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Key points: 28 

 Long-term (~4° C) decline in North Atlantic sea surface temperatures between the early 29 

(~53-49 Ma) and middle (~44-41 Ma) Eocene. 30 

 This indicates that CO2 was likely responsible for the onset of long-term Eocene cooling. 31 

 However, east-west temperature gradients in the North Atlantic are decoupled, possibly 32 

due to additional non-CO2 forcing mechanisms. 33 

 34 

Abstract: 35 

The Eocene (56–34 million years ago) is characterised by declining sea surface temperatures 36 

(SSTs) in the low latitudes (~4°C) and high southern latitudes (~8-11°C), in accord with decreasing 37 

CO2 estimates. However, in the mid-to-high northern latitudes there is no evidence for surface 38 

water cooling, suggesting thermal decoupling between northern and southern hemispheres and 39 

additional non-CO2 controls. To explore this further, we present a multi-proxy (Mg/Ca, δ18O, TEX86) 40 

SST record from Bass River in the western North Atlantic. Our compiled multi-proxy SST record 41 

confirms a net decline in SSTs (~4°C) between the early Eocene Climatic Optimum (53.3-49.1 Ma) 42 

and mid-Eocene (~44-41 Ma), supporting declining atmospheric CO2 as the primary mechanism of 43 

Eocene cooling. However, from the mid-Eocene onwards, east-west North Atlantic temperature 44 

gradients exhibit different trends, which we attribute to incursion of warmer waters into the eastern 45 

North Atlantic and inception of Northern Component Water across the early-middle Eocene 46 

transition. 47 

 48 

Plain Language Summary 49 

Over the past 541 million years, the Earth has oscillated between warm (greenhouse) and cold 50 

(icehouse) climates. The most recent transition between a greenhouse and icehouse climate state 51 

occurred during the Eocene (56 to 34 million years ago). This transition shows a gradual cooling, 52 

previously suggested to be driven by a decline in atmospheric carbon dioxide (CO2). However, we 53 

know little about this transition in the North Atlantic Ocean. Previous studies show limited cooling of 54 



surface waters in this region. This suggests that changes in North Atlantic temperatures are not 55 

driven by CO2. To understand how sea surface temperature changes in the western North Atlantic, 56 

we analysed the chemistry of microscopic marine fossils in sediments. Our results show a 4°C 57 

decline in temperature from the early (~53 Ma) to the middle Eocene (~42 Ma). This matches 58 

computer simulations of Eocene climate and confirms CO2 was responsible for the transition. The 59 

lack of cooling observed in previous work is probably due to the development of an ancient water 60 

mass known as Northern Component Water (observed today as North Atlantic Deep Water) and 61 

changes in how the Eocene ocean transported heat. 62 

 63 

Introduction  64 

The early Eocene Climatic Optimum (EECO; 53.3 to 49.1 million years ago; Ma) (Hollis et al., 65 

2019a; Zachos et al., 2001) is characterised by a long-term maximum in atmospheric CO2 (~1470 66 

ppm) (Anagnostou et al., 2020), followed by a gradual decline in atmospheric CO2 during the 67 

middle Eocene (47.8 to 38.0 Ma) to ~800ppm (Anagnostou et al., 2020). This is consistent with 68 

declining  SSTs in the tropics (ca. 4°C) (Cramwinckel et al., 2018; Evans et al., 2018) and the mid-69 

to-high southern latitudes (ca. 8-11 °C; Bijl et al., 2009; Hollis et al., 2009; Hollis et al., 2012). 70 

However, SST estimates from the eastern North Atlantic suggest relatively muted surface water 71 

cooling (~1°C) between the EECO and middle Eocene (~40 Ma) (Bornemann et al., 2016). 72 

Temperature asymmetry between the northern and southern hemisphere would not be expected 73 

from a long-term decline in atmospheric CO2 alone (Liu et al., 2018) and suggests that other non-74 

CO2 driving mechanisms (e.g. gateway reorganisation and/or changes in ocean circulation) may 75 

influence regional SST patterns. 76 

 Of particular relevance is the growing evidence for Northern Component Water (NCW) 77 

initiation in the North Atlantic during the early-middle Eocene (~49 and 47 Ma) (Boyle et al., 2017; 78 

Hohbein et al., 2012; Norris et al., 2001). The onset of NCW has been attributed to gateway 79 

reorganisation, specifically deepening of the Greenland-Scotland Ridge (GSR) (Boyle et al., 2017; 80 

Hohbein et al., 2012; Vahlenkamp et al., 2018), although other mechanisms have been proposed 81 



such as isolation of the Arctic Ocean (Zhang et al., 2011) or restriction of the Tethys Ocean 82 

(Roberts et al., 2009). The onset of NCW is followed by a period of weaker overturning (~42 to 38 83 

Ma) (Witkowski et al., 2021), before re-invigoration of NCW during the late Eocene (∼38 Ma) 84 

(Coxall et al., 2018) or Eocene-Oligocene transition (EOT; ∼34 Ma) (Hutchinson et al., 2019). The 85 

establishment of NCW can transport additional heat into the eastern North Atlantic (Vahlenkamp et 86 

al., 2018), potentially muting any long-term cooling trend in this region and has been invoked to 87 

explain stable temperatures in the eastern North Atlantic during the middle Eocene (Bornemann et 88 

al., 2016). However, our understanding of long-term North Atlantic temperature change is based on 89 

a single proxy record (planktonic foraminiferal δ18O) from a single site (DSDP Site 401; Bornemann 90 

et al., 2016) and may not be regionally representative.   91 

To test whether the wider North Atlantic region exhibits stable temperatures during the 92 

Eocene, we use a multi-proxy approach (δ18O, Mg/Ca, TEX86) to reconstruct SST in the western 93 

North Atlantic (Bass River; ODP Leg 174AX; ~36°N paleolatitude) during the early-to-middle 94 

Eocene (53.7 to 42.0 Ma). We compare our new dataset with climate model simulations spanning 95 

a wide range of CO2 values to explore (i) temporal and spatial patterns of cooling in the North 96 

Atlantic during the Eocene and (ii) whether there is thermal decoupling between the northern and 97 

southern hemisphere during the Eocene. This allows us to test whether declining CO2 is the 98 

primary driver of long-term Eocene cooling or whether regional forcing mechanisms are also 99 

important. 100 

 101 

Methods 102 

Site description 103 

The Bass River section (ODP Leg 174AX; 39°36’N, 74°26’W) consists of calcareous marls and 104 

glauconitic silty clays deposited in middle to outer neritic paleodepths between 30 and 150 m 105 

(Fung et al., 2019; Miller et al., 2003). The biostratigraphic age model was developed using 106 

planktonic foraminifera and nannofossils (following Fung et al., 2019) with datums converted to the 107 

GTS2012 (Vandenberghe et al., 2012). Sediments span the early to middle Eocene (53.7 to 42.0 108 



Ma) and encompass the EECO (~340 to 291 m). However, there are a series of hiatuses between 109 

~49 and 44 Ma. 110 

 111 

Analytical methods 112 

Lipid biomarker analysis was performed on 47 sediment samples. Approximately 5-10g of 113 

sediment was extracted with an Ethos Ex microwave extraction system using 15 ml of 114 

dichloromethane (DCM) and methanol (MeOH) (9:1, v/v). The total lipid extract was separated over 115 

silica into apolar and polar fractions using hexane:dichloromethane (9:1, v/v) and 116 

dichloromethane:methanol (1:2, v/v), respectively. The polar fraction (containing isoGDGTs) was 117 

dissolved in hexane/isopropanol (99:1, v/v), passed through 0.45μm PTFE filters and analysed by 118 

HPLC/APCI-MS following Hopmans et al. (2016). Trace element and stable oxygen isotope (δ18O) 119 

planktonic foraminiferal analysis was performed on multiple depth intervals (n = 8) spanning the 120 

early-to-middle Eocene. Foraminiferal preservation is excellent, appearing transparent or 121 

translucent under the light microscope, with no signs of diagenetic alteration observed under SEM 122 

(Figure S1; Table S1). Analysis was performed on various surface-dwelling species 123 

(Acarinina praetopilensis, Morozovella formosa, Morozovelloides crassatus, and 124 

Pseudohastigerina wilcoxensis) and deeper, thermocline-dwelling species (Parasubbotina hagni, 125 

Parasubbotina inaequispira). Single-specimen Mg/Ca analysis was performed via slow depth-126 

profiling by laser ablation-inductively coupled mass spectrometry (LA-ICPMS) (see Müller et al., 127 

2009; Supplementary Information; Table S2). Mg/Ca values were determined in multiple chambers 128 

(~3 to 5) within a single specimen and averaged. The same specimens were subsequently 129 

analysed for δ18O using a Multiprep-Isoprime 100 dual inlet system optimised for analysis of single 130 

specimens (Supplementary information).  131 

 132 

Temperature calibrations 133 

TEX86 data was screened using established indices for non-Thaumarchaeota inputs 134 

(Supplementary Information; Figure S5) and converted to SST using a Bayesian linear calibration 135 

(prior mean = 25, prior standard deviation = 10, n = 2000) (Tierney and Tingley, 2014). Planktonic 136 



foraminiferal δ18O values were converted to SST using the bayfox Bayesian calibration (prior mean 137 

= 25, prior standard deviation = 20, n = 2000). Seawater δ18O (δ18Osw) values were obtained via 138 

the isotope-enabled Community Earth System Model version 1.2 (iCESM1.2; see below). Mg/Ca 139 

values were converted into SST using a modified version of MgCaRB (Gray and Evans, 2019) 140 

(Supplementary Information). We report pH-corrected Mg/Ca temperatures as the majority of 141 

modern foraminifer species are characterised by Mg/Ca-pH sensitivity (Gray and Evans, 2019). 142 

Planktonic foraminifera were rare and thus for Mg/Ca and δ18O, we report the ‘average’ SST 143 

estimates for a given time slice (n = 8 for δ18O, n = 7 for Mg/Ca ) by combining (i) multiple-144 

specimens from multiple size fractions and (ii) all surface-dwelling species within multiple genera 145 

(i.e., Acarinina praetopilensis, Acarinina pseudotopilensis, Morozovella formosa, Morozovelloides 146 

crassatus, Pseudohastigerina wilcoxensis) into a single estimate, following  DeepMIP protocols 147 

(Hollis et al, 2019; Supplementary Information).  Average ‘SST’ estimates comprise a minimum of 148 

two samples from a single depth horizon (see Data S4-S5). When SSTs are calculated using 149 

individual species (Figure S2) and size segregating species (Figure S2-S3), similar patterns in 150 

long-term trends are observed.  151 

 152 

Climate model simulations 153 

We use the water isotope-enabled Community Earth System Model version 1.2 (iCESM1.2) (Zhu 154 

et al., 2020; Zhu et al., 2019) to compare with our proxy reconstruction and to provide an 155 

independent estimate of δ18Osw. iCESM1.2 is able to closely replicate large-scale features of early 156 

Eocene climate, including: i) enhanced global mean surface temperature estimates (Lunt et al., 157 

2021; Zhu et al., 2019), ii) reduced meridional temperature gradients (Lunt et al., 2021), iii) 158 

changes in the hydrological cycle (Cramwinckel et al., 2023), and iv) the values and distribution of 159 

planktonic foraminifera δ18O values (Zhu et al., 2020). It is also the only DeepMIP model that has 160 

water isotopes enabled (Zhu et al., 2020). The iCESM1.2 simulations were performed following the 161 

Deep-time Model Intercomparison Project protocols (Lunt et al., 2017) with early Eocene 162 

paleogeography and vegetation (56.0–47.8 Ma) (Herold et al., 2014) and atmospheric CO2 levels 163 



of ×1, ×3, ×6, and ×9 preindustrial values (284.7 ppmv). Seawater δ18O in the simulations was 164 

initialized from a constant value of −1.0‰ to account for the absence of ice sheets in a hothouse 165 

climate (Shackleton and Kennett, 1975; Hollis et al., 2019). Previous studies at Bass River have 166 

suggested sea level changes through the middle Eocene on the order of 20-30 m, that have been 167 

attributed to changes in Antarctic ice volume (Fung et al., 2019). We do not adjust δ18Osw in this 168 

study for middle Eocene ice volume fluctuations, as the timing and magnitude of these ephemeral 169 

glaciations are currently poorly constrained and our planktonic δ18O data from Bass River are from 170 

intervals where water depth was greatest (i.e. ice volume was minimal). Our model results indicate 171 

only minor changes in δ18Osw at the Bass River location through the early-middle Eocene (~0.2‰ 172 

change between x1 and x9 CO2 simulations using iCESM1.2; Table S3). As such, we use the 173 

average δ18Osw value (-0.54‰) to calculate planktonic foraminiferal δ18O-derived SST estimates. 174 

See Zhu et al. (2019; 2020) and Zhang et al. (2022) for further details of the experimental setup 175 

and equilibration state. 176 

 177 

Results  178 

During the EECO (53.3 to 49.1 Ma), TEX86 SST estimates average ~33°C (Figure 1a). Between 179 

the EECO and the middle Eocene (44-41 Ma), TEX86 SST estimates decline by ~5°C (Figure 1a). 180 

Oxygen isotope SST estimates during the EECO from surface-dwelling planktonic foraminifera 181 

average ~32°C (Figure 1a). Surface-dwelling species yield higher temperatures (up to ~5 °C 182 

higher) than thermocline-dwelling species but exhibit a similar magnitude of cooling (~4°C) 183 

between the EECO and the middle Eocene (44-41 Ma). During the early Eocene, Mg/Ca SST 184 

estimates (calculated using the G. ruber calibration) average ~27°C (Figure 1a). These values are 185 

lower than δ18O and TEX86 SST estimates by ~5°C and ~6°C, respectively; Figure 1a) but agree 186 

within the propagated calibration uncertainties. Mg/Ca SST estimates increase by ~3°C between 187 

the EECO and middle Eocene (44-41 Ma; Figure 1a). However, the absolute values (~30°C) are 188 

comparable to middle Eocene-aged TEX86 and δ18O SST estimates (28°C and 29°C, respectively) 189 

and agree within the propagated calibration uncertainties. 190 



 191 

Discussion 192 

Long-term cooling in the western North Atlantic during the Eocene 193 

The use of multiple proxies provides more robust long-term temperature records than a single 194 

proxy. The consistency between Mg/Ca, oxygen isotopes and TEX86 values in the EECO and late 195 

Eocene is encouraging and indicates that each proxy is recording the same environmental signal 196 

(i.e. SST). TEX86 and δ18O values indicate very high SSTs at Bass River during the EECO (~32 to 197 

33°C). These values are in agreement with existing low-resolution TEX86 estimates generated at 198 

Bass River (de Bar et al., 2019) and nearby South Dover Bridge (~34°C; Inglis et al., 2015). Mg/Ca 199 

SST estimated are also relatively high (~27°C; Figure 1) but are lower than TEX86 and δ18O-200 

derived SST estimates by ~5-6°C. Between the EECO and middle Eocene (44-41 Ma), TEX86 and 201 

δ18O values indicate gradual surface water cooling (5 and 4°C, respectively; Figure 1a), coherent 202 

with declining TEX86 SSTs (~7°C) at South Dover Bridge between the EECO and middle Eocene 203 

(~42 Ma). Evidence of cooling in two independent proxies (TEX86, δ
18O) and locations provides the 204 

first compelling evidence for surface ocean cooling in the (western) North Atlantic between the 205 

early and middle Eocene, which is in parallel with the inferred deep-ocean cooling in benthic 206 

foraminifera δ18O record (Figure 1b; Westerhold et al., 2020). 207 

In contrast, our new Mg/Ca SSTs increase by ~3°C between the EECO and middle 208 

Eocene. Although middle Eocene (44-41 Ma) SST estimates are in excellent agreement with TEX86 209 

and δ18O values (Figure 1) and alkenone-derived SST estimates (~29-30°C; Liu et al, 2018) from 210 

nearby site IODP Site 1404, the temporal trends are  inconsistent with regional observations (this 211 

paper) (de Bar et al., 2019; Inglis et al., 2015) and declining global bottom water temperature 212 

estimates inferred via changes in benthic foraminiferal δ18O values (Figure 1b) (Westerhold et al., 213 

2020). To explore this mismatch further, we compared our proxy-derived temperature estimates 214 

(TEX86, Mg/Ca, δ18O) from the EECO (53.3 to 49.1 Ma; Hollis et al. 2019) and middle Eocene (44 215 

to 41 Ma) alongside iCESM1.2 simulations with different CO2 scenarios (x1 to x9 pre-industrial 216 

CO2) (Figure S6). These two intervals are chosen as they contain SST estimates from multiple 217 



proxies (Mg/Ca, δ18O and TEX86) and exhibit a similar sampling density. iCESM1.2 simulated SSTs 218 

at the Bass River are 31 and 27 °C in the ×6 and ×3 PI CO2 simulations, respectively (Figure 2b), 219 

which overlaps with proxy reconstructions (Figure 2a; Figure S6). For a two-fold decrease in 220 

atmospheric CO2 (i.e., from ×6 to ×3 PI CO2), the model predicted decrease in SST of ~4°C is 221 

comparable to the magnitude of cooling captured by TEX86 and δ18O (5 and 4 °C, respectively; 222 

Figure S6) between the EECO and middle Eocene, but is inconsistent with warming observed in 223 

Mg/Ca values. Given that proxy-derived CO2 estimates decline from ~1470 ppm (~×5 PI CO2) to 224 

~800ppm (~×3 PI CO2) during this interval (Anagnostou et al., 2020), this implies additional non-225 

thermal controls on Mg/Ca values at this site. 226 

The choice of Mg/Ca calibration remains uncertain when working with extinct species. 227 

However, the discrepancy between Mg/Ca-derived SSTs and other proxy data is insensitive to the 228 

choice of Mg/Ca calibration approach (Supplementary Information). This is because seawater pH 229 

was substantially lower than modern throughout the Eocene (Anagnostou et al., 2020), such that 230 

choosing a G. ruber or T. sacculifer-like calibration has a minor effect on the long-term Mg/Ca-231 

derived trend in our dataset (Figure S3). Seawater Mg/Ca is also well-constrained for the Eocene 232 

(Evans et al., 2018; Gothmann et al., 2015) and is broadly invariant across this interval, such that it 233 

is very unlikely that unidentified changes mask cooling. Given that this site was targeted for its 234 

exceptional foraminiferal preservation and diverse assemblages (Figure S1), this potentially points 235 

towards either an evolutionary control on Eocene planktonic foraminifera Mg incorporation, or a 236 

shift in seawater carbonate chemistry at this site that substantially differs from the existing pH 237 

records (Anagnostou et al., 2020; Rae et al., 2021; see Supplementary Information for more 238 

discussion). Resolving this issue and exploring any other additional controls (e.g., local 239 

hydrographic variability; c.f. Thornalley et al., 2011) will require further data and is beyond the 240 

scope of this study. We continue to include the Mg/Ca SST estimates in our assessment of the 241 

thermal evolution of Bass  River (Figure 2a) and note that mismatches in δ18O and Mg/Ca derived 242 

SSTs are not unique to deep-time species. Furthermore, this discrepancy in inorganic geochemical 243 

temperature reconstructions may ultimately stem from a small number of Mg/Ca analyses in the 244 



early Eocene, highlighting the benefit of working with a larger numbers of specimens, where 245 

possible.  246 

 247 

Divergent zonal temperature gradients in the North Atlantic during the early-to-middle Eocene  248 

To determine the long-term mean SST evolution at Bass River, we fit LOESS regressions to our 249 

multi-proxy dataset (TEX86, Mg/Ca, δ18O) (Supplementary Information). This approach indicates 250 

net cooling (~4°C) in the western North Atlantic between the EECO and middle Eocene (Figure 251 

2a). Our data from the western North Atlantic contrasts with existing planktonic foraminifera δ18O-252 

derived SST estimates from the eastern North Atlantic (~37° N; DSDP Site 401; Bornemann et al., 253 

2016) that indicate minimal (<1°C) or no cooling between the EECO and late middle Eocene (ca. 254 

42-40 Ma) (Figure 2a). CESM1.2 model simulations show that the magnitude of cooling at Bass 255 

River inferred via proxies is consistent with a halving of CO2 (Figure 2c) but that the magnitude of 256 

proxy-inferred cooling at DSDP Site 401 is much lower than expected (Figure 2b-c). The east-257 

west zonal mean temperature gradient inferred via proxy estimates (~15-20°C) is also larger than 258 

inferred via model simulations (~3°C; Figure 2b). As the model simulations are identical with the 259 

exception of changes in CO2, this implies that non-CO2 controls influence SSTs in the eastern 260 

North Atlantic (DSDP Site 401; Bornemann et al., 2016) during the Eocene.  261 

Planktonic foraminifera at Bass River exhibit excellent preservation (Supplementary 262 

Information) and tests are translucent and ‘glassy’ (Figure S1) whereas Hollis et al. (2019) 263 

classified post-PETM planktonic foraminifera at DSDP Site 401 as ‘recrystallized’. However, post-264 

PETM foraminifera at DSDP Site 401 exhibit good preservation (Bornemann et al., 2016) and show 265 

limited evidence for recrystallization. If planktonic foraminifera had been subject to significant post-266 

depositional alteration, they would be “reset” towards deep-sea temperatures and would track 267 

changes in benthic foraminiferal δ18O values (Pearson et al., 2007). However, planktonic 268 

foraminiferal δ18O values at DSDP Site 401 do not co-vary with benthic δ18O values, either at this 269 

site (Bornemann et al., 2016) or elsewhere (Westerhold et al., 2020). Therefore, this is unlikely to 270 



explain the observed trends (Figure 2a). However, additional SST records from the North Atlantic 271 

are required to explore regional variations further.  272 

Alternatively, changes in ocean circulation could have modulated regional temperature 273 

patterns in the eastern North Atlantic during the middle-to-late Eocene, specifically the onset of 274 

Northern Component Water (NCW) formation. None of the DeepMIP models (including CESM1.2) 275 

show deep overturning circulation (> 2,000 m) in the North Atlantic during the early Eocene (Zhang 276 

et al., 2022), consistent with proxy evidence (e.g., benthic foraminifera δ13C and fish teeth εNd 277 

values; see Zhang et al. (2022). Instead, most of the DeepMIP models (and CESM simulations 278 

with x1 to x3 CO2) suggests that deep water formation is likely to form in the Southern Ocean, 279 

which also broadly agrees with proxy-based evidence from the early Eocene (Zhang et al., 2022). 280 

CESM does simulate a North Atlantic deep/intermediate water formation at 1x PI CO2, suggesting 281 

that NCW formation represents a delicate balance between multiple factors such as global or 282 

regional cooling, widening of the Atlantic basin, closure of the Arctic-Atlantic gateway (Hutchinson 283 

et al., 2019) and/or deepening/opening of the Greenland-Scotland Ridge (Vahlenkamp et al., 2018; 284 

Straume et al., 2022). The lack of deep water formation in iCESM1.2 at high CO2 concentrations 285 

(i.e. x6 CO2) is likely related to the initial condition and short integration length (see Zhang et al., 286 

2022 for further discussion). We speculate that this limitation in the iCESM1.2 simulation at 6x CO2 287 

would have a minor impact on the surface ocean of the North Atlantic, where regional ocean-288 

atmosphere coupling and wind driven circulation are more important in determining the SSTs.  289 

Idealised modelling experiments show that deepening of the Greenland-Scotland Ridge 290 

and/or closure of the Arctic-Atlantic gateway (Hutchinson et al., 2019) can initiate NCW formation 291 

in the North Atlantic and increase SST in the eastern North Atlantic by up to 7 °C (Vahlenkamp et 292 

al., 2018), thus muting any long-term CO2-driven cooling at DSDP Site 401. Importantly, deepening 293 

of the Greenland-Scotland Ridge has only a minimal influence (< 1°C) on SSTs in the western 294 

North Atlantic (i.e., where Bass River is located) (Vahlenkamp et al., 2018). There is growing 295 

geochemical and sedimentological evidence placing the initial onset of NCW between ~49 and 47 296 

Ma, coincident with changes in zonal temperature gradients between the eastern and western 297 

North Atlantic. Evidence for onset of NCW between ~49 and 47 Ma includes development of 298 



contourite drifts in the western North Atlantic (Boyle et al., 2017), changes in biosiliceous 299 

sedimentation (Witkowski et al., 2021) and a collapse in δ13C gradients between the North and 300 

South Atlantic (Hohbein et al., 2012). These changes would also influence local hydrography within 301 

the eastern North Atlantic and could exert an additional control on δ18Osw values at DSDP Site 401. 302 

Proxy-based reconstructions during the Middle Eocene Climatic Optimum have argued that 303 

northward expansion of the North Atlantic subtropical gyre could also act as a mechanism to 304 

increase SSTs within the North Atlantic (Van Der Ploeg et al., 2023). However, details of the gyre 305 

heat transport and the impact of this large-scale process on regional SSTs (especially near 306 

coastlines) requires further investigation. Thus, although diverging zonal temperature gradients in 307 

the North Atlantic are consistent with the initial early onset of NCW during the early-middle Eocene, 308 

additional proxy data and isotope-enabled model simulations are required to test this further. From 309 

a model-based perspective, simulations with higher resolution and longer simulation length are 310 

required to explore the equilibrium state of the modelled ocean circulation and any possible 311 

regional features that may be missed by the relatively coarse (~1–2°) resolution model. 312 

 313 

Synchronous surface water cooling in the northern and southern hemispheres during the Eocene 314 

To explore whether long-term cooling is globally synchronous, we compiled TEX86-derived SST 315 

estimates that span the early (55 Ma) to late (34 Ma) Eocene. To avoid relying on single proxy 316 

records, we focus on regions with two or more TEX86 records. Our data compilation spans three 317 

regions: (i) the equatorial Atlantic (0-30° N/S) (Cramwinckel et al., 2018; Zhang et al., 2013; Inglis 318 

et al., 2015; Liu et al., 2009), (ii) the northwest Atlantic (30-50 °N) (this study; Keating-Bitonti et al., 319 

2011; Inglis et al., 2015; Cramwinckel et al., 2020a; van der Ploeg et al., 2023) and (iii) the 320 

southwest Pacific (>50°S) (Bijl et al., 2013; Bijl et al., 2009; Crouch et al., 2020; Hollis et al., 2009; 321 

Inglis et al., 2015; Cramwinckel et al,. 2020b; Liu et al., 2009). (Figure 3; Supplementary 322 

Information).  323 

Our results suggest that the onset of long-term cooling occurs ~49 to 48 million years ago 324 

in the North Atlantic and southwest Pacific (i.e. following the termination of the EECO; Figure 3a-c) 325 

and coincides with an increase in the latitudinal SST gradient from 49 to 44 Ma (Figure 3d). Our 326 



study indicates that the onset of Eocene cooling is a global feature and thus consistent with a 327 

decline in atmospheric CO2 as a forcing mechanism for cooling. However, there is a relative lack of 328 

data in the North Atlantic from ~49 to 48 Ma, such that additional records are required to determine 329 

the exact onset of long-term cooling. Proxy records have also suggested that ocean gateways may 330 

have played an important role at this time (e.g., Hohbein et al., 2012; Bijl et al., 2009; Bijl et al., 331 

2013). Previous work argues that the Tasman Gateway was open to shallow circulation at this time 332 

(~49 to 46 Ma) (Bijl et al., 2013) and deepening of the Tasman Gateway would initiate regional 333 

surface water cooling (Sijp et al., 2011; Sijp et al., 2016) and may account for declining SSTs in the 334 

SW Pacific between the termination of the EECO and middle Eocene (~44 Ma). However, as 335 

surface ocean cooling occurs in multiple basins (Figure 3a-c) at a comparable time (~49-48 Ma), it 336 

suggests that CO2 was likely responsible for the majority of long-term Eocene cooling.  337 

 338 

Conclusions  339 

Here we present the first multi-proxy (Mg/Ca, δ18O, TEX86) SST record from the western North 340 

Atlantic spanning the early-to-middle Eocene. Our results indicate very high SSTs during the early 341 

Eocene Climatic Optimum (~27-33°C), in agreement with high atmospheric CO2 concentrations. 342 

Our compiled dataset reveal a net decline (~4°C) in SSTs between the early Eocene Climatic 343 

Optimum (53.3-49.1 Ma) and the middle Eocene (44-41 Ma), consistent with long-term decrease in 344 

atmospheric CO2. However, east-west zonal temperature gradients in the North Atlantic are likely 345 

decoupled during the early-to-middle Eocene. This may be related to inception of Northern 346 

Component Water at the early-middle Eocene transition and incursion of warmer waters into the 347 

eastern North Atlantic, but additional datasets are required to test this further. We also 348 

demonstrate that the onset of long-term Eocene cooling in the western North Atlantic (~49-48 Ma) 349 

occurs synchronously in other ocean basins (e.g., N. Atlantic vs S. Pacific) and across different 350 

latitudinal bands, implying that CO2 was likely responsible for the onset of long-term Eocene 351 

cooling.   352 
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 376 

Figure 1. a) SST reconstructions from Bass River during the early-middle Eocene inferred via 377 

TEX86 (blue), planktonic foraminifera δ18O (dark orange) and Mg/Ca (light orange). Error bars 378 

represent the 95% confidence intervals. b) Atmospheric CO2 reconstructions inferred via planktonic 379 

foraminifera δ11B (blue circles) and alkenone δ13C (blue squares). Error bars represent ±1 standard 380 

deviation (Rae et al., 2021).  c) benthic foraminifera δ18O values (Westerhold et al., 2020). 381 
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 382 

Figure 2: Divergent zonal temperature gradients in the North Atlantic during the early-to-middle 383 

Eocene. a) proxy-derived SST reconstructions for Bass River (this study; blue symbols) and DSDP 384 

Site 401 (δ18O only; orange symbols) (Bornemann et al., 2016) fitted with a LOESS regression. 385 

δ18O values from DSDP Site 401 re-calculated for surface-dwelling foraminiferal genera (Acarinina 386 

and Morozovella spp.) using the bayfox Bayesian calibration (δ18Osw = -0.81, prior mean = 25, prior 387 

standard deviation = 20, n = 2000). δ18Osw values obtained via iCESM1.2 (Table S3). Error bars 388 

represent the 95% confidence intervals. b) iCESM1.2-derived SST estimates for Bass River (blue 389 

symbols) and DSDP Site 401 (orange symbols) under different CO2 concentrations, c) iCESM1.2-390 

derived ΔSST estimates (x6 PI CO2 - x3 PI CO2) with proxy-derived cooling between the early- to 391 

middle Eocene shown for each site 392 

 393 

Figure 3: Long-term evolution of surface ocean temperatures during the Eocene inferred via TEX86 394 

in the (a) equatorial Atlantic (Cramwinckel et al., 2018; Inglis et al., 2015; Zhang et al., 2013), b) 395 

North Atlantic (this study; Inglis et al., 2015; de Bar et al., 2019), and c) the southwest Pacific (Bijl 396 

et al., 2013; Bijl et al., 2009; Crouch et al., 2020; Hollis et al., 2009; Inglis et al., 2015). Panel (d) 397 

shows the SST gradient between the equatorial Atlantic and the North Atlantic (dark blue line) and 398 

southwest Pacific (light blue line). To determine the long-term mean SST evolution for the low-, 399 

mid-, and high-latitudes, nonparametric LOESS regressions were fitted using the fANCOVA 400 

software package (http://www.R-project.org/). 401 
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