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Abstract
The concept of étendue is applied to the propagation of luminescent radiation, and to the
transformation of such radiation in absorbing and luminescent media. Central to this analysis is
the notion of étendue as a measure of the number of rays in the beam which permits the
definition of entropy and transition to the formalism of statistical mechanics. When considered
from the statistical viewpoint, étendue conservation along the path of a beam in clear and
transparent media then implies the conservation of entropy. The changes in thermodynamic
parameters of a beam upon absorption and re-emission can then be determined in terms of the
corresponding changes resulting from the addition or removal of photons from the incident and
emitted beam. The thermodynamic theory which follows gives the rate of entropy generation in
this process. At moderate light intensities, the results resemble the thermodynamics of a
two-dimensional gas. The formalism allows an extension to absorption/emission processes
where a high-temperature incident light beam is transformed reversibly into low-temperature
luminescent radiation, corresponding to a potential increase in the open-circuit voltage of a
solar cell.
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1. Introduction

Étendue is a convenient concept used in geometrical optics to
describe the propagation of light through an optical system.
For a beam with ray directions within a small solid angle δω

passing through an area δA, the element of étendue δE is
defined as [1]

δE = n2 cos θδωδA (1)

where θ is the angle between the direction of propagation and
the normal to δA, and n is the refractive index of the medium.
A particularly useful aspect of étendue stems from the fact that
the étendue of a beam propagating in a clear and transparent
medium is conserved. In the analysis of light collecting
systems, the conservation of étendue has played a key role
in formulating the constraints to the limit of concentration
of light and laying down the foundations for the theory of
a non-imaging concentrator [1, 2]. Étendue also acts as a
measure of quantum states (or rays) in a beam [1]—an attribute
that provides a natural link to statistical interpretation and
thermodynamics. In particular, the conservation of étendue
implies the conservation of entropy.

Radiation emitted by a black body has a zero chemical
potential but radiation emitted in a restricted range on energies
may have a non-zero chemical potential. For brevity, we
shall call it quasi-black-body radiation. Luminescent radiation

acquires the thermal characteristics of the emitter of this
radiation through a detailed balance between absorption and
emission, as expressed by the ‘universal’ relationship [3–5]
between the absorption and fluorescent spectra. These relations
can be viewed as an application of microscopic reversibility [6]
to the energy exchange between the emitting substance and
the luminescent radiation. When applied to a sequence of
such elementary absorption/emission events, these relations
guarantee a correct approach to thermodynamic equilibrium of
both the substance and the radiation field.

Like scattering in classical mechanics, the transformation
of one quasi-equilibrium beam into another introduces
irreversibility, both from the point of view of optics [7]
and thermodynamics, bringing about entropy generation.
We shall show that the general result for the entropy
generation resembles the familiar result of irreversible
thermodynamics, and that the resulting entropy production rate
complies inherently with the second law of thermodynamics
by virtue of the conservation or increase of étendue in
the absorption/emission process. For moderate radiation
intensities, the formalism resembles the corresponding
framework for a two-dimensional photon gas.

The plan of the paper is as follows. In section 2,
we consider briefly the conservation of étendue from the
statistical standpoint and show that this characteristic implies
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the conservation of all thermodynamic parameters of the
beam. In section 3, we review the chemical potential of
luminescent radiation from a thermodynamic point of view.
Using the standard methods of irreversible thermodynamics,
the results of section 3 are applied to the transformation of
a high-temperature beam into low-temperature luminescence
in section 4. Unlike previous treatments [8, 9], we shall
describe this transformation not only in terms of the change of
temperature of the beams but using also the change of chemical
potential and the change of étendue.

The paper concludes with a brief discussion of a
situation where the absorption/emission process is reversible,
achievable, for example, in a device where electron–hole pairs,
excited by the high-temperature incident beam, carry out work
whilst being cooled to the ambient temperature, which is then
used to increase the voltage generated by the solar cell.

2. Entropy and the conservation of étendue

Consider a beam of unpolarized light defined by the
étendue (1), with frequency within a small interval ν → ν+δν.
A packet of photons in this beam which passes through the area
δA in a time interval δt occupies a volume

δV = c

n
cos θδAδt . (2)

Since the density of photon states per unit volume per unit solid
angle per unit frequency is equal to 2n3ν2/c3 [10], the volume
δV contains (δgν δt) quantum states, where

δgν = 2n3v2

c3

δν δV δω

δt
= 2v2

c2
δEδν. (3)

Since, in a clear medium, the étendue is conserved along
the path of the beam, equation (3) implies that δgν is also
conserved; this result can also be obtained by making use of
the analogy between étendue conservation and the Liouville
theorem of classical mechanics. The role of étendue as
a measure of the number of rays in the beam has already
been noted in [1], but equation (3) contains a new parameter
not usually considered in geometrical optics: the frequency
bandwidth δν, which becomes significant when considering
processes which change the frequency of the beam.

In the absence of scattering, the number of photons (δNδt)
in the packet remains conserved, and so is therefore the
photon distribution function ρν . It is then easily shown that
equation (3) then implies the conservation of all extensive
thermodynamic functions of the photon packet. Indeed, the
energy transported by the beam

δU̇ν = hν ρνδgν = B

n2
δE (4)

is clearly also conserved. Equation (4) will be recognized as a
statement of the brightness theorem: the ratio B/n2, where B
is the brightness or radiance, is conserved along the path of the
beam. In a similar manner, the entropy passing through δA per
unit time is equal to [8]

δ Ṡν = δgνkB{(1 + ρν) ln(1 + ρν) − ρν ln ρν},

which is transparently also conserved. The conservation of
other thermodynamic quantities, which can be defined through
δU̇ν and δ Ṡν , now also follows.

Thus, the convective flow of any thermodynamic quantity
remains constant in the absence of absorption or scattering.
These flows cannot be equated to flows or currents in the
meaning of irreversible thermodynamics (see, for example,
chapter 3, section 1, of [6], which provides a particularly clear
discussion of this point). However, the state parameters which
are defined through these convective flows provide a basis for
how irreversibility can be introduced—in a similar way as
the usual formalism of irreversible thermodynamics is built
from states of local thermodynamic equilibrium. That such
basis states can be defined is possible by virtue of entropy,
energy and photon number conservation for a beam in a clear
medium. Since photons do not interact, these states does not
correspond to a true thermal equilibrium but can, nevertheless,
be characterized by well defined thermodynamic parameters
such as temperature and chemical potential which remain
constant as long as the beam propagates in a medium which
complies with the assumptions of the étendue theorem. The
use of convective flows as an analogue of equilibrium states to
calculate the probability of fluorescence emission in a system
with several apertures can be found in [11].

In section 4, we shall discuss how these thermodynamic
quantities change as the beam transforms irreversibly during
passage through an absorbing medium. First, however, we
need to make a short detour to consider the chemical potential
of light.

3. Chemical potential of luminescent radiation

It has been shown in section 2 that the thermodynamic
functions remain constant for a beam of light propagating in
a clear non-absorbing medium where the number of photons
in the beam is conserved. We shall now consider how these
functions change when photons are added to or removed from
the beam.

By analogy with black-body radiation we can consider
a cavity lined with a luminescent material at temperature
T0; for convenience we assume that the luminescence takes
place, in a frequency range ν0 → ν ′

0, with a quantum yield
of unity. Any radiation, additional to the purely thermal
radiation at temperature T0, which has been introduced into
the cavity within this spectral range will be repeatedly emitted
and absorbed until it comes into thermal equilibrium with the
luminescent material, and the occupation probability ρν attains
an equilibrium value

ρν = 1

e(hν−μ)/kB T0 − 1
(5)

where the photon temperature is equal to the temperature of
the medium T0, and the photon chemical potential [12] is equal
to the chemical potential μ of the electron–hole pairs. In the
case of electro-luminescence the latter is often approximated
in practice by the applied voltage [13].

In an alternative but equivalent arrangement, a volume V
with reflecting walls can contain an absorbing and luminescent
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medium. Luminescent photons will traverse the volume V
and be absorbed and re-emitted by the medium, until reaching
thermal equilibrium. As discussed in section 1, the attainment
of equilibrium is ensured by the detailed balance between
absorption and emission [3, 4].

Let us now assume that the luminescent radiation can leave
the cavity or volume V through an aperture defined by an
étendue Eout. If the equilibrating absorption/emission processes
are sufficiently fast, the radiation that emerges from the cavity
has a spectrum described by (5). The number of photons N in
the volume is determined by the balance between the rate Ṅp at
which photons are supplied by the pump and the rate at which
photons are emitted from the medium:

Ṅp + Ṅ (Eout, T0, 0) = Ṅ (Eout, T0, μout) (6)

where

Ṅ (Eout, T, μ) = Eout

∫ ν′
g

νg

2ν2

c2
ρν(T, μ) dν = cEout

4πn3V
N (7)

is the photon flux through the aperture and N is the number
of photons in volume V . The rate of photon generation
in (6) includes the pump Ṅp and thermal excitation from the
surroundings, assumed to be at temperature T0 of the medium.

In a similar fashion, the internal energy U and entropy S
of photon gas inside volume V

U = V
∫

(ν)

8πν2

c3
hν ρν dν

S = V
∫

(ν)

8πν2

c3
kB {(1 + ρν) ln(1 + ρν) − ρν ln ρν} dν

(8)

where (ν) = (ν0, ν
′
0), are related to the convective energy and

entropy flows U̇ and Ṡ by

U̇ = cEout

4πn3V
U Ṡ = cEout

4πn3V
S. (9)

Thus, the internal energy and entropy of the beam are related in
a simple manner to the corresponding quantities of the photon
gas in volume V . The same is, of course, true for other
thermodynamic functions, in particular, for the free energy
F = U − T S. The derivative of F with respect to N is the
chemical potential:

μ =
(

∂ F

∂ N

)
V,T

=
(

∂U

∂ N

)
V,T

−T

(
∂S

∂ N

)
V,T

= u−T s (10)

where the energy u and entropy s per photon in volume V are
defined by

u =
(

∂U

∂ N

)
V,T

; s =
(

∂S

∂ N

)
V,T

. (11)

Equations (10) and (11) refer to the quasi-equilibrium photon
gas in volume V . By virtue of (9), however, they can be equally
well written with reference to the emerging beam: all that
needs to be done is to replace the thermodynamic functions

Figure 1. The entropy per photon s (equation (11)), in units of the
Boltzmann constant kB, as a function of the photon flux Ṅ , in units of
Eγ (hν0 = 1.42 eV, corresponding to gallium arsenide). The dotted
line gives the ideal-gas approximation (equation (15)).

N, U, S by the corresponding flows, and taking the derivatives
in (11) at constant étendue E :

u =
(

∂U̇

∂ Ṅ

)
E,T

; s =
(

∂ Ṡ

∂ Ṅ

)
E,T

. (12)

One can also define the analogue of pressure per photon by

p =
(

∂ P

∂ Ṅ

)
E,T

. (13)

For a quasi-monochromatic beam of frequency ν0 and narrow
bandwidth δν, the quantities (12) are analogous to the energy
and entropy per photon considered in [14, 15] save for the
appearance of the étendue E of the emitted beam

u = hν0; s = kB ln

(
2ν2

0Eδν

c2 Ṅ
+ 1

)
.

The chemical potential is then easily obtained as

μ = hν0 − kBT ln

(
2ν2

0Eδν

c2 Ṅ
+ 1

)
.

For radiation emitted within a broad frequency band,
equations (12) provide a general recipe for the calculation of
the energy and entropy change of a beam by the addition
or a removal of a photon. They can be calculated without
any difficulty numerically, and examples of these functions
for an infinite frequency range (ν0,∞) (corresponding to a
semiconductor of bandgap hν0) are shown in figures 1–3. The
formalism becomes particularly simple for radiation of weak
to moderate intensity when the probabilities ρν are small. One
can then readily show that

μ = hν0 + kBT ln

{
Ṅ

Eγ (T )

}
(14)

s(E, T ) = kB ln

{Eγ (T )

Ṅ

}
+ kBT

γ ′(T )

γ (T )

∼= kB

{
ln

[Eγ (T )

Ṅ

]
+ 1

}
(15)

u(E, T ) = hν0 + kBT 2 γ ′(T )

γ (T )
∼= hν0 + kBT (16)
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Figure 2. The difference u − hν0 between the energy per photon
(equation (11)) and the bandgap (full line) with the ideal-gas
approximation (equation (16), dotted line). Other parameters as in
figure 1.

where

γ (T ) =
∫

(ν)

2ν2

c2
eh(ν0−ν)/kB T dν.

For quasi-monochromatic radiation,

γ = 2ν2
0δν

c2
,

which is independent of temperature. For radiation in a
frequency band wider than kBT/h, on the other hand,

γ (T ) = 2ν2
0 kBT

hc2
(1 + ε) (17)

where ε = 2(kBT/hν0) + 2(kBT/hν0)
2 is a small correction

if hν0 � kBT .
Equations (14)–(16) provide an interesting insight into the

thermodynamics of a light beam: if the intensity of the beam
is not too high, the entropy, energy and free energy of a photon
added to the beam are given by the corresponding expressions
for an ideal gas, where the étendue plays the role of volume.
The product Eγ (T ) then plays the role of effective number of
rays in the beam; for quasi-monochromatic beams considered
in geometrical optics, γ is constant, and the number of rays
can be replaced simply by the étendue. If the correction ε is
neglected (results given by the approximate expressions in (15)
and (16)), these thermodynamic functions coincide with the
corresponding expressions for a two-dimensional ideal gas.

The formalism considered so far is independent of the
excitation mechanism. Let us now suppose, for illustration,
that the luminescence is excited by a beam of black-body
radiation with temperature Tin and étendue Ein. Setting μin = 0
we can then write

μout = T0

{
μout

T0
− μin

Tin

}
= T0

{
μ(T0, Ein)

T0
− μ(Tin, Ein)

Tin

}

− {μ(T0, Ein) − μ(T0, Eout)}. (18)

We make use of the relation

u

T 2
= − ∂

∂T

(μ

T

)
E
,

Figure 3. The energy separation between the bandgap hν0 and the
chemical potential μ (equation (10), full line), with the ideal-gas
approximation (equation (14), dotted line). Other parameters as in
figure 1.

which follows from standard thermodynamics but, in the spirit
of (12), the derivative is taken at constant étendue rather than
volume. The first term in the last equation (18) can then be
transformed to T0

∫ Tin

T0

u(Ein,T )

T 2 dT .
Using the pressure p per photon (13), the second term

in (18) can similarly be transformed to
Eout∫
Ein

p dE . We now note

that Eout cannot be smaller than Ein since, by time reversal
symmetry, photons can always escape through the aperture
whence they arrived. This integral is therefore always positive
or zero if Eout = Ein.

Combining the two terms, we obtain

μout = T0

∫ T in

T0

u(Ein, T )

T 2
dT −

∫ Eout

Ein

p(E, T ) dE . (19)

Equation (19) determines the free energy or useful work that
can be extracted by cooling a photon from temperature Tin

to T0 if the étendue of the beam is expanded from Ein to
Eout in the process. In practical applications, equation (19)
gives the open circuit voltage of a solar cell solar, or the free
energy difference that can be produced by light across the
photosynthetic membrane.

The first term in (19) gives the maximum chemical
potential achievable if the étendues of the incident and emitted
beams are equal. This can be achieved by concentrating
the incident beam with the use of lenses or mirrors, or by
restricting the aperture of the emerging beam to the étendue
of the incident beam. The second term in (19) represents a
loss of free energy due to an increase in étendue during the
beam transformation by the absorption/emission processes. It
is interesting to note that this term resembles the loss of work
upon expansion into vacuum, as can be seen by evaluating (19)
in the ideal-gas approximation,

μout =
(

1 − T0

Tin

)
hν0 + kBT0 ln

{
γ (Tin)

γ (T0)

}
− kBT0 ln

(Eout

Ein

)

(20)
which can be interpreted as a particular case of the Gouy–
Stodola theorem [16]. The first term in (20) represents the
Carnot efficiency of conversion of a monochromatic beam
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with frequency ν0, as discussed, for example, by Baruch
et al for a two-level system [16]. The second term gives a
correction on account of finite bandwidths of the absorption
and luminescence spectra, equal to the entropy increase on
cooling of an ideal gas from Tin to T0. The last term
corresponds to a reduction in μout by expansion of the beam
from Ein to Eout, expressed in terms of the corresponding
entropy change. A special case of (20) for specific solar cell
geometries has been obtained in [18].

4. Irreversible entropy production

The emission of a photon beam by a volume of quasi-
equilibrium photon gas which was discussed in section 2
has been shown to be thermodynamically reversible since the
entropy of a packet of photons in the convective flow emitted
by the luminescent substance remains constant. As discussed
in detail in [7], this reversibility manifests itself also in optical
terms, as the original beam can be recovered by the use of
optical instruments such as lenses or mirrors. In contrast,
the transformation of a beam in an absorbing medium is, in
general, irreversible, and can be understood in terms of the
addition or removal of photons from the incident or emerging
beams. This processes and the resulting entropy generation
will now be discussed with the use of concepts that were
introduced in section 3. We shall show that the resulting
framework resembles closely the formalism of irreversible
thermodynamics.

Suppose that a beam of quasi-black-body radiation at
temperature Tin, étendue Ein and chemical potential μin in a
frequency range (ν0, ν ′

0) is incident on a perfectly absorbing
medium and is re-emitted with parameters T0, Eout and
μout in the same frequency range, where T0 denotes again
the temperature of the absorbing/luminescent medium. For
complete generality, no assumption is made about the value
of the chemical potential of the incident radiation, μin.

The entropy balance of the medium as a result of
the absorption and emission processes has been discussed
previously on a number of occasions (see for example [19]
and [20]), and can be written, in the steady state,

{JS(in) − JS(out)} + Q̇

T0
+ di S

dt
= 0 (21)

where JS(in) and JS(out) are the incident and emerging
entropy flows, di S/dt is the rate of internal entropy generation,
and Q̇ is the net rate at which heat emitted by the luminescent
medium is absorbed by a reservoir at temperature T0. By virtue
of energy conservation, this is equal to

Q̇ = JU (out) − JU (in) (22)

where JU (in) and JU (out) are the energy flows in the incident
and emerging beams. We have already indicated that the
entropy and energy flows are associated with the creation and
removal of photons from the beams, and are not equal to
the convective entropy and energy flows U̇ and Ṡ that were
considered in section 2. Indeed, attempts to explain irreversible
changes using the convective flows have led to apparent

paradoxes which, to our mind, have not been satisfactorily
resolved to date [13, 21].

Equation (21) can be transformed to a different form with
the use of a standard relationship between the energy and
entropy flows JU and JS of irreversible thermodynamics [6]:

T JS = JU − μ JN (23)

where JN is the rate at which photons are supplied or removed
from the system. Applying (23) to (21) with the use of (22)
and the photon number conservation

JN (in) = JN (out) (24)

we obtain

dSi

dT
= JU (in)

(
1

T0
− 1

Tin

)
− JN

{
μout

T0
− μin

Tin

}
(25)

where JN denotes the incident or emitted photon flux (24).
Equation (25) replaces the entropy and étendue conserva-

tion law for a beam propagating in non-absorbing media. Per-
haps not surprisingly, it bears a close similarity to the entropy
generation rate in irreversible thermodynamics. It is worth not-
ing that (25) as been obtained far from equilibrium, in other
words, for sizeable differences of the temperatures Tin and T0

and the chemical potentials μin and μout. This implication of
equation (25) is of interest in the broader context of losses in
photovoltaic conversion, and is considered in a separate publi-
cation [22].

To be of practical value we need to define the flows
JU, JS , and JN . The photon flow is the rate dN/dt of photon
addition or removal from the photon gas or, equivalently,
from the incident or emerging beams. Since all the incident
photons are absorbed and all the emitted photons originate
from luminescence in the medium, these flows can be defined
by (6) for the rate of photon generation by the pump:

JN (out) = Ṅ (Eout, T0, μout) − Ṅ (Eout, T0, 0)

JN (in) = Ṅ (Ein, Tin, μin) − Ṅ (Ein, T0, 0).
(26)

The energy and entropy flows resulting from photon creation
or removal can then be written as

JU = ∂U

∂ N

dN

dt
= u JN ; JS = ∂S

∂ N

dN

dt
= s JN

where u and s are the energy and entropy changes per photon
which were introduced in section 3. We note that, by virtue
of photon conservation in the luminescent processes, the
photon flows (26) are equal, and equation (23) follows from
identity (10) in section 3.

Dividing (25) by JN we obtain the entropy production σi

per photon:

σi = uin

(
1

T0
− 1

Tin

)
−

{
μout

T0
− μin

Tin

}
(27)

where uin is the energy per photon in the incident beam. We
shall now show that σi is always positive or zero, as required
by the second law of thermodynamics. To this end we can
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write, by a simple generalization of the argument leading to
equation (21),

μout

T0
− μin

Tin
=

∫ T in

T0

u(Ein, T )

T 2
dT − 1

T0

∫ Eout

Ein

p(E, T ) dE .

(28)
Introducing uin = u(Ein, Tin, μin), expressing the

difference (1/T0 − 1/Tin) as an integral of 1/T 2 then yields

σi =
∫ Tin

T0

uin − u(Ein, T )

T 2
dT + 1

T0

∫ Eout

Ein

p(E, T ) dE .

We have shown in section 3 that the second term cannot be
negative. Since u(T ) is a non-decreasing function of T , the
first term is positive or zero, giving σi � 0, as was to be
demonstrated.

It is interesting to enquire about the maximum value of
μout which is allowed on thermodynamics grounds. This
maximum value μmax, say, would be achieved in a reversible
process with σi = 0. Equation (27) then gives

μmax = uin

(
1 − T0

Tin

)
∼= (hν0 + kTin)

(
1 − T0

Tin

)
(29)

where, for simplicity, we restrict attention to black-body
incident radiation (μin = 0). Since luminescence is usually
excited by radiation from a high-temperature source, the
chemical potential (29) is greater than hν0—a situation that is
clearly unacceptable from the viewpoint of Bose statistics (see
equation (5)). This apparent quandary can be resolved if we
imagine that the chemical potential μout is composed of two
components, one associated with the emitted light and due to
work being carried out by the medium. In other words, the
hot-electron–hole pair generated by high-temperature photon
beam carries out a certain amount of work (to be denoted by
w) whilst being cooled to the temperature T0 of the luminescent
medium.

If such a term is included, the entropy generation becomes

σi = uin

(
1

T0
− 1

Tin

)
− μout + w

T0
. (30)

The voltage (μout + w)/q produced by such a ‘hot-electron’
solar cell is compared with the maximum voltage produced by
a conventional cell (section 3) and the best currently achieved
values in figure 4. We should note that figure 4 shows the limit
imposed by thermodynamics on a single-junction cell where
energy absorbed by free carriers is, at least at open circuit,
converted reversibly with maximum Carnot-cycle efficiency.
This device-independent result can be compared with the hot-
carrier converter proposed by Ross and Nozik [23] (see also
reference [24]) which relies on the extraction of carriers from
the hot-electron reservoir through selective contacts in narrow
energy bands.

In the case of silicon with hν0, for example, making use
of the free carrier heat as suggested here can, in principle,
increase the open circuit voltage by 76%. If we assume
that the rate of conversion in such a hot-electron cell follows
the Shockley ideal solar cell characteristic, it can be shown
without difficulty [22] that the use of reversible work provided
by hot-electron cooling would raise the maximum achievable
efficiency to 58%.

Figure 4. The maximum open circuit voltage of the hot-electron cell
as a function of the bandgap hν0, predicted by the present model (full
line). The dashed line shows the voltage given by equation (20) for a
black-body approximation to solar radiation (Tin = 6000 K;
T0 = 300 K; Ein/Eout = 2.18 × 10−5). Points give the best measured
values for different materials under one-sun illumination [23].

5. Conclusion

The concept of étendue, widely used in geometrical optics,
has been applied to the propagation of luminescent radiation,
and to the transformation of such radiation in an absorbing
and luminescent medium. A beam of such radiation can be
characterized by the temperature (equal to the temperature of
the emitting substance), chemical potential, and the étendue.
Central to this analysis is the notion of étendue as a measure of
the number of rays in the beam which permits the definition
of entropy and transition to the formalism of statistical
mechanics.

We have shown that the transformation of a such beam
of light upon absorption and re-emission can be discussed
in terms of a thermodynamic theory which, at moderate
intensities of light, resembles the thermodynamics of a two-
dimensional gas. We have obtained the rate of entropy
generation of this process (equation (25)) and shown that it
complies with the second law of thermodynamics.

The formalism allows an extension of the absorp-
tion/emission process to media where the elevated tempera-
ture of the photogenerated electron–hole pairs produces use-
ful work which can be used to increase the voltage of so-
lar cells. We have obtained the maximum value of this volt-
age which corresponds to a reversible transformation of a
high-temperature light beam into low-temperature luminescent
radiation.
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