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ABSTRACT: We use an analog method, based on displacements of Argo floats at their parking depth (nominally located
around 1000 dbar) from the ANDRO dataset, to compute continuous, likely trajectories and estimate the Lagrangian dis-
persion. From this, we find that the horizontal diffusivity coefficient has a median value around 500 m2 s21 but is highly var-
iable in space, reaching values from 100 m2 s21 in the gyre interior to 40000 m2 s21 in a few specific locations (in the
Zapiola Gyre and in the Agulhas Current retroflection). Our analysis suggests that the closure for diffusivity is propor-
tional to eddy kinetic energy (or square of turbulent velocity) rather than (absolute) turbulent velocity. It is associated with
a typical turbulent time scale of 4–5.5 days, which is noticeably quite constant over the entire globe, especially away from
coherent intense currents. The diffusion is anisotropic in coherent intense currents and around the equator, with a primary
direction of diffusion consistent with the primary direction of horizontal velocity variance. These observationally based
horizontal diffusivity estimations, and the suggested eddy kinetic energy closure, can be used for constraining, testing, and
validating eddy turbulence parameterization.

KEYWORDS: Ocean; Diffusion; Dispersion; Lagrangian circulation/transport; Mesoscale processes;
In situ oceanic observations

1. Introduction

Horizontal ocean mixing by mesoscale eddies and submeso-
scale processes has a wide variety of impacts from the disper-
sion of pollutants, to nutrients and ecosystem resources, to
sequestration of heat and (anthropogenic) carbon, to varia-
tion in ocean heat content, to distributions of water mass
properties, to the maintenance of the large-scale ocean circu-
lation (Wunsch 1999). Consequently, mixing process imprint
occurs from the large-scale ocean current (e.g., abyssal circu-
lation; de Lavergne et al. 2016) to water mass transformation
and ventilation (e.g., Upper Circumpolar Deep Water and
global ocean; Zika et al. 2020; Portela et al. 2020a,b), to
regional and local dynamics (e.g., coastal upwelling systems;
Capet et al. 2013). Hence, evaluating the horizontal mixing in
the ocean is one of the overarching questions of current ocean
physics, with consequences for climate dynamics and for bio-
geochemical tracer dynamics.

The whole subject of dispersion of fluid particles from fixed
origin, the so-called absolute dispersion, originates from
Taylor (1921), who showed the link between the dispersion
and the Lagrangian velocity correlation function. Batchelor
(1949) formalized the result in several dimensions and showed
how to relate the particle statistics and the diffusion equation
for a passive tracer when the probability distribution of the
displacements of a fluid particle is Gaussian. A modern dis-
cussion of these issues is provided by Davis (1987, 1991)
within the context of oceanic float observations. This frame-
work was further used to describe ocean eddy flux closure
with the use of Lagrangian float velocities (Garrett 2006).
More recently, Klocker et al. (2012) discussed the link
between float-based and tracer-based estimates of lateral

diffusivity. An example of this diffusivity computation based
on surface oceanic observations can be found in Klocker and
Abernathey (2014) and Zhurbas et al. (2014). In parallel to
these studies, Ying et al. (2019) suggested the use of Bayesian
approach to infer diffusivity from Lagrangian trajectories in
an idealized ocean circulation setting. There has also been a
large range of numerical studies, using Lagrangian particles
within high-resolution ocean modeling, whose goal is to assess
the ocean (subsurface) diffusivity coefficients (e.g., Balwada
et al. 2021) and to test different closure schemes (e.g., Chen
et al. 2015) We refer the reader to van Sebille et al. (2018) for
an exhaustive review on Lagrangian ocean analyses and to
LaCasce (2008) for a thorough review on diffusivity computa-
tion, the different methodologies, and their shortcomings.

Following the use of Lagrangian floats for the Mid-Ocean
Dynamics Experiment (MODE) in 1973 (located in the south-
west of the North Atlantic subtropical gyre), local estimates
of horizontal eddy diffusivities started to be obtained from
the rate of dispersion of floats at depths ranging from 700 to
1500 m (Freeland et al. 1975; Riser and Rossby 1983; Rossby
et al. 1983; Böning 1988, for a summary). Overall, these stud-
ies reported values from slightly below 1000 m2 s21 to almost
5000 m2 s21, with a large degree of uncertainties. Ollitrault
and Colin de Verdière (2002) reported values of the same
magnitude, but suggested a high spatial variability (i.e., 5000
and 2200 m2 s21 west and east of the Mid-Atlantic Ridge,
respectively). Other regions have also been explored. In the
Southern Ocean, west of the Drake Passage (i.e., upstream of
the Antarctic Circumpolar Current), LaCasce et al. (2014)
and Tulloch et al. (2014) reported 8006 200 m2 s21 (at 950-m
depth) and 710 6 260 m2 s21 (at 1500-m depth), respectively.
It is interesting to note that these Southern Ocean values are
relatively low compared to the values reported for the North
Atlantic western basin, whereas the a priori eddy activity isCorresponding author: F. Sévellec, florian.sevellec@univ-brest.fr
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similar, if not more intense, in the former region than the lat-
ter region.

There also exists indirect estimates of horizontal diffusivity
coefficients. For instance, Cole et al. (2015) used a mixing
length argument (obtained through salinity anomalies and
mean gradient) to infer diffusivities at the base of the mixed
layer. They reported highly spatially varying values from a
few 100 to several 10 000 m2 s21. This particular study has the
advantage of a global coverage, but the diffusivity coefficients
are inherently dependent on the validity of the mixing length
argument.

Thus, a full description of the diffusivity coefficients at
depth, must rely on direct in situ observations either passive
tracers or particle trajectories. However, this presents difficul-
ties, which comes in twofold. On the one hand, tracking the
evolution of the release of a passive tracer concentration
requires repeated observations over a large oceanic region
(e.g., Tulloch et al. 2014) and accurately sampling the concen-
tration is challenging, requiring a vast amount of resources (in
terms of scientific cruises). On the other hand, the diffusivity
can be obtained using the spread of an ensemble of Lagrang-
ian float trajectories with a high degree sampling obtained
from acoustic navigation (see review by LaCasce et al. 2014),
but this method requires the use of a large number of acoustic
floats (e.g., SOFAR or RAFOS) dedicated to the study.
Another limitation of these methods is that their results are
local and impossible to generalize at basin scales. Here we cir-
cumvent these issues by using the Argo deep displacements,
which is a huge database with a global coverage. This
approach has already been suggested by Roach et al. (2018)
for computing decorrelated pair dispersion. However, to
assess the diffusivity from the Argo observations a major diffi-
culty must be overcome, namely, the fact that Argo floats sub-
sample the path of water parcels at 10-day intervals only.
Despite being fully acknowledged, this important difficulty
was not treated in Roach et al. (2018). Here we suggest a new
methodology to overcome it.

In this study we apply an analog method (Ayet and Tandeo
2018) to reconstruct pseudotrajectories that are continuous
(in space and time) and possess the local statistical properties
of Argo float displacements. The dispersion of these “likely”
continuous trajectories is used to infer the horizontal diffusiv-
ity coefficients at 1000-m depth. We find that diffusivities vary
significantly between hot spot regions, with values ranging
from 1000 to several 10 000 m2 s21, and gyre interiors, with
values ranging from a few 100 to 1000 m2 s21. Testing turbu-
lent closures, we find that the diffusivity scales well with the
eddy kinetic energy (squared velocities), giving a turbulent
time scale of 4–5.5 days nearly constant globally. We also
show that the regions of high eddy kinetic energy are associ-
ated with anisotropic diffusion, the primary direction for dif-
fusion being aligned with the primary direction of horizontal
velocity variance (i.e., the main eigenvector of the horizontal
velocity covariance matrix).

The manuscript is organized as follows. The observational
data, the analog method used to reconstruct continuous
Lagrangian pseudotrajectories, and the method for deriving
the diffusivity coefficients are described in section 2. Section 3

presents the geography of diffusivity coefficients and the pos-
sible scaling with two classical turbulent closures. Discussions
and conclusions are included in section 4.

2. Data and method

a. The ANDRO dataset

The horizontal turbulent diffusivities are computed through
the dispersion of Lagrangian particles following horizontal
deep displacements of Argo floats. These displacements are
obtained from the ANDRO dataset (Ollitrault et al. 2019).
For details on the ANDRO dataset we refer the reader to
Ollitrault and Rannou (2013), Ollitrault and Colin de
Verdière (2014), Colin de Verdière and Ollitrault (2016),
Sévellec et al. (2017), and Colin de Verdière et al. (2019). The
ANDRO dataset gives access to 1 041 054 displacements prior
to 31 October 2017. Numerous checks are used to validate
and correct Argo parking pressure in order to determine the
reference parking pressure and to remove incorrect nominal
parking depth recorded in the metadata. Additional control is
performed to report float grounding that prevent accurate
estimation of parking depth and drift velocity. The dataset is
particularly well suited for estimating displacement at depth
by providing the last surface transmitted position and time
before diving, the first transmitted position and time after
surfacing.

From this dataset, the first step of our study was to elimi-
nate data flagged as erroneous and to restrict displacements
lasting ∼10 days and located at ∼1000 dbar. This leads to a
total number of displacements of 675 575 (Fig. 1).

Despite having a consistent set of displacements, there are
still a few sources of error:

• Parking pressures are selected within the range between
950 and 1150 dbar. However, most of the displacements
occur close to 1000 dbar with a standard deviation of only
22 dbar. Thus, we assume this error to be negligible.

• Drifting time periods at depth (Dtdeep) are estimated as the
differences between ti and tf (the last position time before
diving and the first position time after surfacing, respec-
tively). They are selected in a finite range between 8.5 and
10.5 days leading to standard deviation of only 0.36 days. In
the following we will consider those periods as the mean of
that distribution, that is, 9.74 days exactly.

• However, since both ti and tf are determined at the surface,
the actual drift at depth will be biased due to the current
shear between the surface and the parking depth. This
leads to an error of a few kilometers (less than 5 km for
90% of the displacements), using both the surface and deep
approximate velocities (Ollitrault and Rannou 2013). There
is also on average an error of 1–2 km due to typical 1-h
delay between the last surface position time and the diving
time or between the surfacing time and the first surface
position time (most floats are positioned by the Argos sat-
ellite system). In conclusion, we can assume on average
a possible error on an individual displacement of 5 km,
which remains small compared to the 10-day typical
displacements.
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• Beyond that, the 10-day displacements lead to the under-
sampling of motions above the Nyquist frequency of
1/(2Dtdeep) � 1/20 cycles per day.

Before using the dataset it is important to look at the cover-
age density of Argo float displacements (Fig. 1c). Displace-
ments are recorded everywhere in the ocean, but the
coverage remains inhomogeneous: there is relative lower sam-
pling in the Southern Ocean and equatorial Pacific and a rela-
tive higher sampling in the subtropical gyres of the Pacific,
Atlantic, and Indian Oceans. The density of selected Argo
float displacements for our 38 3 38 grid has an average value
of 171 per 38 3 38 with a standard deviation of 36 per 38 3 38,
but can locally go up to 732 per 383 38.

Difference between two float displacements starting from
two close locations could be due to (permanent) spatial

difference between the flow of the two starting locations, to
time variations of the flow between the first displacement and
the second displacement, or to both. In this study, these types
of displacement differences are aggregated in the same
statistics.

A complete error estimation of a subset of the ANDRO
dataset used here (i.e., a prior version) was provided in
Sévellec et al. (2017). They demonstrated the good accuracy
for experiments on time scales of a few months, relevant for
our current study.

The ANDRO dataset also provides corrected zonal and
meridional deep velocities computed from the individual dis-
placements and their time periods at depths (Ollitrault and
Rannou 2013; Ollitrault et al. 2019). This corresponds to a set
of localized 10-day integrated velocities. From these, the
mean velocity can be computed each 18 3 18 using a running
average of all velocities over a 383 38 grid as

u(x0, y0) � 1
n

∑n
j�1

uj(x,y)|O(x0,y0), (1a)

y(x0, y0) � 1
n

∑n
j�1

yj(x,y)|O(x0 ,y0), (1b)

where u and y are the zonal and meridional mean velocities,
respectively; uj and yj are the zonal and meridional velocities
from the ANDRO dataset, respectively; x and y are the longi-
tude and latitude, respectively; O(x0,y0) defines a box centered
at longitude x0 and latitude y0 such as x ∈ [x0 2Dx=2,x0 1
Dx=2] and y ∈ [y0 2Dy=2,y0 1Dy=2] with x0 and y0 evenly
spaced every 18, and Dx and Dy are the zonal and meridio-
nal extend of the spatial mean corresponding to 38 3 38
box, respectively; n is the number of zonal and meridional
velocity sample available in this O box; and j is the index of
these individual velocities. It is important to acknowledge
that this Lagrangian velocity mean slightly differs from the
more classical Eulerian velocity mean (Wang et al. 2020).

The mean velocities show the expected circulation at this
depth (Figs. 2a,b). The circulation is dominated by an intense
eastward flow in the Southern Ocean, characteristic of the
Antarctic Circumpolar Current. The flow also shows signa-
ture of intense boundary currents such as the Gulf Stream,
Kuroshio, and Falkland Current, for instance.

The turbulent velocities and covariance velocity can also
be estimated at each 18 3 18 as the standard deviation of
all the velocities recorded in the ANDRO dataset within a
38 3 38 grid. This reads

ũ(x0, y0) �
����������������������������������
1
n

∑n
j�1

[uj(x,y)|O(x0,y0) 2 u]2
√

, (2a)

ỹ(x0, y0) �
���������������������������������
1
n

∑n
j�1

[yj(x,y)|O(x0,y0) 2 y]2
√

, (2b)

c̃2(x0, y0) � 1
n

∑n
j�1

[uj(x,y)|O(x0,y0) 2 u][yj(x,y)|O(x0,y0) 2 y], (2c)

FIG. 1. Argo float deep displacement selection. Distributions of
(a) pressure and (b) period of Argo float deep displacements. Dis-
tributions are estimated from the entire ANDRO dataset (black)
and after selecting displacements at a pressure between 950 and
1150 dbar and with a period from 8.5 to 10.5 days (red). There are
1 041 054 displacements in the dataset and 675 575 displacements
after selection. (c) Number of displacements from ANDRO data-
set per 38 3 38 grid boxes for the selected 675 575 displacements
(i.e., between 950 and 1150 dbar and between 8.5 and 10.5 days).
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where ũ and ỹ are the zonal and meridional turbulent veloci-
ties, respectively; and c̃2 is the covariance velocity. It is worth
noting that ũ2 1 ỹ2 is twice the eddy kinetic energy. Note that
with this definition the turbulent velocities are not strictly
restricted to mesoscale eddy turbulence and submesoscale
processes; there could be a component linked to slower
variability.

For both turbulent velocities, the computation shows intensi-
fication in western boundary currents and along the Antarctic
Circumpolar Current (Figs. 2c,d), as expected in regions of
active turbulent mesoscale activity. The regions of the Zapiola
Gyre and of the Agulhas Current retroflection are also particu-
larly noticeable. For the zonal turbulent velocities, the equato-
rial band also appears to be quite active. We interpret that as
the signature of the meridional shear of zonal velocities induced
by the succession of, possibly steady, equatorial currents and
countercurents in the vicinity of the equator and of waves prop-
agating along the equator at depth (Delpech et al. 2020). For
the meridional turbulent velocities an interesting region is the
Somali Current (Schott et al. 2009). The intermittent behavior
of the current is reflected in the meridional turbulent velocities
(which does not distinguish between spatial and temporal
variability).

Note that zonal and meridional mean and turbulent
velocities, as well as the covariance velocity, appear inde-
pendent of the tested grid resolution (i.e., Dx and Dy vary-
ing from 28 to 58), beyond the typical smoothing expected
with larger grid representation. It is also interesting to note
that, as expected (Wunsch and Ferrari 2018), the ratio of

the mean to the standard deviation is almost always small,
suggesting the small Péclet number (i.e., ratio of the mean
advection to the turbulent advection) of the coarse 38 3 38
1000-m depth flow.

b. The analog method for Lagrangian trajectories

Given that Argo floats resurface every ∼10 days (which
is of the order of the Lagrangian integral time scale, as
suggested by local situ observational analyses of the North
Atlantic; Freeland et al. 1975; Rossby et al. 1983; Ollitrault
and Colin de Verdière 2002), the record of their journey at
depth is discontinuous. This is problematic for estimating hor-
izontal diffusivities, which require continuous trajectories. To
overcome this central difficulty, continuous pseudotrajectories
are reconstructed in the following way. We use the analog
methodology, which has been applied successfully in various
fields from solar irradiance forecast (Ayet and Tandeo 2018)
to interannual climate prediction (Sévellec and Drijfhout
2018), for instance. The objective of the method is to pro-
duce continuous, likely trajectories, whose 10-day displace-
ments are analog to those recorded in the ANDRO dataset.
To this purpose the displacements of likely trajectory will
come in two parts, one deterministic, accounting for the
mean flow, and the other random, acknowledging the tur-
bulent part of the flow. To sample the randomness, 100 tra-
jectories are computed from each starting position, evenly
spaced on a 18 3 18 grid (100 trajectories were shown to be
enough to capture accurately the ensemble mean and vari-
ance of the trajectories).

FIG. 2. Mean and turbulent zonal and meridional velocities. Colors show (a),(b) zonal and meridional mean and
(c),(d) turbulent velocities (cm s21), following (1) and (2), respectively. (d) Contours show covariance of zonal
and meridional velocities (cm2 s22), following (2). Velocities are computed each 18 3 18 as the velocity mean,
standard deviation, and covariance within 38 3 38 grid boxes. Black, gray, and blue contours correspond to
positive, zero, and negative values, with contour interval of 20 cm2 s22. The red and black lines in (c) show the
latitudes and longitudes separating the regions used in Table 1. The blue lines show the limits between western
boundaries and interiors.
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The mean zonal and meridional displacements are com-
puted as the average zonal and meridional displacements,
respectively, recorded within the ANDRO dataset over a
38 3 38 box centered at the location of the estimation. For
the random components the possible outcomes follow the
meridional and zonal variance. We assume that they are
fully independent between time iterations and member
realizations, but we acknowledge the observed covariance
between the zonal and meridional displacement compo-
nents. This choice assumes that the distribution of the zonal
and meridional displacements follow a normal distribution
[as suggested by Ollitrault and Colin de Verdière (2002)
and LaCasce (2008), and fully tested later in section 2c],
which is well captured by only knowing the mean and the
standard deviation. The standard deviation is also esti-
mated over the same 38 3 38 box centered at the location of
the estimation. Hence, both mean and random components
of a displacement are estimated using the neighboring flow
properties changing along the trajectory path of the analog
particle.

Other strategies exist to set the range of analog displace-
ments. It is sometimes set to a constant number, regardless of
the distance. Alternatively, one could set a spatial range
linked to dynamical parameter, such as the Rossby deforma-
tion radius. Here, and as mentioned above, we simply set a
spatially constant range of 38 3 38. (Note that we have also
tested 583 58, as discussed later.)

Following our suggested uniform-grid framework, the
position of likely trajectories can be expressed mathemati-
cally as

d̂xi

d̂yi

⎛⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎠ � dx

dy

( )
1 L

rxx

rxy

( )
, (3a)

xnewi

ynewi

( )
� xoldi

yoldi

( )
1

d̂xi

d̂yi

⎛⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎠ 2

1
N

∑N
i

d̂xi

1
N

∑N
i
d̂yi

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠, (3b)

where d̂xi and d̂yi are the reconstructed longitude and lati-
tude 10-day displacements of the ith reconstructed trajec-
tory, respectively; xoldi , yoldi , xnewi , and ynewi are the old and
new longitude and latitude prior and after the 10-day dis-
placement of the ith reconstructed trajectory, respectively;
N (=100) is the number of ensemble member; i the index of
the ensemble member; dx � (1=n)∑n

j�1 dxj
∣∣
O xoldi ,yoldi( ) and

dy � (1=n)∑n
j�1 dyj

∣∣
O xoldi ,yoldi( ) are the local mean of zonal and

meridional displacements with a starting location within a
38 3 38 box centered at (xoldi , yoldi ), respectively (where dxj
and dyj are individual zonal and meridional displacements
as recorded by ANDRO dataset, respectively); rxx and rxy are
two independent random outcomes of two centered unit-
variance normal distributions that impact only the zonal and
both zonal and meridional displacements, respectively; and L is
a lower triangular matrix outcome of the Cholesky factoriza-
tion of the symmetric positive definite covariance displacement

matrix (D), such as D � LL† (where † denotes the transpose
operator). The covariance displacement matrix reads

D � Dxx Dxy

Dxy Dyy

( )
,

�

1
n

∑n
j�1

(dxj 2 dx)2∣∣O xoldi ,yoldi( )
1
n

∑n
j�1

(dxj 2 dx)(dyj 2 dy)∣∣O xoldi ,yoldi( )
1
n

∑n
j�1

(dxj 2 dx)(dyj 2 dy)∣∣O xoldi ,yoldi( )
1
n

∑n
j�1

(dyj 2 dy)2∣∣O xoldi ,yoldi( )

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠:

We can therefore write the Cholesky factorization as

L �

�����
Dxx

√
0

Dxy�����
Dxx

√
���������������
Dyy 2

D2
xy

Dxx

√
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠:

This ensures that the variances of the zonal and meridional
displacements, as well as their covariance, are consistent with
values observed in the ANDRO database.

The mathematical procedure described in (3) implies that
the new position will be given by the sum of the old posi-
tion, the mean displacement measured in the 38 3 38 box
neighborhood, a random component varying for each tra-
jectory and based on the covariance displacement measured

in the 38 3 38 box neighborhood, and substracting the mean
displacement of the trajectory ensemble (see discussion
below).

Hence, replacing (xoldi , yoldi ) by (xnewi , ynewi ) sequentially and
reevaluating (dx, dy, rxx, and rxy) in (3) provide a continuous
trajectory. Through this analog method we can reproduce
continuous, likely trajectories (Fig. 3) with statistical proper-
ties, in term of zonal and meridional displacements, virtually
identical from those of Argo floats during their journey at
depth. Since the 38 3 38 box neighborhood, used to compute
the statistical properties of the displacements, evolves with
the trajectory increment, this analog method is adaptative in
time. This differs from the transfer operator method, used in
a previous study by the authors (Sévellec et al. 2017), which
had a fix grid and potentially lead to spurious diffusion,
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making it less reliable to measure accurately the observed
diffusion.

As mentioned above, the ensemble mean displacement is
removed from each individual displacement. This allows the
mean ensemble to remain at the same location and restrict
the evolution of the ensemble to its spread alone. This
facilitates a more robust use of the diffusion equation
(tC � = ·K ·=C, where C is a concentration and K is a hori-
zontal diffusivity tensor) central to our diffusivity estimations,
which should be modified in presence of a mean flow into an

advection–diffusion equation (DtC � = ·K ·=C, where Dt is
the material “mean” derivative). (Note that we also accurately
assume the absence of source terms in both formulations.)
Hence, by removing the mean displacement, we compute a
diffusivity specific to a local area. Also, it allows us to com-
pute the diffusivity coefficients in both horizontal directions
without being restricted to the cross-mean flow direction. The
along-mean flow direction is often more difficult to extract
because of the impact of the shear of the mean flow (LaCasce
et al. 2014). However, as discussed in the previous subsection

FIG. 3. Examples of four reconstructed pseudotrajectories. (a)–(d) The four continuous, likely trajectories are
obtained using the analog method base on the ANDRO dataset (providing disconnected displacements from Argo
floats during their journey at depth). They are initialized at 308N, 408W and used a 38 3 38 grid to define the range of
analogs. Crosses denote initial positions and lines denote displacements of both reconstructed continuous, likely tra-
jectories (color) and observed disconnected Argo float displacements (gray). The color scale reflects the time evolu-
tion of the trajectories from 9.7 to 97.4 days.
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the flow is mostly dominated by its turbulent component
rather than its mean component, on the coarse 383 38 gridded
dynamics. Hence, our tests suggest that, despite allowing the
more accurate computation of local diffusivities (vs diffusiv-
ities computed along the track of the mean flow), the removal
of the mean ensemble displacement is not fundamental, in
most places, and does not modify significantly the quantitative
results discussed in the rest of the study. (We refer the readers
to section 4 for a discussion on the Southern Ocean, an exam-
ple of regions where this choice matters.)

c. Test of the normal assumption and of the spatial
discretization resolution

As mentioned above, this analog computation procedure
implies a fundamental assumption: the displacements can
be represented by a normal distribution. To test it, we define
the Shannon entropy (H) and Kullback–Leibler divergence
(DKL). The former measures the information of the observed
probability density distribution of the zonal or meridional dis-
placements (PdX or PdY, respectively) as

H dX( ) � 2
∑
j

PdX dxj
( )

ln PdX dxj
( )[ ]

, (4a)

H dY( ) � 2
∑
j

PdY dyj
( )

ln PdY dyj
( )[ ]

, (4b)

where ln is the natural logarithm, and dX and dY are the dis-
crete random variables of possible outcomes dxj and dyj for
the zonal and meridional displacements, respectively. The dis-
tributions are evaluated through 20 bins evenly space within
plus/minus the maximum absolute displacements. Whereas
the latter measures the missing information from theoretical
Gaussian fits (QdX orQdY, respectively, representing a normal
distribution of equivalent mean and standard deviation than
PdX or PdY) to the observed probability density distributions.
It reads

DKL PdX‖QdX( ) � ∑
i

PdX dxi( )ln PdX dxi( )
QdX dxi( )
[ ]

, (5a)

DKL PdY‖QdY( ) � ∑
j
PdY dyj

( )
ln

PdY dyj
( )

QdY dyj
( )[ ]

: (5b)

Hence, we can define the relative missing information index
(MI) as MI = DKL/H. This error estimation demonstrates that
the assumption of a normal distribution appears to be highly
adequate both for the zonal and meridional directions. The
relative error is weaker than 5% over almost the entire globe,
except a few specific locations and along coastlines (Fig. 4).
This coastal issue is likely to come from the lack of observa-
tions over the 38 3 38 box centered at these coastal locations
(i.e., lack of recorded displacements over land and in regions
of bathymetry higher than 1000 dbar).

Previous studies have suggested the deviation of the veloc-
ity distribution from the normal distribution, particularly
related to rare but energetics events (e.g., Bracco et al. 2000;
Pasquero et al. 2001). In our dataset such deviation appears to

be weak (Fig. 4); however, if such deviation exists, it would
have implication in the formulation of (3), which would
need to be revised to acknowledge higher-order statistical
moments.

To test the robustness of the discretization (or spatial range
over which analogs are computed) at the heart of the analog
method, a 58 3 58 grid has also been tested. It did not show
significantly different results from the 38 3 38 grid. (The dif-
ference in computed diffusivities is discussed in section 3b).
This does not show major impact of the discretization,
beyond the expected smoothing linked to the use of a
coarser/larger grid. It is worth noting that, with our analog

FIG. 4. Error estimation of the Gaussian fit approximation for
the displacement probability density functions. Probability density
function of (a) longitudinal and (b) latitudinal deep displacements
(black bar) located at 308N, 408W. The Gaussian fits (red crosses)
are computed using the mean and the variance of the distribution
displacement. To compute the error of the Gaussian fits, we com-
pute the missing information (MI). The MI measures the error of
the fit by computing the ratio of the Kullback–Leibler divergence
to the Shannon entropy. Maps of the error of the Gaussian fits for
(c) longitudinal and (d) latitudinal displacements.
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method, the discretization is not a spatial averaging but a
spatial range over which the statistical properties of the
observed trajectories are aggregated (especially to compute
the second central moment). Hence, the discretization for
Argo displacements does not act as a spatial filter of physical
processes, as typically done in numerical modeling with eddy-
less/laminar model (e.g., 28 3 28), eddy-permitting model (e.g.,
1/483 1/48), or eddy-resolving model (e.g., 1/283 1/28).

d. Computing the horizontal diffusivity coefficients

Now that we have continuous, likely trajectories from ana-
log displacements, we will compute the dispersion of trajecto-
ries initialized at the exact same location to infer the
diffusivities at that depth. To this purpose, we first need to
identify a relation between the trajectories, or their evolution,
and diffusivities. This particular derivation strongly follows
Batchelor (1949) and is described here for completeness to
give the readers the full details of the calculations. Hence, to
determine the diffusivities, we restart from the diffusion
equation described earlier which governs the tracer concen-
tration simulated by our trajectories: tC � = ·K ·=C. The
horizontal diffusivity tensor can be represented by a sym-
metric matrix as

K � kxx kxy

kxy kyy

( )
,

where kxx, kyy, and kxy are the zonal, meridional, and cross
diffusivities. Assuming that the diffusivity coefficients do
not spatially vary over the region of evaluation (i.e., the
region over which our simulated concentration spread) we
have

tC � kxx
2
xxC 1 2kxy2xyC 1 kyy

2
yyC: (6)

This local homogeneity assumption is essential to our
study.

To compute the spread we will use a spatial integral
defined over the spreading of the concentration and
denoted by 〈·〉. Since there is no concentration or flux away
from the concentration/spreading area we have 〈x(… )〉 =
〈y(… )〉 = 0 and 〈2xx(…)〉 � 〈2yy(…)〉 � 0, respectively.
Although less straightforward, we also have the useful
properties

〈x2xxC〉 � 〈xx(x2C)〉 2 2〈xxC〉,
� 〈xx(x2C)〉 2 〈x(xC)〉 1 2〈C〉,
� 0 2 0 1 2〈C〉; (7a)

〈y2yyC〉 � 〈yy(y2C)〉 2 2〈yyC〉,
� 〈yy(y2C)〉 2 〈y(yC)〉 1 2〈C〉,
� 0 2 0 1 2〈C〉; (7b)

〈xyxyC〉 � 〈xx(yyC)〉 � 〈x(xyyC)〉 2 〈yyC〉,
� 〈x(xyyC)〉 2 〈y(yC)〉 1 〈C〉,
� 0 2 0 1 〈C〉: (7c)

Finally, defining the zonal and meridional distance to the
steady (by construction) center of mass as x̃ � (x2 x0) and
ỹ � (y2 y0), respectively, we can define the zonal, meridional,
and covariance as varxx(C) � 〈x̃2C〉=〈C〉, varyy(C) � 〈ỹ2C〉=〈C〉,
and varxy(C) � 〈x̃ỹC〉=〈C〉, respectively. Using these defini-
tions and (7), we can derive from (6) the evolution of the
variances, which reads

t〈x̃2C〉 � kxx x̃22xxC
〈 〉

,

� 2kxx〈C〉,

tvarxx(C) � t
〈x̃2C〉
〈C〉 � 2kxx; (8a)

t〈ỹ2C〉 � kyy ỹ22yyC
〈 〉

,

� 2kyy〈C〉,

tvaryy(C) � t
〈ỹ2C〉
〈C〉 � 2kyy; (8b)

t〈x̃ỹC〉 � 2kxy x̃ỹ2xyC
〈 〉

,

� 2kxy〈C〉,
tvarxy(C) � t

〈x̃ỹC〉
〈C〉 � 2kxy: (8c)

To apply these formulas in the context of our Lagrangian
pseudotrajectories, we have initialized 100 trajectories each
18 3 18 all over the ocean and track them for 3 months. Then
the estimation of the diffusivities has be done in two steps:
1) computation of the variances and 2) computation of the
diffusivities.

1) From the trajectory dispersion, we compute the varian-
ces of ensemble trajectories along the zonal and meridi-
onal directions, and for the cross term. These variances
read

s2
xx(x0, y0, t) �

1
N

∑N
i�1

xx0,y0i (t) 2 x0
[ ]2 , (9a)

s2
yy(x0, y0, t) �

1
N

∑N
i�1

yy0,y0i (t) 2 y0
[ ]2

, (9b)

s2
xy(x0, y0, t) �

1
N

∑N
i�1

xy0,y0i (t) 2 x0
[ ]

yy0 ,y0i (t) 2 y0
[ ]

, (9c)

where s2
xx,yy,xy are the zonal, meridional, and covariance; t

is time (=kDtdeep, where k ∈ N0); x0 and y0 are the longi-
tude and latitude of the initialization location; and xx0,y0i
and yx0,y0i are the longitude and latitude of the ith trajec-
tory member, initialized at [x0, y0]. Note that, in this for-
mulation, we use the property that the mean ensemble
position is constant and sets by construction of the contin-
uous, likely trajectories at the location of the initialization
(x0 and y0).

2) Then, using (8) and (9) together, the computation of the
zonal, meridional, and cross diffusivities reads
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kxx(x0, y0) � 1
2

d
dt

s2
xx(x0, y0, t); (10a)

kyy(x0, y0) � 1
2

d
dt

s2
yy(x0, y0, t); (10b)

kxy(x0, y0) � 1
2

d
dt

s2
xy(x0, y0, t): (10c)

This last step is done through a best linear fit using 11 val-
ues uniformly distributed over a ∼3-month period since
the initialization (i.e., k going from 0 to 10), which implic-
itly assumed the stationarity of the diffusivities over this
time scale.

3. Results

a. Horizontal diffusivities

Applying this methodology to compute the diffusivities
(kxx, kyy, and kxy) to a starting location at 308N, 408W
shows the horizontal spreading of the 100 pseudotrajectories
(Fig. 5a). This spreading is monotonous along the zonal and
meridional directions (Figs. 5b,d, respectively), but not for the
cross direction (Fig. 5f). The best linear fit of the spread
of variances and covariance, following (10), gives a zonal,
meridional, and cross diffusivities of 494, 535, and 237 m2 s21

(Figs. 5c,e,g), respectively.
We now reproduce this computation systematically all over

the globe with starting points every 18 3 18 to compute the
zonal, meridional, and cross diffusivities everywhere (Fig. 6).
The first striking result is the inhomogeneity of the zonal,

meridional, and cross diffusivities, with high values in the
western boundary currents, the equatorial band, and the
Antarctic Circumpolar Current, which is confirmed by regional
averages (Table 1). Except at the equator, zonal and meridional
diffusivities look alike. Their patterns correspond to high values
of a few thousands to up to a few 10000 m2 s21 along western
boundaries and within midlatitude large, coherent ocean cur-
rents (e.g., Antarctic Circumpolar Current, Gulf Stream, North
Atlantic Current, Agulhas Current, Kuroshio, and Zapiola
Gyre). The maxima occur for the zonal diffusivities within the
Zapiola Gyre and within the Agulhas Current retroflection,
which reach up to 40000 m2 s21 and are also regions of turbu-
lent velocity maxima (Figs. 2c,d). To a lesser degree the Kergue-
len and Campbell Plateaus appear to be two other locations of
strong zonal diffusivity. These hot spots of zonal diffusivity are
also hot spots for the meridional diffusivity, but with weaker val-
ues (∼10000 m2 s21), except for the Campbell Plateau, which
exhibits higher meridional diffusivity than zonal diffusivity. On
the other hand, the diffusivities in the basin interior are much
less with values of only a few hundred of meters squared per
second (Figs. 6a,b). Along the equator, meridional diffusivity
is weak (from a few hundred to a thousand meters squared
per second) whereas zonal diffusivity is intense (several thou-
sand meters squared per second), consistently with low and
high values of meridional and zonal turbulent velocities
(Fig. 2c), respectively (the latter being due to the succession of
zonal currents and countercurrents, as well as propagating
equatorial waves). The high value of meridional diffusivity
along eastern Africa (Fig. 6b) is consistent with the local maxi-
mum of meridional turbulent velocity (Fig. 2d), imprinted by

FIG. 5. Trajectory spread for initialization at 308N, 408W and computation of the diffusivity coefficients. (a) 100 individual pseudotrajec-
tories (blue crosses separating 10-day transition, linked by lines), their mean position (white cross), and their plus/minus zonal and meridi-
onal standard deviation (horizontal and vertical thick lines, respectively, with color scale indicating the 10-day transition). The gray crosses
and lines indicate the observed Argo float deep initial locations and displacements in the region, respectively. Time evolution of the spread
of the 100 trajectories measured by (b) plus/minus the standard deviation of the zonal distances, by (d) plus/minus the standard deviation
of the meridional distances, and by (f) the square of the zonal-meridional cross distance. Distance of the trajectories are measured from
the point of origin every 10 days (cross, connected by dashed lines), following (1). (c),(e) As in (b) and (d), but for the variance and (f) is
equivalent to (g). The dashed red lines are the best linear fit, which coefficient measured the diffusivities for the respective direction and is
indicated in the title, following (10).
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the Somali Current intermittent behavior. Overall the zonal
and meridional diffusivities show intensification in regions
which have a high level of turbulent activity (Figs. 2c,d, also
see section 3b for further investigations on that). The cross dif-
fusivity shows positive values of up to 10000 m2 s21 along the
western boundaries, whereas negative values of down to
210000 m2 s21 occur in most place along the Antarctic Cir-
cumpolar Current (Fig. 6c). The global mean values of the
zonal, meridional, and cross diffusivities are 1324, 969, and
28 m2 s21 (Fig. 6).

To test the robustness of our results, we have computed the
accuracy of the linear regression between the time evolution
of the (co)dispersion and time. For the zonal and meridional
directions the fit is extremely accurate, with error of a few

percent (estimated as the residual of explained variance) in
most of the regions, reaching values, at worst, ranging from
10% to 20% in a few specific locations (Figs. 7a,b). For the
cross direction, the error is one order of magnitude above,
with error that can often reach 100% (Fig. 7c). This is consis-
tent with the analysis located at 308N, 408W (Fig. 5). How-
ever, this error is weaker in regions of intense cross
diffusivities (often less than 20%). This means that the fit is
less accurate where the cross diffusivities is weak anyway. The
scatteredness of the local error in those regions, suggests that
large-scale consistency of the cross diffusivities (as the overall
weak values in the basin interior) is probably still accurate.

To quantify the variations of zonal, meridional, and cross
diffusivities, we compute histogram of their spatial-density
distribution (using uniform 50 m2 s21 bins, Fig. 8). We find
that the zonal and meridional distributions have a significant
skewness toward high diffusivity values. Consistently with this
type of distributions, we see that, for both zonal and meridio-
nal diffusivities, the most common value (i.e., the mode) is
lower than the most typical value (i.e., the median), which is
lower than the expected value (i.e., the mean). Thus, we find a
most common value of 250 and of 250 m2 s21, a most typical
value of 650 and of 450 m2 s21, and an expected value of 1324
and of 969 m2 s21 for the zonal and meridional diffusivities,
respectively. It is interesting to note that for these two distribu-
tions, despite most values are restricted to weak diffusivities
(below 1000 m2 s21), extreme values (of several 1000 m2 s21

or above) still occur.
For the cross diffusivities the distribution follows a bell

curve with a most common value of 250 m2 s21 (closely fol-
lowed by 150 m2 s21), a most typical value of 225 m2 s21,
and an expected value of 28 m2 s21. Overall, this suggests
that it is a symmetric distribution centered around 0. As for
the zonal and meridional diffusivity distributions, extreme
values reach beyond61000 m2 s21, despite most of the values
remain within plus/minus a few hundred m2 s21. Beyond the
quantitative values, the cross diffusivity is also indicative of
the diffusion acting along directions that are not coaligned
with the longitudes and latitudes (e.g., Rypina et al. 2012).
This property is especially visible in region of strong diffusiv-
ity (where the cross diffusivity is also important). To investi-
gate the properties of the diffusivity tensor, we compute its
eigenvectors and eigenvalues. The eigenvectors give the natu-
ral directions of diffusivity, whereas the eigenvalues give the
diffusivity coefficient acting along these directions. Hence, the
diagonalization of K reads

K � kxx kxy
kxy kyy

( )
� px sx

py sy

( )
kp 0
0 ks

( )
px py
sx sy

( )
, (11)

where kp and ks are the primary and secondary diffusivities
acting along the horizontal directions defined by (px, py) and
(sx, sy), respectively; px and py are the zonal and meridional
vector coordinates of the primary diffusivity direction, respec-
tively; and sx and sy are the zonal and meridional vector coor-
dinates of the secondary diffusivity direction, respectively.
These vectors are normalized such as p2x 1 p2y � s2x 1 s2y � 1.
Because K is represented by a symmetric matrix (normal

FIG. 6. Diffusivity estimation from Argo floats. (a)–(c) Zonal,
meridional, and cross diffusivity coefficients (3103 m2 s21).
Note the nonlinearity of the color scale reflecting low (below
2 3 103 m2 s21) and high (above 2 3 103 m2 s21) absolute values
of diffusivities (i.e., linear from 0 to 2 3 103 m2 s21 and from
2 to 20 3103 m2 s21 absolute values). The global mean values
are indicated in the title.
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operator), its eigenvectors are orthogonal (pxsx 1 pysy = 0).
The primary and secondary diffusivities act orthogonally to
each other.

This diagnostic reveals that there is indeed a primary direc-
tion for diffusivity (Fig. 9). The global average along this
primary direction reaches 1672 m2 s21, whereas the global
diffusivity acting along the secondary direction is only
621 m2 s21 (Table 1). This means that the diffusivity is almost
3 times as strong along its primary direction as along its sec-
ondary one, whereas it was quite well balanced when mea-
sured along the zonal and meridional directions (albeit a
slight dominance of zonal over meridional diffusivity). This
property is also visible for regional averaged values (Table 1).
As expected, the primary (as well as, by construction, the sec-
ondary) direction varies significantly spatially. Within the
gyre interior, the weak difference between diffusivities acting
along the primary and secondary direction, as well as the lack
of consistency of the natural directions, suggests the isotropy
of diffusivity (Fig. 10a; this was also the region where the
cross diffusivity was weak, Fig. 6c). On the other hand, this
rotated framework shows regions with strong diffusivity and
coherent natural directions for diffusivities. For instance, the
equatorial region as a well coherent primary direction along
the zonal direction (and a meridional secondary direction). South-
ern Ocean, western boundary currents, and gyre recirculations

also exhibit organized primary direction (Fig. 9). In these
regions, since the primary and secondary natural direction
are not aligned with zonal and meridional directions, this
allows for a better amplitude separation between the pri-
mary and secondary diffusivities (vs zonal and meridional
diffusivities). This leads, for instance, to values of up to
74 000 m2 s21 along the primary direction within the Agul-
has Current retroflection and within the Zapiola Gyre
(Fig. 9), whereas it remains below 4000 m2 s21 along the sec-
ondary direction at the same locations (which corresponds
to almost a factor 20 between the two directions). Regions
with strong difference in primary and secondary diffusivities
correspond to regions of strong diffusivity anisotropy (Fig. 10a).
We could cite the equator, the western boundary currents, and
the Antarctic Circumpolar Current. On the other hand, regions
away from the coast, and in particular away from the western
boundary currents, and gyre interiors appear to experience an
isotropic diffusivity.

To test the sensitivity to the resolution, we have carried out
this full analysis with a lower resolution of 58 3 58 (instead of
383 38) to compute the statistical properties of the analog tra-
jectories (as described in section 2b). The area distributions of
the zonal, meridional, and cross diffusivities for the 58 3 58
resolution have a similar shape than the ones for the 38 3 38
resolution (Fig. 8). The most common value (mode), the most

TABLE 1. Regional values of diffusivities and closure. Values are averaged over the globe (global) and 18 regions: Subpolar North
Atlantic Western Boundary and Interior (SP-NA-WB and SP-NA-I, respectively); Subtropical North Atlantic Western Boundary and
Interior (SP-NA-WB and SP-NA-I, respectively); Subtropical South Atlantic Western Boundary and Interior (ST-SA-WB and ST-
SA-I, respectively); Equatorial Atlantic, Indian Ocean and Pacific (EQ-A, EQ-IO, and EQ-P, respectively); Subtropical Indian
Ocean Western Boundary and Interior (ST-IO-WB and ST-IO-I, respectively); Subpolar North Pacific Western Boundary and
Interior (SP-NP-WB and SP-NP-I, respectively); Subtropical North Pacific Western Boundary and Interior (ST-NP-WB and ST-NP-I,
respectively); Subtropical South Pacific Western Boundary and Interior (ST-SP-WB and ST-SP-I, respectively); and the Southern
Ocean (SO). The regions are split between the subpolar, subtropical, and equatorial regions (following 388S, 108S, 108N, 388N, and
668N), between the Atlantic, Indian and Pacific region (following 908 and 658W for the North and South Atlantic, respectively; 208E;
and 1158 and 1458E for the North and South Pacific, respectively), and between the ocean western boundaries and interiors (358W
for the subpolar North Atlantic; 608 and 308W for the subtropical North and South Atlantic, respectively; 508E for the subtropical
Indian Ocean; 1708W for the subpolar North Pacific; and 1388 and 1608W for the subtropical North and South Pacific, respectively).
The regions are shown in Fig. 2c.

kxx (m
2 s21) kyy (m

2 s21) kp (m2 s21) ks (m
2 s21) lxturb (km) lyturb (km) txxturb (days) tyyturb (days)

Global 1324 969 1672 621 24 19 113.5 8.4
SP-NA-WB 2444 1906 3217 1134 35 31 8.5 6.8
SP-NA-I 806 783 1096 493 20 20 25.0 8.8
ST-NA-WB 1227 1055 1703 579 24 22 6.6 6.9
ST-NA-I 614 585 765 435 16 15 5.1 5.0
EQ-A 1322 718 1520 520 23 17 7.1 5.2
ST-SA-WB 1309 1704 2126 887 23 28 5.6 8.2
ST-SA-I 633 557 778 413 15 13 5.2 5.7
EQ-IO 1833 1166 2183 816 27 21 6.2 5.3
ST-IO-WB 5443 4015 7750 1708 64 49 10.4 7.4
ST-IO-I 890 824 1108 607 19 18 5.4 5.1
SP-NP-WB 960 839 1296 503 23 20 10.7 6.4
SP-NP-I 352 233 421 164 11 9 7.3 6.3
ST-NP-WB 925 812 1224 514 22 20 7.5 7.4
ST-NP-I 564 399 636 326 17 13 297.3 6.4
EQ-P 1707 544 1800 450 26 15 5.4 5.3
ST-SP-WB 1195 1860 2228 828 24 28 13.0 6.0
ST-SP-I 313 282 380 215 11 10 5.1 5.0
SO 2234 1784 2936 1082 35 28 333.6 17.8
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typical value (median), and the expected value (mean) of the
distributions remain also similar. The main difference is a
slight tightening of the distribution that reduces the occur-
rence of extreme values at the advantage of more typical
ones. This is consistent with the smoothing or averaging prop-
erties expected from the use of a larger resolution.

b. Diffusivity scalings

As mentioned previously, there is a degree of agreement
between the regions of enhanced turbulent activity and the
patterns of intense zonal and meridional diffusivities, such as
the Antarctic Circumpolar Current, the Zapiola Gyre, the
Agulhas Current retroflection, and the equatorial region.
Hence, we further investigate this relationship. To this

purpose, we can scale the zonal, meridional, and cross diffu-
sivities with the zonal and meridional turbulent velocities, and
the covariance velocities (Figs. 2c,d) computed in (2).

We test two classical turbulent scalings relating the diffusiv-
ities to either the turbulent velocities or their squared value
(Vallis 2006). The scaling of diffusivity with turbulent veloci-
ties predicts a length scale, whereas the scaling of diffusivity
with the velocity variance predicts a time scale. Hence we
diagnose the turbulent length and time scales, such as

kxx � ũlxturb, (12a)

kyy � ỹlyturb, and (12b)

kxx � ũ2 txxturb, (13a)

kyy � ỹ2 tyyturb, (13b)

kxy � c̃2 txyturb, (13c)

where l{x,y}turb are zonal and meridional turbulent length scales,
respectively, effectively a mixing length; and t{xx,yy,xy}turb are the
zonal, meridional, and cross turbulent time scales, respec-
tively, which is effectively the Lagrangian integral time scale
(Taylor 1921; Riser and Rossby 1983).

It worth noting that a range of studies have described the
effect of mean flow acting to suppress the cross (i.e., orthogo-
nal to the mean flow) term mixing (Ferrari and Nikurashin
2010; Klocker et al. 2012). Similarly the mixing has been sug-
gested to be enhanced along the mean flow (Nummelin et al.
2021). In these contexts, the closures suggested above would
need to be modified to account for that. However, in our
study we have avoided this difficulty by suppressing the action
of the mean flow [cf. (3)]. Hence, we kept the more classical
closure schemes described in (12) and (13), consistently with
pioneering studies of Prandtl (1925) and Taylor (1921),
respectively. The main hypothesis of these studies is the
homogeneity, which is assumed to hold locally in our study.

It appears that the turbulent length scales still show a lot of
large-scale structures that could be associated to gyres or
coherent currents (Fig. 11). Indeed the turbulent length scales
decrease inside gyres and increase in the equatorial region, in
western boundary currents, and in locations of intense circula-
tions, such as in the North Atlantic with the North Atlantic
Current or in the Southern Ocean with the Antarctic Cir-
cumpolar Current. This is confirmed by regional averages
(Table 1). Unlike previously suggested (e.g., Ollitrault and
Colin de Verdière 2002), in our study the turbulent length
scales do not scale with the Rossby deformation radius. On
the other hand, the turbulent time scales associated with the
zonal and meridional directions do not show large-scale
structure and are overall quite constant (Figs. 12a,b, respec-
tively). This suggests that a time scale is a better scaling fac-
tor than length scale, and that (13) appears more valid than
(12) to extract the essence of the zonal and meridional diffu-
sivity coefficients.

This result is further confirmed by comparing the linear
relationship between the diffusivities and the turbulent

FIG. 7. Error in the diffusivity estimation from the linear fit.
(a)–(c) Error for the zonal, meridional, and cross diffusivity coeffi-
cients (% or 310%). Except in a few specific locations the zonal
and meridional errors remain below a few percent. The error for
cross diffusivity coefficient is more important.
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velocities or the squared turbulent velocities (Fig. 13). This
last analysis suggests that, despite a broad degree of uncer-
tainty, the quadratic scaling from (13) is more robust than the
linear one from (12), with a percentage of variance explained
by the time scale closure of 62% and 56% for the zonal and
meridional diffusivities, falling to only 49% and 53%, respec-
tively, for the length scale closure.

Regarding the cross diffusivities, we can apply the same
scaling principle to find the cross turbulent length scale (13c).
The uncertainty appears larger than for the zonal and meridi-
onal directions. Cross-turbulent time scale shows large varia-
tions and no clear patterns (Fig. 12c), whereas the best linear
fit (Fig. 13e) explains only 12% of the relationship between
cross diffusivities (kxy) and the covariance velocities (c̃2).

Despite variable in space, we can build an area distribution
of the turbulent length and time scales to see if any prevalent
values emerge (Fig. 14). The turbulent length scale is strongly
varying with a most common values in the range between
10 and 12 km, for both zonal and meridional directions
(Fig. 14a). Given the skewness of the distributions, the
expected values (24 and 19 km, respectively) are different and
larger than the most common values. The inconsistency of
these most common values with the linear fit between diffu-
sivities and velocities (37 and 30 km for zonal and meridional
directions, respectively; Fig. 13) further suggests the inaccu-
racy of the turbulent closure through the turbulent length
scale described in (12). On the other hand, the area distribu-
tion of the turbulent time scales is sharper with a relatively

lower standard deviation and skewness (Fig. 14b). The most
common values are 4.5–5 days, for both zonal and meridional
directions. This is consistent with the best linear fit between
diffusivities and turbulent velocity variances of 5.3 and
4.5 days for zonal and meridional velocities (Fig. 13), respec-
tively. This overall consistency and the tighter area distribu-
tion suggest the usefulness of the time scale closure for
turbulent diffusivities described in (13). It is worth noting that
there still exist potentially significant variations of the region-
ally averaged turbulent time scales (Table 1), with values
reaching almost the year in the subtropical North Pacific inte-
rior and the Southern Ocean. For the cross diffusivity, the
most common value is 2–4 days (Fig. 14c). Despite the consis-
tency with 3.7 days found for the best linear fit (Fig. 13e), the
cross turbulent time scale is not as robust as the zonal and
meridional turbulent time scales because of the large spread
of the distribution (Fig. 14c). This spatial area distribution
analysis confirms the result of the previous analysis on the
geographic distribution of the turbulent length and time scales
and on the prevailing accuracy of the turbulent time scale clo-
sure over the turbulent length scale closure.

To further test the relationship between the turbulent flow
and the diffusivity, we check if the natural diffusivity direc-
tions (i.e., eigenvectors of the diffusivity operator) are consis-
tent with the natural directions of the turbulent velocity
variance [consistently with the closure of (13)]. These latter
natural directions are computed as the eigenvectors of the tur-
bulent velocity covariance matrix (R) and are the empirical

FIG. 8. Area distributions of diffusivity coefficients. (a)–(c) Zonal, meridional, and cross diffu-
sivity values (3103 m2 s21). Red and black histograms reflect distributions using 38 3 38 grid and
58 3 58 grid, respectively; solid black and dashed dark red lines reflect the expected values
(means) using 38 3 38 grid and 58 3 58 grid, respectively; solid gray and dashed light red lines
reflect the most typical values (medians) using 383 38 grid and 58 3 58 grid, respectively.
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orthogonal functions (EOFs) of the local turbulent velocity.
This decomposition reads

R � ũ2 c̃2

c̃2 ỹ2

( )
� p̃x s̃x

p̃y s̃y

( )
ũ2
p 0
0 ũ2

s

( )
p̃x p̃y
s̃x s̃y

( )
, (14)

where ũ2
p and ũ2

s are the primary and secondary turbulent
velocity variance acting along the horizontal directions
defined by (p̃x, p̃y) and (s̃x, s̃y), respectively; p̃x and p̃y are the
zonal and meridional vector coordinates of the primary turbu-
lent velocity variance direction, respectively; and s̃x and s̃y are
the zonal and meridional vector coordinates of the secondary
turbulent velocity variance direction, respectively. These vec-
tors are normalized such as p̃2

x 1 p̃2
y � s̃2x 1 s̃2y � 1. As for K, R

being a symmetric matrix (normal operator), its eigenvalues
are orthogonal (p̃xs̃x 1 p̃ys̃y � 0), so that the primary and sec-
ondary turbulent velocity variances act orthogonally to each
other. This property is quite useful to compare the directions
of the turbulent flow and of the diffusivity, since comparing
their primary direction, is also, virtually, comparing their sec-
ondary direction. Finally, it is interesting to note that eddy
kinetic energy remains conserved through the rotation of the
coordinates from zonal-meridional to EOFs, since the trace of
the matrix is constant (ũ2 1 ỹ2 and ũ2

p 1 ũ2
s , respectively).

Hence, to set the quantitative comparison between natural

direction of diffusivity and of the turbulent flow, we define the
angle from the north as u = arctan(px/py) and ũ � arctan p̃x=p̃y

( )
for the primary diffusivity direction and for the primary turbu-
lent velocity variance direction, respectively. To further test the
impact of the flow dynamics on the diffusivity we also defined
the mean flow direction as: u � arctan u=y

( )
.

To test the relation between u and ũ or u, we plot them
against each other (Figs. 10b or 10c, respectively). This reveals
that indeed, despite a degree of uncertainty, a one-to-one
relation exists between the natural diffusivity directions and
the natural turbulent flow direction (Fig. 10b). On the other
hand, there is no obvious relationship between the primary
diffusivity direction and the mean flow direction (Fig. 10c).
This differs from the widely used hypothesis stating that the
mean flow enhances and suppresses the diffusivity along and
across its direction, respectively (Ferrari and Nikurashin
2010; Klocker and Abernathey 2014; Groeskamp et al. 2020;
Nummelin et al. 2021). However, we remind the reader that
we have removed the effect of the mean advection in (3),
which could explain this apparent disagreement. Hence, we
conclude that the natural diffusivity direction is set by the nat-
ural direction of the turbulent flow (i.e., eddy kinetic energy
or variance of the velocities). Note that testing the relation-
ship by only keeping region of high diffusivities, where the
diffusivity directions are well organized, does not improve the
relationships.

4. Discussions and conclusions

The observed ocean circulation is the result of the action of
several physical processes and their interactions. One of these
processes is turbulent mixing quantified by the horizontal dif-
fusion. It is crucial for the ocean circulation from local to
global scale, as well as for water mass transformation and ven-
tilation (Abernathey and Ferreira 2015). Diffusion is not only
important for the physical properties of the ocean, but also
for carbon and nutrient distribution and evolution, especially
in region of intense eddy activity (Wunsch 1999).

In this study we have computed the horizontal diffusivity
coefficients of the ocean at ∼1000-m depth from observed
Lagrangian displacements. These observations are recorded
by Argo floats through their 10-day journey at parking depth
and gathered and validated in the ANDRO dataset (Ollitrault
et al. 2019). Because they are the cycling between surface drift
and transmission, drift at parking depth, and water column
profiling, the Argo floats do not provide continuous trajecto-
ries. Furthermore, the initial positions of Argo floats are not
collocated. These discontinuity and initial position issues must
be cared for to discuss the spreading as actual Lagrangian
floats over a few months. To do so, we have reconstructed
likely pseudotrajectories, which are continuous in time and in
agreement with the statistical properties of the Argo float dis-
placements at depth. This has been done using an analog
method, whose efficiency has been demonstrated in a range
of previous studies (e.g., Ayet and Tandeo 2018; Sévellec and
Drijfhout 2018).

Using this method, we obtain the dispersion of pseudo
Lagrangian particles and can infer the diffusivity coefficients

FIG. 9. Rotated diffusivity estimation from Argo floats.
(a) Primary and (b) secondary diffusivity coefficients (3103 m2 s21)
with their respective direction (lines, spaced by 38 for legibility).
Note the nonlinearity of the color scale reflecting low (below
2 3 103 m2 s21) and high (above 2 3 103 m2 s21) diffusivities
(i.e., linear from 0 to 23 103 m2 s21 and from 2 to 203 103 m2 s21).
The global mean values are indicated in the title.
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along the zonal, meridional, and cross directions. This anal-
ysis reveals that the diffusion is anisotropic and that the dif-
fusivity coefficients are highly varying in space. We find
values ranging from a few 100 m2 s21 in the ocean interior
to several 1000 m2 s21 in western boundary currents or along
the Antarctic Circumpolar Current, up to several 10 000 m2 s21

in a few specific hot spots (Zapiola Gyre and Agulhas Current
retroflection). For the zonal diffusivity coefficient, values rang-
ing from several 1000 m2 s21 to a few 10000 m2 s21 are also
found at and in the vicinity of the equator. Overall the global
mean zonal diffusivity coefficient reached 1324 m2 s21, where it

is slightly below 1000 m2 s21 for the meridional diffusivity. In
comparison the cross diffusivity averages out, and reached val-
ues of 10 000 m2 s21 within intense boundary currents and in
the Southern Ocean.

To further characterize the diffusivity coefficients, we have
tested two empirical closures: one relates the coefficients to
the local turbulent velocities and the other to variance of the
local velocities (the latter being the square of the former).
Linear regression allows us to compute the turbulent length
and time scale, respectively. We find that the zonal and merid-
ional turbulent length scales have a globally average values of

FIG. 10. (a) Diffusivity anisotropy measured by the ratio of primary to secondary diffusivity. Values close to 1 show
local isotropy of the diffusivity; values significantly higher than 1 show the significant dominance of the primary direc-
tion over the secondary one for diffusivity, and the local anisotropy of the diffusivity. Scatterplots (dot) and density
(contours), in terms of the angle in radians from the north, of the primary diffusivity direction with (b) the primary
turbulent flow direction and with (c) the mean flow direction. Density is computed as a normalized density on grid of
0.1p 3 0.1p radian angle. Contour interval are 0.1, thick purple lines are 0.5, and thin cyan and magenta lines are
higher and lower values.
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24 and 19 km, but vary quite significantly spatially. These var-
iations bear a resemblance with the turbulent velocities (i.e.,
intensification along western boundary, in the Southern Ocean,
and at the equator). On the other hand, we find that the zonal
and meridional turbulent time scales show quite spatially uni-
form values with a most common value of 4.5–5 days. The
nearly spatially constant turbulent time scale is particularly
striking given the huge spatial variations of the diffusivity coeffi-
cients. This suggests that the eddy kinetic energy captures
well the spatial variations of the diffusivity coefficients at this
1000-m depth. From this analysis, we conclude that the turbu-
lent velocity variance closure is favored, leading to an almost
universal turbulent time scale of 4.5–5 days.

In this study, we have also taken advantage of the computa-
tion of the cross-diffusivity coefficient to rotate the diffusivity
along its natural directions. This rotation is not important
within the ocean interior (where diffusivity is mainly isotro-
pic) but is more crucial along western boundaries and in the
Southern Ocean. Within this new framework, the diffusivity
coefficient reached up to 74 000 m2 s21 (in the Zapiola Gyre
and in the Agulhas Current retroflection). This increase of
diffusivity coefficients is expected, since the rotation boosts
the diffusivity along the primary direction (and decreases it
along the secondary direction) when compared to values
along the zonal and meridional directions (and further dem-
onstrate the anisotropy of the diffusion). This property is a
natural outcome of the conservation of the trace of the diffu-
sivity operator, which follows the rotational invariance of
eddy kinetic energy, given the accuracy of the turbulent time
scale closure discussed in the paragraph above. We also show
that primary direction is well aligned, with a degree of

uncertainty, to the primary direction of horizontal velocity
variance, but is not particularly aligned to the direction of the
mean flow.

There has been a range of local eddy resolving in situ
experiments in the North Atlantic from which the horizontal
diffusivity coefficients have been estimated. Using SOFAR
floats (Lagrangian floats positioned by acoustic), Freeland
et al. (1975) in the MODE region found kyy = 710 m2 s21

around 288N, 698W at 1500-m depth. Riser and Rossby (1983)
measured diffusivity coefficients of kxx = 4500 m2 s21 and
kyy = 1800 m2 s21 (with 650% uncertainties) at 700-m depth
and within the 258–308N and 678–758W region. Böning (1988)
reported unpublished values from Price (also reported
in Rossby et al. 1983) of kxx = 1500 6 1000 m2 s21 and
kyy = 1500 6 500 m2 s21 at 1300-m depth from the local
dynamics experiment in the North Atlantic. All these reported
values are in the range of our own estimations for the region,
validating, a posteriori, our study and inherent assumptions.

FIG. 11. Turbulent length scales. Colors show (a) zonal and
(b) meridional turbulent length scales (km), following (12).

FIG. 12. Turbulent time scales. Colors show (a) zonal,
(b) meridional, and (c) cross turbulent time scales (day or
34 days), following (13).
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At the same location and 700-m depth, Ollitrault and Colin de
Verdière (2002) showed an interesting property of the diffusiv-
ity, whereas west of the Mid-Atlantic ridge they reported val-
ues of 5000 m2 s21, east of the Mid-Atlantic Ridge they found
values of only 2200 m2 s21. This spatial variation is qualita-
tively and quantitatively consistent with our analysis that
reveals changes in the diffusivity coefficients between region
of active turbulence (e.g., west of the Mid-Atlantic Ridge) and
the more laminar ocean gyre interior (e.g., east of the Mid-
Atlantic Ridge). Alternative methods diagnosing diffusivity
through turbulent advection, either along the 27.9 kg m23 iso-
pycnal (Chapman and Sallée 2017) or for full ocean depth
(Groeskamp et al. 2020), show at ∼1000-m depth consistent
values to our estimates.

More recently, a dedicated experiment using both passive
tracer and Lagrangian acoustically positioned floats was
achieved under the Diapycnal and Isopycnal Mixing Experi-
ment in the Southern Ocean (DIMES; Naveira Garabato
2010; Meredith 2011). The release of passive tracer and floats
was located at 578S, 1058W, east of the Drake Passage. The

two methods found a meridional (cross-mean flow) diffusivity
of 710 6 260 m2 s21 (at 1500-m depth, Tulloch et al. 2014)
and 800 6 200 m2 s21 (at 950-m depth; LaCasce et al. 2014),
respectively. To quantitatively test our method, we have
reproduced this analysis by initializing the pseudotrajectories
at the location of DIMES tracer and float releases. To make
the comparison more accurate, we have aligned our estima-
tion protocol with the one of LaCasce et al. (2014) and
Tulloch et al. (2014). Hence, we have removed the constraint
on the mean flow [i.e., allowing mean advection by removing
the last term in the right-hand side of (3b)] and computed the
diffusivity coefficient over 1 year. We obtain ∼950 m2 s21 for
the meridional diffusivity coefficient at 1000-m depth, which
confirms the quantitative skill of our method (i.e., trajectory
reconstruction by the analog method). However, we argue
that these two previous studies suffer from inherent methodo-
logical limitations. First, 3 months is more appropriate than
1 year to sample the turbulent diffusive regime. Indeed, com-
putation over too long time scales underestimates the diffusiv-
ity (because the tracer variance increase is partially computed

FIG. 13. Fit of turbulent closures. Scatterplots (dots) of (a) zonal and (b) meridional diffusivities (kxx and kyy,
respectively) as a function of zonal and meridional turbulent velocity (ũ and ỹ, respectively). (c)–(e) Scatterplots
(dots) of zonal, meridional, and cross diffusivity (kxx, kyy, and kxy, respectively) as a function of zonal, meridional, and
coturbulent velocity variance (ũ2, ỹ2, and c̃2, respectively). Red lines are the best linear fits (crossing zero), which
coefficient (indicated in the title) estimates the best zonal and meridional turbulent length scale in (a) and (b), respec-
tively, following (12), or the best zonal, meridional, and cross turbulent time scale, following (13), in (c)–(e), respec-
tively. In each panel, the coefficient of determination of the linear fit (R2 is the proportion of variance explained by
the fit) is indicated in the title.
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over the saturated regime). The decrease of cross diffusivity
with longer integration time scales have also been reported
by Zhurbas et al. (2014) in the context of surface drifters.
Second, because the estimation is done along the mean flow
pathways (which is significant in the region), it is not a local
estimate, but it represents an integral along the pathway
(which is long for a 1-yr estimation). Since we can correct for
both limitations in our setting, we obtain instead

• ∼1575 m2 s21, for estimation over 100 days, and
• ∼1570 m2 s21, for estimation over 100 days and with
removing the ensemble mean advection.

Hence, we consider the last value to be the more accurate
estimation at that location. [Note that removing the mean
flow affects particularly the along-mean flow estimation
(zonal direction at DIMES location), which was not discussed
in Tulloch et al. (2014) and LaCasce et al. (2014). It is a dem-
onstration or confirmation, if needed, that the diffusivity coef-
ficients computed along a path [Lagrangian view: k̃(x(t),y(t))]
or at a fixed point [Eulerian view: k(x, y)] can differ by more
than 50% because of the high spatial variability of the coeffi-
cient. This argument highlights the difficulty of the compari-
sons between the two estimations.

There also exists global studies of estimation of the lateral
diffusivity coefficients. For instance, Cole et al. (2015) found
values from only a few 100 m2 s21 (subpolar gyre interior) to
several 10 000 m2 s21 (western boundary currents) at the base
of the mixed layer (described at ∼100-m depth, except in high
latitudes where it reaches a few 100-m depth). Once again this

study is qualitatively consistent with our results (i.e., spatial
variation of the diffusivity with intensification near intense
boundary currents); however, the difference in depth loca-
tion (mixed layer versus intermediate depth) prevents us
from further quantitative comparisons. Maybe the most
straightforward comparison is with the results of Roach et al.
(2018). Although they use the same observations (Argo
float deep displacements), their method and related assump-
tions completely differ from ours. They reported cross-
mean-flow diffusivity of 543 6 155 m2 s21 in agreement with
our estimations, with spatial variation comparable to our sec-
ondary-direction diffusivity.

Beyond the purely quantitative estimation of the diffusivity
coefficients, we have also shown that the diffusivity scales best
with the turbulent velocity variance (versus its standard devia-
tion, as sometime hypothesized), a result consistent with
Taylor (1921). In our analysis we found that the closure is
especially robust in homogeneous and isotropic regions (i.e.,
ocean gyre interior), assumptions at the base of Taylor’s
(1921) results. Beyond the usefulness of the closure with the
turbulent velocity variance, we show that the covariance func-
tion time integral (leading to the Lagrangian integral time
scale) is mainly spatially uniform with a value of 4.5–5 days
(despite it is more accurately described as a distribution). This
universal time scale contrasts with the high resolution model
estimations of the Lagrangian integral time scale by Griesel
et al. (2010), which was found to be highly spatially varying.
However, values from other regional observational studies
are consistent with ours. Hence, Lumpkin et al. (2002) found

FIG. 14. Area distributions of turbulent length and time scales. (a) Area distribution of the
(black) zonal and (red) meridional turbulent length scales as defined by (12) and shown in
Fig. 11. (b) Area distribution of the (black) zonal and (red) meridional turbulent time scales as
defined by (13) and shown in Fig. 12. (c) As in (b), but for the (gray) cross turbulent time scale.
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a spatially uniform Lagrangian time scale of ∼6 days at
700–2000-m depth in the midlatitudes of the North Atlantic.
In the same region, Ollitrault et al. (2005) suggested a
Lagrangian integral time scale of 7–10 and 5–6 days at the
west and the east of the Mid-Atlantic ridge, respectively.
These two values are quite close (and notably consistent with
our estimates of ∼7 and ∼5 days for these regions, ST-NA-
WB and ST-NA-I in Table 1, respectively), despite the wide
difference in the eddy kinetic energy between the west and
the east (pleading in favor of a universal time scale). In the
MODE region, Riser and Rossby (1983) reported values
between 7 and 18 days, whereas (Freeland et al. 1975)
reported values between 10 and 12 days. Despite being in the
upper range of our estimation distribution (Fig. 14b), these
values remain within our local and regional estimations
(Figs. 12a,b and Table 1, respectively). Also, both studies sug-
gest the spatial anisotropy of the Lagrangian integral time
scales in the studied region. This is consistent with our local
and regional estimations showing that boundary regions are
where the universality of the Lagrangian integral time scale
breakdown (Figs. 12a,b and Table 1).

We have seen that our diffusivity estimates do not exhibit a
suppressed direction across the direction of the mean flow, as
suggested by Ferrari and Nikurashin (2010), Klocker and
Abernathey (2014), and Groeskamp et al. (2020). At the
opposite we find that the natural directions of the diffusivity
have no distinct relationship with the direction of the mean
flow. This could be linked to the diffusivity estimation method
used in our study, which deliberately removes the direct
action of the mean flow on Lagrangian tracer ensemble (albeit
the turbulence is still derived from a circulation where the
mean flow exists). Alternatively, this could be linked to the
isotropic diffusivity assumption at the heart of the enhanced
and suppressed diffusivity hypothesis (Nummelin et al. 2021).
Indeed, we have shown that the diffusivity coefficients in the
absence of mean flow are strongly anisotropic following the
natural directions of the horizontal velocity variance. Hence,
it is possible that the suppressing and enhancing effects are
second-order effects of an anisotropic diffusion. In particular,
our closures fully acknowledged both directions independently
(13), unlike the one suggested by Ferrari and Nikurashin
(2010) and Groeskamp et al. (2020), for instance, where a
single measure of turbulent velocities (i.e.,

����������
ũ2 1 ỹ2

√
) is used.

However, our closures exhibit zonal and meridional turbulent
time scale longer and shorter than average, respectively, in the
Gulf Stream and in part of the Antarctic Circumpolar Current
(Figs. 12a,b). Hence, rationalizing the role of the mean flow
in an anisotropic turbulent field will be the subject of a follow
up study.

Let us now list the shortcomings of our study. The primary
one is the discontinuity of the Argo float displacements.
Hence, and despite having been fully assessed in our study,
the assumptions behind the analog method used to recon-
struct pseudotrajectories remain a source of uncertainties and
errors. In particular this ignores the motions above the
Nyquist frequency of ∼1/20 cycles per day. Also, it would be
interesting to test more sophisticated method based on more
advanced artificial intelligence procedure, such as deep learning,

for comparison and to test the robustness of the results. In par-
ticular, we would like to account for the memory of the
Lagrangian trajectories (e.g., Berloff and McWilliams 2002)
and to acknowledge nonnormal displacement distribution
related to extreme events (e.g., Bracco et al. 2000). Another
difficulty is that, by design of the Argo float/network, the dis-
placement observations are only made at a single depth level
(1000 m). This does not allow the computation of the horizon-
tal diffusivity coefficients for the full 3D ocean and to track
how they change with depth. Other methodologies would be
needed for this purpose.

The current study and developed methodology offer a
range of future applications. For instance, focusing on the sur-
face, flotsam dispersion can be estimated using surface drifters
(which are not discontinuous, but are not collocated), with
natural implication for ocean plastic pollution. It would be
particularly interesting to investigate the role of new physical
mechanisms at play at the surface, such as Ekman transport
or surface-wave Stokes drift, and to determine their respec-
tive impact on the dispersion. More generally our study and
the estimation of diffusivity coefficients can be used for
parameterization of passive tracer diffusion in eddy-less
model (simply following K � R3 5days, which can be esti-
mated from direct observations of eddy kinetic energy, similar
to the suggestion of Holloway 1986). Following the same logic,
these coefficients can be used as a benchmark to validate eddy-
permitting and eddy-resolving ocean models. When these models
will be able to reproduce surface and 1000-m depth disper-
sion they will become useful to estimate the vertical varia-
tions of the diffusion coefficients. All these will be directions
for future work.
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