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Abstract—Online Bayesian learning-assisted channel state in-
formation (CSI) estimation schemes are conceived for single input
single output (SISO) and multiple input multiple output (MIMO)
orthogonal time frequency space (OTFS) modulated systems. To
begin with, an end-to-end system model is derived in the delay-
Doppler (DD)-domain, followed by an online CSI estimation
(CE) framework for SISO-OTFS systems. Next, the sequential
minimum mean square error (MMSE) estimator is derived for
this model which utilizes expectation maximization (EM) based
sparse Bayesian learning (SBL) for initialization of the online
estimation procedure. Additionally, a low-complexity detection
technique is developed for the system under consideration, which
is accomplished via an analogous time-frequency (TF)-domain
system model that leads to a block-diagonal TF-domain channel
matrix. The paradigm designed for online CE is subsequently
extended to MIMO-OTFS systems. The corresponding DD-
domain CSI is shown to be simultaneously row and group sparse.
Hence a novel EM-based row and group sparse Bayesian learning
scheme is developed for determining the initialization parameters
for the above online algorithm. As a further continuation,
a low-complexity detector is also proposed for MIMO-OTFS
systems based on an iterative block matrix inversion technique.
Furthermore, time-recursive Bayesian Cramer-Rao lower bounds
(BCRLBs) are derived to benchmark the MSE performance of
the proposed schemes for both the systems. Finally, simulation
results are presented to demonstrate the efficiency of the proposed
online estimation techniques.

Index Terms—OTFS, DD-domain, sparse CE, high-mobility,
Bayesian learning, low-complexity detector.

I. INTRODUCTION

Ultra-high Doppler arises when the transmitter and the
receiver are moving relative to one another at high velocities,
such as in high-speed trains [1], [2] with velocities in the
range 400-500Km/hr or for air-plane users [3] travelling at
speeds in the range of 800-1000 km/hr. In such a scenario, the
current generation of multi-carrier modulation schemes, such
as orthogonal frequency division multiplexing (OFDM), suffer
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from a high level of inter-carrier interference (ICI) [4]–[7].
This arises due to the significant Doppler shift that perturbs
the orthogonality of the subcarriers in an OFDM system. As a
result, the performance of the system is considerably degraded.
The ICI analysis of OFDM systems under ultra-high Doppler
is presented by the authors of [8], together with a time-domain
filtering technique for combating ICI. Along similar lines,
the performance degradation of these systems due to Doppler
spreading is investigated by the authors of [9]. Furthermore,
several channel estimation approaches, such as Doppler-aided
channel estimation with parallel ICI cancellation [10] and
interpolation-based channel estimation [11], have been pre-
sented to improve the quality of channel estimates in such high
Doppler systems. In addition, the rapidly varying channel in
such scenarios also necessitates its frequent estimation, which
leads to a significant increase in the pilot overhead.

To address this issue and enhance system performance in
high-Doppler scenarios, the novel orthogonal time frequency
and space (OTFS) modulation scheme has been introduced
[5], [12], [13] precisely addresses this challenge. The fact that
OTFS operates in the DD-domain, where the wireless chan-
nel is time-invariant over a significantly longer observation
window, is one of its key characteristics. This mitigates the
degradation caused by high Doppler, allowing for the high-
integrity demodulation of the information symbols in high-
speed scenarios. However, the accuracy of the CSI estimate
(CE) obtained is of critical importance in OTFS systems, since
it affects the overall performance of the system. Hence, we
proceed with a brief overview of the research contributions
relevant to OTFS channel estimation in the open literature.

A. Literature review

The conventional CE scheme includes the transmission of
pilot impulses in a single OTFS frame [5], [14], [15]. The
impulse-based technique has subsequently been extended to
channel estimation in MIMO-OTFS systems [16]. While this
approach has significant appeal due to its low complexity, a
noteworthy disadvantage is the associated spectral inefficiency,
which arises due to the fact that the entire frame is comprised
of pilot symbols. To address this issue, [15], [17] introduced
an embedded pilot-based CSI estimator, where the data and
pilot symbols are sent in the same OTFS frame with sufficient
guards to eliminate interference. In an environment character-
ized by an ultra-high Doppler, the maximum Doppler νmax
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is very high. This directly impacts traditional CSI estimation
methods discussed above [18]. Due to the high maximum
Doppler νmax, it becomes necessary to allocate additional
guard symbols around the pilot symbols along the Doppler
axis, albeit this is only possible at the cost of reduced spectral
efficiency. The problem is even more severe in the MIMO
OTFS scenario, wherein pilot impulses are transmitted in the
DD-domain with suitable guard intervals between the pilots
of different transmit antennas to avoid overlap. Moreover, in
such a scenario the interference also increases both with the
delay τ and Doppler ν of the channel. In particular, they are
affected by the value of the cross-ambiguity function [19].

Additionally, the DD-domain wireless channel response [4],
[19] typically has a small number of dominant reflectors,
which leads to a sparse channel. Consequently, exploiting
this characteristic feature, one may estimate it at a much
lower pilot overhead than is possible in a standard TF-domain
OFDM system [17]. By reformulating the task of CE as a
sparse estimation problem, researchers have been able to take
advantage of the sparse nature of DD-domain wireless channel
[21]–[25], thereby achieving a significant improvement in the
estimation performance over the simplistic impulse-based pilot
schemes. The seminal research paper by Shen et al. [21]
provides a methodology for sparse downlink CE in a massive
MIMO-OTFS system. This approach takes into account the
sparsity of the channel and employs the orthogonal matching
pursuit (OMP) for sparse signal recovery. The authors of [23]
extend this framework to an uplink OTFS-based (MA) sce-
nario and thereafter use an OMP and subspace pursuit-based
algorithm. Zhao et al. in [22] proposed a novel pilot pattern
that does not require a DD-domain-guard band. This special
frame is then exploited to develop the pertinent sparse channel
estimation problem, but exclusively for SISO-OTFS systems.
In another recent addition, the authors of [25] exploited the
sparse signal recovery paradigm for the estimation of the DD
domain channel by employing the powerful Bayesian learning
framework in order to determine the estimate. However, the
CE scheme therein is limited to SISO-OTFS systems and it
is difficult to extend to MIMO systems. To decrease the pilot
overhead, the authors of [24], [27] proposed a scheme that
transmits the TF-domain pilots on a common TF resource
block for all the TAs.

To address the challenge posed by ultra-high Doppler
effects, an intriguing alternative involves leveraging online
estimation techniques, as previously explored by the authors
[28], [29] within the context of OFDM systems. This prior
research has inspired us to investigate the applicability of such
an approach to OTFS-based systems. Nevertheless, it is im-
portant to note that a direct adaptation of these OFDM-based
techniques to OTFS systems is not feasible, primarily because
the former relies on exploiting angular domain sparsity, while
the latter exhibits sparsity in the DD-domain.

Therefore, our proposed estimation approach relies on de-
veloping a sequential estimation framework. This framework
adds a cyclic prefix to each pilot vector in the time domain.
Following this they are transmitted sequentially. This approach
offers a notable advantage, eliminating the need for guard
bands, which depend on the Doppler parameter. Furthermore,

the proposed scheme demonstrates consistent performance
across a wide range of frequencies, as long as the parameters
are thoughtfully selected to meet the condition νmax < 1/T
and τmax < 1/∆f [19]. This adaptability sets our scheme
apart from other conventional methods, making it an attractive
solution for scenarios characterized by high Doppler shifts in
both SISO and MIMO OTFS systems.

In these systems, it is also common practice to use the
non-linear recursive message passing (MP) detector [19] or
variational Bayes (VB) detector [30]. These schemes, how-
ever, assume that perfect CSI information is available at the
receiver. Furthermore, imperfect CSI scenarios present many
challenges, such as miss-detection or false detection, which
occur when the number of multipath components detected is
less or more, respectively. Furthermore, the existing methods
operate iteratively, potentially encountering convergence chal-
lenges. Similarly, the authors of [31], [26], [32] explored low-
complexity detectors in the DD-domain. By utilizing circulant
and quasi-banded structures. By contrast, the author of [33]
proposes a modified MRC detector for the DD-domain and
its low-complexity delay-time domain variant is also imple-
mented in this treatise. Another appealing alternative is to
develop low-complexity TF-domain linear detectors based on
the zero-forcing (ZF) or minimal mean squared error (MMSE)
principles, which can be easily implemented on OFDM-based
OTFS design using pre- and post-processing blocks.

The problem statement formulated in this paper proposes
a novel system model for sequential estimation of the DD-
domain CSI for SISO systems. Furthermore, it also extends
the work to the MIMO-OTFS scenario, where it also exploits
the inherent row and group sparsity along with sequential es-
timation. The other existing BL-based OTFS CE schemes [5],
[14], [15], [16], [17] use batch processing for the estimation of
the channel coefficients. Briefly, in batch processing, the entire
block of pilot symbols of size M×Np is processed at a single
instant, which increases the computational cost and processing
delay. By contrast, in our case, we have used BL for sequential
estimation, which is based on individually processing each
M × 1 length pilot vector that helps significantly reduce
the processing delay of parameters estimation. The novel
contributions of this paper are described next and are also
boldly compared to the existing literature in Table-I.

B. Contributions of the paper

1) The end-to-end system model is derived for a SISO-OTFS
system using arbitrary Tx-Rx pulse shapes in the DD-
domain. At the receiver, a procedure is conceived for
pilot extraction followed by the formulation of the CE
paradigm as a sparse estimation problem.

2) A novel online estimation framework is proposed, which
utilizes the expectation maximization (EM) based sparse
Bayesian learning (SBL) technique for determining the
initialization parameters for channel estimation in SISO-
OTFS systems.

3) A low complexity data detector is developed for the data
processing unit (DPU) that collects outputs corresponding
to the transmitted data signal. An equivalent TF-domain
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TABLE I: Contrasting the proposed solution to the existing literature on OTFS CE

[20] [16] [21] [17] [22] [23] [24] [25] [26] Proposed
MIMO system X X X
Sparse DD-domain channel X X X X X X
Row-group sparsity X
Flexible pilot overhead X X X
Online CE X
Practical pulse shape X X X X X
Low complexity detector X X
DD-domain guard band X X X X

system model is derived to achieve this, wherein the
channel matrix constructed in the TF-domain is explicitly
shown to be of block diagonal nature.

4) Furthermore, the above formulations and algorithms are
also extended to MIMO-OTFS systems after the develop-
ment of the corresponding end-to-end DD-domain system
model. Interestingly, the CSI for this scenario is shown
to be both row and group sparse in nature. To suitably
exploit this important property, an online row and group
sparse Bayesian learning (RGBL) technique is proposed
for CE in these systems.

5) A novel iterative block matrix inversion approach based
on the Schur complement is also derived for symbol
detection in MIMO-OTFS systems which is proven to
have significantly lower complexity than the conventional
LMMMSE detector.

6) Additionally, the time-recursive Bayesian Cramer-Rao
lower bounds (BCRLBs) have been derived for both
SISO and MIMO-OTFS systems to benchmark the CE
performance.

C. Organization of the paper

The rest of this work is organized as follows. The DD-
domain SISO-OTFS system model is derived in Section-II.
Section-III expresses the CSI estimation problem as a sparse
estimation problem and develops a novel online estimation
framework for the same. In addition, a low complexity de-
tector is proposed data detection, followed by Section-IV that
derives the DD-domain MIMO-OTFS system model. Next, in
section V develops the online estimation framework and a low
complexity detector in these systems. Section-VI presents the
time-recursive Bayesian Cramer-Rao Lower Bounds (BCRLB)
that serve as benchmarks to characterize the MSE performance
of the proposed algorithms. Section-VII gives a complexity
analysis of the proposed algorithm. This is followed by our
simulation results in Section-VIII and conclusion in Section-
IX. Also, the recursive procedure for finding block inversion
is derived in Appendix A.

D. Notation

The following notation is used throughout this paper. Upper-
case boldface letters (A) represent matrices, while lowercase
boldface letters (a) denote vectors. The operation vec(A)
converts a matrix to its corresponding vector via stacking its
columns, while vec−1(a) denotes vector to matrix conversion.

The property vec (ABC) =
(
CT ⊗A

)
vec (B) is used fre-

quently in the paper, where ⊗ denotes the Kronecker product
of two matrices. The notation [·]M represents the modulo-
M operation. The operator diag (·), blkdiag (·) arranges the
elements in diagonal, and block-diagonal matrices, respec-
tively, and Ik and 0k represent the identity and zero matrices,
respectively, of size k × k. The discrete Fourier transform
(DFT) matrix of order K is represented by FK , where its
(i, j)-th element is given as FK(i, j) = 1√

K
e−j2π

ij
K .

II. SISO-OTFS SYSTEM MODEL

Consider a SISO-OTFS system wherein the frame duration
Tfd is given as Tfd = NT and the bandwidth by BW =
M∆f . The quantities T (seconds) and ∆f (Hz) represent
the symbol duration and sub-carrier spacing, respectively, such
that T∆f = 1. The parameters N and M denote the number
of symbols along the time and frequency axes, respectively.
The information symbols are placed in the delay-Dopler (DD)
domain, where the delay and Doppler axes are sampled at
integer multiples of ∆τ = 1

BW and ∆ν = 1
∆f .

A. OTFS modulation

Let the 2D-array of information symbols represented in
the DD-domain be given by the matrix XDD ∈ CM×N ,
where each symbol is selected from a suitable constellation
with symbol power σ2

d. At the transmitter, the DD-domain
symbol matrix XDD is converted to its TF-domain equivalent
XTF ∈ CM×N by using the inverse symplectic finite Fourier
transform (ISFFT). Furthermore, XTF is a linear transforma-
tion of XDD given by XTF = FMXDDFHN , where FM and
FN are DFT matrices of sizes M and N , respectively. The
equivalent time-domain signal is obtained from the TF-domain
signal employing the Heisenberg transform, which is further
sampled at the rate of M

T . The resultant transmit signal matrix
S ∈ CM×N can be modeled as

S = ζ txF
H
MXTF = ζ txXDDFHN , (1)

where ζ tx = diag
{
ξtx

(
mT
M

)}M−1

m=0
∈ CM×M is obtained from

the samples of the transmit pulse ξtx(t). In a manner analogous
to OFDM, a cyclic prefix (CP) of length L is appended to
each column of S, denoted by si, where i ∈ [1, N ], prior
to transmission, to eliminate inter-frame interference (IFI).
The various steps described above for OTFS modulation are
schematically depicted in Fig. 1.
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B. DD-domain wireless channel model

Let h(τ, ν) represent the DD-domain wireless channel,
where τ and ν are the delay and Doppler variables, respec-
tively. The typical DD-domain channel is composed of only a
few dominant reflectors (ρ), with the i-th reflector introducing
a delay-shift τi and Doppler-shift νi, 1 ≤ i ≤ ρ, in the
transmitted signal. Thus, the DD-domain wireless channel
h(τ, ν) can be modeled as

h(τ, ν) =

ρ∑
i=1

hiδ(τ − τi)δ(ν − νi), (2)

where hi is the complex gain of the i-th path and δ(·) de-
notes the Dirac-delta function. For a typical wideband system
associated with M = 32 and ∆f = 15KHz, the delay
resolution obtained is ∆τ = 1

M∆f = 2.08µsec, which is low.
Hence, one can safely assume that the delays of the multipath
components are integer multiples of the delay resolution [4],
[19], [34]. The delay and Doppler shifts associated with the i-
th multi-path component are defined as τi = li

M∆f , νi = ki
NT ,

respectively, where ki = round(ki) + κνi , with |κνi | < 1
2

[17], [19], [35]. For an under-spread wireless channel, we have
max (li) << M and max (ki) << N [17], [19], [36]. At the
receiver, the output signal rn(t) is sampled at the Nyquist rate.
The m-th sample rn(m) = rn(t)|t=mT

M
of the n-th received

vector rn after removing CP can be expressed as

rn(m) =

ρ∑
i=1

hie
j2π

ki(m+n(M+L))−li)
MN s

(
[m+ nM − li]MN

)
+ wn(m), (3)

where wn(m) is the m-th sample of the noise vector wn.
Stacking all the samples rn(m) for 0 ≤ m ≤ M − 1,
one obtains the vector rn = [rn(0), rn(1), · · · , rn(M − 1)]

T
.

Furthermore, the received column vector rn can be expressed
as rn = Hnsn + wn, where the equivalent time-domain
channel matrix Hn ∈ CM×M obeys

Hn =

ρ∑
i=1

hi
(
P̄
)li (

D̄i,n

)
.

The quantity P̄ ∈ CM×M denote permutation (forward cyclic
shift) and D̄i,n ∈ CM×M is diagonal matrices defined as

P̄ =


0 · · · 0 1

1
. . . 0 0

...
. . . . . .

...
0 · · · 1 0


M×M

(4)

D̄i,n =



diag
{
ω
n(M+L)
i , ω

n(M+L)+1
i · · ·ωn(M+L)+M−1−li

i ,

ω
n(M+L)−li
i · · ·ωn(M+L)−1

i

}
, if li 6= 0,

diag
{
ω
n(M+L)
i , ω

n(M+L)+1
i · · ·ωn(M+L)+M−1

i

}
,

if li = 0,

(5)

where ωi = e
j2πki
MN . The received symbol vector r ∈ CMN×1,

obtained by stacking all the vectors rn, can be modeled as

r =
[
rT1 , r

T
2 , · · · , rTN

]T
= H̃s + w, (6)

where the effective channel matrix H̃ ∈ CMN×MN and the
noise vector w ∈ CMN×1, which is comprised of independent
and identically distributed (i.i.d.) additive white Gaussian
noise (AWGN) samples, and has the multivariate distribution
N (0, σ2IMN ) are, respectively, defined as

H̃ = blkdiag(H1,H2, · · · ,HN ),

w =
[
wT

1 ,w
T
2 , · · · ,wT

N

]T
,

while the transmitted symbol vector s =
[
sT1 , s

T
2 , · · · , sTN

]T ∈
CMN×1 is given by

s = vec(S) =
(
FHN ⊗ ζ tx

)
xDD, (7)

where xDD = vec (XDD).

C. OTFS demodulator

At the receiver, the received symbol matrix is constructed
as R = vec−1(r). The demodulated signal YTF ∈ CM×N
in the TF-domain is subsequently obtained by employing the
discrete Wigner transform to R [19], which is mathematically
expressed as

YTF = FMζrxR, (8)

where ζrx = diag
{
ξrx
(
mT
M

)}M−1

m=0
∈ CM×M is obtained

from the samples of the receive pulse ξrx(t). Subsequently,
the demodulated DD-domain symbol matrix YDD ∈ CM×N
is derived by applying the simplectic finite Fourier transform
(SFFT) to the TF-domain demodulated symbol matrix YTF as
follows YDD = FHMYTFFN = ζrxRFN . This equation can be
reduced to the equivalent form

yDD = vec (YDD) = (FN ⊗ ζrx) r, (9)

where yDD ∈ CMN×1. Substituting r, s from (6), (7),
respectively, into (9), the end-to-end DD-domain relationship
can now be obtained by

yDD = (FN ⊗ ζrx) (H̃s + w),

which yields

yDD = (FN ⊗ ζrx) H̃
(
FHN ⊗ ζ tx

)
xDD + (FN ⊗ ζrx) w

= HDDxDD + wDD. (10)

Data detection can now be performed using the MMSE-based
linear detector formulated as

x̂MMSE
DD = (HH

DDR−1
w,DDHDD + IMN )−1HH

DDR−1
w,DDyDD, (11)

where the covariance matrix Rw,DD = E
[
wDDwH

DD

]
∈

CMN×MN of the noise obeys Rw,DD = σ2
[
IN ⊗

(
ζrxζ

H
rx

) ]
.

The CE model of SISO-OTFS systems is detailed in the
following section.
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Fig. 1: Block diagram of online estimation scheme in CP-aided OTFS systems

III. ONLINE ESTIMATION MODEL FOR SISO-OTFS
SYSTEMS

Consider an under-spread wireless channel that obeys
max(li) ≤ Mτ ≤≤ M , max(ki) ≤ Nν ≤≤ N , where
the maximum delay and Doppler spreads are given by Mτ ,
Nν , respectively. For introducing fractional Doppler, consider
a grid of size Mτ × Gν , so that Gν >> Nν , i.e., each
grid interval corresponding to an integer Doppler shift is
divided into multiple intervals. The jth Doppler-grid point,
−Gν/2 ≤ j ≤ Gν/2 − 1, corresponds to a Doppler-shift of
νj = jNν

GνNT
Hz. Thus, the DD-domain channel h(τ, ν) can be

equivalently expressed as

h(τ, ν) =

Mτ−1∑
i=0

Gν/2−1∑
j=−Gν/2

hi,jδ(τ − τi)δ(ν − νj), (11)

where the (i, j)-th point on the delay-Doppler grid corresponds
to the i-th delay tap τi and j-th Doppler tap νj , with hi,j being
the associated path gain. It should be noted that only a small
number of coefficients, hi,j , viz ρ

(
<< MτGν

)
, of the whole

set of MτGν elements are non-zero due to the existence of
only a few dominant reflectors in the wireless channel.

Furthermore, prior to transmission, the pilot vectors
{s1
p, s

2
p, . . . , s

Np
p } are inserted at equi-spaced intervals between

the symbol vectors {s1, s2, . . . , sN}. The modified symbol
matrix S̃ ∈ CM×(N+Np) comprising both the data and pilot
symbol vectors is given by

S̃ =
[
s1, s2, s1

p, s3, . . . , sNp
p , . . . , sN

]
.

A representation of the frame structure, including the data and
pilot symbols, is shown in Fig. 1. The locations of the trans-
mitted pilot vectors are given by the set L = {l1, l2, · · · , lNp}
and are known at the receiver. Subsequently, a CP of length
L is added to each column of S̃ before transmitting it over
the DD-domain channel. At the receiver, the CP is removed
from each column of the received vector to obtain the matrix
R̃ ∈ CM×(N+Np). The received column vector corresponding
to the data or pilot output is given by

rn′ = Hn′ s̃n′ + wn′ , (12)

where 1 ≤ n′ ≤ (N + Np). The matrix Hn′ ∈ CM×M is
modeled as

Hn′ =

Mτ−1∑
i=0

Gν/2−1∑
j=−Gν/2

hi,j
(
P̄
)i

D̄i,n′ , (13)
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where the quantity D̄i,n′ ∈ CM×M is modified as

D̄i,n′ =



diag
{
ω
n′(M+L)
j , ω

n′(M+L)+1
j · · ·ωn

′(M+L)+M−1−i
j ,

ω
n′(M+L)−i
j · · ·ωn

′(M+L)−1
j

}
, if i 6= 0,

diag
{
ω
n′(M+L)
j , ω

n′(M+L)+1
j · · ·ωn

′(M+L)+M−1
j

}
,

if i = 0,

where ωk = ej2π kNν
GνMN . Note that equation (13) assumes

the number of multipath components to be unknown at the
receiver. Also, the exact locations of the delay and Doppler
indices are unknown and assumed to be present in the grid of
size (Mτ , Gν) for the underspread channel. Moreover, this
is a sparse representation of the channel where h is the
sparse vector whose i, jth element are given by hi,j . Only ρ
components are non-zero out of a total of MτGν coefficients.
Furthermore, the output vectors corresponding to the data
symbols are arranged as the vector r =

[
rT1 , r

T
2 , · · · , rTN

]T
.

The pilot outputs are employed for sequential CE in the pilot
processing unit (PPU). The output corresponding to the k-th
pilot vector at location lk is given by the equation

rkp =

Mτ−1∑
i=0

Gν/2−1∑
j=−Gν/2

hi,j
(
P̄
)i

D̄i,ks
k
p + wk

=

Mτ−1∑
i=0

Gν/2−1∑
j=−Gν/2

hi,jψi,j,k + wk, (14)

where ψi,j,k ∈ CM×1. The above expression can be recast as

rkp = Ψkh + wk, (15)

where the dictionary matrix Ψk ∈ CM×MτGν and the channel
coefficient vector h ∈ CMτGν×1 are expressed as

Ψk =
[
ψ0,−Gν/2,k, · · · ,ψ0,Gν/2−1,k, · · · ,ψMτ−1,−Gν/2,k,

· · · ,ψMτ−1,Gν/2−1,k

]
(16)

h =
[
h0,−Gν/2, · · · , h0,Gν/2−1, · · · , hMτ−1,−Gν/2, · · · , ,

hMτ−1,Gν/2−1

]T
. (17)

Moreover, wk is the additive Gaussian noise vector having
the covariance matrix Rw,k = E

[
wkw

H
k

]
= σ2IM . The CE

problem in (15) reduces to a sparse signal recovery problem
owing to sparse nature of h. Note also that since the sparse
CSI is estimated sequentially from the output vectors rkp , the
proposed algorithm is online in nature, which is described
next.

A. Online Bayesian learning for sparse CE in SISO-OTFS
systems

In order to estimate the sparse CSI, consider the first pilot
vector at location l1. Then the corresponding output is given
as

r1
p = Ψ1h + w1, (18)

where the channel coefficients h are initially assigned the
Gaussian prior given by

f(h; Λ) =

MτGν−1∏
i=0

1

(πλi)
exp

(
−|h(i)|2

λi

)
. (19)

Here, λi represents the unknown hyperparameter associ-
ated with the i-th component of the vector h and Λ =

diag
(
{λi}MτGν−1

i=0

)
∈ R+MτGν×MτGν denotes the diagonal

hyperparameter matrix. Upon employing the maximum like-
lihood framework to estimate the hyperparameter matrix Λ,
one obtains

Λ̂ = arg max
Λ

log p(r1
p; Λ, σ

2)

= arg max
Λ

log

(
1

(2π)M |Σr1p
|

exp

(
−

(r1
p)
H(Σr1p

)−1(r1
p)

2

))

= arg max
Λ

(
−

(r1
p)
H(Σr1p

)−1(r1
p)

2
− 1

2
log|Σr1p

| − M

2
log2π

)
,

(20)

where Σr1p
= Ψ1ΛΨH

1 + σ2IM . The above problem can be
expressed as

Λ̂ = arg min
Λ

(
(r1
p)
H(Σr1p

)−1(r1
p) + log|Σr1p

|
)
. (21)

The second term log|Σr1p
| above is a non-convex function

in Λ, which makes the hyperparamter estimation problem
intractable. Thus, the likelihood maximization above can be
achieved via the iterative EM algorithm. Let the complete
information set for this procedure be constructed as {r1

p,h},
where h is the hidden variable, and r1

p is the observation
variable. The E-step of the EM algorithm evaluates the
conditional expectation of the log-likelihood function of the
complete information set {r1

p,h} as

L(Λ|Λ̂
(m−1)

) = E
h|r1p;Λ̂

(m−1){log
[
f(r1

p,h; Λ)
]
}

= E
{

log
[
p
(
r1
p | h

)]}
+ E {log [p (h; Λ)]} , (22)

where the quantity Λ̂
(m−1)

represents the estimate of Λ

in iteration (m − 1), which is defined as Λ̂
(m−1)

=

diag{λ̂(m−1)
i }MτGν−1

i=0 ∈ RMτGν×MτGν . In the subsequent
M -step, the log-likelihood above is maximized with respect
to Λ to obtain the hyperparameter estimates in iteration m,
which can be expressed as

Λ̂
(m)

= arg max
Λ
L
(

Λ|Λ̂
(m−1)

)
= arg max

Λ
E {log [p (h; Λ)]} . (23)

Upon substituting (19) into (23), followed by further simpli-
fications, one obtains

= arg max
Λ

MτGν−1∑
i=0

[
− log λi −

1

λi
E{|h(i)|2}

]
. (24)

The above expression of (24) can be simplified by decoupling
Λ in terms of λi, yielding

λ
(m)
i = E

h|r1p;Λ̂
(m−1){|h(i)|2}. (25)
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(a) (b)

Fig. 2: (a) Grid layout for fractional Doppler (b) BL-based sequential estimate

The conditional PDF is given by f(h|r1
p; Λ̂

m−1
) =

CN (µ̂(m),Σ(m)), with the aposteriori mean vector µ̂(m) ∈
CMτGν×1 and associated covariance matrix Σ(m) ∈
CMτGν×MτGν formulated as

µ̂(m) = Σ(m)
(
Ψ1

(m−1)
)H

R−1
w,1r

1
p,

Σ(m) =

[(
Ψ1

(m−1)
)H

R−1
w,1Ψ1

(m−1) +

(
Λ̂

(m−1)
)−1

]−1

.

(26)

Based on (25), it can be shown that the hyperparameter
estimates are given by

λ̂
(m)
i = Σ(m)(i, i) + |µ̂(m)(i)|2, (27)

The converged hyperparameter estimate Λ̂SBL = Λ̂
(m)

is em-
ployed to initialize the sequential MMSE estimator of Fig.2(b)
with the parameter values Σ0 = Λ̂

(m)
, ĥ0 = 0MτGν×1. Let

ĥk−1 represent the LMMSE estimate of h obtained from the
(k − 1)-st transmitted pilot vector at location lk−1, and the
associated error covariance matrix be denoted by Σk−1. Upon
employing the sequential LMMSE estimation procedure, the
estimate ĥk and its error covariance Σk can be recursively
updated as

Σk = (IMτGν −KkΨk) Σk−1, ĥk

= ĥk−1 + Kk

(
rkp −Ψkĥk−1

)
, (28)

where the gain Kk ∈ CMτGν×M is given by

Kk = Σk−1Ψ
H
k

(
ΨkΣk−1Ψ

H
k + Rw,k

)−1

. (29)

The estimated CSI ĥNp corresponding to all the Np pilot
vectors can be expressed by the matrix ĤNp = vec−1(ĥNp) ∈
CMτ×Gν . Furthermore, as defined before, due to the sparse
nature of the channel, only a few coefficients out of the
total Mτ × Gν coefficients are non-zero. Hence, the delay
and Doppler can be computed from the estimated channel
coefficient matrix ĤNp by determining the set of K largest
values and saving the respective Doppler indices in S. The
index i ranges from 0 to Mτ −1, while j ranges from −Gν/2
to Gν/2 − 1. K is an integer value close to the number of

Algorithm 1: OSBL for SISO-OTFS systems

Input: Received vector rkp , pilot dictionary matrix Ψk,
noise covariance matrix Rw,k, threshold
ε and maximum iterations Nmax.

Initialization: λ̂i
(0)

= 1,∀ 0 ≤ i ≤MτGν − 1, Λ̂(0) =
IMτGν , Λ̂(−1) = 0, m = 0.

Output: ĥOSBL = ĥNp .
1 for k ← 1 to Np do
2 if k ← 1 do
3 while ‖Λ̂

(m)
− Λ̂

(m−1)
‖2F ≥ ε and m < Nmax

do
4 m← m+ 1
5 E-step: Compute the mean and aposteriori

covariance given by (26).
6 M-step: Compute the hyperparameter

estimates
7 for i← 0 to MτGν − 1 do

λ̂
(m)
i = Σ(m)(i, i) + |µ̂(m)(i)|2

8 else: Compute Gain Kk using (29), Σk and ĥk
using (28)

taps. Moreover, the corresponding Doppler can be determined
by multiplying the effective Doppler resolution ∆ν̃, defined
as ∆ν̃ = Nν

Gν
∆ν, with the set of indices in S. Note that the

effective Doppler resolution is considerably reduced due to the
subdivision of integer Doppler grids. This enables the efficient
handling of fractional Doppler shifts. Therefore, the channel
matrix estimate Ĥn corresponding to the n-th transmitted
column vector is given by

Ĥn =

Mτ−1∑
i=0

Gν/2−1∑
j=−Gν/2−1

ĤNp,i,j

(
P̄
)i

D̄i,n. (30)

Finally, the overall channel estimate ̂̃
H of H̃ is obtained

as ̂̃H = blkdiag(Ĥ1, · · · , ĤN ). The next section presents a
low-complexity decoder designed for recovering of the data
vectors.
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B. Low-complexity data detection

Consider the end to end system model of (10). A signif-
icant disadvantage of the DD-domain linear MMSE detector
described in (11) is that it requires the computation of the
inverse of a matrix of size MN × MN . As a result, its
complexity scales as O(M3N3), which renders it challenging
to implement in practice. Thus, the central motivation of
this section is to develop a low-complexity TF-domain data
detection scheme.

The time domain output symbol matrix R̃, obtained after
the removal of the CP from each column, is comprised of
contributions from both the data and pilots. In order to perform
data detection, the output vectors corresponding to the data
symbols are separated and arranged in the form of a vector
r =

[
rT1 , r

T
2 , · · · , rTN

]T
. The corresponding matrix can be

constructed as R = vec−1(r) ∈ CM×N . The TF-domain
received symbol matrix YTF is computed by substituting R
into equation (8), and subsequently, its vectorized version yTF
is determined as

yTF = vec(YTF) = vec(FMζrxR)

= [IN ⊗ (FMζrx)]r. (31)

Upon substituting the expression of r from (6) into (31), one
obtains the relationship

yTF = [IN ⊗ (FMζrx)]H̃s + [IN ⊗ (FMζrx)]w. (32)

From the relationship between the matrices S and XTF shown
in (1), the vector s, obtained by vectorizing S, can be modeled
as s = vec(ζ txF

H
MXTF) = [IN ⊗ (ζ txF

H
M )]xTF, where xTF =

vec(XTF). By substituting the above equation for s into (32),
yTF can be equivalently written as

yTF =[IN ⊗ (FMζrx)]H̃[IN ⊗ (ζ txF
H
M )]xTF

+ [IN ⊗ (FMζrx)]w. (33)

Thus, the end-to-end system model in the TF-domain can be
obtained by simplifying the above relationship as

yTF = HTFxTF + wTF, (34)

The above end-to-end system model in (34) is in the TF-
domain. This is in contrast to other works such as [36],
[18], where the DD-domain relation is derived. The proposed
methodology yields a solution that is not optimal, yet achieves
a performance close to that of the conventional DD-domain
detector at a significantly lower complexity. In the above
expression the TF-domain channel HTF ∈ CMN×MN is given
by

HTF = [IN ⊗ (FMζrx)]H̃[IN ⊗ (ζ txF
H
M )]. (35)

Since H̃ = blkdiag(H1,H2, · · · ,HN ), which is block diag-
onal, it can be readily deduced that the TF-domain channel
matrix HTF above is block circulant [37]. The nth block of
that matrix HTF is given as HTF,n = (FMζrx)Hn(ζ txF

H
M ).

When rectangular pulse shaping filters are used at the re-
ceiver and transmitter, i.e., ζrx = ζ tx = IM , it follows that
HTF = [IN ⊗ FM ]H̃[IN ⊗ FHM ] and wTF = (IN ⊗ FM )w.

Let x̂MMSE
TF ∈ CMN×1 denote the MMSE estimate of xTF

formulated as

x̂MMSE
TF =

(
HH

TFR
−1
w,TFHTF + IMN

)−1

HH
TFR

−1
w,TFyTF, (36)

where the covariance matrix Rw,TF ∈ CMN×MN of the noise
is Rw,TF = E

[
wTFw

H
TF

]
= σ2[IN ⊗

(
FMζrxζ

H
rx FHM

)
]. The

above expression can be further simplified as

x̂MMSE
TF

= (IN ⊗ FM )
(
H̃HH̃ + σ2IMN

)−1
H̃H

(
IN ⊗ FHM

)
yTF.

(37)

An important observation is that the TF-domain channel
matrix HTF and the noise covariance matrix Rw,TF are block-
diagonal. It can be inferred that the inverse term from (36)
is also block diagonal. Thus the computational complexity
of (37) is significantly lower. The MMSE estimate can be
determined in a block-wise fashion, with the MMSE estimate
for the n-th block, having a dimension of x̂MMSE

TF,n ∈ CM×1,
and given as

x̂MMSE
TF,n = FM

(
HH
n Hn + σ2IM

)−1

HH
n FHMyTF,n, (38)

where yTF,n ∈ CM×1 is TF-domain response corresponding
to the n-th symbol vector xTF,n. Moreover, as HH

n Hn is a
Hermitian matrix, HH

n Hn+σ2IM is a positive definite matrix,
since σ2 > 0. Thus, the matrix HH

n Hn + σ2IM is always
invertible [32]. The computational complexity of (38) is of
the order O(M3) for each of the N blocks. Thus, it can
be deduced that the overall inversion complexity of the TF-
domain detector (36) is of the order O(M3N). By contrast
the DD-domain linear MMSE detector of (11) has complexity
order of O(M3N3).

The TF-domain estimate x̂MMSE
TF obtained in (36), is now

converted to the DD-domain estimate x̂DD ∈ CMN×1 using
the relationship

x̂DD = vec(X̂DD) = vec(FHMX̂MMSE
TF FN )

=
(
FN ⊗ FHM

)
x̂MMSE

TF . (39)

The online estimation framework is extended next for CSI
acquisition in MIMO-OTFS systems.

IV. MIMO-OTFS SYSTEM MODEL

Consider an OTFS modulated MIMO system equipped with
Nt transmit antennas (TAs) and Nr receive antennas (RAs).
For the r-th RA and t-th TA, the associated DD-domain
wireless channel hr,t(τ, ν) is formulated as

hr,t(τ, ν) =

ρ∑
i=1

hi,r,tδ(τ − τi)δ(ν − νi), (40)

where ρ is the number of multipath between receiver r-th RA
and t-th TA [16], [38] for 1 ≤ r ≤ Nr, 1 ≤ t ≤ Nt, and hi,r,t
represents the wireless channel coefficient corresponding to
the i-th multi-path component. Let XDD,t ∈ CM×N denote
the DD-domain transmit symbol matrix for the t-th TA. The
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received symbol matrix YDD,r ∈ CM×N corresponding to the
r-th RA is expressed as

yDD,r =

Nt∑
t=1

HDD,r,txDD,t + wDD,r, (41)

where xDD,t = vec(XDD,t) ∈ CMN×1, HDD,r,t ∈ CMN×MN

is the DD-domain channel matrix between the r-th RA and
t-th TA that is expressed as

HDD,r,t = (FN ⊗ ζrx)Hr,t(F
H
N ⊗ ζ tx). (42)

The matrix Hr,t ∈ CMN×MN obeys the relationship Hr,t =
blkdiag(H1, · · · ,HN ), where the matrix Hn is formulated as
follows:

Hn =

Lp∑
i=1

hi,r,t
(
P̄
)li

D̄i,n, (43)

where P̄ and D̄ are as described for a SISO-OTFS system in
Section II. Now, stacking all the received output vectors yDD,r

for 1 ≤ r ≤ Nr, as ȳDD =
[
yTDD,1,y

T
DD,2, · · · ,yTDD,Nr

]T ∈
CMNNr×1, the end-to-end relationship for the MIMO-OTFS
system is expressed as follows

ȳDD = H̄DDx̄DD + w̄DD, (44)

where x̄DD ∈ CMNNt×1 and w̄DD ∈ CMNNr×1 are obtained
by stacking the transmit DD-domain symbols for all the TAs
and noise vectors at the RAs, respectively. These are defined
as

x̄DD =
[
xTDD,1,x

T
DD,2, · · · ,xTDD,Nt

]T
,

w̄DD =
[
wT

DD,1,w
T
DD,2, · · · ,wT

DD,Nr

]T
. (45)

The DD-domain channel matrix H̄DD ∈ CMNNr×MNNt is
given by H̄DD = {HDD,r,t}t=1:Nt

r=1:Nr
Furthermore, upon using

(44), the MMSE-based linear detector can be formulated as

x̄MMSE
DD =

(
H̄H

DDR̄−1
w,DDH̄DD + IMNNt

)−1

H̄H
DDR̄−1

w,DDȳDD,

(46)

where R̄w,DD = E
[
w̄DDw̄H

DD

]
=

(
INr ⊗ R̄w,DD,r

)
∈

CMNNr×MNNr denotes the covariance matrix of the noise
vector w̄DD and R̄w,DD,r = σ2

[
IN ⊗

(
ζrxζ

H
rx

) ]
.

V. ONLINE ESTIMATION MODEL FOR MIMO-OTFS
SYSTEMS

Note that the suggested channel estimation algorithm does
not assume knowledge of the number of multipath components
ρ at the receiver. The robustness of the algorithm arises
due to the fact that it considers the dominant components
to be present in a grid of size Mτ × Gν and subsequently
determines the number of multipath components along with
the corresponding channel coefficients.
Thus, the DD-domain channel hr,t(τ, ν) can be equivalently
expressed as

hr,t(τ, ν) =

Mτ∑
i=0

Gν/2−1∑
j=−Gν/2

hi,j,r,tδ(τ − τi)δ(ν − νj),

where hi,j,r,t is the channel coefficient corresponding to the
ith delay index, jth Doppler index and (r, t) RA/TA pair.
At the t-th TA, applying the ISFFT and Heisenberg trans-
forms to the transmitted symbol matrix XDD,t, one obtains
the symbol matrix St ∈ CM×N . Furthermore, pilot vectors
{s1
p,t, s

2
p,t, . . . , s

Np

p,t} are inserted at equi-spaced intervals in be-
tween the symbol vectors {s1,t, s2,t, . . . , sN,t}. The modified
symbol matrix S̃t ∈ CM×(N+Np) contains both data and pilot
symbol vectors S̃t = [s1,t, s2,t, s

1
p,t, s3,t, . . . , s

Np

p,t , . . . , sN,t],
while the pilot locations L = {l1, l2, · · · , lNp} are the same
for all the Nt TAs. Subsequently, a CP of length L is added to
each column vector of the resultant matrix S̃t ∈ CM×(N+Np)

prior to transmission. At the r-th RA, the contribution from all
the TAs corresponding to the n′-th column vector is received
followed by CP removal, which is expressed as

rn′,r =

Nt∑
t=1

Hn′,r,tsn′,t + wn′,r, (47)

where 1 ≤ n′ ≤ N +Np and Hn′,r,t ∈ CM×M is the channel
corresponding to the r-th RA, t-th TA and n′-th column vector,
which is defined as

Hn′,r,t =

Mτ−1∑
i=0

Gν/2−1∑
j=−Gν/2

hi,j,r,t
(
P̄
)i

D̄i,n′ . (48)

Note that all the outputs corresponding to the data are pro-
cessed by the DPU, whereas those corresponding to the pilots,
when encountered, are processed by the PPU. The latter
are used for the ensuing CE. Consider now the output rkp,r
corresponding to the k-th pilot at location lk. Upon substituting
Hk,r,t from (48) into (47), rkp,r can be expressed as

rkp,r =

Nt∑
t=1

Mτ−1∑
i=0

Gν/2−1∑
j=−Gν/2

hi,j,r,t
(
P̄
)i

D̄i,ks
k
p,t + wk

p,r

=

Nt∑
t=1

Mτ−1∑
i=0

Gν/2−1∑
j=−Gν/2

hi,j,r,tψ̄i,j,k,t + wk
p,r, (49)

where we have ψ̄i,j,k,t =
(
P̄
)i

D̄i,k skp,t ∈ CM×1. This model
can be further simplified as

rkp,r =

Nt∑
t=1

Ψk,thr,t + wk
p,r, (50)

where Ψk,t ∈ CM×MτGν is the dictionary matrix defined as
Ψk,t =

[
ψ̄0,−Gν/2,k,t, · · · , ψ̄0,Gν/2−1,k,t, · · · , ψ̄Mτ−1,−Gν/2,k,t,

· · · , ψ̄Mτ−1,Gν/2−1,k,t

]
and the channel coefficient vector

corresponding to the r-th RA and t-th TA is defined as
hr,t =

[
h0,−Gν/2,r,t · · ·h0,Gν/2−1,r,t · · ·hMτ−1,−Gν/2,r,t · · ·

hMτ−1,Gν/2−1,r,t

]T
. The expression in (50) can be written

in the compact form

rkp,r = Ψ̃khr + wk
p,r, (51)

where Ψ̃k ∈ CM×MτGνNt is defined as Ψ̃k =[
Ψk,1,Ψk,2, · · · ,Ψk,Nt

]
and hr ∈ CMτGνNt×1 is formed

as
[
hTr,1, · · · ,hTr,Nt

]T
. By concatenating the received vectors
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across all the RAs, the received matrix Rk
p ∈ CM×Nr can be

expressed as

Rk
p = Ψ̃kH + Wk

p , (52)

where we have Rk
p = [rkp,1, r

k
p,2, · · · , rkp,Nr ], H ∈

CMτGνNt×Nr is defined as

H =
[
h1,h2, · · · ,hNr

]
. (53)

In the MIMO-OTFS system, upon concatenating the pilot
outputs, the resultant multiple measurement vector (MMV)
Rk
p is sparse and the resultant problem can be formulated as a

sparse estimation problem as shown in (52). For the MIMO-
OTFS channel, the delay and Doppler shifts corresponding to
the multipath components are identical for all the TA and RA
pairs. Thus, the sparsity profile of the vectors hr,t, is identical,
and the vector hr, which is obtained via stacking hr,t∀t,
exhibits a group-sparse structure [34], i.e., the i-th group com-
prising the coefficients i ∈ MτGν , hr[(t− 1)MτGν + i]

Nt
1 ,

are either all zero or non-zero. Furthermore, the ith group
of rows denoted by the row indices [(t− 1)MτGν + i]

Nt
1 ,

become either simultaneously zero or non-zero. Thus, the
channel matrix H is row-group sparse in nature. The row-
group sparse CE problem defined in (52) can be simplified
using our proposed model discussed next.

A. Online Bayesian learning aided sparse CE for MIMO-
OTFS systems

The online estimation framework assigns the parameterized
Gaussian prior of

f(hr,t; Λ) =

MτGν−1∏
i=0

1

(πλi)
exp

(
−|hr,t(i)|

2

λi

)
, (54)

to the channel vector hr,t. Furthermore, since the sparsity
profile of hr,t is identical for each RA and TA pair, the prior
corresponding to H̃ is given as

f
(
H̃; Λ

)
=

Nr∏
r=1

Nt∏
t=1

MτGν−1∏
i=0

1

(πλi)
exp

(
−|hr,t(i)|

2

λi

)
.

(55)
For the first transmitted pilot vector at index l1, the output
response at the receiver is given by

R1
p = Ψ̃1H + W1

p. (56)

The initial estimate of the hyperparameter matrix Λ is
obtained iteratively using the EM algorithm. In the E-step,
for the m-th iteration, the update equations for the mean
M̂

(m)
∈ CMτGνNt×Nr and aposteriori covariance Σ(m) ∈

CMτGνNt×MτGνNt are given as

M̂
(m)

= Σ(m)(Ψ̃1

(m−1)
)HR−1

w1
R1
p, (57)

Σ(m) = [(Ψ̃1

(m−1)
)HR−1

w1
Ψ̃1

(m−1)
+ (INt ⊗ (Λ̂

(m−1)
)−1)]−1.
(58)

Algorithm 2: ORGBL for MIMO-OTFS systems

Input: Received matrix Rk
p , pilot dictionary matrix

Ψk, noise covariance matrix Rw,k, threshold
ε and maximum iterations Nmax.

Initialization: λ̂i
(0)

= 1,∀ 0 ≤ i ≤MτGν − 1, Λ̂(0) =
IMτGν , Λ̂(−1) = 0, m = 0.

Output: ĤOSBL = ĤNp .
1 for k ← 1 to Np do
2 if k ← 1 do
3 while ‖Λ̂

(m)
− Λ̂

(m−1)
‖2F ≥ ε and m < Nmax

do
4 m← m+ 1
5 E-step: Compute the mean and aposteriori

covariance.
6 The mean and aposteriori covariance are

given by (57), (58), respectively.
7 M-step: Compute the hyperparameter

estimates
8 for i← 0 to MτGν − 1 Compute λ̂(m)

i

using (59).

9 else: Compute Σk, Gain matrix Kk, Ĥk using
(60), (61).

In the subsequent M-step, the hyperparameter update λ̂(m)
i is

given as

λ̂
(m)
i =

1

NrNt

Nr∑
r=1

Nt∑
t=1

∣∣∣∣M̂(m)[
(t− 1)Nt + i, r − 1

]∣∣∣∣2
+

1

Nt

Nt∑
t=1

Σ(m)
[
(t− 1)Nt + i, (t− 1)Nt + i

]
. (59)

The estimated hyperparameter matrix update Λ̂
(m)

∈
RMτGν×MτGν is employed for initializing the sequential
MMSE estimator of Fig. 2, with Σ0 = INt ⊗ Λ̂

(m)
, Ĥ0 =

0MτGνNt×Nr . As per the sequential MMSE paradigm, the
parameters can be updated as

Ĥk = Ĥk−1 + Kk(Rk
p − Ψ̃kĤk−1), (60)

where the gain matrix Kk and Σk is given by

Kk = Σk−1Ψ̃
H

k

(
Ψ̃kΣk−1Ψ̃

H

k + R̃w̃k
p

)−1

,

Σk =
(
IMτNνNt −KkΨ̃k

)
Σk−1. (61)

The resultant channel estimate obtained after training with
Np pilot vectors is denoted by ĤNp and the associated error
covariance matrix is ΣNp . The estimate of the channel matrix
Ĥn,r,t corresponding to the r-th RA, t-th TA, n-th transmitted
column vector is

Ĥn,r,t =

Mτ−1∑
i=0

Gν−1∑
j=0

ĥi,j,r,t
(
P̄
)i

D̄i,n, (62)

where we have

ĥi,j,r,t = ĤNp [i(Gν + 1) + j + (t− 1)MτGν , r − 1] .
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Algorithm 3: Iterative block matrix inversion

Input: Block matrix G, Number of TAs Nt, G(0) = G11, G−1
(0) = G−1

11 .
1 for t = 1 : Nt − 1 do

Initialization: A = B = C = D = Z = [ ]
2

A← G(1 : MNt, 1 : MNt),B← G(1 : MNt,MNt+ 1 : MN(t+ 1))

C← G(MNt+ 1 : MN(t+ 1), 1 : MNt),D← G(MNt+ 1 : MN(t+ 1),MNt+ 1 : MN(t+ 1))

G(t) =

[
A B
C D

]
3 Compute (G(t)/A) = D−CG−1

(t−1)B and (G(t)/A)−1

G−1
(t) =

[
G−1

(t−1) + G−1
(t−1)B(G(t)/A)−1CG−1

(t−1) −G−1
(t−1)B(G(t)/A)−1

−(G(t)/A)−1CG−1
(t−1) (G(t)/A)−1

]
.

Output: G−1 = G−1
(Nt−1)

Thus, the estimate of the channel matrix Ĥr,t is formulated
as Ĥr,t = blkdiag(Ĥ1,r,t, · · · , ĤN,r,t) corresponding to the
r-th RA, and the t-th TA. The detailed description of online
estimation process for a MIMO-OTFS system is given by
Algorithm 2. The next sub-section describes a low complexity
detector for MIMO-OTFS systems.

B. Low complexity data detection for MIMO-OTFS
Consider the end-to-end system model of (44). The re-

sultant DD-domain linear MMSE detector of (46) has a
computational complexity order of O(M3N3N3

t ). Therefore,
we have conceive a low complexity TF-domain detector, as
described next. The TF-domian output signal YTF,r is given
by YTF,r = FMζrxRr. Vectorizing YTF,r, one obtains

yTF,r = vec(YTF,r) = [IN ⊗ (FMζrx)]rr,

where

rr =

Nt∑
t=1

Hr,tst + wr.

Upon vertically concatenating the received vectors yTF,r at
each RA, the resultant model is ȳTF = [INr ⊗ IN ⊗
(FMζrx)]r, where yTF ∈ CMNNr×1 is [yTTF,1, · · ·yTTF,Nr ]

T ,
r ∈ CMNNr×1 is [rT1 , r

T
2 , · · · , rTNr ]

T . Thus, ȳTF can be
expressed as

ȳTF = [INr ⊗ IN ⊗ (FMζrx)](H̄s + w), (63)

where the channel matrix is given by H̄ =
blkmtx{Hr,t}t=1:Nt

r=1:Nr
The quantity s = [sT1 , s

T
2 , · · · , sTNt ]

T ,
where st is defined as

st = vec(St) = ζtxF
H
MXTF,t

= [IN ⊗ (ζ txF
H
M )]xTF,t.

Thus s can be expressed as s = [INt ⊗ IN ⊗ (ζ txF
H
M )]x̄TF.

Thereafter, upon substituting s in (63), we have

ȳTF = [INr ⊗ IN ⊗ (FMζrx)]H̄[INt ⊗ IN ⊗ (ζ txF
H
M )]x̄TF

+[INr ⊗ IN ⊗ (FMζrx)]w. (64)

The above relationship can be written in the compact form of

ȳTF = H̄TFx̄TF + v̄TF, (65)

where H̄TF ∈ CMNNr×MNNt is defined as [INr ⊗ IN ⊗
(FMζrx)]H̄[INt ⊗ IN ⊗ (ζ txF

H
M )] and v̄TF = [INr ⊗ IN ⊗

(FMζrx)]w. The MMSE estimate of x̄TF in the TF-domain
obeys [26]

x̂MMSE
TF =

(
H̄H

TFR
−1
v,TFH̄TF + IMNNt

)−1
H̄H

TFR
−1
v,TFȳTF, (66)

where the covariance matrix Rv,TF ∈ CMNNr×MNNr of the
noise is determined as Rv,TF = E

[
vTFv

H
TF

]
= σ2

[
INr ⊗ IN ⊗(

FMζrxζ
H
rx FHM

) ]
. For the rectangular pulse shape, the above

expression can be further simplified to

x̂MMSE
TF = (INt ⊗ IN ⊗ FM )

(
H̄HH̄ + σ2IMNNt

)−1
H̄H(

INr ⊗ IN ⊗ FHM
)
yTF. (67)

The complexity of the MMSE estimator (67) above is on
the order of O(M3N3N3

t ), which is high. To overcome this
challenge, a low-complexity TF-domain detector is proposed
next, wherein the matrix inversion is performed iteratively.
Consider the matrix G ∈ CMNNt×MNNt obtained as

G =
(
H̄HH̄ + σ2IMNNt

)
,

which may be expressed in terms of Nt × Nt sub-block
matrices, where each sub-block is of size (MN ×MN), as
shown below G = blkmtx{Gt,t‘}t‘=1:Nt

t=1:Nt
The (k, l)-th block

Gk,l ∈ CMN×MN of matrix G can be expressed as

Gk,l =

{∑Nr
r=1 HH

rkHrl, if k 6= l∑Nr
r=1 HH

rkHrl + σ2IMN , if k = l,
(68)
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where Hrk = blkdiag(H1
rk, . . . ,H

N
rk) ∈ CMN×MN and

Hrl = blkdiag(H1
rl, . . . ,H

N
rl) ∈ CMN×MN . Thus, the above

equation can be expressed as

Gk,l =



∑Nr
r=1 blkdiag

[
(H1

rk)HH1
rl, · · · , (HN

rk)HHN
rl

]
,

if k 6= l∑Nr
r=1 blkdiag

[
(H1

rk)HH1
rl + σ2IM , · · · ,

(HN
rk)HHN

rl + σ2IM

]
, if k = l.

(69)

The matrix Gk,l is block-diagonal, because it is formulated
by the addition of block-diagonal matrices, as shown in (69).
Additionally, the underlining structure of each sub-block of
G, i.e., Gk,l, is quasi-banded, similar to the SISO-OTFS.
Furthermore, in order to express the inverse of Gk,l, N
matrices of size M × M must be inverted, resulting in a
complexity of order O(M3N). This motivates us to develop
a Schur complement based iterative block matrix inversion
technique, wherein the inverse of the block matrix G is
computed iteratively as discussed next.

Consider the block matrix G =

[
A B
C D

]
, which arises

for Nt = 2 TAs. Its inverse can be obtained as [39]

G−1

=

[
A−1 + A−1B(G/A)−1CA−1 −A−1B(G/A)−1

−(G/A)−1CA−1 (G/A)−1

]
,

(70)

where the Schur complement of G with respect to A is defined
as (G/A) = D−CA−1B. The above approach of inversion
using the Schur complement can be extended to a MIMO
system having any number of TAs using Algorithm 3, that
has a complexity order of O(M3NNt). The detailed steps to
derive the inverse of G are given in Appendix A. Thus, the
TF-domain estimate is given as

x̂MMSE
TF =

(
INt ⊗ IN ⊗ FM

)(
G−1

(Nt−1))H̄
H(

INr ⊗ IN ⊗ FHM

)
yTF. (71)

Upon obtaining the TF-domain estimate x̂MMSE
TF , the corre-

sponding DD-domain symbols can be estimated as follows.
For each TA t, the matrix X̂DD,t, which corresponds to
the DD-domain input data, can be generated as X̂DD,t =

FHMX̂TF,tFN . By applying the vec operation to both sides, one
obtains x̂DD,t = (FN ⊗ FHM )x̂TF,t, where we have x̂DD,t =

vec(X̂DD,t) ∈ CMN×1 and x̂TF,t = vec(X̂TF,t) ∈ CMN×1.
Similar to (64), vertically concatenating the input symbol
vectors in the DD domain x̂DD,t at each TA yields the final
estimate as

x̂DD = (INt ⊗ FN ⊗ FHM )x̂TF,

where

x̂DD = [x̂TDD,1, · · · , x̂TDD,Nt ]
T ,

x̂TF = [x̂TTF,1, · · · , x̂TTF,Nt ]
T .

VI. TIME-RECURSIVE BCRLB

This section derives the BCRLBs for the MSE of estimating
both SISO and MIMO-OTFS channels.

A. SISO-OTFS system

Consider the SISO OTFS system, the Fisher information
matrices corresponding to the first observation vector rp,(1) =
r1
p and the channel prior are given by Jr1 and Jh, respectively.

Using the theory in [34], these can be formulated as J(k=1) =
Jr1 + Jh, where

Jr1 = −Erp,(1),h

∂
2 log

[
f(rp,(1) | h)

]
∂h∂hH


Jh = −Eh

∂
2 log

[
f(h; Λ)

]
∂h∂hH

 ,

which on simplification yields

J(k=1) = ΨH
1 Ψ1 + Λ−1.

Similarly, by stacking the outputs corresponding to all the k
pilot vectors, one obtains the quantity

rp,(k) = [(r1
p)
T , (r2

p)
T , · · · , (rkp)T ]T ,

which can be expressed as

rp,(k) = Φ(k)h + w(k)

where we have Φ(k) = [(Ψ1)T , (Ψ2)T , · · · , (Ψk]T )T . Thus,
following some simplification, the Fisher information matrix
for the above model is given by

J(k) = Φ̄H
(k)Φ̄(k) + Λ−1, (72)

where Λ is the hyper-parameter matrix. Subsequently, the
observation vector rp,(k+1), corresponding to the (k + 1)-st
pilot vector, is given as

rp,(k+1) = Φ(k+1)h + w(k+1).

The associated Fisher information for this model can be
determined as

J(k+1) = ΦH
(k+1)Φ(k+1) + Λ−1, (73)

where

Φ(k+1) = [(Ψ1)T , (Ψ2)T , · · · , (Ψk)T , (Ψk+1)T ]T

= [(Φk)T , (Ψk+1)T ]T

Substituting the value of Φ(k+1) in (73) yields

J(k+1) =
[
ΦH
k ΨH

k+1

] [ Φk

Ψk+1

]
+ Λ−1

= ΦH
k Φk + ΨH

k+1Ψk+1 + Λ−1

= J(k) + ΨH
k+1Ψk+1. (74)

Therefore, the time recursive BCRLB for the online estimation
problem is given by

MSE(k + 1) ≥ Tr
[
J(k+1)

]−1
. (75)
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TABLE II: Parameters used for simulation

Parameters System 1 System 2 ∗System 3
Carrier frequency (GHz) 4 24 24
Subcarrier frequency (KHz) 7.5 15 15
# of Doppler-axis symbols M× Delay-axis symbols N 32 × 16 32 × 32 512 × 128
Max. doppler spread Mτ× Max. delay spread Nν 8 × 8 8 ×8 16 ×16
# of Dominant reflectors ρ 5 5 9
Modulation BPSK BPSK 4QAM
Pulse-shape Rectangular Rectangular Rectangular
Note: * Considers EVA model

TABLE III: DD-profile for (a) System 1 and (b) System 2

Path-Index(i) 1 2 3 4 5
Delay τi(µsec) 4.16 8.33 12.49 16.66 20.83
Doppler νi(Hz) 0 470 940 1410 1880
Speed (Km/Hr) 0 126.9 253.6 380.4 507.2

Path-Index(i) 1 2 3 4 5
Delay τi(µsec) 2.08 4.16 6.24 8.32 10.41
Doppler νi(Hz) 0 470 940 1880 2820
Speed (Km/Hr) 0 21.1 42.2 84.4 126.6

B. MIMO-OTFS system

The output vector for the k-th transmitted pilot vector is
given by (52). Furthermore, stacking the outputs corresponding
to all k pilot vectors, one obtains the quantity

Rp,(k) =
[
(R1

p)
T , (R2

p)
T , · · · , (Rk

p)T
]T
,

which can be expressed as

Rp,(k) = Φ̃(k)H + W(k),

where we have Φ̃(k) =
[
Ψ̃
T

1 , Ψ̃
T

2 , · · · , Ψ̃
T

k

]T
. The Fisher

information matrix for the above model is given as

J(k) = Φ̃H
(k)Φ̃(k) + Λ−1, (76)

where Λ is the hyperparameter matrix. Subsequently, the
observation matrix Rp,(k+1) corresponding to the (k + 1)-st
pilot vector is given by

Rp,(k+1) = Φ̃(k+1)H + W(k+1).

The associated Fisher information for this model can be
determined as

J(k+1) = Φ̃H
(k+1)Φ̃(k+1) + Λ−1

= Φ̃
H

(k)Φ̃(k) + Ψ̃
H

k+1Ψ̃k+1 + Λ−1

= J(k) + Ψ̃
H

k+1Ψ̃k+1. (77)

Therefore, the time recursive BCRLB for the online estimation
problem is given by

MSE(k + 1) ≥ Tr
[
J(k+1)

]−1
. (78)

The BCRLB is a lower bound on the normalised mean squared
error (NMSE) for the proposed CSI estimator. This lower
bound assumes perfect knowledge of the number of mul-
tipath components, associated delay, and Doppler locations.
The simulation results demonstrate that the proposed method
exhibits an NMSE performance that closely approximates the
theoretical bound. This observation indicates the efficiency
of the proposed method, without requiring prior knowledge
of the number of non-zero multipath components or their
locations in the delay-Doppler grid. An important insight from
the expression of the Fisher information matrix J(k+1) is

that it relies on the Fisher information J(k) corresponding
to the k previously transmitted pilot vectors. This recursive
calculation remarkably reduces the computational complexity
in comparison to the batch computation of the BCRLB which
simultaneously considers all the symbols received in a single
frame.

VII. COMPLEXITY AND COMPARATIVE ANALYSIS

The online channel estimation scheme proposed has the
overall complexity order of O(M3

τN
3
ν ) for an integer Doppler

scenario, which arises because of the matrix multiplication and
inversion steps involved in (26). By contrast, the computational
complexity of the conventional EP-based [17] CSI estimator
is observed to be of the order O(MτNν). However, it is
important to note that while the proposed scheme exhibits
higher complexity, the EP-based scheme relies on a threshold-
based approach that fails to exploit the sparsity. By contrast,
the OSBL scheme efficiently utilizes the sparsity inherent in
such systems, which significantly improves the performance
at a lower pilot overhead. The comparative analysis below
comprehensively examines the efficacy of these competing
strategies.
The proposed online CSI estimation framework transmits
MNp pilot symbols for a block of MN data symbols, which
leads to a pilot overhead of Np

N+Np . On the contrary, the
conventional EP technique [17] incurs a pilot overhead of
(2Mτ+1)(2Nν+1)

MN for an integer Doppler index scenario. Upon
substituting the appropriate parameters from Table II, the pilot
overhead for the proposed CSI estimation framework is deter-
mined to be 0.2 for System-I and System-II, when Np = 4, 8,
respectively. By contrast, the corresponding overheads for the
scheme discussed in [17] for system I and system II are 0.56
and 0.28, respectively, which are significantly higher than that
of the proposed estimation framework. Moreover, the pilot
overhead of the EP scheme for a scenario with fractional
Doppler is further increased.

VIII. SIMULATION RESULTS

In this section, we investigate the performance of the
proposed online CE technique for both SISO and MIMO-
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(a) (b)

(c) (d)

Fig. 3: NMSE vs SNR Plot for (a) SISO-OTFS System 1, (b) SISO-OTFS System 2 (c) MIMO-OTFS System 1 with Nt = 2,
Nr = 2. (d) MIMO-OTFS System 2 with Nt = 2, Nr = 2.

OTFS systems. The performance metric NMSE is defined as

NMSE =
‖ĤDD −HDD‖2

‖HDD‖2
.

The various parameters used by Systems 1 and 2 are given
in Table II and Table III, where the associated delay and
Doppler indices are chosen randomly for each Monte Carlo
iteration from Table III. Figure 3(a) and 3(b) plot the NMSE
performance vs pilot SNR for SISO-OTFS systems, while Fig.
3(c) and 3(d) show the same for MIMO-OTFS systems. As
expected, the NMSE progressively decreases upon increasing
the pilot SNR. As shown in Fig. 3(a), 3(b), the proposed
online sparse Bayesian learning (OSBL), with NP ∈ [4, 8, 16]
number of pilots for System 1 and NP ∈ [8, 16, 32] for System
2, outperforms many existing sparse estimation schemes, in-
cluding the SBL, OMP, FOCUSS, and the traditional MMSE
algorithm for SISO-OTFS systems. This is due to fact that
OSBL exploits the temporal correlation. Furthermore, the

initial parameters for OSBL are computed using SBL, which
guarantees an improved sparse estimate. Moreover, as the
number of pilots NP is increased from 4 to 16 for System
1, and from 8 to 32 for System 2, the performance of
OSBL improves owing to the increased number of pilots
available for sequential CSI estimation. The OMP technique’s
subpar performance can be attributed to both its sensitivity
to the stopping value and the choice of dictionary matrix,
whereas that of FOCUSS is due to its inability to guarantee
convergence frequently and its sensitivity to the regularization
parameter. Furthermore, the conventional MMSE estimator
does not exploit the sparsity of the DD-domain CSI, which
leads to its poor NMSE performance.

The NMSE performance of MIMO-OTFS systems with
Nt = 2 TAs and Nr = 2 RAs is shown in Fig. 3(c),
3(d) for System 1 and System 2, respectively. For row-group
sparse channel estimation, the proposed online row-group
sparse Bayesian learning (ORGBL) scheme with NP ∈ [8, 16]
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(a) (b)

Fig. 4: NMSE vs Number of Pilots plot with M = 64, N = 8, Mτ = 8, Nν = 8, Pilot SNR = 10dB for (a) SISO-OTFS
system, (b) MIMO-OTFS system with Nt = 2, Nr = 2.

number of pilots for System 1 and NP ∈ [16, 32] for
System 2 outperforms the competing SBL, MBL, RGBL,
OMP, FOCUUSS algorithms, where MBL and RGBL denote
the row sparse and row-group sparse extensions of the SBL,
respectively. The performance trend is similar to that for
SISO-OTFS systems, as shown in Fig. 3(a) and 3(b), with
ORGBL yielding the best performance in comparison to the
other competing sparse estimation schemes. Moreover, when
the number of pilots NP is increased, the performance of
ORGBL improves for both the systems. The performance of
SBL, which does not leverage the row or row-group sparsity,
is inferior when compared to MBL and RGBL, respectively,
whereas MBL performs poorly in comparison to RGBL as
it only exploits row sparsity. Finally, it can be seen that
the NMSEs of the OSBL and ORGBL are close to their
respective BCRLBs derived in Section VI. This observation
is of significant importance since it demonstrates that both
these schemes can achieve their respective lower bounds even
without any knowledge of the prior covariance or support of
the sparse channel. This feature renders them extremely well-
suited for practical implementation, where such information is
frequently challenging to obtain.

Figure 4(a) and 4(b) show the NMSE performance with
respect to a number of the pilot vectors for SISO and MIMO-
OTFS systems, respectively, where

NMSE =
‖ĥ− h‖2

‖h‖2
,

where ĥ is estimated channel coefficient vector corresponding
to each transmitted pilot vector and h is the underlying channel
coefficient vector. For SISO systems, h ∈ CMτNν × 1 is given
by (17) and ĥ ∈ CMτNν × 1. For MIMO systems we have
h = vec(H) ∈ CMτNνNtNr×1, where H is given by (53) and
ĥ = vec(Ĥ) ∈ CMτNνNtNr×1. The various parameter values
are M = 64, N = 8, and Np is varied from 1 to 7 for a fixed
pilot SNR of 10 dB. For the MIMO-OTFS system, the number
of TAs and RAs are set to Nt = 2, Nr = 2, respectively. The

NMSE performance of the OSBL and ORGBL schemes is
obtained by considering only the last transmitted pilot vector,
whereas that for the other schemes is averaged over the entire
block of pilot vectors. It can be readily noted that as the
number of pilot vectors increases, the performance of OSBL
and ORGBL improves, since these algorithms leverage the
previous estimates of the channel, hyperparameter and covari-
ance matrices, and update the estimate of each. Furthermore,
the NMSE performance closely follows the recursive BCRLB
determined in Section VI. By contrast, the NMSEs of the
SBL, OMP, FOCUSS for SISO-OTFS systems and those of
the RGBL, OMP, FOCUSS for MIMO-OTFS systems in Fig.
4(a) and 4(b), respectively, are seen to be constant with the
increase in the amount of pilot vectors, since the performance
of these estimation algorithms is independent of the number
of pilot vectors transmitted.

The bit error rate (BER) of the data detected using the
estimated CSI obtained via various approaches, followed by
employing the proposed low complexity linear MMSE detec-
tors described in Section III-B for SISO and V-B for MIMO-
OTFS systems, is shown in Fig. 5(a), 5(b) for SISO-OTFS
Systems 1, 2, respectively, and in Fig. 5(c), 5(d) for MIMO-
OTFS Systems 1, 2, respectively. The resultant BER is also
benchmarked against that of receivers with perfect CSI for
both the cases. The BER of all the schemes improves upon
increasing the data SNR for all the schemes, with the OSBL
and ORGBL schemes yielding the best BER performance for
SISO and MIMO-OTFS systems, respectively. This is in line
with the trend for the NMSE of CE seen in the previous
figures, which vindicates the hypothesis that the improved
accuracy of CE indeed yields improved BER performance.
Furthermore, the BERs of OSBL and ORGBL approach that
of the respective hypothetical ideal receivers having perfect
CSI for both systems, which demonstrates their efficiency.
In summary, the proposed online Bayesian learning schemes
OSBL and ORGBL, which leverage channel sparsity without
requiring prior knowledge of the number of dominating re-
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(a) (b)

(c) (d)

Fig. 5: BER vs SNR plot (a) SISO-OTFS System 1 with Np = 4, (b) SISO-OTFS System 2 with Np = 8, (c) MIMO-OTFS
System 1 with Nt = 2, Nr = 2, Np = 4, (d) MIMO-OTFS System 2 with Nt = 2, Nr = 2, Np = 8.

flectors or channel characteristics, outperform several other
algorithms in terms of both NMSE and BER, making the
suggested schemes ideal for practical application in SISO- and
MIMO-aided OTFS systems.

The NMSE and BER performance is also presented for a
practical EVA [40] model, which considers fractional Doppler
and a maximum speed of 500Km/Hr. The simulation parame-
ters are as per System 3 in Table II. It can be observed from
Fig. 6(a) that the proposed online estimation framework yields
an improved NMSE performance for the practical channel
model, which corroborates the previously observed results and
reinforces the efficacy of the proposed framework. Moreover,
in Fig. 6(b) the performance of the low-complexity LMMSE
detector is compared to that of the standard MPA detector
[19] employing 50 iterations and the MRC detector [33] using
15 iterations. It is assumed that perfect CSI is available for
the MRC and MPA detectors. It can be observed from Fig.
6(b) that the proposed detector for SISO systems achieves a

bit error rate (BER) closer to low-complexity MRC and MP
detectors for 4QAM modulation scheme. Additionally, if 16-
QAM modulation is chosen performance of MRC and MP
detectors are better and close to each other. However, the
proposed low-complexity LMMSE detector does not require
prior knowledge of the number of unique delay indices,
Doppler indices or the number of paths. Fig. 7(a) displays a
scatter plot for the channel coefficient matrix. This plot serves
as a visual comparison between the estimated CSI using OSBL
and PCSI with fractional Doppler. The parameters used are
M = 128, N = 32,Mτ = 10, Nν = 10, Gν = 40, Np = 4,
P = 8. The purpose of this plot is to assess the accuracy of the
delay and Doppler estimates within the system. It can be in-
ferred that the proposed OSBL scheme estimates the respective
delay and Doppler coefficients efficiently. Fig. 7(b) portrays a
heatmap representation of the effective delay-Doppler channel
coefficient matrix. This heatmap is constructed using Doppler
bins spanning from −20 to 20 after subdividing the integer
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(a) (b)

Fig. 6: (a) NMSE vs. SNR plot for System 3 using EVA channel model (b) BER vs. SNR plot for System 3 using EVA channel
model

(a) (b)

Fig. 7: Channel coefficient matrix for system parameters M = 128, N = 32,Mτ = 10, Nν = 10, Gν = 40, Np = 4, P = 8
(a) Scatter plot (b) Heatmap representation

bins into smaller sub-bins.

IX. CONCLUSIONS

This paper proposed online Bayesian learning assisted CE
procedures for both SISO as well as MIMO-OTFS systems.
Initially, an end-to-end system model was derived in the
DD-domain, followed by our online sparse CE framework
conceived for SISO-OTFS systems. Our sequential MMSE
estimator utilizes the novel EM-based SBL to set the initial
parameters of the online estimation procedure, thus lead-
ing to improved estimation and faster convergence. A low-
complexity detector is also derived based on the block-
diagonal TF-domain channel matrix, which was shown to have

a substantially reduced complexity in comparison to conven-
tional linear data detection. Furthermore, the online CE frame-
work was also extended to MIMO-OTFS systems, wherein the
DD-domain CSI was shown to be additionally simultaneous
row and group sparse. An EM-based RGBL scheme was for-
mulated to determine the initialization parameters of the above
algorithm. A low-complexity detector was also developed for
MIMO-OTFS systems based on a novel iterative block matrix
inversion technique. Time-recursive BCRLBs were derived to
provide valuable insights into the MSE performance of the CE
schemes. Finally, our simulation results clearly demonstrated
that the proposed OSBL and ORGBL schemes yield a signif-
icantly improved performance in comparison to several other
schemes, together with a performance that closely follows their
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G−1
(1) =

[
G−1

(0) + G−1
(0)B(G(1)/A)−1CG−1

(0) −G−1
(0)B(G(1)/A)−1

−(G(1)/A)−1CG−1
(0) (G(1)/A)−1

]
. (80)

G−1
(k) =

[
G−1

(k−1) + G−1
(k−1)B(G(k)/A)−1CG−1

(k−1) −G−1
(k−1)B(G(k)/A)−1

−(G(k)/A)−1CG−1
(k−1) (G(k)/A)−1

]
. (82)

respective BCRLB benchmarks. The improved performance
coupled with low-complexity render them ideally suited for
practical implementation.

APPENDIX A
ITERATIVE PROCEDURE FOR BLOCK INVERSION

The iterative procedure for determining the block inverse of
G is described below.
Iteration 1: Initially assign

G(1) =

[
A = G11 B = G12

C = G21 D = G22

]
, (79)

where the matrices A,B,C,D are of size MN × MN .
Compute the inverse of A as G−1

(0) = A−1 = G−1
11 . The

matrix A is of type Gk,l, which is block diagonal, as shown in
equation (69). Thus, its inverse involves evaluating the inverses
of N matrices of size M ×M , that has a complexity of the
order O(M3N). Moreover, the Schur complement of G(1)

with respect to A is also of size MN ×MN , and it is given
as G(1)/A = D−CA−1B. Evaluating the inverse of G(1)/A
also has a complexity of O(M3N). After the first iteration
corresponding to t = 1, one obtains G−1

(1) as given by (80),
incurring the computational complexity O(M3N) .
Iteration t = k: Continuing the process, during the k-th
iteration,

G(k) =

 A =

G1,1 · · · G1,k

...
. . .

...
Gk,1 · · · Gk,k

B =

G1,k+1

...
Gk,k+1

C = Gk+1,1 · · · Gk+1,k D = Gk+1,k+1

 ,
where the matrices A,B,C,D are of sizes kMN ×
kMN, kMN×MN,MN×kMN,MN×MN , respectively.
The Schur complement G(k)/A = D−CG−1

(k−1)B and G−1
(k)

is computed as given by (82). This incurs the complexity
O(M3N). Proceeding in this fashion, G−1 can be obtained
as G−1

(Nt−1) in iteration t = Nt−1. The overall computational
complexity of this procedure is O(M3NNt).
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