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Abstract 

Visual search experiments typically involve participants searching simple 

displays with two potential response options: ‘present’ or ‘absent’. Here we examined 

search behavior and decision-making when participants were tasked with searching 

ambiguous displays whilst also being given a third response option: ‘I don’t know’. 

Participants searched for a simple target (the letter ‘o’) amongst other letters in the 

displays. We made the target difficult to detect by increasing the degree to which letters 

overlapped in the displays. The results showed that as overlap increased, participants 

were more likely to respond ‘I don’t know’, as expected. RT analyses demonstrated that 

‘I don’t know’ responses occurred at a later time than ‘present’ responses, but before 

‘absent’ responses when the overlap was low. By contrast, when the overlap was high, 

‘I don’t know’ responses occurred very rapidly. We discuss the implications of our 

findings for current models and theories in terms of what we refer to as ‘information 

stagnation’ during visual search.  
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Just Say ‘I Don’t Know’: Understanding Information Stagnation during a Highly 

Ambiguous Visual Search Task 

Suppose that you are searching for an important document in your home: you 

know that it is somewhere in your home, but you are not sure where it might be. After 

much searching, your efforts are fruitless. In this situation, you might assume that you 

don’t know where the document is rather than conceding that it has been thrown away. 

Perhaps you take a break from the search and will try again later; perhaps you will wait 

to ask a housemate or a partner for any suggestions for where it could be. In this 

example, reaching an ‘I don’t know’ decision serves as an intermediate step between 

finding a target and accepting that you have exhausted all possible avenues to detect it.  

It is these ‘I don’t know’ decisions that we examine here by engaging participants 

in a visual search task wherein the target is very difficult to detect. Such ‘I don’t know’ 

decisions are not just common in mundane searches of our homes: they are also 

common in real-world search tasks as well, such as those in radiology and airport 

baggage screening. To take the example of airport baggage screening, airport 

screeners are often given the opportunity to respond that they ‘Do Not Know’ what a 

particular object is (that is, they cannot be certain it is safe or not).1. Likewise, in 

complex and ambiguous radiological searches, there may be occasions where 

radiographers are unable to categorically determine whether a target is present or 

absent. There are a number of different reasons why an ‘I don’t know’ response might 

be given. Perhaps a searcher has reached one particular object that they are uncertain 

 
1 It is important to note that this is not the case for every airport in every country: the rules and regulations 
vary from airport to airport, from country to country, region to region, and from one baggage screening 
system to another. 
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is a target or a non-target; or perhaps the searcher is simply faced with examining such 

an ambiguous display that it is impossible for them to interpret it in a meaningful manner 

(see also Godwin et al., 2015). 

Standard visual search experiments only give participants two response options: 

‘present’ or ‘absent’. These experiments typically involve participants being asked to 

search for a single, simple target object that is easily detected amongst a set of non-

overlapping, simple distractors (e.g., participants may be asked to search for a T shape 

amongst L shapes). Because the stimuli in visual search experiments are typically so 

simple and easily identified, it would not make sense to provide participants an ‘I don’t 

know’ response option – indeed, it is only when highly ambiguous stimuli are used that 

such an option would be necessary.  

From a theoretical perspective, the current project’s examination of ‘I don’t know’ 

responses in visual search is important in expanding existing models and theories of 

search. To our knowledge, no prior studies of visual search have given participants an ‘I 

don’t know’ response option, and because of this, current models and theories do not 

seek to account for how such responses are reached by searchers. Clearly this is an 

important gap to fill given the frequency with which human observers may be uncertain 

as to the presence or absence of their target (e.g., "have I really searched 

everywhere?”), or may be uncertain regarding whether or not inspected material is in 

fact unambiguously the target that they were searching for (e.g., “is this bit of tissue a 

tumor?”). 

Turning to the prominent Guided Search model (Wolfe, 2021) as a starting point 

for our investigation, it should be noted that this model involves a series of questions 
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being asked by the visual search system (see also Wolfe & Van Wert, 2010). We sketch 

this out in Figure 1, using example stimuli from our experiment, wherein participants 

searched for the letter ‘o’ embedded amongst other overlapping letters. The top panel of 

Figure 1 depicts the examination of a set of letters that do not contain a target. Here, the 

clusters are examined in turn, and the first question that is asked is: does this cluster 

contain the target? In Guided Search, this is treated as a diffusion process towards one 

of two thresholds: target or distractor. If the answer to this first question is ‘yes,’ a 

‘present’ response is given; if the answer is ‘no,’ there is then a check to determine 

whether the trial should be terminated (or if search should continue by examining other 

clusters). Search termination is governed here by an internal timer. That timer is based 

upon past experience and is reduced following a correct response (or increases after a 

target has been missed) (Chun & Wolfe, 1996). If the timer’s threshold has not been 

reached, search proceeds; if the threshold has been reached, then an ‘absent’ response 

is generated seeing that no target has yet been found. In the example of the top panel 

of Figure 1, the timer has not yet been reached, so search continues. 
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Figure 1 

Decision-making in our Visual Search Task viewed in terms of the Guided Search 

Model 
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Our simple approach here was to assume that ‘I don’t know’ responses will be 

generated when searchers are unable to answer the first of these two questions. We 

sketch this out in the lower panel of Figure 1. Here, in this example, a cluster of objects 

is being examined but it is very difficult to determine whether an ‘o’ is present within that 

cluster. The diffusion process here in the lower panel of Figure 1 remains flat for some 

time, with there being insufficient visual information available to either confirm the 

presence of a target or reject all objects in the cluster as distractors. Put another way, 

this can be regarded as the diffusion process reaching what we call an information 

‘stagnation’ or ‘stalemate’.  

Our assumption is that, once this information stagnation has occurred for a 

sufficient period of time, an ‘I don’t know’ response will be generated. A simple set of 

predictions emerge from this assumption, but before describing them, we will briefly 

sketch out the experimental design that we used in order to better detail our predictions. 

As noted above, in our study, participants searched for the letter ‘o’ embedded amongst 

other letters in the displays. In the Standard Search condition, participants were asked 

to respond either ‘present’ or ‘absent’; in the I Don’t Know Search condition, participants 

could respond ‘present’, ‘absent’ or ‘I don’t know’. We varied the level of overlap of 

objects (low, medium, high) in the displays to increase the likelihood that participants 

would be faced with clusters of objects in which it was very difficult – if not impossible – 

to determine the presence or absence of a target.  

We made the following predictions. First, we predicted that in both search 

conditions, response accuracy would reduce as overlap increased, consistent with 

previous studies that have examined overlap in search (Godwin et al., 2017). Second, 
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we predicted that Reaction Times (RTs) would increase as overlap increased, though 

the magnitude of this we expected to be quite small, in line with previous research that 

examined response accuracy and RTs as overlap increased (Godwin et al., 2017). 

Third, we predicted that the proportion of ‘I don’t know’ responses would increase as 

overlap increased, effectively reducing the proportions of target-present and target-

absent trials respectively. Fourth, we predicted that response accuracy would be higher 

for the standard search condition than the I don’t know search condition. This prediction 

was made because we expected participants in the I don’t know search condition to be 

often responding ‘I don’t know’ rather than being forced to make a guess regarding 

target present or absence (as in the standard search condition). 

Finally, we predicted that RTs for ‘I don’t know’ responses would be faster than 

‘absent’ responses but slower than ‘present’ responses for the lower levels of overlap 

only. Our final prediction here requires more detailed explanation and was based upon 

the following logic: In a purely exhaustive self-terminating search, during target-absent 

trials, all objects are examined before a response is made. When a participant is faced 

with a target-present trial, the target will be found after examining, on average, half of 

the objects in a display. For this reason, target-absent RTs are typically double those of 

target-present RTs (Eckstein, 2011). All of this holds when targets can easily be 

differentiated from distractors, and when only target-present and target-absent 

responses can be provided by participants.  

However, what happens when some targets cannot be differentiated from 

distractors? Put within the context of our study, we can assume that for every cluster of 

objects examined, there is a probability that the cluster being examined will generate an 
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‘I don’t know’ response. In the simplest case, the trial will end when such a cluster is 

examined. As the overlap increases, more of these ‘I don’t know’ response clusters will 

be presented to participants in the displays, and as such, the likelihood of a rapid ‘I don’t 

know’ response increases. Because of this, we expected that target-present RTs would 

be faster than ‘I don’t know’ responses when there were relatively few very difficult 

clusters per display (i.e., in the lower overlap conditions). By contrast, we predicted that 

this effect would be reversed in the higher overlap displays, with ‘I don’t know’ RTs 

becoming faster than target-present RTs when overlap made the task very difficult 

because, in such displays, it would be highly likely that the participants would rapidly 

encounter a cluster that would generate an ’I don’t know’ response. Of course, it is 

possible that more complex scenarios and strategies could be used by participants. For 

example, they may decide to provide an ‘I don’t know’ response based on an overall 

impression of how difficult a display appears to be, or to provide an ‘I don’t know’ 

response after encountering several very difficult clusters. For now, given that this is the 

first study to examine ‘I don’t know’ responses when searching ambiguous displays, we 

are focusing on the simplest possible case. 

 

Method 

Participants 

 Participants took part in the study as part of an undergraduate research methods 

module at the University of Southampton. A total of 277 participants completed the 

study and consented for their data to be used for the purposes of research. We did not 

conduct a power analysis in advance given a study of this nature has not been 
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completed previously. That being said, we sought to recruit at a far higher rate than 

previous studies of overlapping displays. For example, a recent study that manipulated 

levels of overlap in visual search in a similar manner to how we manipulated overlap 

here (Godwin et al., 2017) recruited 32 participants for different stimulus types, and we 

far exceeded this sample size.  

 

Apparatus 

 Participants took part in the study using their own computers and laptops. Data 

were collected using an in-house data collection server at the University of 

Southampton. This server uses software called Just Another Tool for Online Studies 

(Lange et al., 2015) to deliver the study to participants and record the datasets. The 

study itself was programmed using jsPsych (de Leeuw, 2015). This is a JavaScript 

library that has been demonstrated to have a high level of temporal precision (Pinet et 

al., 2017). In addition, we used the jsPsychophysics plugin for jsPsych, which has also 

been shown to have a very high level of temporal precision (Kuroki, 2021). 

 Participants responded ‘present’ using the ‘m’ key, ‘absent’ using the ‘z’ key and 

(where available) ‘I don’t know’ using the spacebar.  

 

Design and Procedure 

 Participants were randomly assigned to one of two search conditions: Standard 

Search, and I Don’t Know Search. In the Standard Search condition, participants were 

given two responses options – ‘present’ or ’absent’. In the I Don’t Know Search 

condition, participants could respond ‘present’, ‘absent’, or ‘I don’t know’. 



11 

 After giving their consent to take part, participants were given information about 

the task and then completed 12 practice trials. After this, the experimental trials began. 

There were a total of 270 experimental trials. Trial order was randomized for each 

participant. A target was presented on 50% of trials. We varied the difficulty of the 

displays using three different levels of overlap (low, medium, high) with an equal 

number of trials for each level of overlap.  

 Each trial began with the presentation of a fixation cross for 500 ms. After this, 

the search display appeared and remained visible until a response was given. Following 

each response, the display was blank for 500 ms. In Figure 2 we present an overview of 

the trial sequence. 
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Figure 2 

Trial Sequence for both Search Conditions 

 

 

Stimuli 

 We took our inspiration for the stimuli from previous work that has examined 

search of very difficult displays (Schwark et al., 2012). We then adapted this approach 

to more carefully control levels of overlap, in line with previous studies that have 

manipulated overlap levels (Godwin et al., 2017). 

Participants were asked to search for the lowercase letter ‘o’ in the displays. 

Distractors consisted of all of the other letters of the alphabet, also written using 
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lowercase. The letters were written using the Arial font in size 26. We do not report 

these values in visual angle due to the fact that we could not measure the distance 

between participants and their displays in an online study. 

We controlled the overlap in a similar manner to previous studies of overlap 

(Godwin et al., 2017). In each display, there were 20 clusters of four randomly selected 

letters, arranged into a virtual 5 x 5 grid. The clusters were initially centered within each 

grid square, and then jittered in a random distance and direction along the x and y 

planes by a random amount up to 20 pixels. To begin with, each of the letters was 

placed at the same location, meaning that they initially had a very high level of overlap. 

From this high overlap starting point, the objects were ‘pushed’ away towards the 

corner of their virtual grid cell (i.e., one object was pushed towards the top-left, one 

towards the top-right, one towards the bottom-left, and one towards the bottom-right). 

Objects were pushed away further for the low level of overlap (by 15% of the cell size), 

less so for the medium of overlap (by 10% of the cell size) , and only by a small amount 

for the high level of overlap (by 5% of the cell size). After this, they were then moved 

towards the corner of the virtual grid cell by a random amount of up to 10 pixels in order 

to make the displays appear more ‘random’ and less ordered. 

 

Results 

Outliers and Exclusions 

 We took the following steps to clean the base dataset. Since this was an online 

study with highly difficult and ambiguous stimuli, we took a very conservative approach 
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to data cleaning: that is, we extensively cleaned the data to make sure that the 

participants retained in the final dataset were properly engaged in the task. 

As noted above, we began with complete datasets from 277 participants. We 

began by checking for participants who, at a general level, exhibited some very fast or 

very slow RTs. Very fast RTs can be indicative of participants simply pressing response 

buttons as rapidly as they can in order to complete the study with minimal effort. Very 

slow RTs can be indicative of participants being distracted from the study. Indeed, the 

fastest RT in the study was 0.2 ms in duration, and the longest was just over 86 hours in 

duration (this was likely a result of the study being left ‘open’ in a browser tab for several 

days without being completed). With this in mind, we removed any participants who 

exhibited 5 or more RTs that were < 250 ms in duration, as well as those who exhibited 

5 or more RTs that were > 30,000 ms in duration. Following these removals, we 

retained 206 participants (75% of the original dataset). 

 Having removed participants who exhibited very fast or very slow RTs, we then 

cleaned the data based on mean RT and accuracy levels. We removed participants who 

scored > 2.5 standard deviations from the mean RT or response accuracy. Following 

this, we retained 173 participants (62% of base dataset). 

After removing trials with an RT of < 250 ms or > 20,000 ms in duration (which 

resulted in 1.7% of the trials being removed), the final dataset consisted of 45,951 trials 

from 87 participants in the Standard Search condition and 86 participants in the I Don’t 

Know Search condition. 

 

Analytic Approach 
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 We conducted two overall sets of analyses: the first was focused on the 

responses made by participants, and the second was focused upon the RTs of those 

responses. We used a series of confirmatory Generalized Linear Mixed Models 

(GLMMs) to analyze the data. These are ideal in situations where datasets are 

unbalanced, as was the case here (i.e., the balance of different response types was 

unequal). They also offer a high level of statistical power when examining datasets 

because, rather than being used to examine mean accuracy or mean RTs, each trial 

can be entered into the analyses (Baayen, 2008). For accuracy data, we used binomial 

GLMMs; for RT data, we used GLMMs with a gamma distribution, incorporating 

recommendations regarding how best to analyze RTs, which can be skewed (Lo & 

Andrews, 2015). Our models began with the random structure with slopes for all effects 

and participants, which was then reduced in complexity when there was a failure to 

converge. In all cases, we present the final model that was run. 

 

Response Rates 

 We began by examining how often participants made each of the different 

responses available to them: descriptive statistics for the rates at which different 

responses were made are presented in Figure 3. Because there were two responses 

available to participants in the Standard Search condition and three responses available 

to participants in the I Don’t Know Search condition, this creates an imbalance in the 

analyses that prevents us from analyzing the entire dataset as a whole. In response to 

this issue, we conducted two sets of analyses when examining the response rates. Our 

first analysis focused on comparing ‘present’ and ‘absent’ response rates between the 
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two Search Conditions. Our second analysis focused on the I Don’t Know Search 

condition only and compared the rates of responding ‘present’ and ‘absent’ versus ‘I 

don’t know’. 

 

Figure 3 

Mean Proportion of Trials for the Different Responses for Standard Search and I Don’t 

Know Search 

 

 

 Response Accuracy Rates 

 Our first GLMM examined response accuracy rates. Here, we used a binomial 

dependent variable where 1 = correct response and 0 = either an incorrect response or 

an ‘I don’t know’ response for each trial. By collapsing incorrect and ‘I don’t know’ 
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responses together in this manner, we were able to directly compare ‘present’ and 

‘absent’ response rates in the Search Conditions.  

The GLMM included the following categorical factors: Search Condition 

(Standard Search, I Don’t Know Search), Presence (Present, Absent) and Overlap 

(Low, Medium, High), with a full set of interactions, leading to a Search Condition x 

Overlap x Presence interaction. The initial GLMM included participants as a random 

factor, along with the full random structure for within-subjects factors. We then iterated 

from this random structure until a model that converged was reached: that is the model 

reported in Table 1. 
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Table 1 

GLMM Results for Response Rate Analyses 

  Present/Absent I Don't Know 

Predictors Log-
Odds CI p Log-

Odds CI p 

(Intercept) 1.04 
(0.04) 

0.97 – 1.12 <0.001 -3.01 
(0.26) 

-3.52 – -
2.49 

<0.001 

Search Condition 0.60 
(0.08) 

0.45 – 0.75 <0.001 
   

Overlap (Medium - Low) -1.66 
(0.05) 

-1.76 – -
1.56 

<0.001 2.05 
(0.28) 

1.50 – 2.60 <0.001 

Overlap (High - Medium) -1.14 
(0.05) 

-1.25 – -
1.04 

<0.001 2.98 
(0.16) 

2.66 – 3.30 <0.001 

Presence -0.88 
(0.07) 

-1.02 – -
0.73 

<0.001 -0.48 
(0.12) 

-0.72 – -
0.24 

<0.001 

Search Condition x Overlap (Medium - Low) 0.12 
(0.09) 

-0.06 – 0.30 0.182 
   

Search Condition x Overlap (High - Medium) 0.91 
(0.11) 

0.70 – 1.11 <0.001 
   

Search Condition x Presence -0.62 
(0.14) 

-0.90 – -
0.34 

<0.001 
   

Presence x Overlap (Medium - Low) 1.42 
(0.10) 

1.22 – 1.63 <0.001 0.24 
(0.22) 

-0.19 – 0.67 0.275 
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Presence x Overlap (High - Medium) 0.80 
(0.09) 

0.63 – 0.96 <0.001 -0.31 
(0.13) 

-0.56 – -
0.06 

0.016 

Search Condition x Presence x Overlap (Medium - 
Low) 

0.01 
(0.19) 

-0.35 – 0.38 0.944 
   

Search Condition x Presence x Overlap (High - 
Medium) 

-0.32 
(0.17) 

-0.66 – 0.01 0.057 
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 Next, we conducted a series of contrasts to examine the interactions present 

within the final model. We began by examining the Search Condition x Overlap 

interaction. The contrasts confirmed our prediction that, for both Search Conditions, 

response accuracy reduced as Overlap increased (all zs > 7.1, ps < .0001). In addition, 

response accuracy was higher for Medium and High Overlap trials in Standard Search 

than I Don’t Know Search (zs > 3.4, ps < .001), but not for the Low Overlap trials (z < 1, 

p >.5). 

 Turning to the Condition x Presence interaction, our contrasts revealed that 

response accuracy was higher for target-absent trials than target-present trials in both 

Search Conditions (zs > 6.4, ps < .0001). Alongside this, response accuracy was higher 

for both target-present and target-absent trials in Standard Search than I Don’t Know 

Search (zs > 2.3, ps < .05).  

 Finally, we examined the Overlap x Presence interaction. Here, again as with our 

previous contrasts, it was clear that, for both target-present and target-absent trials, 

increases in Overlap resulted in decreases in response accuracy (zs > 8.1, ps < .0001). 

For Low and Medium Overlap trials, response accuracy was higher for target-absent 

than target-present trials (zs > 6.4, ps < .0001). However, this was not the case for High 

Overlap trials (z = 1.7, p = .09).  

 Overall, our initial examination of response accuracy rates revealed that 

increasing overlap had a deleterious effect on response accuracy, which was expected. 

Moreover, it demonstrates that increasing levels of overlap was effective in impairing 

search performance, almost to chance level for High Overlap trials. For some 

experiments this would prove to be problematic, but this was an intended feature of the 
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present study. Most importantly, as we had predicted, response accuracy rates were 

higher for Standard Search than I Don’t Know Search: the next analysis that we 

conducted examined whether this shift in responding was due to a rise in the rate of ‘I 

don’t know’ responses from participants. 

 ‘I Don’t Know’ Response Rates 

 Next, we examined the rate at which participants responded ‘I don’t know’ (in the 

I Don’t Know Search condition only, of course). This involved conducting a second 

binomial GLMM that once again coded 1 = correct response, but here 0 = ‘I don’t’ know’ 

responses. We excluded trials in which an incorrect response had been given to mirror 

the previous set of analyses. The model included the same Presence and Overlap 

factors as the previous GLMM. For target-present trials, because we included only 

‘present’ or ‘I don’t know’ responses in this analysis, the results here provided us with a 

comparison between the rate of ‘present’ versus ‘I don’t know’ responses. Likewise, for 

target-absent trials, because we included only ‘absent’ or ‘I don’t know’ responses, the 

results for target-absent trials compared the rate of ‘absent’ versus ‘I don’t know’ 

responses. The results for this model are presented in Table 1.  

 Because the model included a Presence x Overlap interaction, we conducted a 

series of contrasts to examine this interaction in detail. The contrasts revealed that, as 

expected, as Overlap increased, the rate of ‘I Don’t Know’ responses increased for both 

target-present and target-absent trials, with the largest increase in ‘I Don’t Know’ 

response rates being between the Medium and High Levels of Overlap (all zs > 5.4, all 

ps < .0001). In addition, there was no difference in the rate of ‘I Don’t Know’ responses 
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between target-present and target-absent trials for any level of Overlap (zs < 1, ps > 

.44). 

 Our analyses of the rate of ‘I don’t know’ responses complement the response 

accuracy analyses by demonstrating that, as expected, when Overlap increased in the I 

Don’t Know Search condition, although response accuracy reduced, the rate at which 

participants responded ‘I don’t know’ increased. Again, this suggests that the 

experimental manipulation of increasing overlap was successful in making the displays 

highly ambiguous to examine. Moreover, it also suggests that the higher response 

accuracy that we found in the Standard Search condition could have been the result of 

a high rate of guessing from the participants: faced with no other choice than ‘present’ 

or ‘absent’, participants may have simply been forced to make a guess for the higher 

levels of overlap in the Standard Search condition. 

 

Response Times 

 Next, we examined Response Times. We took a similar approach here to our 

examination of response rates described above. We used two GLMMs to compare RTs 

for target-present and target-absent trials across both Search Conditions (first GLMM), 

and then to compare RTs for ‘present’, ‘absent’ and ‘I don’t know’ responses in the I 

Don’t Know Search condition only. Descriptive statistics are presented in Figure 4 and 

the GLMM models used for the analyses of RTs are presented in Table 2.  
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Figure 3 

Mean Response Times for the different Responses for Standard Search and I Don’t 

Know Search 
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Table 2 

GLMM Results for Response Time Analyses 

  Present/Absent I Don't Know 
Predictors Estimates CI p Estimates CI p 

(Intercept) 4401.20 
(1.32) 

4398.62 – 4403.79 <0.001 3805.83 
(0.00) 

3805.83 – 3805.84 <0.001 

Search Condition -287.27 
(1.28) 

-289.77 – -284.76 <0.001 
   

Overlap (Medium - Low) 101.27 
(1.12) 

99.07 – 103.47 <0.001 -944.49 
(0.00) 

-944.49 – -944.49 <0.001 

Overlap (High - Medium) -555.70 
(1.90) 

-559.43 – -551.97 <0.001 
   

Presence -2097.34 
(1.06) 

-2099.41 – -
2095.26 

<0.001 -1032.45 
(0.00) 

-1032.45 – -
1032.45 

<0.001 

Search Condition x Overlap (Medium - Low) -217.21 
(1.08) 

-219.34 – -215.09 <0.001 
   

Search Condition x Overlap (High - Medium) -180.99 
(1.04) 

-183.04 – -178.95 <0.001 
   

Search Condition x Presence 298.49 
(1.13) 

296.27 – 300.71 <0.001 
   

Presence x Overlap (Medium - Low) 800.46 
(1.22) 

798.08 – 802.85 <0.001 783.77 
(2.14) 

779.57 – 787.96 <0.001 

Presence x Overlap (High - Medium) 981.30 
(1.36) 

978.64 – 983.97 <0.001 
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Search Condition x Presence x Overlap (Medium - Low) 33.50 
(1.00) 

31.54 – 35.46 <0.001 
   

Search Condition x Presence x Overlap (High - 
Medium) 

-141.35 
(1.50) 

-144.29 – -138.40 <0.001 
   

Response 
   

-805.09 
(0.00) 

-805.10 – -805.09 <0.001 

Response x Overlap (High - Medium) 
   

-501.07 
(0.00) 

-501.07 – -501.06 <0.001 

Presence x Response 
   

861.67 
(0.00) 

861.67 – 861.68 <0.001 

Presence x Response x Overlap (High - Medium) 
   

-432.16 
(0.00) 

-432.17 – -432.16 <0.001 
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‘Present’ and ‘Absent’ Response RTs 

 We began by examining RTs in correct-response trials, excluding the ‘I don’t 

know’ responses from the I Don’t Know Search condition. The GLMM that we 

conducted included the following factors: Search Condition (Standard Search, I Don’t 

Know Search), Presence (Present, Absent) and Overlap (Low, Medium, High), with a 

full set of interactions, leading to a Search Condition x Overlap x Presence interaction. 

The initial GLMM included participants as a random factor, along with the full random 

structure. We then iterated from this random structure until a model that converged was 

reached: this final model is presented in Table 2. 

Given the significant Search Condition x Presence x Overlap interaction, we then 

conducted a series of contrasts to understand the source of the interaction. These 

contrasts revealed that target-absent RTs were longer than target-present RTs in all 

Overlap levels and Search Conditions (ts > 642, ps < .0001). They also revealed that, 

for target-absent trials, RTs decreased as Overlap increased (ts > 59, ps < .0001), 

whilst for target-present trials, RTs increased as Overlap increased (ts > 25, ps < 

.0001). Examining Figure 4, it is quite difficult to see this effect at the level of the means. 

However, it can be seen more clearly in Figure 5, which plots the overall RT 

distributions for the different conditions and levels of Overlap. For example, for target-

absent trials in the I Don’t Know search condition, the mean RT increased between Low 

and Medium Overlap, but for our model, and at the distributional level, a clear shift 

towards faster RTs can be seen. Finally, we also found that RTs in the I Don’t Know 

Search condition were longer than those in the Standard Search condition for all levels 

of Overlap and Presence (ts > 97, ps < .0001).  
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Figure 5 

Density Plots showing RT Distributions for the Search Conditions at different levels of 

Overlap 

 

 Overall, results for the RT data were not entirely in line with our predictions. We 

expected that ‘present’ RTs would increase as Overlap increased, and this was 

confirmed to be the case. We expected the same for target-absent RTs, but instead 

found the opposite to be true. Still, RTs for ‘absent’ responses were slower than for 

‘present’ responses in both Search Conditions, as expected. The remaining issue to be 
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addressed is how RTs for ‘I don’t know’ responses compared to ‘present’ and ‘absent’ 

response RTs. 

 RTs During ‘I Don’t Know’ Search 

 Finally, we examined RTs focusing on I Don’t Know Search only. The GLMM that 

we used here included the Overlap and Presence factors, as in our previous GLMMs, 

but also introduced a new factor: Response, and it indicated the response given by 

participants on each trial. This was a categorical factor with two levels: namely ‘I don’t 

know’ and ‘correct’. Since we excluded incorrect response trials from our analyses, the 

results here let us compare RTs for ‘I don’t know’ responses versus ‘absent’ responses 

(by looking at the effects of Response in target-absent trials), as well as letting us 

compare RTs for ‘I don’t know’ versus ‘present’ responses (by looking at the effects of 

Response in target-present trials). We excluded Low Overlap trials from this analysis 

because participants rarely responded ‘I don’t know’ on these trials (they did so for only 

124 trials in total), and as such, this did not permit a sufficiently powered or meaningful 

analysis of RTs for these trials As with the other GLMMs, we began with the full random 

structure and then iterated down until a converging model was reached. The final model 

is presented in Table 2. 

 Because the final model included a significant Overlap x Presence x Response 

interaction, we then sought to examine this interaction in detail with a series of 

contrasts. These revealed that, as Overlap increased, RTs for ‘I don’t know’ responses 

decreased, as was expected (ts > 430.4, ps < .0001). They also revealed that 

participants were faster to respond ‘I Don’t Know’ on target-absent trials than they were 

to respond ‘absent’ on target-absent trials (ts > 269.2, ps < .0001). For target-present 
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trials with Medium Overlap, ‘I don’t know’ RTs were slower than ‘present’ RTs (t = 

40.52, p < .0001), yet for target-present trials with High Overlap, this pattern was 

reversed, with ‘I don’t know’ RTs being faster than ‘present’ RTs (t = 87.66, p < .0001).  

 Our analyses of the ‘I don’t know’ RTs helps to complete the picture regarding 

search and decision-making in our study. ‘I don’t know’ responses were more rapid than 

‘absent’ RTs and slower than ‘present’ RTs, but only when overlap was relatively low. 

When overlap was high, RTs for ‘I don’t know’ responses were more rapid than for 

‘present’ responses. Though a rather complex pattern of results, these were in line with 

our predictions. 

 

Discussion 

 Standard visual search experiments, as well as the models and theories built 

upon those experiments, focus on search tasks that involve giving participants two 

response options: ‘present’ or ‘absent’. This stands in contrast to many real-world 

search tasks that involve a range of other options that are available to a searcher, 

including the ability to respond ‘I don’t know’ when the task is too difficult. Here, we 

focused on one such response option: ‘I don’t know’. In order to understand how 

participants respond when given the ability to indicate ‘I don’t know’ in a visual search 

task, we asked participants to search through displays that contained varying levels of 

object overlap. This introduced a level of ambiguity in resolving individual clusters that 

led to participants being unable to definitively answer ‘present’ or ‘absent’ in some 

circumstances. We reasoned that the higher levels of overlap would be so difficult to 

examine that it would be effectively impossible for participants to determine the correct 
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answer. As a result, this would encourage them to give an ‘I don’t know’ response, 

should they wish to do so. 

 Our manipulation of overlap levels was a clear success: response accuracy 

dropped for both target-present and target-absent trials as overlap increased. For the 

high overlap trials, response accuracy was at chance (for the Standard Search 

condition, mean accuracy in high overlap was 0.5, sd = 0.09). If this situation had arisen 

for a standard visual search task, chance levels of accuracy would of course be 

problematic. Here, however, it was a key part of the study in ensuring that we were 

using highly difficult and ambiguous stimuli with no clear, easily discernable answer. 

 When designing the study, our predictions were based upon an extension of the 

Guided Search model of visual search (Wolfe, 2021). We reasoned that, when faced 

with a cluster of objects that were too difficult to resolve determine whether a target was 

present or not, the object identification process would suffer from what we have termed 

information stagnation. That is, beyond a certain point, a diffusion process that travels 

towards a ‘present’ or ‘absent’ decision for a cluster might halt making any progress 

towards either of its two decision thresholds. As shown in Figure 1, we expected that 

once information stagnation occurred, an ‘I don’t know’ response would be generated by 

participants (if they were given that option). When faced with only a ‘present’ or an 

‘absent’ response, we expected that participants would simply guess (under these 

circumstances). This, we expected, would reduce response accuracy for ‘I don’t know’ 

search because, rather than make a guess and have a 50% chance of being correct, 

participants would instead respond ‘I don’t know’.  
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 Our results were in line with these predictions. Response accuracy was higher 

for the standard search condition compared with the ‘I don’t know’ search condition 

because, as overlap increased, participants in the ‘I don’t know’ search condition opted 

to respond ‘I don’t know’ rather than being forced to make a ‘present’ or ‘absent’ 

response. Analysis of the RT data did not, however, entirely align with our predictions. 

For target-present trials, RTs increased as overlap increased, and we expected this to 

occur based on prior, similar research (Godwin et al., 2017). For target-absent trials, 

however, RTs decreased as overlap increased, contrary to our expectations and to prior 

research. We believe that, as overlap increased, for each cluster that participants 

examined, the probability that any one cluster would generate an ‘I don’t know’ decision 

increased. If that was the case, then the reduced RTs (as overlap increased) would be 

due to participants rapidly reaching such a cluster and responding ‘I don’t know’ (when 

they were able to), or simply guessing (in Standard Search).  

Overall, we found that ‘I don’t know’ RTs were more rapid than ‘absent’ 

responses. We had expected this given that, when a cluster that generated an ‘I don’t 

know’ response was examined, this would likely occur before a complete and 

exhaustive search of the display that would lead to an ‘absent’ response. ‘I don’t know’ 

RTs were slower than ‘present’ RTs for the low and medium overlap trials only, yet were 

faster than ‘present’ RTs for high overlap trials. This again we had expected because, 

when the number of clusters in a display that generated an ‘I don’t know’ response was 

quite small (as is the case in low and medium overlap trials), the target would often be 

found before one of these clusters was first encountered. However, when the number of 

clusters in a display that generated an ‘I don’t know’ response was very high (as was 
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the case in the high overlap trials), then perhaps even the first or second cluster could 

trigger an ‘I don’t know’ response, hence the RTs for ‘I don’t know’ responses become 

faster even than ‘present’ responses. 

 Our study has important implications for models and theories of visual search. 

Until now, visual search tasks have largely been framed in terms of binary 

present/absent and correct/incorrect outcomes. This enables a high level of scientific 

control over experiments, tasks and stimuli in the laboratory, but is quite removed from 

the reality of real-world searches where there are many possible outcomes, including 

even the ability to admit that one simply does not know the answer. Our results raise 

questions about the findings of other previous studies that have used highly complex 

search stimuli, including both studies with overlapping stimuli, as well as studies with 

stimuli that are ambiguous, complex or difficult to detect (Godwin et al., 2015, 2017, 

2020). By not giving participants the ability to respond ‘I don’t know’ in these previous 

studies, it may be the case that much of what appears to be shifts in response accuracy 

is simply a case of participants making guesses under certain conditions. Future 

research could therefore, we feel, benefit from including ‘I don’t know’ responses when 

ambiguous or highly difficult stimulus sets are used.  

 We also believe that future research could take the methodology developed here 

further to help better understand effects wherein searches are biased towards one 

response over another. This could involve, for example, presenting targets on a small 

proportion of trials. Known as the effect of target ‘prevalence’ (Wolfe et al., 2005), it has 

been reported extensively that, when targets only appear rarely, then searchers become 

biased towards ‘absent’ responses. It would of interest to determine whether 
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participants respond ‘I don’t know’ at the same rate regardless of target prevalence 

when faced with increases in overlap in the stimuli. This could be tested at both low 

(<50%) prevalence levels and high (>50%) prevalence levels. In these cases of low or 

high prevalence, searchers may be sufficiently biased towards or away from target 

detection that they become less willing to respond ‘I don’t know’ and instead respond 

‘present’ often when prevalence is high and overlap is high and respond ‘absent’ often 

when prevalence is low and overlap is high.  
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