the elemental stress and shear stress components in the three principal directions, from 

Eq. (A.14), are re-ordered as follows [22] 
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with 
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]  (A.16) 

where    represents the stress components in the  -th direction and     the shear stresses 

between the  -th and  -th directions. Due to the non-linear strains in the formulation of 

geometric stiffening, unrealistic results can occur at rigid body modes if an unconstrained 

structure is modelled [33]. 
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