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Introduction 

UK adults aged 60 or over with a new onset diabetes (NODM) diagnosis and recent weight 

loss are now being recommended for urgent investigations to rule out possible underlying 

pancreatic ductal adenocarcinoma (PDAC). Differently measured HbA1c concentration levels 

over time with repeat sampling may be a key approach to triggering referral pathways for 

further investigation.  

Aim 

The aim of this study was to investigate the relationship between HbA1c interpreted as single 

values and as grouped values according to clinical criteria for pre-diabetes and diabetes, and 

occurrence of PDAC in individuals diagnosed with NODM.  

Methods 

In this matched case-control study, 502,459 UK Biobank dataset participants were screened 

for incidental PDAC and HbA1c measurements at study baseline. Cox proportional hazards 

regression modelling with univariate and multivariate analysis generated hazard ratios (HR) 

for each of our chosen variables. Log-rank tests were performed for statistical significance. 

Receiver-operating characteristic (ROC) analysis and Youden index calculations were used to 

evaluate the performance of HbA1c as a test for detecting PDAC.  

Results 

HbA1c was not a useful standalone predictive marker for PDAC. However, newly elevated 

HbA1c in participants without a history of diabetes suggestive of  emerging new pre-diabetes 

or new diabetes diagnosis was associated with a significantly higher risk of PDAC.  

Conclusion 

Interpretation of HbA1c measurements benefits from knowledge of prior diabetes status 

when predicting risk of PDAC. The limitations of our study with single HbA1c measurements 

suggest that to enhance our understanding of the relationship between HbA1c and PDAC, 

future studies may benefit from examining repeat HbA1c measurements over time.  
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5 Introduction 

There is growing recognition of pancreatic ductal adenocarcinomas (PDAC) as a genetic 

disease that offers new opportunities for disease prediction. Individuals who are at high risk 

of developing sporadic pancreatic cancers (PC) have no effective screening tool for the early 

detection of this deadly disease. As such, the discovery of biomarkers and new testing 

techniques for risk modelling remains the primary goal for most researchers in this field.  

Identification of sporadic PDAC in high-risk individuals using techniques such as polygenic 

risk scoring (PRS) [1] and targeted methylation analysis on circulating cell-free DNA (cfDNA) 

[2] offer new ways to enhance currently proposed risk models for detection of early-stage 

PDAC which rely primarily on clinical features alone. However, these genetic screening tools 

are still relatively novel, not widely accessible, and require clinical validation prior to their 

use in routine clinical practice [2]. Given these limitations, the optimal use of these 

techniques for early-stage sporadic PDAC risk prediction models as they currently exist may 

be as secondary screening tools. These have the potential to be used to identify or enrich a 

high-risk cohort of individuals first identified based on clinical indicators for further 

monitoring or investigations.  

Due to the relative rarity of sporadic PDAC in the general population, identifying high-risk 

individuals in this cohort remains a significant challenge. To date, diabetes is one of the few 

known clinical high-risk factors associated with sporadic PDAC. It is widely accepted that the 

timing of diabetes onset plays a significant role in the likelihood of developing PDAC and 

early recognition of new onset diabetes (NODM) may improve prognosis by triggering earlier 

investigations for PDAC. In December 2021, the UK National Institute for Health and Care 

Excellence (NICE) updated their guidance for the detection of pancreatic cancer symptoms 

in primary care to include the combination of NODM with weight loss and age over 60 as a 

criteria for urgent referral for further investigation and management [3]. The 

recommendation for management requires clinicians to consider an urgent direct access CT 

scan (to be done within 2 weeks), or urgent ultrasound scan if CT is not available [3]. The 

inclusion of NODM as a recognised risk factor for PDAC in the UK NICE guidelines is an 

important first step towards the development of a screening algorithm that improves overall 

prognosis for this disease. The relationship between diabetes and pancreatic cancer appears 

to be bi-directional. As such developing an effective screening strategy for detection of early-

stage PDAC still requires better understanding of the interaction between modifiable and 
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non-modifiable risk factors, genetic risk factors, and utility of investigative tools and 

screening markers associated with both of these highly complex diseases.  
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6 Literature Review 

6.1 Pancreas Anatomy 

 

Figure 1. The Pancreas, The pancreatic duct, Orifice of common bile-duct and pancreatic duct, 

Accessory pancreatic duct. Contributed by Gray’s Anatomy Plates [4]. (Republished, with permission 

from Statspearls Publishing LLC) 

 

The pancreas is an accessory digestive gland that is found retroperitoneally on the posterior 

abdominal wall that crosses the L1 and L2 vertebra [5]. It lies in the upper abdomen between 

the duodenum on the right (Figure 1.) and spleen on the left, and divided anatomically into 

the head, neck, body and tail [5]. Approximately 80% of the pancreas is made up of exocrine 

pancreatic acini, which are pyramidal acinar cells arranged in circular groups with the apex 

directed towards a central lumen. These cells contain zymogen granules apically, and a 

nucleus and endoplasmic reticulum towards the cell base which aids the synthesis of 

digestive enzymes. The enzymes are stored in the Golgi complex of these cells until signalling 

pathways trigger their secretion into the central lumen. Acinar cells contain receptors for 

secretin, cholecystokinin and acetylcholine – neurotransmitters which regulate exocytosis of 

the digestive enzymes [5].  
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The pancreas also contains one to two million islets of Langerhans, measuring on average 

between 100-150µm in diameter. 1-2% of the total pancreatic mass is islet tissue, which are 

responsible for the production of glucagon, insulin, somatostatin, and pancreatic 

polypeptide [6]. The islets of the anterior head and tail of the pancreas are derived from the 

primordial dorsal bud. These are made up pre-dominantly of α-cells (15-20%), which produce 

glucagon to elevate blood glucose, and β-cells (3-10%) which produce insulin to lower blood 

glucose.  
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6.2 Pancreatic ductal adenocarcinoma 

 

Figure 2. Schematic of the multi-stage progression of PDAC. (A) Some forms of PDAC may arise from 

multi-stage progression of precursor lesions known as pancreatic intraepithelial neoplasia (PanIN). (B) 

KRAS, TP53 and CDKN2A mutations are three most commonly identified mutations associated with 

disease progression. (C) The tumour microenvironment is altered with increased fibrosis, extracellular 

matrix deposition (desmosplasia), and recruitment of immune and inflammatory cells. Republished 

from Perera and Bardeesy, 2015;5(12) [7], with PMC Open Access Subset content copyright licence 

permissions. 

 

Pancreatic cancers are subdivided by tumour origin into two groups: exocrine and endocrine. 

Endocrine pancreatic cancer is responsible for the production of various hormones including 

insulin. These occur in 2-4% of all PC cases and originate from the islet cells. Exocrine PCs 

account for about 95% of all pancreatic cancers and almost all exocrine PCs are pancreatic 

ductal adenocarcinomas. Other much rarer exocrine cancers include acinar cell carcinoma 

(1% of pancreatic cancers), solid pseudopapillary neoplasms (%), and pancreatoblastomas 

[8]. Of these, acinar cell carcinomas are more common in men and found in about 1% of 

pancreatic cancer cases. Solid papillary neoplasms are more common in younger women and 

are the most common pancreatic tumour in children. Pancreatoblastomas are also mostly 
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found in children and are extremely rare in adults [9]. Thus, in the context of sporadic 

pancreatic cancers that develop in later adult life, the likelihood of presenting with these 

rarer exocrine cancer diagnoses is extremely small.  

Within the scientific literature, two definitions (PC and PDAC) have been observed to be used 

interchangeably. This is due to the disproportionately high incidence of PDAC diagnosis 

verses any other subtype being referred to when described more simply as pancreatic 

cancer. Likewise, it has been argued that the number of rarer subtypes included in studies 

where PC subtypes are not clearly defined are frequently assumed to be so small as to be 

statistically insignificant. For consistency, both PC and PDAC in referenced literature will be 

referred to as PDAC in this study to represent any pancreatic cancers of non-neuroendocrine 

origin. 

PDAC follows an evolutionary pathway characterised by hypovascularization, desmoplasia 

(fibrotic overgrowth around the tumour), genomic complexity and metabolic 

reprogramming [10]. The altered metabolism of PDAC cells allows it to thrive in poorly 

perfused, hypovascular conditions by upregulating nutrient acquisition and utilization 

pathways simultaneously (Figure 2.) [7]. The overexpression of glucose transporters and 

glycolytic enzymes positively influences tumour growth regardless of the oxygen availability 

for aerobic metabolism in PDAC. This type of paradoxical metabolic reprogramming is known 

as ‘the Warburg effect’ that can be found in most cancers [11]. The cancer pathway for PDAC 

follows a typical pattern for many cancers, involving three critical periods of change: Time 1 

– from tumour initiation and cell birth to the rise of a parental clone, Time 2 – from the 

parental clone to metastasis, and Time 3 – from cellular dissemination to patient death [12]. 

PDAC primaries contain a mixture of distinct sub-clones which exist many years before 

metastases becomes evident [12]. These have been calculated to take an average estimate 

of 11.7 years to progress from initiation to overt cancer, and a further 6.8 years on average 

to become metastatic [12]. This finding may offer potential windows of opportunity to detect 

PDAC lesions early, including precursor lesions whilst they are still in the curative stages of 

disease [12]. 
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6.2.1 Pathogenesis of PDAC from a genetic perspective 

Advances made with next generation sequencing techniques and the regular sequencing of 

tumours have led to the recognition of PDAC as a genetic disease. By identifying tumour 

genomes and analysing their pattern and frequency of expression, genetic studies continue 

to provide greater insight into its pathogenesis [13].  PDAC has around 60 genetic alterations 

per tumour [13] and a significant feature of the PDAC genome is that the combination of 

alterations that arise is unique to each case [14, 15]. The nature and function of this tumour’s 

heterogeneity are increasingly being elucidated and emerging knowledge about the complex 

biology of this tumour offers up new approaches to targeting for early detection and 

subsequent treatment. From these extensive gene studies, four genes have been identified 

to be frequently mutated in PDAC: K-Ras, CDKN2A, p53, and SMAD4.  

K-Ras oncogene mutations occur in low-grade PanIN lesions and in over 90% of early PDAC 

tumours [16]. Such a high frequency of this mutation suggests that tumour pathogenesis may 

revolve predominantly around the molecular pathways regulated by K-Ras and provides a 

strong argument for focussing research on K-Ras inhibitor therapies. K-Ras also inactivates 

the tumour suppressor gene p16/CDKN2A in early pancreatic intraepithelial neoplasms 

(PanIN), and the tumour suppressor gene p53 in 50-75% of PDAC cases, often in the late 

PanIN phase of disease (Figure 3.) [16]. Other oncogenes and tumour suppressor genes are 

also associated with PDAC but the prevalence and importance of K-Ras, p16 and p53 gene 

mutations specifically has led to their inclusion as key pancreatic juice analysis gene markers 

for PDAC in the European Registry of Hereditary Pancreatitis and Familial Pancreatic Cancer 

(EUROPAC) screening study. EUROPAC is gathering data with the aim of developing new 

screening programmes for the detection of early-stage PDAC in high risk individuals (HRI) and 

the inclusion of pancreatic juice gene markers marks another step in this complex process 

[17].  
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Figure 3. Pancreatic precursor lesions and genetic events involved in pancreatic adenocarcinoma 

progression. PanIN, IPMN, and MCN represents three known precursor lesions of PDAC. Early 

genetic alteratsion (K-ras mutations, P16) and late genetic alterations (p53 loss, SMAD4 loss), that 

occur in adenocarcinomas also occur in PanIN and to a lesser extent in IPMNs and MCNs. Asterisks 

indicate events that a re not common to all precursor lesions. Republished from Polireddy and Chen 

2016;7(11), with permission from Ivyspring International Publisher 

 

CDKN2A is involved in the regulation of the RB1 gene which has an important role in G1/S 

checkpoint inhibition of the cell cycle. Mutations in CDKN2A occur in early PDAC and are 

associated with a 20-fold higher risk for PDAC when identified in patients with the familial 

pancreatic cancer-melanoma syndrome compared to patients without these mutations [18]. 

Certain genes highly correlated with CDKN2A and PDAC progression include CDK4, CDK6, 

MYC, MDM2 and p53. CDK4 is a major regulator of insulin signalling [19] and its activity is 

shown to be critical for the proliferation of differentiated β cells in mouse islets to 

accommodate the steady-state requirements of insulin secretion [18]. CDK4 activation has a 
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close relationship with cancer development and is inhibited by CDKN2A. It is also involved in 

the induction of gluconeogenesis in the liver and has an important metabolic role in the 

development and progression of PDAC. CDK6, like CDK4, is involved in the regulation of G1 

to S cell cycle progression, transcription, differentiation [18]. The combination of CDK6 and 

cyclin D3 (CD3) plays an important role in glucose metabolism and promotes cancer cell 

survival [20]. Pre-clinical and clinical trials have shown that these properties can be exploited 

with CDK4 and CDK6 inhibitors having a role in PDAC therapy.  As such, CD3-CDK6 inhibitors 

may enhance the clinical efficacy of anti-CDK4/6 treatment and prognosis in patients with 

PDAC [20].  

MYC has an important role in activating multiple genes involved in DNA replication, 

transcription, translation, chromatin modification and protein synthesis and degradation. 

MYC mutations induce errors in the normal cell cycle with amplification of the gene resulting 

in overexpression, uncontrolled cell growth and multiplication [21]. The overexpression of 

MYC is found in up to 42% of late PDAC diagnoses, and associated with poorer clinical 

outcomes, increased probability of recurrence, worsening disease and decreased survival 

[21]. MYC also protects PDAC cells from failure and inhibits their differentiation, highlighting 

the importance of developing treatments targeting this gene [22].  

P53 plays a role in inducing cell cycle arrest at G1 or G2 checkpoints. Mutations in this gene 

are found in more than 50% of malignant cancers with considerable variation in frequency 

depending on the cancer type and are associated with a loss of tumour suppressor function 

[23]. Low expression of p53 is associated with an increased risk of PDAC with high oncogene 

MDM2 overexpression – another gene closely associated with CDKN2A [24]. MDM2, among 

other oncogenes, attenuates the function of p53, resulting in its mutation and thus 

contribution to the development of cancer [25]. Its expression is associated with poor 

prognosis for PDAC both in response to p53 mutation and as a p53-independent effector of 

tumour development and progression. As such,  MDM2 provides researchers with another 

important target for future therapies in addition to p53.  

TGFβ is a key mediator of immune evasion in PDAC, and the deletion of TGFβ target SMAD4 

is identified in approximately 55% of PDAC tumours [25]. Although the exact contribution of 

SMAD4 to PDAC development and overall prognosis remains unclear, its inactivation leads 

to modification of the TGFβ response, resulting in the TGFβ signalling pathway changing from 

a tumour suppressor to a tumour promoter with disease progression. Some therapeutic 

benefits may exist with a SMAD4-targeted treatment approach. However, the existence of a 
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SMAD-independent TGFβ signalling pathway may bypass such strategies, thus limiting the 

overall effectiveness of this approach [26].  

Other gene mutations that occur less frequently are as important in their roles in PDAC. 

Many of these mutations appear to converge on a handful of key pathways and processes 

[14]. These include NOTCH, Hedgehog, β-catenin, axon guidance, chromatin remodelling, 

and DNA repair pathways. For example, the BRCA2, PALB2, FANCC, FANCG gene mutations 

constituting less than 10% of the mutated genes in PDAC are all involved in the genome 

maintenance DNA repair pathway [13]. 

Tumours either deficient or showing mutant variation of these genes may provide openings 

for potential treatment pathways. The frequent and lesser gene mutations all point towards 

potentially effective targeted therapies depending on the unique genetic makeup of the 

lesion in each case of PDAC. Although genetic studies have primarily focussed on the search 

for therapeutic targets, their contribution to the understanding of the role genes play within 

the cell cycle and metabolic character of this cancer also provides vital insights into its 

etiopathogenesis and provide vital clues to effective early detection strategies. 
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6.2.2 Precursors and cancer development  

The pathogenesis of exocrine PDACs is believed to involve at least two distinct pathways that 

includes the evolution of intraductal papillary mucinous neoplasms (IPMN) into its invasive 

form, and pancreatic intraepithelial neoplasms (PanIN) that develop into PDAC [27]. IPMN 

risk factors include long-standing diabetes (LSDM) treated with insulin, chronic pancreatitis, 

and family history of PDAC (Figure 4.) [28, 29], whereas PanINs are associated with obesity 

and pancreatic fatty infiltration [29, 30]. These risk associations support the link between 

neoplastic change and clinical disease states that may also aid the early detection of PDAC 

as part of future screening models.  

 

Figure 4. (A) Cumulative carcinogenic curve in all patients with cyst, patients with intraductal 

papillary mucinous neoplasm (IPMN), and IPMN plus diabetes mellitus (DM). (B) Cumulative 

carcinogenic ratio (Incident ratio), Expected ratio in the general Japanese population (Expect ratio), 

and standardized incidence ratio (SIR) in each group. Reproduced from Yamaguchi et al., 2022, with 

PMC Open Access Subset content copyright licence permissions. 

 

6.2.2.1 Pancreatic intraductal neoplasms 

PanINs are precursor lesions that are typically microscopic (<5mm), flat or papillary, arising 

from the small intralobular pancreatic ducts [31]. These lesions acquire progressive 

mutations which are classified by their morphological features as low grade PanIN-1A (flat), 

PanIN1-1B (papillary), intermediate grade PanIN-2 (mild to moderate cytological and 

architectural atypia), and high grade PanIN-3 (showing severe cytological and architectural 

atypia) [32]. Not all PanIN lesions develop into PDAC and not all patients diagnosed with 

PDAC are found to have PanIN lesions. However, high grade PanINs and PDAC show similar 

immunohistochemical protein expression by markers for the apomucins MUC1, MUC3, 

MUC4, and MUC5AC, suggesting that PDAC stemming from PanINs may be identified through 
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shared gene expression patterns [32]. Furthermore, pancreatic cancer patients with a family 

history of pancreatic cancer and carriers of the CDKN2A gene have both been shown to 

frequently develop multifocal, microscopic PanINs around the primary tumour [33, 34]. The 

grade of PanIN can also be linked to specific alterations to gene expression, with CDKN2A 

inactivation being detectable in early PanIN, and p53 and SMAD4 inactivation being 

associated with later alterations in tumour progression [31].  

6.2.2.2 Intraductal papillary mucinous neoplasms 

Up to 15% of PDACS are thought to arise from mucinous pancreatic cysts, which include 

IPMNS and mucinous cystic neoplasms (MCNs) [13]. Morphologically, these can be 

categorised by the location and extent of involvement within the pancreas, with 15-21% of 

IPMNs originating from the main duct segment located within the pancreatic head. They 

typically result either in dilatation of the main duct of more than 6mm or in the formation of 

cystic lesions that appear well defined on radiological imaging. Approximately one third of 

patients with IPMN are associated with invasive carcinoma and some of the genetic changes 

seen are also found in PDAC, including K-ras, CDKN2A, SMAD4 and p53 [35]. PDAC derived 

from IPMN appear to be smaller, less invasive, and less extensive than ordinary PDAC, and 

maybe more prognostically favourable in terms of their biological behaviour [36].  

PDAC patients presenting with concomitant PanIN lesions appear to demonstrate longer 

post-resection survival compared to PDAC patients who present without PanIN [37]. In a 

separate study, patients found with higher-grade PanIN lesions (PanIN2 and PanIN 3) have 

also been shown to have a better overall survival than those with lower-grade PanIN lesions 

[38]. The authors of both studies suggested that such findings may be explained by the 

existence of a subset of tumours which lack PanIN, that demonstrate more aggressive local 

invasion, and have a tendency to develop into more poorly differentiated cancers through 

an as-yet undefined pathway [37, 38].  These differences in clinicopathological presentation 

are known to exist elsewhere such as with colon cancers [39]. For example, it is well 

recognised that most sporadic colon cancers arise from the progression of adenoma to 

carcinoma. However, other less common colon cancer subtypes may arise independently of 

adenomatous formation, such as those demonstrating defects in DNA mismatch repair in 

patients with hereditary nonpolyposis colorectal cancer syndrome [38].   

Early resection of IPMNs has also been shown to improve survival [40]. Clinically, IPMNs tend 

to be visible on conventional imaging, whereas PanINs are not easily detectable, thus limiting 

the effectiveness of radiological imaging as a standalone screening tool for early PDAC. To 
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aid the search for effective screening models for PDAC, more studies examining the 

significance of having PDAC with concomitant IPMN vs PDAC derived from IPMN and others 

are needed. The findings from such studies would help develop optimal methods of 

monitoring and early treatment of PanIN, IPMN and MCN precursor lesions. Vital insights 

into the prognostic value of screening for PanIN and IPMN as part of a wider protocol for 

early detection of sporadic PDAC are also needed from further research.  Currently, no 

effective screening method for sporadic PDAC exists which emphasises the need to identify 

effective biomarkers for the early detection of PDAC and potentially its precursor lesions. 

6.2.2.3 Pancreatic ductal adenocarcinoma 

PDAC was originally divided into three subtypes based on expression of certain genes: 

Classical (high expression of adhesion-associated and epithelial genes), Quasimesenchymal 

(high expression of mesenchyme associated genes), and Exocrine-like (showing relatively 

high expression of tumour cell derived digestive enzyme genes) [41].  The International 

Cancer Genome Consortium study updated these definitions to Progenitor (similar to 

classical subtype), Squamous (similar to quasimesenchymal; associated with poor prognosis 

similar to basal subtype carcinomas of other organs), and aberrantly differentiated endocrine 

exocrine (ADEX; similar to exocrine-like subtype). A new immunogenic subtype has also been 

identified that partially overlaps with the previously described classical subtype lesions due 

to their marked enrichment of immune signature [41]. More recently, the heterogeneity of 

PDAC identified through RNA-based sequencing has revealed further insights into its 

pathogenesis. 

The clonal nature of shared mutations among PanINs and advanced tumours supports a 

stepwise-progression model for pancreatic cancer. Multiple other alterations are believed to 

occur simultaneously, each having their own driver or passenger roles in pathogenesis [41]. 

Despite the intra-tumoral heterogeneity demonstrated by PDAC in situ, metastatic PDAC 

shows high uniformity of driver mutations when examined within the same patient [41]. This 

suggests that potential treatments modelled to target patient-specific driver gene mutations 

based on their individual mutant gene profile has the potential to significantly limit the 

malignant processes involved. Another important pathophysiological component of PDAC is 

the stroma that surrounds these neoplastic cells. Poor vascularity and intense desmoplastic 

stroma are predominant components of PDAC in which the neoplastic cells survive. 

Transcriptome analysis of these stromal cells has shown that desmoplastic stroma associated 

with the malignant changes of PDAC comprises two subtypes with different gene expression 
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characteristics: a normal subtype that resembles pancreatic stellate cells and an activated 

‘inflammatory’ subtype [42]. The biphasic nature of this stroma may provide an additional 

target for detection of metastatic PDAC and enhance protocols for grading and staging as the 

interaction between this stroma and neoplastic cells may also have a role in tumour 

heterogeneity [42]. 
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6.2.3 Incidence and mortality 

In the United Kingdom, pancreatic cancer accounted for 3% of newly diagnosed all-cancer 

cases in 2014 with around 9000 new cases reported yearly. Incidence rates for pancreatic 

cancer have increased by 14% since the early 1990’s and it is expected to rise by a further 

6% to 21 cases per 100,000 people by 2035 [43]. PC is the 11th commonest cancer in the 

United Kingdom (UK), yet accounts for 5% of all cancer-related deaths and the fifth 

commonest cause of cancer mortality in the UK [43]. Mortality rates have remained 

unchanged in the UK over 40 years, with fewer than 5% surviving beyond 5 years, and less 

than 1% at 10 or more years. By comparison, breast cancer survival in the UK has doubled 

from 40% to 78% in the last 40 years [44]. 

 

Figure 5. Pancreatic cancer (ICD10: C25), average number of new cases per year and age-specific 

incidence rates per 100,000 population, UK, 2016-2018. A steady rise in risk is seen from around the 

age of 35-39, with the greater rises seen after age 50 in both male (blue) and female (pink) cohorts. 

Bars represent total cases per year per age cohort, line represents incident rate. Reproduced with 

permissions from Cancer Research UK; Internet URL: https://www.cancerresearchuk.org/health-

professional/cancer-statistics/statistics-by-cancer-type/pancreatic-cancer/incidence#heading-One; 

accessed September 2022. 

 

PC accounts for approximately 4% of cancer-related deaths worldwide and expected to rise 

in incidence regardless of location, socio-economic status, age, and gender [45]. In the UK, 

overall mortality rates have remained unchanged but distribution by age and gender has 

shifted over time (Figure 5.). The overall mortality rate for men has decreased, with the 

https://www.cancerresearchuk.org/health-professional/cancer-statistics/statistics-by-cancer-type/pancreatic-cancer/incidence#heading-One
https://www.cancerresearchuk.org/health-professional/cancer-statistics/statistics-by-cancer-type/pancreatic-cancer/incidence#heading-One
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largest reduction observed in the aged 25-49 group and highest rises seen in the 50-54 age 

group. Women’s mortality rates have increased across all age groups in over the same period 

of time. 

The shift in incidence towards later life may be associated with higher living standards and 

changes in socio-economic circumstances and cultural or lifestyle choices. Ecological studies 

suggest that PC is associated with nations with high human development index (HDI) scores, 

which measures quality of health, knowledge, and standard of living (Figure 6.) [45-47]. The 

PC incidence and mortality in high HDI -scoring countries may be six- to sevenfold higher than 

lower HDI strata[45]. Individuals tend to live longer in higher HDI nations and therefore have 

a greater accumulated lifetime exposure risk for cancer, which may partially explain this 

relationship [46, 47]. However greater inequality is also associated with higher HDI scores 

[47], which may influence lifestyles and exposure to risk factors that have been shown to be 

directly linked with cancer including PC such as obesity, tobacco use, alcohol use, and 

diabetes [48]. All large ecological studies come with limitations. Higher HDI countries tend to 

have more accurate healthcare data records. Less developed nations will be prone to under-

reporting, misrepresentation bias and attribution bias. Combined, the differences in strength 

of association may be less than what has been reported. However, the corroboration of the 

same findings amongst repeat studies and linkage to diseases associated with both cancer 

and improved HDI scores does provide support for the notion that HDI is linked to increased 

risk of PC, even though the reasons why are not clear.  

 

Figure 6. Human Development Index (HDI) as defined by its key assets. GNI = gross national income, 

PPP$ = purchasing power parity. Pancreatic cancers are associated with higher HDI scores that are 
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likely attributed to greater accumulated lifetime exposure risk of cancer [46, 47].  Diagram adapted 

from Training Material for Producing National Human Reports, March 2015; UNDP Human 

Development Report Office. 

 

6.2.3.1 Early detection and clinical presentation 

PDAC has a broad symptom signature consisting of multiple symptoms, with only a few 

considered as ‘alarms’ that are strongly suggestive of cancer [49]. 79% of new cases with 

recorded staging at diagnosis in England are diagnosed with stage 3 and 4 cancer, with only 

21% found at the earlier disease stages (Figure 7.) [8].  

 

Figure 7. Overall diagnosis by stage. 69-79% of pancreatic cancer cases in England and Scotland 

have stage at diagnosis recorded. Of these, 68-69% of patients are diagnosed at stage IV with 79% of 

patients with a known stage diagnosed at stage III or IV. Reproduced with permissions from Cancer 

Research UK ; Internet URL: https://www.cancerresearchuk.org/health-professional/cancer-

statistics/statistics-by-cancer-type/pancreatic-cancer/incidence#heading-Four; accessed September 

2022. 

One of the most profoundly impactful issues limiting effective management of PDAC is that 

early-stage disease commonly occurs without symptoms, or with relatively few symptoms 

that are non-pathognomonic for the disease at the time of their physical presentation to the 

individual [50]. Symptoms can also occur with an intermittent course that can be falsely 

reassuring to patients, leading to further delays to diagnosis [51]. The most common 

symptoms to present clinically are abdominal or back pain, jaundice, and weight loss [50-55]. 

https://www.cancerresearchuk.org/health-professional/cancer-statistics/statistics-by-cancer-type/pancreatic-cancer/incidence#heading-Four
https://www.cancerresearchuk.org/health-professional/cancer-statistics/statistics-by-cancer-type/pancreatic-cancer/incidence#heading-Four
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Other less common symptoms across all stages can include nausea, vomiting, early satiety, 

altered stools/steatorrhea, bloating, discoloured urine, pruritis, fatigue, and 

gastroesophageal reflux [51, 54, 55]. Around 70% of cases present with symptoms of pain 

with or without jaundice or weight loss, and 10% are investigated for painless jaundice [55]. 

In Japan, a retrospective observational multicentre study performed over a 9-year period 

found that 25% (50/200) patients with early stage PDAC were detected by investigations due 

to abdominal pain (72%), back pain (26%), nausea (8%), diarrhoea (2%) and jaundice (2%) 

[55]. The remaining patients were detected through abnormalities found on routine medical 

check-ups and abnormalities during examination or follow-up for other disease (17% and 

51% respectively). Kikuyama et al.’s study within the Japanese cohort highlighted abdominal 

pain as the most frequent symptom associated with subsequent follow-up investigations and 

diagnosis of early stage PDAC. In a prospective cohort study involving data across seven 

hospitals in England for individuals aged 40 years or older with suspicion of PDAC, the authors 

found that no initial symptoms were reported any more frequently by patients with cancer 

than by those with no cancer, indicating that early stage PDAC cannot be accurately detected 

by symptoms alone [50]. However, subsequent symptoms of jaundice, fatigue, change in 

bowel habit, weight loss and decreased appetite were all shown to be features more 

prevalent in the PDAC patient group verses those with no cancer (p<0.0001) [50]. The 

authors concluded that jaundice, weight loss, and diabetes may be key indicators signalling 

the progression of PDAC at certain stages of disease. They also suggested that Individuals 

presenting with these features atypically should be considered seriously for the possibility of 

an underlying PDAC diagnosis [50].  

The presentation with abdominal pain in early-stage disease did not feature as a symptom 

associated with early stage PDAC in the English population study (48). A Thai study involving 

100 patients by Kongkan et al. did report abdominal pain or discomfort as a common 

presenting symptom in 71% of cases identified in one hospital setting [56]. However, most 

of the patients were in advanced stages of the disease at the time of diagnosis, suggesting 

that these symptoms were not a feature significantly associated early-stage disease and 

comparable to the results from a multi-institutional series of 185 patients from Spain which 

found that most types of pain experienced were significantly associated with increasing stage 

[57]. It is unclear why there is a disparity between the Japanese study and other studies 

above. Reasons suggested for racial disparities in cancer presentation include differences in 

levels of access to diagnostic, screening, and treatment modalities [58]. Differences may also 

be observed as a result of changes in clinical epidemiology over time where routine screening 



Literature Review 
 

28 
 

may result in overdiagnosis bias [58]. In these circumstances, routine screening may increase 

detection of early stage potentially lethal disease, but may also generate an increase in the 

detection of indolent cancers in the process. Although the overall effect is likely to be 

marginal, this could still give the impression that a higher proportion of cancers are detected 

at early stage.  

The experience of cancer-associated pain is a complex multidimensional construct and a 

patient’s ethnicity may influence the experience of pain [59]. A systematic review of 11 

studies examining the relationship between ethnicity and pain experience of cancer patients 

in the United States of America identified two general themes to pain: cultural differences in 

barriers to pain treatment, and the experienced severity of pain itself [59]. Their study 

identified that Asian Americans tended to normalise pain verses Western patients. Asian 

Americans reported more barriers to pain treatment than Western patients but not when 

compared with Afro-American or Spanish-speaking Latina patients. Evidence also suggested 

that Asian Americans report lower levels of moderate pain compared to other ethnicities. 

Caucasian reference populations were a common theme amongst the papers studied in this 

systematic review and it was suggested that pain severity appears to be higher generally in 

ethnic groups verses white cancer patients in specific circumstances. The systematic review 

acknowledged multiple limitations including publication bias and study heterogeneity. It was 

unable to differentiate between first- and second-generation immigration status of 

individuals within the studies, and the complexity of defining ethnicity may have contributed 

to type 1 error in the results of each study. The omission of non-English language papers 

would also have limited insight into the experience of pain by patients in different ethnic 

groups in different countries for comparison. This paper was however able to highlight the 

influence of cultural differences on the way in which pain is perceived and approached. Local 

socioeconomic factors such ease of access to high quality health care services, and the 

cultural influences specific to the population within Kikuyama’s study may be part of a 

specific multi-dimensional construct of factors responsible for the increased presentation of 

pain in early-stage pancreatic cancer within the Japanese cohort not seen in studies 

performed elsewhere. 

Steatorrhea may be associated with an underlying pancreatic cancer when associated with 

weight loss in individuals aged 60 years or over [60]. It is defined as an increase in fat 

excretion in the stools which can cause overlapping clinical symptoms of diarrhoea, due to 

increased frequency and looseness of bowel movements. Clinically, steatorrhea is the result 

of fat malabsorption which can arise from different conditions such as exocrine pancreatic 
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insufficiency, coeliac disease, and tropical sprue [61]. With pancreatic cancer, steatorrhea 

may be associated with pancreatic localisation of the tumour as this symptom and 

cholestatic symptoms (e.g. jaundice, hypocolia, choluria, and pruritis) are significantly more 

common in tumours affecting the pancreatic head [57]. However, steatorrhea secondary to 

the development of exocrine pancreatic insufficiency in pancreatic cancer may be more 

typically indicative of advanced disease. Studies have shown that steatorrhea presents across 

all stages of tumour. Kikuyama’s group found that 2% of individuals visiting hospital with an 

eventually diagnosed stage 1 pancreatic cancer included diarrhoea as part of their initial 

presenting symptoms [55]. In the Thai study by Kongkam et al., steatorrhoea was a 

presenting symptom in 1% of cases (n= 100) although the disease stages associated with this 

symptom could not be ascertained due to limitations with the data. In the Spanish study by 

Porta et al., steatorrhea was a presenting sign in 25.5% (n=46) of all pancreatic cancer cases. 

For individuals with available data on clinical symptoms at presentation and associated 

tumour staging, 31.1% presented with stage I tumours and 25.3% of individuals presented 

with stage II-IV disease. The presentation with steatorrhea across all stages of disease may 

be due to a mixture of site and disease progression-related factors. As the study only 

analysed cases with confirmed diagnoses of exocrine pancreatic cancer, the authors were 

unable to assess the predictive value of signs and symptoms to determine if correlations 

existed between steatorrhea and detection of early-stage head of pancreas lesions. Despite 

the significant problems and limitations associated with accurate measurement of symptoms 

for studies attempting predictive analysis, findings from multiple authors demonstrate the 

importance of recognising steatorrhea and other cholestatic signs and symptoms as part of 

a strategy for identifying patients with pancreatic cancer at an earlier stage.  

6.2.3.2 Clinical pathways as barriers to diagnosis and treatment 

The type of symptom presentation for underlying pancreatic cancer may also be associated 

with a large variance in diagnostic testing and subsequent delays in treatment (Figure 8.) [51, 

62]. Shorter intervals from symptom-onset to diagnosis, and shorter intervals from 

symptom-onset to specialist referral have both shown a positive association with overall 

survival [62, 63]. In the context of PDAC diagnosis, non-specific abdominal pain was the most 

common first symptom but correlated with significantly longer delays in seeking first medical 

contact [51]. It has therefore been suggested that patient symptom-to-assessment intervals 

of less than 30 days, and a diagnostic interval of less than 60 days for symptomatic PDAC are 

associated with a clinically meaningful improved probability of upfront surgical treatment 

[51]. The diagnosis of PDAC typically arises from three different initial processes: (i) patients 
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seeking clinical review for symptoms; (ii) on incidental findings through the detection of 

abnormal results from routine medical checks, and (iii) from investigations for other 

disorders [55]. Thus, identifying early disease is also largely dependent on the circumstances 

in which the earliest suspicions of pancreatic malignancy may first arise. 

 

Figure 8. Patient, diagnostic, and treatment intervals for all 116 patients included in the analysis: 

Delays are typically highest between symptom onset and the zero-day time point for each patient 

represents the point at which patients first reported symptoms of pancreatic cancer. The median 

interval for all patients (including patient, diagnostic, and treatment intervals) is 74 days (black vertical 

line). Reproduced from Deshwar et al. 2018 [51], with PMC Open Access Subset content copyright 

licence permissions. 
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6.3 Diabetes as a risk factor for pancreatic cancer 

PDAC has a complex inter-relationship with certain modifiable risk factors such as diabetes, 

smoking, diet and obesity [64-67] as well as a high-risk association with certain inheritable 

conditions [68]. There is general consensus amongst researchers that these associations are 

key to the development of effective methods to detect early stage PDAC and contribute to 

the development of future screening tools [12]. Long-standing diabetes, new onset diabetes, 

and alterations to glycaemic status still remains one of the few clinical features reliably 

associated with the development of PDAC.  

A population-based cohort study by Rentsch et al. examining the risk of 16 cancers across 

the full glycaemic spectrum of HbA1c levels confirmed that a statistically significant 

association existed between HbA1c and pancreatic cancer (Figure 9.) [69]. The relationship 

persisted after adjustment for body mass index (BMI), physical activity, and underlying 

cardiovascular disease. Furthermore, Pancreatic cancer was the only type of cancer within 

the study to demonstrate a persistent risk-relationship with HbA1c after adjustments for 

other variables. Previous systematic reviews found no evidence of an association between 

HbA1c and any cancers including pancreatic cancer [70, 71]. However, as pancreatic cancer 

is a relatively rare cancer, low site-specific cancer events identified within smaller population 

cohorts of older studies and the systematic reviews based on these studies was likely to have 

limited their power. A more recent study involving 440,000 patients with diabetes and 

26,887 detected cancer events did  find a positive association between HbA1c and pancreatic 

cancer which was not found in other cancers [64]. However, the study cohort did not include 

non-diabetic individuals as a control group and were thus subject to the effects of 

confounding by exposure to glucose-lowering therapies and other unknown variables that 

could not be adjusted for [69, 72].  Compared to previous systematic reviews and other 

recent studies examining the risk association between HbA1c and cancer risk, the large 

sample size of the UKB dataset in Rentsch’s study and inclusion of individuals with and 

without diagnosed diabetes with a long follow-up window and covariate data overcame 

some of the inherent weaknesses in previous work [69]. 
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Figure 9. Associations between HbA1c and incidence of cancer outcomes, excluding participants 

who reported metformin exposure at baseline. For pancreatic cancer, there was relatively strong 

evidence that HbA1c concentration levels was associated with risk for pancreatic cancer. Low HbA1c 

was associated with lower cancer risk and high HbA1c was associated with elevated cancer risk. 

Reproduced from Rentsch et al. 2020 [69], with PMC Open Access Subset content copyright licence 

permissions. 

 

In the same study by Rentch et al., comparisons of cancer risk in people with and without 

Type 2 Diabetes Mellitus (T2DM) at baseline showed that participants with a history of T2DM 

at baseline had an increased risk for pancreatic cancer (HR 1.59, 95% CI 1.21 to 2.09), uterine 

cancer (HR 1.52, 95% CI 1.13 to 2.04), bladder cancer (HR 1.60, 95% CI 1.21 to 2.11) and 

colorectal cancer (HR1.23, 95% CI 1.05 to 1.44) (Figure 10.). Together, their findings 

demonstrated that whilst T2DM is associated with increased risk for several different 

cancers, HbA1c appears to have an independent positive association with pancreatic cancer 

that isn’t found with other cancers.   
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Figure 10. Associations between baseline diagnosis of type 2 diabetes (T2DM) and cancer 

incidence in the UK Biobank. Comparing cancer risk in people with and without T2DM at baseline 

showed an increased risk of colorectal, uterus, pancreatic and bladder cancers. Reproduced from 

Rentsch et al. 2020 [69], with PMC Open Access Subset content copyright licence permissions. 

 

 

6.3.1 Type 2 diabetes: definition and diagnostic criteria 

Diabetes represents a complex set of underlying metabolic and endocrine changes that occur 

within the body resulting in poor glucose homeostasis. Pancreatic β cells are responsible for 

the production of the hormone insulin which facilitates the uptake of glucose into the body 

and reducing blood sugar levels. In clinical practice the most described subtypes are type 1 

diabetes mellitus (or insulin-dependent diabetes mellitus/T1DM/IDDM) and type 2 diabetes 

mellitus (Non- insulin-dependent diabetes mellitus/T2DM/NIDDM).  

Type 2 diabetes is a chronic metabolic condition characterised by insulin resistance and 

relative insufficient pancreatic insulin production, resulting in high blood glucose levels [73]. 

It accounts for nearly 90% of diabetes in the UK and its development arises as a result of both 
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genetic susceptibility and exogenous influences over time [74]. T2DM is associated with 

obesity, physical inactivity, raised blood pressure, disturbed lipid levels, and median age of 

onset occurs in the 6th decade of life. It’s association with thrombosis links diabetes with 

cardiovascular disease but it is also independently associated with increased risk of 

cardiovascular disease and related mortality [75].  

The diagnosis of diabetes does not indicate the point at which impaired glucose regulation 

starts physiologically. More accurately, it defines a point at which the state of glucose control 

is considered poor enough to require regular monitoring with or without the addition of 

treatment interventions. The UK National Institute for Health and Care Excellence (NICE) 

defines T2DM based on recommendations provided by the World Health Organization 

(WHO). Diagnosis is confirmed by blood biomarkers such as HbA1c with a concentration level 

of 48 mmol/mol (6.5%) or higher, or with a fasting blood plasma glucose (FBG) level of 7.0 

mmol/L or higher where using HbA1c may be inappropriate or unavailable [76]. 

Characteristic features of diabetes include thirst, polyuria, blurred vision, weight loss, 

recurrent infections, and tiredness. However, these may not be severe and may even be 

completely absent in some individuals. Such individuals may be unaware of their rising 

HbA1C or FBG levels, allowing further deterioration to occur before symptoms are 

investigated and a formal diagnosis is made. Certain individuals may be at high risk of 

developing diabetes or occasionally identified incidentally with asymptomatic early diabetes. 

This group of individuals falls into the ‘Pre-diabetes’ cohort with HbA1c concentration levels  

ranging from 42-47 mmol/mol (6.0-6.4%) or FBG levels between 5.5 and 6.9 mmol/L [76, 77]. 

In such individuals, lifestyle changes are recommended that include regimens to alter diet, 

reduce weight and increase exercise with further monitoring. Diagnosis of diabetes or 

initiation of anti-diabetic treatment is typically considered only after these attempts to 

modify lifestyle have failed, which can delay a formal diagnosis by months or years.  

6.3.2 The relationship between diabetes and pancreatic cancer 

Several large population studies and meta-analyses have demonstrated a significant link 

between diabetes and cancer-related deaths (Table 1) [72, 78-83]. In a recently pooled 

analysis of 19 Asian cohorts, more than 771,000 participants were followed for up to 21 

years, showing that diabetes was associated with a 26% increase in risk of death from any 

cancer (Hazard ratio (HR) 1.25; 95% confidence interval (CI) 1.19 - 1.31) [84]. For individuals 

with diabetes associated with pancreatic cancer the association was consistently stronger if 

they were aged under 60 at enrolment, and after adjusting for BMI, smoking status and 
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alcohol consumption. The link between diabetes and pancreatic cancer is historically well 

recognised, with reporting of the prevalence of diabetes in pancreatic cancer patients within 

the range of 4-20% [85]. More recently, studies have reported this prevalence to be as high 

as 68% [86]. The majority of diabetes diagnoses in studies also occurs in the 2-3 years prior 

to pancreatic cancer diagnosis (new-onset diabetes: NODM) among cases verses controls, 

accounting for 52-74% of diabetes diagnoses within the PDAC cohort [85-87]. In addition, 

impaired fasting glucose falling below the diagnostic criteria for diabetes may be found in a 

further 38% of PDAC patients [88]. When individuals in this cohort are considered alongside 

those with clinical diabetes diagnoses, the combined prevalence may be as high as 80% [89]. 

With many diabetes diagnoses occurring shortly before PDAC diagnosis, evidence suggests 

that alongside those with a history of LSDM, a new-onset diabetes variant may arise in 

certain individuals as part of a pathophysiological consequence of underlying pancreatic 

cancer which would have otherwise remained undetected until further along the disease 

process. 

To date, several meta-analyses of studies on the association between PDAC and diabetes 

have been performed [79-84, 90]. The first group to examine the temporal relationship 

between PDAC and diabetes in this manner reviewed 36 studies encompassing over 9,000 

patients in total and concluded that a causal association between T2DM and PDAC existed. 

The collective findings added support to the hypothesis that T2DM is likely to be another 

independent modifiable risk factor alongside cigarette smoking and possibly obesity [80].  

In 2015, a follow up meta-analysis was performed on 88 case-control and cohort studies, 

incorporating new studies with those analysed by Huxley et al. to produce a summary 

relative risk association that was very similar to the previous meta-analysis (Table 1) [82].  

  



Literature Review 
 

36 
 

Table 1: Aggregate table showing summary odds ratios (OR) and overall relative risk (RR) of 

association between diabetes and pancreatic cancer for four meta-analyses. Diabetes is shown 

repeatedly to be associated with a near 2-fold relative risk for PC. ( Results adapted from Everhart and 

Wright, 1995; Huxley et al., 2005; Ben et al., 2011; and Batabyal et al., 2015.)  

When diabetes duration prior to PDAC diagnosis was divided into time categories of ≤1, 1-4, 

5-9 and ≥ 10 years, individual relative risk (RR) ranged from 6.69 at ≤1 year to 1.36 at 10 years 

(39). The negative risk association with increasing duration from diabetes diagnosis was 

consistently reported in each meta-analysis, with nearly doubled risk for PDAC in those with 

a diabetes diagnosis within 1-4 years falling to a RR of approximately >1.5 in studies beyond 

10 years (Table 2) [80-82, 91].  

  

Publication No. studies (case-

control/cohort/total) 

OR case-control 

studies (95% CI) 

OR cohort studies 

(95% CI) 

Overall RR 

(95% CI) 

Everhart and 

Wright, 1995 

11/9/20 1.8 (1.1-2.7) 2.1 (1.6-2.8) - 

Huxley et al., 

2005 

17/19/36 2.82 (1.6-1.99) 1.73 (1.59-1.88) 1.82 (1.66-1.89) 

Ben et al., 

2011 

0/35/35 - 1.94 (1.66-2.27) 1.94 (1.66-2.27) 

Batabyal et 

al., 2015 

39/50/88 2.08 (1.87-2.32) 1.88 (1.71-2.07) 1.97 (1.78-2.18) 

Zhang et al., 

2018 

26/0/26 3.69 (3.12-4.37) - 3.69 (3.12-4.37) 
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(a) 

 

(b) 

Duration Zhang et al 

(Studies; RR (95% CI) 

<2 years 7; 4.93 (4.18-5.82) 

2-4 years 5; 1.86 (1.25-2.77) 

5-10 years 4; 2.15 (1.49-3.10) 

>10 years 4; 1.96 (0.71-5.44) 

 

Table 2: Relative risk for pancreatic cancer decreases over time from point of diabetes diagnosis. (a) 

RR of association between DM diagnosis and PDAC with 95% confidence intervals (CI), as RR grouped 

by DM duration prior to PDAC diagnosis. (b) Meta-analysis of Chinese studies only, showing changes 

in relative risk over time that are consistent with other non-location/ethnicity-specific meta-analyses 

(Zhang et al., 2018) 

Batabyal’s group plotted diabetes duration against relative risk using multiple values, which 

identified a non-linear relationship existing between the two. A greater study-level risk that 

arose in individuals with the shortest history of diabetes likely reflected the cohort of 

individuals who developed NODM because of underlying pancreatic cancer pathology. 

Where risk dropped to a moderately increased level above the baseline for those with 

diabetes for 7.5 years or more, the pattern of association was attributed to the chronic 

effects of long-term T2DM on the pancreas that was likely to be inducing cancerous change 

(Figure 11.) [82]. 

Duration  Huxley et al 

(no. of studies; RR (95% CI) 

Ben et al 

(no. of studies; RR (95% CI) 

Batabyal et al 

(no. of studies; RR (95% CI) 

<1 year N/A 3; 5.38 (3.49-8.30) 3; 6.69 (3.80-11.78) 

1-4 years 9; 2.05 (1.87-2.25) 5; 1.95 (1.65-2.31) 21; 1.86 (1.56-2.21) 

5-9 years 9; 1.54 (1.31-1.81) 4; 1.49 (1.05-2.12) 23; 1.72 (1.47-2.00) 

>10 years 7; 1.51 (1.16-1.96) 4; 1.47 (0.94-2.31) 28; 1.36 (1.19-1.55) 
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Figure 11. Study-level and population level representations of change in relative risk for pancreatic 

cancer by duration of diabetes. (a): Meta-regression of 122 estimates from 51 studies within the 

Batabyal group meta-analysis show that after an initially elevated risk for pancreatic cancer in newly 

diagnosed diabetic patients of less than 1 year, risk decreases before plateauing at 5 years onwards. 

The effect size for each study-level subgroup is plotted against the midpoint of each diabetes duration 

for the corresponding population. Size of symbols are proportional to the precision of estimated effect 

size. Yellow Circles: effect size from cohort studies; Green Triangles: effect size from case-control 

studies. (b) Individual-level RRs from 75 estimates across 31 studies showing relative risk of PDAC by 

duration of diabetes. Relative risk is as high as 6.69 (95%CI 3.80, 11.78), before a similar drop is seen 

with plateauing after the first year since diabetes diagnosis. (Reproduced from Batabyal et al., 2014. 

21:7 , with PMC Open Access Subset content copyright licence permissions.) 
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A further meta-analysis by Song et al. also identified a moderate association between the 

presence of LSDM and PDAC compared to non-diabetic controls (RR = 1.64, CI 95% 1.52-1.78) 

(47). When the results of forty-four individual studies were pooled together by DM duration 

into those with diabetes for ≥5 years and ≥10 years, the RR (95% CI) dropped to 1.58 (1.42-

1.75) and 1.50 (1.28-1.75) for ≥5 years and ≥10 years respectively [90].   

Baseline RR for patients with long-standing DM may be lower than the RR for NODM, but 

remains significantly higher verses controls [80-82, 90].  This indicates that the strength of 

association between long-term diabetes and PDAC development is equal to or slightly 

weaker than that between new-onset diabetes and PDAC development [90].  

The mildly elevated baseline risk for long-standing DM individuals for PDAC and the markedly 

elevated risk associated with NODM individuals has been demonstrated consistently 

amongst researchers. Such a distinct difference between these diabetes cohorts is strongly 

indicative of at least two distinctly different clinicopathological pathways leading to the 

clinical presentation of PDAC.  

These meta-analyses prove useful in demonstrating the strength of association between DM 

and PDAC, however wide heterogeneity existed between the studies included within each 

meta-analysis making direct comparisons difficult. Some studies included in these meta-

analyses did not identify PDAC from other rarer non-neuroendocrine subtypes. However, as 

PDAC represents 90% of all primary pancreatic cancer types, there is consensus that the 

inclusion of other non-PDAC exocrine tumours of the pancreas is unlikely to have a 

substantial statistical impact on the overall findings in each study. Study population sizes also 

varied significantly which may have influenced the strength of the relationships between 

diabetes and PDAC that were identified. Finally, different diabetes subtypes were not 

separated to exclude type 1 diabetes from type 2 diabetes in all association studies used in 

the meta-analyses. As with the prevalence of PDAC vs other non-NET pancreatic cancers, 

80% to 90% of DM prevalence is expected to be Type 2 in nature, therefore the impact of 

T1DM individuals on large case-control or cohort studies was considered not to be significant 

by the authors.  
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6.3.3 Surgical Resection of pancreatic cancers and diabetes 

The development of diabetes following surgical resection of the pancreas is a well-

recognised complication in some patients. Patients undergoing pancreatectomy are more 

likely to develop NODM based on various factors that include age and pre-operative BMI 

[92]. Location and extent of resection seems to influence the expected risk, although studies 

have shown varying results regarding the extent of risk for diabetes. In a study by Kim et al, 

10-24% of subjects developed DM following pancreaticodudenectomy, whilst 8-60% develop 

DM after distal pancreatectomy [93]. 

In another study, 3.6% of pancreatectomies resulted in NODM as a result of impaired 

function in central pancreatectomy [94]. This number increases to 8% in distal 

pancreatectomy. In the same study, tests showed that 23% (n=18) of patients developed 

diabetes immediately in relation to the surgical resection. Just over half this cohort (51%, n= 

39) developed either glucose intolerance or frank diabetes following surgery during the 

study’s follow up period. Increased percentage pancreatectomy also resulted in more chance 

of diabetes (P = 0.025) and BMI was also associated with the development of diabetes, with 

suggestion that it increases the risk for diabetes following pancreatic resection [94]. 

The association between pancreatectomy and development of diabetes is related to the 

location and extent of resection involved. Despite this, the pathology of post-

pancreatectomy related diabetes may be more influenced by the preservation of insulin 

secretion than extent of resection [95]. In addition, NODM incidence increases with time 

progression [92], with an accumulative incidence of 8.9% at postop 6 months 14% at year 1, 

and 22.3% at year 3. This rises to 27.1% at year 5 and 35.5% at year 10.  

The independent association between pancreatic resection and pancreatogenic diabetes is 

strong enough that a post-pancreatectomy diabetes index (PDI) has been developed and 

validated to predict the development of diabetes and pre-diabetes in patients as a post-

operative outcome [96]. Peri-operative fasting and postprandial (OGTT, oral glucose 

tolerance test) plasma glucose, glycated haemoglobin, insulin and c-peptide measured in 

these patients identified five measures for predicting diabetes development (PDI) . These 

were HbA1c % at evaluation, BMI > 30kg/m2, age ≥ 6, and type of pancreatectomy. Although 

BMI and age were not significantly predictive in this model, the role of these variables in the 

development of diabetes and insulin resistance is well documented so they were kept [96]. 

To the knowledge of the authors, the PDI is the first index of its kind to predict development 

of postoperative diabetes in patients undergoing major pancreatectomy.  
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6.3.4 New onset diabetes prior to pancreatic cancer diagnosis 

Because DM can occur within a short period of time prior to PDAC symptoms, 33-40% of 

patients identified as NODM with no history of diabetes prior to PDAC diagnosis may be 

missed clinically [97]. This could have a significant impact on its value as a time-dependent 

indicator of early PDAC, as a late diagnosis of diabetes may indicate a subsequently shorter 

interval to PDAC diagnosis. The median delay in diagnosis of diabetes in patients with NODM 

and without cancer-specific symptoms at DM onset is thought to be around 2.5 months, 

ranging from 0.25 to 14 months between cases [97]. In the same study, the median duration 

of NODM before the onset of cancer-specific symptoms was 6 months, with 25% (6/24) 

patients never receiving a DM diagnosis before PDAC symptoms emerged [97]. Because the 

sample size in this study was small, it was difficult to identify any pattern associated with the 

wide range of delays observed. Repeat studies with larger sample sizes would help 

understand the association between certain causes for delays and the average length of 

delays incurred by each cause. 

Delays caused by clinician-based diagnoses alone become less relevant in cases diagnosed in 

later years of the study cohort, possibly due to more vigorous implementation of glycaemic-

criteria diagnostic guidelines and more frequent blood glucose monitoring by clinicians to 

aid diagnosis. The high rate of failure associated with physician-diagnosed DM has therefore 

been indicated as a significant cause for the weaker associated risk between DM and PDAC 

reported in some older studies, where physician-based diagnosis was part of the inclusion 

criteria [98]. Epidemiological studies have commonly relied on the date of diabetes diagnosis 

to determine the temporal strength of association between the two diseases (reference). 

However, diabetes utilised as a categorical value in research does not reflect the time-

dependent changes seen with gradual impairment of normal glucose metabolism that 

eventually surpasses the pre-determined disease threshold clinically defined as diabetes. 

This pre-diabetic period may occur over months or years with individuals clinically 

categorised as either ‘non-diabetic’ or ‘pre-diabetic’, depending on multiple environmental 

and individual factors. As PDAC is believed to take as long as 10 years to evolve from overt 

cancer to metastatic disease, the diabetogenic changes induced by PDAC-related effects on 

the pancreas and surrounding tissue may also be gradual.  

Detectable signs of impaired glucose metabolism may arise before diabetes is subsequently 

diagnosed. In this context the presence and worsening of pre-diabetic status in an individual 

is also likely to be suggestive of an underlying PDAC diagnosis. Pancreatic cancer incidence 
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risk has been recognised to have a linear dose-response relationship with FBG across both 

diabetes and pre-diabetes states [99]. In a meta-analysis of 9 studies, the rate of pancreatic 

cancer per-unit increase in fasting blood glucose within each study was noted to be similar, 

showing a roughly 14% increase in rate of pancreatic cancer diagnosis associated with every 

0.56 mmol/K increase in FBG [99].  

This relationship has also been observed with HbA1c. A near-linear association between 

HbA1c levels and pancreatic cancer has been found to be statistically significant in both 

diabetic (chronic hyperglycaemic) and non-diabetic participants [100]. The pre-diabetic 

relationship between FBG and PDAC was explored further in a recent retrospective case-

control study that collected individual FBG profiles at 6-monthly intervals up to 60 months 

before PDAC diagnosis [101]. Mean FBG for patients and controls was similar up from 60 

months up until 36 months before the reference PDAC diagnosis dates (Figure 12.) [101]. By 

comparison, relative hyperglycaemia for those with eventual PDAC diagnosis rose from 36 

months to index date. A progressive increase in FBG was observed at each time interval 

nearing PDAC diagnosis, with levels peaking above diabetes level criteria at 6 months before 

index date [101]. This study concluded that the hyperglycaemia-defined duration of pre-

diagnostic progression of PDAC was estimated to be 3 to 36 months [101]. Resected tumour 

volumes were compared to contemporaneous FBH levels in the same study, showing that 

hyperglycaemia was also correlated positively with tumour size. With these findings, PDAC-

induced hyperglycaemia could aid early detection of PDAC months before diabetes is 

typically identified.  
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Figure 12. Temporal glycaemic profile of a population-based controls and pancreatic cancer after 

excluding subjects with diabetes at baseline (60 to 54 months). Patients (blue) with hyperglycaemia 

show a statistically different pattern of FBG from controls (red) for a mean period of 36-30 months 

before PDAC diagnosis. The table shows participant numbers in the case and control cohorts for each 

time interval. Reproduced from Sharma et al., 2018 155:2, reproduced with PMC Open Access Subset 

content copyright licence permissions.) 
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6.3.5 Diagnostic Markers for Diabetes 

The recommended criteria for diagnosing diabetes have changed over the last few decades, 

in which time many studies on pancreatic cancer and diabetes association have taken place. 

Current UK guidelines recommend the use of HbA1c and FBG in diagnosing Diabetes and pre-

diabetes , yet historically, oral glucose tolerance tests (OGTT) and fasting FBG were the gold 

standards for confirming a diagnosis [76].  

In the UK, HbA1c is the preferred biomarker for confirming DM diagnosis although FBG is 

recommended where HbA1c is contra-indicated other disease factors in certain groups of 

individuals that may influence haemoglobin glycation may be present (e.g. people with acute 

pancreatic damage including pancreatic surgery, end-stage renal disease, people on 

medication that may cause hyperglycaemia such as long-term corticosteroid treatment, or 

people with HIV infection) [76]. Testing for impaired HbA1c is part of the risk assessment 

strategy recommended by the NICE guidelines. It identifies individuals who may be diabetic 

based on other clinical features or considered as high-risk and recommended for tests. 

Retrospective studies are dependent on past medical records and are therefore restricted by 

how information was collected at the time. A change in clinical criteria testing for DM from 

FBG and OGTT to HbA1c would therefore have a significant impact on the variability within 

studies examining data collected retrospectively during this period of transition.  

Each of the three test modalities have their own advantages and disadvantages and may 

subject studies to bias [102]. OGTT and FBG identify a greater proportion of individuals with 

prediabetes or diabetes than HbA1c, but the practicality and technical challenges associated 

with achieving accurate and consistent repeat results puts these older tests at a disadvantage 

to HbA1c in the clinical setting [103]. Many epidemiological studies between PDAC and DM 

used FBG values either as definition criteria for DM, or in measuring DM status change over 

time. The main disadvantage of FBG is the requirement for subjects to fast prior to having 

their blood test which can be difficult to achieve objectively, making FBG difficult to 

reproduce on repeat tests, although this appears to be more pronounced in children verses 

adults [104, 105]. Studies using FBG are therefore prone to over- and under- estimating the 

true diabetic status of individuals. 

6.3.6 HbA1c 

HbA1c is a measure of the amount of glucose that binds to haemoglobin over the 120-day 

lifespan of the red blood cell and interprets as an average glucose level in the blood over a 

90-120 day period [106]. As a result, HbA1c is better suited to detecting signs of chronic 
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hyperglycaemia than FBG or OGTT. HbA1c also has a stronger correlation with chronic 

complications of diabetes than FBG making it a better representative indicator of risk for 

these secondary problems such as retinopathy and cardiovascular disease [102]. Despite its 

clinical strengths as a monitoring tool of the body’s ability to maintain normal glucose 

homeostasis, HbA1c also carries certain disadvantages which can limit its usefulness in terms 

of research. HbA1c is reliable indicator of chronic hyperglycaemia but provides limited 

information on the underlying pathophysiological abnormalities causing diabetes [102]. The 

postprandial state of the individual when glucose levels are highest, or after fasting when 

they are lowest, are important periods to test in the evaluation of ß-cell capacity and ß-cell 

function respectively [102]. The acute values detected by FBG and 2-hour OGTT glucose tests 

are able to indicate where the defect lies in glucose regulation which HbA1c is unable to do 

[102]. Because of this limitation, studies on PDAC-induced NODM that use HbA1c as the sole 

criteria for DM would struggle to determine how the pathophysiological changes arise in 

terms of pancreatic ß-cell dysfunction.  

HbA1c is better at distinguishing between prediabetes and diabetes than healthy verses 

prediabetic individuals who may be asymptomatic [103, 106, 107]. In a population study in 

the USA that used HbA1c ≥ 6.5% (48mmol/mol) as the reference value for diabetes, only 30-

40% of previously undiagnosed patients as diabetic were identified, compared to 

approximately 50% by FBG and 90% using 2-hour OGTT [103]. A pooled analysis of 96 

population-based studies further confirmed that HbA1c alone did not identify a large portion 

of previously undiagnosed individuals compared to surveys using glucose-based testing (FBG 

or OGTT) [108].  

Variation in haemoglobin glycation may also be influenced by the various factors associated 

with race, including genetics, social, and environmental factors [109]. In a Chinese study 

examining the accuracy of HbA1c for diagnosing DM compared to OGTT, an HbA1c reference 

of ≥ 6.5% gave a sensitivity and specificity of 33.2% and 93.5% respectively [110]. The optimal 

cut-off threshold was suggested to be 6.3% for identification of DM in this particular cohort 

with higher specificity and sensitivity of 56.3% and 85.5% achieved respectively [110]. 

Malaysia implements the use of HbA1c with a threshold of 6.3%, whereas Japan uses a cut-

off of 6.5% and New Zealand’s threshold is higher at 6.7% [111]. The use of HbA1c to detect 

early diabetes for the purpose of screening for other diseases therefore requires that the 

limitations of this modality be recognised and accounted for. The ‘rule-in, rule-out approach’ 

is one proposed method that considers the HbA1c variability between distinct population 

groups and the poor sensitivity associated with detection of early diabetes [112]. In this 
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model, HbA1c between 5.6% and 6.9% may be interpreted as impaired, with values of at 

least 5.5% considered as normal, and ≥ 7.0% as confirmed diabetes without need for 

secondary testing. Individuals falling within the impaired HbA1c range are then tested by FBG 

or OGTT to aid diagnosis, thus reducing the frequency of classification error [112].  

HbA1c and plasma glucose tests currently represent the best tools available for detection of 

changes in glucose metabolism and both have merits in research if implemented properly. 

Prospective studies examining the glycaemic changes associated with PDAC progression 

should therefore consider the inclusion of multiple complementary glucose blood 

biochemistry tests for optimal detection and monitoring of hyperglycaemic changes within 

the pre-diabetic cohort. 

6.3.7 NODM as a ‘first-sieve’ indicator of underlying pancreatic cancer 

The possibility of identifying NODM as a risk factor for PDAC within a screening model was 

suggested by Chari et al. based on their findings that approximately 1% of diabetics aged 

over 50 years old would develop PDAC within 3 years [113]. Unfortunately, DM is relatively 

common in the general population and isolating pancreatic cancer-induced NODM from 

other forms of diabetes requires tools to refine this group of high-risk individuals from those 

who develop DM without pancreatic cancer [113-115].  

In addition to T2DM, obesity, dyslipidaemia, and insulin resistance are part of a cluster of 

metabolic conditions that are linked to an increased risk of PDAC [116]. According to WHO 

definitions, insulin resistance plus the presence of any two of: obesity (body mass index; BMI 

>30 kg m-2), hypertension (BP≥140/90mmHg), dyslipidaemia (Triglycerides >150 mg dL-1; 

High density lipoprotein (HDL) cholesterol <35 mg dL-1 (male) or <39 mg dL-1 (female)) are 

key risk factors that defines metabolic syndrome (MetS) [117]. 

A meta-analysis of 9 studies found an association between metabolic syndrome and PDAC 

for women (RR 1.58; 95% CI 1.35-1.84), which was less significant for men (RR 1.20; 95%CI 

0.80-1.80). The mechanisms linking MetS to PDAC are not fully understood, however it may 

be a surrogate marker for other risk factors such as decreased physical activity, consumption 

of high-calorie dense foods, high dietary fat intake, low fibre intake, and oxidative stress 

[118]. 

Fatty infiltration in the pancreas is positively correlated with high BMI or obesity, and 

prevalence of diabetes mellitus, which are well-known risk factors of pancreatic cancer [119]. 

In a study by Hori et al., non-alcoholic fatty pancreas disease (NAFPD) in hamsters with fatty 
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infiltration as a feature of the pancreas demonstrated a significantly higher risk association 

between this feature and risk of developing PDAC (OR of 6.1; P<0.001) after adjusting for 

BMI and DM prevalence [119]. Despite this early finding, the true relationship of NAFPD with 

all the criterion for MetS, including obesity and diabetes in both animal models and humans 

remains to be fully elucidated. Further studies are also needed on the prevalence of fatty 

pancreas in the general population and within populations who develop incidental PDAC will 

be required to aid clarification on the causal relationship between fatty pancreas and PDAC 

[120]. 

Obesity is recognised as a major independent risk factor for PDAC [121]. A meta-analysis of 

16 studies across 3 different continents (America, Europe, and Asia), identified a potential 

non-linear association between BMI and risk of PDAC [121]. Although the exact mechanisms 

are unclear, obesity-associated increased adipokine production, inflammation, insulin 

resistance and altered intestinal microbiota may play an important role in the hastening of 

PDAC onset [122]. New-onset type 2 DM (DM duration > 36 months) is typically associated 

with obesity and weight gain, however evidence also suggests that both PDAC-associated 

NODM and long-standing T2DM are associated with weight loss or decreased BMI prior to 

PDAC diagnosis [88, 123-125].  

PDAC-NODM patients (DM duration ≤ 36 months) undergo more pronounced weight loss 

(>10%  of original weight) verses LSDM patients [88, 126] and appear to require escalation 

of their antidiabetic therapy more frequently [127]. In one key study, 59% of PDAC-DM 

subjects were identified with paradoxical weight loss up to between 12 and 15 months 

before diabetes onset [128]. The weight loss couldn’t otherwise be linked to other signs of 

cachexia such as anorexia, fatigue, or other cancer-specific symptoms of abdominal pain, 

back pain and jaundice. BMI and family history of DM have been shown previously to be poor 

differentiators of PDAC-NODM and T2DM [85] and PDAC symptoms are poorly correlated 

temporally to PDAC stage at presentation, suggesting that weight loss preceding DM 

diagnosis may be an important clue in the detection and pathogenesis of PDAC-NODM [128].  

The moderate association between T2DM and PDAC found in previous studies and meta-

analyses may actually be confounded. Evidence from a mendelian randomization (MR) study 

that found increases in BMI and fasting insulin are causally associated with increased risk of 

PDAC [67]. No causal relationship was observed for T2DM in this study, although the authors 

suggested that the hyperinsulinemia found supports the existence of reverse causality with 

diabetes manifesting as a result of pancreatic cancer and that the hyperinsulinemia induced 
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by PDAC was being mistaken for early T2DM [67]. The study assumed a linear relationship 

between genetic instruments and the risk factor of interest, as well as a log-linear association 

between risk factors and PDAC risk and acknowledged this limitation. No causal association 

was found between dyslipidaemia and PDAC in the same MR study, however an earlier 

population study identified the risk of PDAC to be 40% higher than the control population 

[116]. When combined with NODM of <1yr, the relative risk elevation was even greater (RR 

2.512; 95% CI 1.169-5.398) [116]. Such differing outcomes may be due to the potential 

violation of assumptions of linearity and pleiotropy (one gene influencing two or more 

phenotypical traits that are seemingly unrelated) [67], but more studies are required to 

confirm the relationship one way or the other. There is some evidence to suggest that dietary 

cholesterol may be associated with risk of pancreatic cancer [125]. However, a meta-analysis 

of these studies concluded that more results are required to strengthen current 

evidence(76). Furthermore, the meta-analysis on dietary cholesterol examined serum total 

cholesterol but not triglyceride, HDL or LDL levels which might link dietary cholesterol with 

specific types of dyslipidaemia profiles associated with other metabolic syndrome risk factors 

and PDAC. 

NODM in pancreatic cancer has been given various definitions and taken to represent 

diabetes diagnoses made anywhere within 1, 2 or 3 years prior to PDAC diagnosis. Despite a 

lack of consensus between investigators, the pooled RRs for studies incorporated into the 

PDAC-DM association meta-analyses have repeatedly shown a marked increase in RR from 

approximately 1.5 (baseline for Long-standing diabetes (LSDM) RR) to 2 at 1-4 years duration 

of DM to index that does not occur at any point earlier in the association timelines [80-82]. 

At <1 year to PDAC diagnosis, it is difficult to rule out other confounders and there is likely 

to be significant detection bias for diabetes due to investigations for other symptoms at this 

stage. For example, a recent case-control study of patients with PDAC has shown that a 

marked relative rise in FBG levels from month 36 to index (PDAC diagnosis date) was 

associated with time to diagnosis, tumour volume and grade of PDAC [101]. At 36 months to 

index, paradoxical weight loss has also been observed in 59% individuals with NODM 

diagnosis for between 12 and 15 months prior [128]. Based on these and other studies, it 

appears that that the 3-year lead-in to PDAC diagnosis may represent a window of 

opportunity to detect hyperglycaemic changes associated with PDAC-DM.  
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6.3.8 T3cDM – pancreatogenic diabetes 

Reverse causality may explain why the prevalence of diabetes is so high in the cohorts of 

individuals with NODM who develop pancreatic cancer. Diabetes in some individuals may in 

fact be due to a combination of both direct and indirect effects of the development of 

pancreatic cancer, rather than a contributing factor in the development of this malignancy. 

The development of NODM in pancreatic cancer is thus likely to follow a different 

pathological pathway to that of either Type-1 or Type-2 Diabetes.  

In the last decade there has been an increased focus on the pathophysiology of secondary 

diabetes of the exocrine pancreas, also referred to as Type 3c Diabetes (T3cDM). Historically, 

diseases of the pancreas resulting in diabetes have been described within the literature as 

pancreatogenic or pancreatogenous diabetes mellitus, and T3cDM [127]. In order to 

standardise reporting of this diabetes subtype, the American Diabetes Association (ANA) has 

recently suggested that Diabetes of the Exocrine Pancreas should be the agreed 

nomenclature to unify the various definitions under a single term [129]. However, T3cDM is 

still a term commonly used in scientific literature to describe this subtype and also used by 

the British Association of Diabetes and Pancreatic Cancer UK. For consistency, we will 

continue to refer to this subtype as T3cDM.   

T3cDM can arise from any process that diffusely injures the pancreas such as inflammation, 

infection, trauma, neoplasia, or surgical resection. Clinical conditions associated with T3cDM 

include acute, relapsing and chronic pancreatitis, pancreatic cancer, cystic fibrosis and 

haemochromatosis [130]. These processes disrupt the global architecture or physiology of 

the pancreas, often resulting in both exocrine and endocrine dysfunction [127, 131, 132].  

6.3.8.1 Misdiagnosis of T3DM – a hidden classification 

Systematically identifying cohorts of diabetic individuals in primary care with preceding 

pancreatic disease remains a novel exercise and is not routinely addressed in primary care. 

As a result, the comparative incidence, and precise clinical characteristics of T3cDM remains 

unclear. In 2013 Ewald et al. highlighted the importance of missing T3cDM diagnoses 

clinically and found that there was sparse data on T3cDM at the time [131]. Based on their 

study, approximately 9% of all diabetes cases are thought to be type 3c in nature, and nearly 

80% of cases were linked to a history of chronic pancreatitis [131]. Ewald’s team also found 

that most T3cDM cases were frequently mis-classified initially as T2DM due to a lack of 

awareness of this subtype and the challenges of differentiating between the two [131].  
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Few studies have attempted to examine the true proportion of T3cDM in the population. In 

one study using retrospectively collected primary care data from the UK Royal College of 

General Practitioners Research and Surveillance Centre (RCGP RSC) between 2005 and 2016, 

559 individuals with NODM were identified in a cohort of 31,789 adults with a history of 

pancreatic disease (approx. 1.8%) [132]. Within this cohort, adult-onset type 2 diabetes had 

the highest incidence of 142 per 100,000 person years. After diabetes re-classification, adults 

with preceding pancreatic disease were identified as T3cDM (1.8%) - a higher proportion 

than that for T1DM (1.1%) [132].  Although the proportion of T3cDM cases was still relatively 

small, only 2.7% of these cases were correctly labelled by clinicians with 87.8% of T3cDM 

cases misdiagnosed as T2DM, and 7.7% as T1DM [132].  

In Western diabetic populations, T3cDM may account for 5-10% of all individuals with 

diabetes, of which 73% of diagnoses are due to chronic pancreatitis [133]. For individuals 

with diseases of the exocrine pancreas generally (acute or chronic pancreatitis, or pancreatic 

cancer) the prevalence of diabetes is approximately 0.11% [134]. Patients with inflamed and 

fibrous pancreas also have a high risk of developing PDAC and after chronic pancreatitis, 

PDAC is the second most common cause of T3cDM, responsible for 8% of all cases [131].  

6.3.8.2 Pathophysiology of T3cDM 

PDAC is one of the strongest and most consistent diabetogenic forces known to humans and 

destabilises glucose homeostasis in nearly all patients in whom it occurs [135]. As PDAC is 

strongly correlated with the development of T3cDM, the correct diagnosis of this diabetes 

subtype would allow appropriate investigation and treatment for these patients [136].  On 

diagnosis of NODM, distinguishing between T3cDM and T2DM is important as both are risk 

factors for PDAC, with T3cDM possibly representing an even higher at-risk group of 

individuals within the NODM cohort.  

The general pathophysiology of T3cDM is involves pancreatic inflammation and further 

irreversible fibrosis of islet cells that progresses to islet cell loss [137]. Damage to β-cell mass 

and polypeptide secreting cells occurs in the early phase of the disease [137]. Altered glucose 

metabolism due to these early signs of endocrine insufficiency begins as asymptomatic or 

mild hyperglycaemia. Over time, this leads to higher detectable HbA1c concentration levels 

and shorter interval to insulin dependence by patients, compared to those with T2DM [127].  
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6.3.9 Antidiabetic medication and pancreatic cancer 

Medication used in the treatment of diabetes can affect factors that mediate the association 

between diabetes and pancreatic cancer. Both insulin and oral antidiabetic medications 

(OAM) have been suggested to directly affect key factors mediating the association between 

T2DM and PDAC and may influence the development, progression and outcome of PDAC as 

a result [138]. 

From a research standpoint, deciphering associations of antidiabetic medications with 

cancer can clarify mechanisms underlying the relationship between diabetes and cancer, 

which are well established but not yet totally understood [139]. Revealing the relationship 

between antidiabetic medications and cancer can also help distinguish the roles of 

hyperglycaemia and hyperinsulinaemia in the association between diabetes and cancer 

[139]. Diabetes and cancer have metabolic profiles that are relevant to both diseases, 

including obesity, insulin resistance, hyperinsulinaemia, oxidative stress, chronic 

inflammation, and alterations in sex hormones [140]. Certain risk factors related to lifestyle 

as well as genetic susceptibilities are also associated with both diseases. This raises the 

possibility that OAM treatment may influence the development progression of certain 

cancers in addition to diabetes. Studying associations between OAM and cancer risk is 

subject to the same challenges and biases that arise when investigating associations between 

diabetes mellitus and cancer risk [139]. These include relatively long latency periods of 

diseases, competing comorbidities, detection bias, and the possibility of reverse causality. 

The different pathophysiology of various cancer types also means associations should be 

measured in the context of each cancer subtype and not as a collective entity.  

The way diabetes medications are used for diabetes management also makes it difficult to 

separate associations with cancer relating to diabetes from those relating to the 

medications. With pancreatic cancer, the relatively short period of time between 

presentation of symptoms for the disease and confirmation of cancer diagnosis is at odds 

with the relatively long period of time taken for T2DM to develop and progress. The presence 

of various types of diabetes in the population adds further complexity to the understanding 

of underlying pathology when observed through changes made to medication treatment. In 

certain individuals, NODM emerging just prior or concomitant with the diagnosis of 

pancreatic cancer and rapid deterioration in diabetes control in others further supports the 

notion that a bi-directional relationship exists between diabetes and pancreatic cancer. In 

addition to biochemical diagnostic measures confirming diabetes diagnosis categorically, the 
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pattern of changes made to antidiabetic therapy in the form of continuous time data may 

play an important role in the detection of underlying malignancy.  

Untangling the associations between diabetes, OAMs and pancreatic cancer requires 

quantitative assessment and monitoring of drug exposure including dose, duration, and 

continuity.  This depth of information required to comprehensively analyse drug usage is 

often challenging to obtain and not always performed. The time-varying nature of 

progressively worsening hyperglycaemia and initiation of treatments is also one example of 

some of the challenges facing the investigation of associations between antidiabetic 

medications and cancer risk. 

Time-lag bias and confounding by indication arises in the study of associations between 

antidiabetic medication and pancreatic cancer where the severity of diabetes itself is the 

confounder. Diet-controlled diabetes and diet-controlled pre-diabetes may influence the 

severity and progression of underlying pathophysiological processes responsible, depending 

on how successful individuals are in controlling the disease through non-medication 

treatment alone. Likewise, the timing of introducing or removing different antidiabetic 

medications in response to poorly controlled diabetes may influence the progression of an 

undiagnosed malignancy such as pancreatic cancer [139]. With diabetes, different 

medications are introduced based on the stage of diabetes and response to previous 

treatment. Time-lag bias fails to consider the stage of diabetes associated with patterns in 

medication use over time as well as the impact prior and current treatments have on 

underlying disease. To control for this, studies examining the relationship between diabetes 

medication and pancreatic cancer should aim to only compare patients with the same stage 

of diabetes with one another [141]. 

Immortal time bias describes when individuals stratified into cohorts by the type of 

medication they used have failed to be recognised as being on a different medication or 

starting a different medication at an earlier point in time. In one example identified in a study 

by Suissa and Azoulay [141], a patient initiated and continued treatment with a sulfonylurea 

and subsequently switched to or added metformin. However, they were classified as a 

metformin user during the entire follow-up. The time between entry into the cohort and the 

first metformin prescription became immortal because the subject had to survive to receive 

this first metformin prescription and was misclassified as exposed to metformin when in fact 

they were exposed to sulfonylurea, leading to immortal time bias. 



Literature Review 
 

53 
 

Confounding by indication might occur where individuals with diabetes may be started on 

specific antidiabetic medication due to diabetes that is more difficult to control. These same 

individuals may also be more susceptible to complications of diabetes or adverse events such 

as developing cancer.  

The timing of introducing various antidiabetic medications would also influence the strength 

of their association with an outcome measure such as pancreatic cancer. Studies combining 

insulin with OAMs as a singular category may fail to consider the stepwise pattern of 

treatment that occurs in clinical practice. Type 2 diabetics may typically start OAMs before 

insulin therapy, whereas Type 1 diabetics would start on insulin therapy and consider the 

addition of OAMs as an adjunct where indicated [142]. 

Reverse causality in the study of associations between diabetes and pancreatic cancer 

suggests that different patterns of antidiabetic medication use might also help to 

differentiate the cause for different disorders of glycaemia and identify specific drug-

response patterns associated with a possible underlying pancreatic cancer. In some cases, 

an adult newly diagnosed with diabetes may atypically transition from OAM to Insulin 

therapy over a short period of time, thus suggesting that an underlying pathophysiological 

process is more malignant than first indicated. Dose-response relationships are another 

cause for bias in observational studies that attempt to explore the influence of medication 

on disease, either as a confounder or an independent variable. Some studies will stratify 

people according to cumulative dose or cumulative time under treatment. This form of bias 

arises because the stratification occurs while these variables are highly associated with 

disease severity and disease association. To mitigate all these potential biases, a time-

dependent statistical approach that both adjusts for disease duration and accounts for the 

timing of initiation of new medication may help to overcome some of the biases that arise in 

either context [143]. 

6.3.9.1 Insulin 

A link between hyperinsulinemia has been found across multiple cancers including breast 

cancer, but it may be particularly strong with pancreatic cancer [144]. Both experimental and 

epidemiological studies indicate that insulin use is associated with an increased risk of PDAC. 

There are at least several hypothetical mechanisms linking diabetes with an increased risk of 

pancreatic cancer [145]. The role of hyperinsulinemia appears to be important to the 

progression of cancer and has been documented in experimental studies as well as in 

epidemiological observations [145]. As far back as the 1970s, insulin has been demonstrated 

to increase DNA synthesis in breast cancer cell cultures [146].  The administration of insulin 
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to rats with breast tumours has also been observed to increase tumour mass at a faster rate 

compared to controls, with the greatest acceleration seen when insulin and glucose 

administration were combined [147]. More recently, studies have demonstrated that risk of 

cancer incidence and mortality are associated with high levels of endogenous insulin. In an 

experimental study by Zhang et al., diet-induced increase in circulating insulin was found to 

play a causal role in PDAC initiation, independent of high BMI [148]. Gene manipulated mice 

with a reduced ability to produce endogenous insulin without impairing glucose homeostasis 

had significantly fewer high grade PanINs over 1 year of monitoring verses controls, despite 

being fed with a high-fat diet which is known to promote hyperinsulinemia.  A recent 

prospective cohort study observing the relationship between hyperinsulinaemia and cancer 

diagnoses found that individuals with hyperinsulinaemia and with no history of diabetes 

were at significantly higher risk of developing cancer vs the controls (adjusted HR 2.04, 95% 

CI 1.24-3.34, p = 0.005), independent of BMI [149].  

A pooled analysis on 8305 cases of PDAC across 15 case-control studies within the Pancreatic 

Cancer Case-Control Consortium (PanC4) examined the relationship between diabetic 

individuals on insulin therapy and development of PC [150]. Insulin use was associated with 

a significantly higher risk for PC (OR 2.66) vs diabetics not using insulin. The odds ratio was 

even higher for shorter insulin use (OR 5.60 for less than 5 years). In this study, the increased 

pancreatic risk seen in the cohorts with duration of exposure to insulin therapy of more than 

5 years since diagnosis of diabetes strongly supports a causal role of diabetes on pancreatic 

cancer.  

In 2017, a Mendelian randomization study also found strong evidence that genetically 

increased fasting insulin levels were causally associated with an increased risk of pancreatic 

cancer [67]. In this study using genome-wide data from a cohort of 7110 pancreatic cancer 

patients and 7264 control subjects identified within the PanC4 and Pancreatic Cancer Cohort 

Consortium (PanScan) datasets, the odds ratio for risk of developing pancreatic cancer was 

1.66, 95% CI = 1.05 to 2.63, per SD [44.4 pmol/L]) [67]. However, the effect of fasting insulin 

also differed significantly by sex, with men showing an odds ratio estimate of 2.59 (95% CI 

1.39 to 4.80) verses 0.94 for women (95% CI 0.48 to 1.85). 

6.3.9.2 Biguanides 

Biguanides, and in particular Metformin hydrochloride are the recommended initial choice 

of antidiabetic medication treatment for patients with T2DM in the UK [151]. Metformin is 

also recommended as part of dual- or multi-drug combination therapy where tolerated 
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[151]. Metformin is one of the most commonly used forms of Biguanide drugs in clinical 

practice, and its relationship with cancer has been widely studied [152]. The blood glucose-

lowering actions of metformin occurs via: (a) a hepatic effect: improving hepatic insulin 

resistance and reducing gluconeogenesis, therefore reducing hepatic glucose output; (b) a 

muscle effect: increased adenosine monophosphate (AMP) kinase activity to increase 

glucose uptake in skeletal muscle and fat; and (c) an intestinal effect: by increasing the 

circulating concentration of glucagon-like peptide 1 (GLP1) which in turn increases insulin 

secretion and glucose uptake, slows gastric emptying, and modulates appetite [153].   

The hypoglycaemic effect of metformin may play a role in reducing pancreatic 

carcinogenesis. Preclinical animal studies have demonstrated that metformin may have a 

role in preventing or slowing down the rate of carcinogenesis brought on by metabolic stress 

induced by high-fat diets. For example, Metformin in drinking water has been shown to 

prevent pancreatic carcinogenesis in hamsters on a high-fat diet [154]. Metformin may also 

have a role in the suppression of PC growth in diet-induced obese/pre-diabetic mice [155]. 

It is thought to do this by blunting tumoral activation of mammalian target of rapamycin 

(mTOR), which is involved in the regulation of protein translocation [155].  

A study by Chen et al. on genetically engineered mice models with oncogenic Kras mutations 

(KC mice model) found that intake of metformin delayed pancreatic tumorigenesis 

represented by decreased percentage of early lesions (acinar-to-ductal metaplasia and 

mouse PanIN (mPanIN) 1, and late mouse PanIN lesions (mPanIN2 and mPanIN3) [156]. 

Metformin was also found to diminish chronic pancreatitis-mediated development of early 

lesions within the same study. 

The majority of studies on the effect of Metformin on risk for PC have shown that subjects 

have a survival benefit on this medication [157] [158]. However, the outcomes of different 

meta-analyses of the published literature are mixed and the role of Metformin in PC 

development remains unclear. A meta-analysis by Wang et al. showed that Metformin is 

protective with a reduction in incidence of PC by up to 37% (n=13 studies, RR 0.63, 95% CI 

0.46-0.86, p=0.003) [159]. Another meta-analysis performed by Zhang et al. demonstrated a 

46% reduction in risk based on seven studies which was non-statistically significant [91]. 

After restricting the inclusion criteria to studies with only diabetes patients (n=4 studies), 

Zhang et al. only found a neutral role for Metformin, leading them to speculate that 

metformin cannot decrease the incidence of PC [91]. Similar conclusions were drawn by an 
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older meta-analysis by Singh et al. who found no significant association between Metformin 

use and risk of developing PC (n=4 studies, OR 0.76, 95% CI 0.57-1.03, P=0.073) [160]. 

In a more recently published systematic review, a meta-analysis of 24 articles from different 

countries including more than 2 million subjects found that compared with no use of 

Metformin, the use of Metformin could reduce the risk of PC in patients with T2DM (OR = 

0.82, 95% CI (0.69, 0.98) [152]. Higher study participant numbers and the high quality of their 

study enhanced the statistical power of their data analysis and provided more reliable 

estimates than previous studies. However, the remarkable heterogeneity found in previous 

meta-analyses, which is a well-recognised limitation of these types of studies, was still a 

significant limitation highlighted in this study.  Hu’s group also attempted to examine the 

relationship between duration of diabetes and occurrence of PC in more detail by identifying 

whether study subjects were newly diagnosed with diabetes. Unfortunately, this 

investigation yielded inconsistent results and it was recommended that future studies should 

aim to include longitudinal data for detailed exploration of the dose-response relationships. 

6.3.9.3 Sulfonylureas 

Sulfonylureas (SUs), alongside thiazolidinediones are some of the most commonly used 

antidiabetic agents after biguanides. However, concerns remain over their safety due to the 

results of some studies indicating that their use is associated with an increase in risk for 

certain cancers. A historical systematic review found that SUs were associated with a 70% 

increase in the odds of PC (n=8 studies; adjusted OR 1.70 95% CI 1.27-2.28, P<0.001) [160]. 

Despite the apparent strength of these findings, the authors highlighted that considerable 

heterogeneity was likely related to confounding by indication and reverse causality [160]. 

Other studies around the same period identified similar risk outcomes with use of SUs [159, 

161].  

A more recent Korean population-based study of the effects of antidiabetic medications on 

the risk of pancreatic cancer concluded that subjects on sulfonylurea showed an increased 

risk for pancreatic cancer compared to subjects with no drug exposure (HR 1.73 95% CI 1.57 

* 1.91) ([162]. In another study, the administration of pioglitazone, insulin and its analogues 

to the diabetic patients were found to be associated with increased risk of pancreatic cancer 

by 45% [163].  A separate retrospective cohort study within a municipal district of China  

found that T2DM patients who were new users of sulfonylurea were found not to be 

associated with a greater risk of pancreatic cancer verses those using metformin only (HR 

0.94; 95% CI 0.46-1.96) [164]. However, the case numbers (T2DM + sulfonylurea treatment 
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+ PC) were limited in this study (n=18; Incidence = 33/100,000 person years) and the authors 

noted that extrapolating their findings to other populations should be made with caution. 

6.3.9.4 Incretins 

Incretin-based therapies like glucagon-like peptide-1 receptor agonists (GLP-1a) and 

dipeptidyl peptidase-4 inhibitors (DPP-4i) help maintain glycaemic control in patients with 

T2DM with additional systemic benefits and little risk of hypoglycaemia [165]. However, 

overstimulation of the GLP-1 receptor by incretin-based therapies is also speculated to 

increase risk for the development of pancreatic cancer either directly or indirectly from 

inflammation of the pancreas.  

Results regarding the association between DPP-4i treatment and pancreatic cancer are 

mixed. Earlier meta-analyses found DPP-4i to be linked with pancreatitis but there was no 

evidence of a statistically significant increased risk for pancreatic cancer  [166, 167]. One 

meta-analysis by Azoulay et al. examining 157 trials which reported pancreatic cancer found 

no associated increased risk with DPP-4i use across different types of DPP-4i molecules, 

suggesting that this is a drug class effect [168]. These meta-analyses of studies published 

between 2005-2017 acknowledged several limitations including short follow-up durations, 

reporting bias and small numbers of PC cases. A more recent study published after these 

meta-analyses examined the relationship between 10,218 new users of DPP-4i and 

pancreatic cancer within a cohort of 33,208 subjects who were newly diagnosed with T2DM 

and started on antidiabetic drug treatments [169]. In this Korean nationwide population-

based cohort study, DPP-4i significantly increased the risks of pancreatitis (adjusted HR 1.24, 

95% CI 1.01-1.52; P = 0.037) and pancreatic cancer (adjusted HR 1.81, 95% CI 1.16-2.82; P = 

0.0009). The risk of pancreatic cancer was generally consistent in the first 12 months after 

the initial prescription of antidiabetic medication, without showing an increased trend 

according to exposure duration. Incidentally, the authors recognised that subjects were 

selected for inclusion not only for being newly diagnosed with T2DM but also because they 

were taking antihyperglycemic drugs due to poorly controlled hyperglycaemia. In this 

context the results of this study were likely to be a result of reverse causality with an 

underlying pancreatic cancer driving deterioration in glycaemic control. Such changes were 

detected as changes to clinical status in the form of attempts to manage worsening diabetes 

via the introduction of antidiabetic medication or additional OAMs to pre-existing treatment. 

In the Korean population-based cohort study by Lee et al., DPP-4i exposure was associated 

with a decreased risk of future PC (HR = 0.57, 95% CI 0.51-0.64) [162]. Furthermore, subjects 
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with dual exposure to metformin plus PDD-4i were at lower risk of PC compared with 

metformin-only treated subjects. The synergistic effect appears to reflect the results of a pre-

clinical study suggesting that the anti-tumour effect of DPP-4i is due to downregulation of 

autophagy, increased apoptosis, and cell cycle arrest [170]. However, DPP-4is appear to have 

heterogeneous effects on cancer cells depending on tumour types, stages, 

microenvironment, and host condition [165]. This means they can potentially impact cancer-

bearing T2DM patients either favourably or unfavourably [171]. Further studies on the 

synergistic effect of metformin + DPP-4i are required to understand the potential benefits.  

6.3.9.5 Thiazolidinediones 

The thiazolidinediones (TZD) are considered to preserve β-cell function indirectly by acting 

as insulin sensitizers and inducers of  insulin secretion [72].  Some studies suggest that 

Thiazolidinediones inhibit the proliferation and metastasis of human PC cells [172], while it 

has also been suggested by both older and more recent meta-analyses that TZDs do not have 

a protective or harmful effect on overall incidence of pancreatic cancer [160, 173]. In the 

most recent of these, TZD vs non-use of TZDs was associated with an OR of 1.13 (95% CI 0.73-

1.75) with heterogeneity observed across the seven included studies (p <0.01). A few 

observational studies have also concluded that pioglitazone may increase the risk of 

pancreatic cancer[174, 175]. In a separate study exploring the direct targets of pioglitazone 

and associated genes with this drug, two of these genes - TGFB1 and RELA – were shown to 

be strongly amplified in pancreatic cancer, suggesting that pioglitazone may be a causal risk 

factor. There is still much debate about the effects of TZDs on risk for cancer and further 

investigation is required if the molecular mechanisms linking diabetes, TZDs and PC are to be 

clarified. 

6.3.9.6 Antidiabetic medication, clinical application and research  

T2DM can increase the risk of PC and certain antidiabetic medications can modify this risk 

[176]. On the other hand, NODM signalling the progression of underlying PC may be 

observed clinically as a sudden need for escalation in antidiabetic treatment for the 

treatment of resistant dysglycaemia. Metformin as a first-line OAM is frequently introduced 

to treatment regimens for T2DM at an earlier, milder stage.  It also appears to have a 

beneficial effect on risk for PC although the significance of this effect continues to be 

debated. By contrast, the risk of PC is elevated in T2DM insulin users. However, insulin tends 

to be prescribed in patients with more advanced T2DM and the elevated risk for shorter-

term insulin use seen in these individuals may in fact be explained by reverse causation [150] 
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[88]. Other OAMs are typically introduced as second line therapies, either as an alternative 

to Metformin or as part of multidrug regimens. Large population datasets are required to 

achieve adequate case-control numbers and specific details about drug regimens and 

variation in dosing and time can be absent or limited. As such, the proportionally fewer 

numbers of individuals on multiple OAMs within the T2DM and wider population adds to the 

challenges faced by researchers performing retrospective observational studies.  

Understanding the relationship between antidiabetic medication use and PC is currently 

limited. However, further exploration of these relationships may facilitate our understanding 

of PC development when masked by clinical diabetes. There are many limitations typically 

associated with drug association studies and assumptions about associations between 

antidiabetic medications and PC should thus currently be approached with caution. To 

mitigate this problem, future research may benefit from the current expansion of 

population-wide electronic health data record keeping at both the primary and tertiary care 

level.  As future retrospective and prospective observational studies gain access to 

increasingly detailed electronic health records data, it is likely that more longitudinal 

information about the dose-response relationships between antidiabetic medications and 

risk for PC will become available for researchers. Furthermore, increased access to full dose- 

and time-sensitive information may significantly reduce some of the sources of bias that 

typically limit the strength of findings within drug-association studies published to date. 
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6.4 Screening for Pancreatic Cancer 

In the UK, no effective screening programme for sporadic pancreatic cancer exists for the 

general population. Identifying individuals from clinical features alone is not a reliable option 

as symptoms are commonly non-specific. They also tend to occur in the latter stages of 

disease, when treatment to achieve cure is no longer possible. A bi-directional relationship 

between the pancreatic cancer and diabetes appears to exist, suggesting that some 

individuals develop diabetic complications secondary to pancreatic cancer. 

NODM diagnosis in certain individuals appears to indicate an increased risk of underlying 

PDAC which is especially marked within the first 3 years following DM diagnosis. This pattern 

of timing is consistent with findings that significant differences in glucose regulation 

becomes detectable around the same length of time prior to PDAC diagnosis and correlates 

with changes in tumour volumes [98]. Changes from tumour development to metastatic 

disease occurs over an approximate 7- to 10-year period of time [12]. If these hypotheses 

are accurate, further studies examining the temporal relationships of the two diseases in 

detail will be required to add validity to these findings. 

6.4.1 NICE criteria for possible pancreatic cancer  

Current clinical criteria for diagnosing diabetes are not optimised to identify diabetes 

secondary to cancer. However in 2021 the NICE criteria for possible PDAC was revised to 

include a combination of diagnosis of NODM with weight loss and age ≥60 as high risk for 

PDAC that warrants further investigation [3]. A recent study showed that NODM was 

associated with a 3-fold rise in risk of PC which increased to 6-fold or 10-fold higher once 

weight loss incidence within a two year period was factored in [177]. NODM with 

concomitant weight loss of 1 to 8lb was associated with an HR of 3.61 (95% CI 2.14-6.10), 

whilst a weight loss of more than 8lb was associated with an HR of 6.75 (95% CI 4.55-10.00). 

The elevated risk association with this combined exposure cohort puts it on par with the 

increased levels of risk associated with individuals with familial pancreatic cancer or 

hereditary gene mutations such as BRCA2 and CDKN2A [178].  

6.4.2 Metabolomics 

Metabolomics is an emerging discipline that enables examination of changes in endogenous 

and exogenous metabolites in cells, tissues and biofluids depending on the metabolic state 

of the individual. Performing this technique on human blood serum provides researchers 

with a tool to map out distinct phenotypical patterns according to different stressors or 
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disease statuses by comparing these mapped phenotypes against healthy individuals.  A 

study using this technique has led to the discovery of specific metabolite signatures for PDAC 

[179, 180], and appears to demonstrate effective stratification of diabetic patients and their 

complications which could be useful in the early distinction of NODM due to PDAC verses 

T2DM. 

Metabolomics introduces an alternative approach to testing for risk of PDAC by observing 

changes in blood serum chemistry for those at risk of both diabetes and PDAC. For ranges of 

HbA1c measurements, clinical thresholds for defining pre-diabetes and diabetes are set 

differently depending on where the guidelines originate. As such, performing risk association 

studies using these guidelines must take these localised variations into account.  

6.4.3 Targeted methylation analysis and circulating cell-free DNA  

Targeted methylation analysis on circulating cell-free DNA in blood plasma (cfDNA) is a 

technique that may provide an alternative to targeted mutation panels and whole genome 

sequencing as a tool for cancer detection [2]. In a recent study by Liu et al., cfDNA sequencing 

detected a broad range of cancer types at all stages with specificity and sensitivity 

performance approaching the goal for population-level screening. For pancreatic cancers, 

stage 1 disease sensitivity was 63% (95% CI 35% to 97%), stage 2 disease sensitivity was 83% 

(95% CI 36% to 100%), stage 3 sensitivity was 75% (95% CI 35%-97%) and stage 4 sensitivity 

was 100% (95% CI 80%-100%). The results of this study support the feasibility of employing 

targeted methylation analysis of cfDNA for early cancer detection and clinical validation in 

intended use populations is current ongoing [2]. One of these validation studies is a 

randomised control trial of the GRAIL GalleriTM multi-cancer screening test which is being 

planned for the National Health Service in England [181]. The trial aims to have 140,000 

healthy participants aged 50-79 (70,000 exposed to screening and 70,000 unexposed), tested 

for 50 different cancers responsible for a third of all-cause mortality. A 25% relative risk 

reduction in all-cancer mortality is proposed with cfDNA testing although the true reduction 

will likely be smaller. The expected discrepancy is due to various aspects of the model  design 

that may increase risk of statistical errors. For example, the efficacy estimates are based on 

the test’s ability to detect end-stage cancers which, as a surrogate measure, can be 

misleading [182]. The ability to detect early-stage cancers using this technique is recognised 

to be low. Nevertheless, some later-stage cancers are expected to be detected sooner than 

they would without the test, and this is where cfDNA testing has been proposed to be of 

most benefit. As for its potential use in early detection of sporadic PDAC, pancreatic cancer 
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is believed to be part of a group of cancers that shed more cfDNA into the circulation than 

other cancers [183].  Thus its use as a secondary or tertiary screening tool for detecting early-

stage PDAC could therefore be highly relevant to the cohort of adults aged over 60 who 

develop NODM. 

6.4.4 Screening with old and new methods 

Once a new diabetes or pre-diabetes diagnosis is identified in older adults, practical 

measures for monitoring PDAC risk could include repeat HbA1c testing at agreed time 

intervals to track changes. Co-existing and unintended weight loss should also be closely 

monitored following diagnosis of pre-diabetes or new diabetes to aid recognition of a 

possible connection between the two exposures and a possible underlying PDAC diagnosis. 

As previously highlighted, clinical signs associated with sporadic PDAC are non-specific at 

presentation. Screening for early-stage disease is limited by the difficulty in detecting early 

unintended weight loss with concomitant early stages of glucose dysregulation. These 

limitations are difficult to overcome unless regular health checks or personal monitoring 

routines are already established. Time is also lost from symptom presentation to first clinical 

presentation and specialist referral for further investigations. As such, models for screening 

of early-stage PDAC require the addition of second-line tests to refine the at-risk cohort 

further and reduce the time taken to confirm a diagnosis of PDAC. 

PDAC also follows a complex genetic and epigenetic pathway of pathogenesis that appears 

to arise from multiple prior disease states which contribute to different gene mutation 

patterns unique to each individual. With the insights gained through genetic and epigenetic 

research, relying on identifying a new adult diagnosis of diabetes may permit this 

presentation to serve only as a first clinical indicator of possible underlying PDAC or high-risk 

precursor lesion. After symptoms, non-modifiable and modifiable risk factors are accounted 

for, the new diabetes diagnosis may warrant follow-up with targeted gene screening and 

metabolomic profile mapping to rapidly determine if the new diabetes diagnosis is due to 

T2DM or NODM-PDAC. Combining clinical and genetic risk modelling could refine the cohort 

of those most at risk of PDAC for further investigation. This may increase early-stage PDAC 

detection rates and also identify those without PDAC but who are at high-risk and require 

close monitoring.  
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6.5 Large population prospective studies in the United Kingdom 

The low prevalence of PDAC makes it difficult to study large cohorts of individuals with this 

disease easily.  In the last two decades, the digitalisation of medical records and record 

keeping has increased in both scale and ease of access. The ability to quickly gather very 

specific information across large populations with greater control over the quality and 

consistency of this data has given researchers an opportunity to deepen our understanding 

of disease using ‘big data’. Studies relying on the examination of clinical information 

retrospectively are subject to sources of error due to confounding and bias. However 

prospective studies have fewer potential sources of bias and confounding by comparison but 

are easiest to perform when the outcome of interest is common. Unfortunately, because 

pancreatic cancer is relatively uncommon in the general population, the size of the 

population cohort required to observe enough cases to be statistically significant would need 

to be very large, and therefore require a significant number of resources to achieve 

logistically.  

In response to the limitations of previous large population epidemiology studies, Two UK 

based prospective cohort studies have been designed with the potential to inform on future 

strategies on screening individuals with NODM for pancreatic cancer. The United Kingdom 

Early Detection Initiative (UK-EDI) for pancreatic cancer aims to recruit 2500 individuals with 

NODM aged 50 years and over, with follow-up every 6 months over a 3-year period [184]. 

For study eligibility, diabetes diagnosis will be considered according to HbA1c clinical 

measurements of ≥48 mmol/mol. Detailed clinical information and biospecimens will be 

collected at baseline and importantly at each follow-up to support the development of 

molecular, epidemiological and demographic biomarkers for earlier detection of pancreatic 

cancer in the high-risk NODM cohort [184].  

The UK Biobank database is a large population database which currently represents one of 

the best opportunities to examine the development of pancreatic cancer within a UK 

population cohort. The database has been set up to prospectively collect medical 

information from 500,000 volunteers aged between 40-69 from 2006 to 2010 with ongoing 

follow-up thereafter. These individuals have continued to be monitored with repeat 

investigations and linked national record updates to build the database and record changes 

to baseline characteristics. Genotyping, biochemical tests and imaging have also been 

performed as part of the database collection for the purpose of facilitating research.  
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One recent study using the UK Biobank dataset examined the integration of polygenic risk 

scores (PRS) with modifiable risk factors to demonstrate that combining cancer-specific PRS 

measures with family history and modifiable risk factors improves prediction accuracy for 16 

cancers examined, although the magnitude of improvement varied depending on the cancer 

type [1]. PRS for pancreatic cancer reached significant risk stratification and was the primary 

determinant of risk stratification verses modifiable risk factors when they were examined 

together and separately as nested cohorts. The authors developed a risk model for 

pancreatic cancer consisting of four classes of risk factors based on their findings: (i) 

demographic factors (age and sex); (ii) family history of cancer in first-degree relatives or 

history of Lynch syndrome, Familial atypical multiple mole melanoma syndrome (FAMMM), 

Peutz-Jeghers syndrome, and Familial adenomatous polyposis (FAP); (iii) modifiable risk 

factors; and (iv) genetic susceptibility, represented by the PRS. As our intent is to explore the 

risk associations for PDAC in individuals with no history of familial pancreatic cancer or gene-

linked cancers, predictive modelling for risk of sporadic PDAC is likely to depend more on 

modifiable risk factors and PRS with GWAS-identified risk variants specific to this sub-cohort 

of individuals. 

6.6 Conclusion and Future Work 

Diabetes and cancers are some of the most challenging diseases in terms of diagnosis due to 

their heterogenous and complex nature [185]. The risk of pancreatic cancer in individuals 

with T2DM is well recognised but the development of NODM can also be a manifestation of 

pancreatic cancer. Growing evidence suggests that NODM and diabetes with rising HbA1c 

are both independent risk factors for pancreatic cancer [186]. When determining the best 

approaches to studying HbA1c as a measure of risk for PDAC, there is value in categorising 

HbA1c for ease of application. However, the relationship between HbA1c and PDAC may be 

better demonstrated by HbA1c measurements when treated as numerical values within a 

set range for statistical analysis. This would also act to minimise loss of power and risk of a 

Type 1 statistical error [187]. 

This literature review focussed on presenting the current knowledge about the relationship 

between sporadic pancreatic cancer and diabetes. It also highlighted the numerous issues 

associated with studying these two complex diseases. The limitations of diagnostic criteria, 

variation in clinical definitions, limited availability of biochemical tests, and lack of 

longitudinal data in retrospective datasets are some examples of study design factors that 

contribute to the difficulties encountered when studying relationships between diabetes, 
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pancreatic cancer, and other potential covariates. In addition to NODM as an early indicator 

of PDAC, we discussed potential etiopathologies associated with the development of PDAC.  

Potential risk factors associated with PDAC include non-modifiable (e.g., age and sex) and 

modifiable risk factors (e.g., weight/BMI, smoking, alcohol, diet), which may contribute to an 

optimised clinical model for screening.  Although diabetes appears to be the main risk factor 

for sporadic PDAC, other clinical features may still have an important role as confounders or 

covariates.   

Optimal risk models for screening may be based on a collection of clinical features 

composited with risk models using novel genetic analysis techniques such as PRS for risk 

prediction and cfDNA +/- radiological imaging for early-stage tumour detection. Further 

investigation of the interplay between diabetes, antidiabetic medication and pancreatic 

cancer is also needed to improve our understanding of how medication influences the 

development of pancreatic cancer. As such, the availability of antidiabetic intervention data 

(i.e., lifestyle, antidiabetic medications, and insulin adjuncts) within the UK Biobank dataset 

will also be assessed as part of the preliminary work up for possible inclusion in our study.  

6.7 Study Goals 

In individuals with NODM who are subsequently diagnosed with PDAC, higher HbA1c levels 

found prior to cancer diagnosis may be directly associated with malignancy progression. The 

time-to-event interval from NODM diagnosis to PDAC diagnosis may also differ to the time 

intervals associated with HbA1c changes seen in longstanding T2DM patients who 

subsequently develop PDAC. Evidence showing that HbA1c rises before clinical detection of 

PDAC demonstrates the potential value of HbA1c as a predictive marker [188, 189].  

However, HbA1c measurements as a predictor of PDAC, or re-interpreted categorically 

according to range thresholds for normoglycaemia, pre-diabetes and diabetes has not been 

widely examined.  

Hypothesis: HbA1c as a single value or grouped as ranges of values in subjects with NODM 

is a useful predictive marker of PDAC. 

6.7.1 Aim & Objective 

The aim of this study was to investigate the correlation between HbA1c levels and 

occurrence of PDAC in individuals diagnosed with NODM. Specifically, our objective was to 

quantify the risk association between elevated HbA1c levels measured at a single time-point 

and the incidence of PDAC as the primary outcome variable. Furthermore, we sought to 
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evaluate the effectiveness of HbA1c when assessed both as discrete numerical values and 

when categorised according to clinical thresholds for pre-diabetes and diabetes. This analysis 

aimed to ascertain whether the categorisation of HbA1c values offers any advantages in the 

context of interpreting HbA1c as a potential marker for PDAC.  

6.8 Study Outline 

HbA1c is the best currently available diagnostic measure for diabetes and glycaemic status 

and development of diabetes is associated with 60-80% of sporadic PDAC. It is therefore the 

most appropriate marker to use as a target exposure in our study as both a continuous 

variable and categorical variable using UK cut-off concentration level values for 

normoglycaemic (less than 42 mmol/mol), pre-diabetes (42 to 47.9 mmol/mol), and diabetes 

(48 mmol/mol or higher). 

In this study using UK Biobank data, we first planned to compare the risk association and bi-

directional relationship between diabetes and pancreatic cancer in this dataset with previous 

study outcomes. With PDAC as the key outcome, participants were divided into non-diabetic, 

NODM and LSDM sub-groups based on HbA1c concentration levels taken at first assessment 

and information available on prior diabetes status. These groups underwent separate cox 

regression analysis to compare hazard ratios between these groups for risk of PDAC. The 

overall diagnostic performance of HbA1c as a predictive marker for PDAC was examined for 

each sub-group using receiver operated characteristic (ROC) curve graph plots. To 

demonstrate the predictive value of HbA1c as a predictive test for PDAC when used alone, 

these plots were used to generate area under curve values to demonstrate the predictive 

value of HbA1c. Optimal cut-off values for determining the presence or absence of PDAC and 

the sensitivity and specificity of cut-off values associated with pre-diabetes diagnostic 

thresholds and diabetes diagnostic thresholds will also be examined.  

For our study to be scientifically valid, the quality of each data item required from the UK 

Biobank dataset was evaluated prior to inclusion for further analysis. This was to examine 

the strengths and limitations of the UK Biobank dataset items which could influence the 

study design and our findings. We also expect to interpret any findings with consideration of 

the bias and confounding that pre-exists within the UK Biobank dataset and also introduced 

within our own study methodology. 
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7 Study Design and Methodology 

To generate the nested case-control cohorts for this study, the population dataset provided 

by UK Biobank first required optimisation. To do this, each variable representing our key 

exposure and outcomes was carefully examined. Inclusion and exclusion criteria are 

described below. Other potential risk factors included in this study were also optimised prior 

to inclusion as either matched covariates or those to be adjusted for during analysis of the 

key exposure. 

7.1 Data source: UK biobank 

The entirety of our study data originated from the UK Biobank (UKB) dataset, which contains 

prospectively collected healthcare records on approximately 500,000 participants first 

recruited into the UKB study between 2006 and 2010. The participants were recruited from 

a wide variety of demographics to provide socioeconomic and ethnic heterogeneity, and 

urban-rural mix. This was to ensure broad distribution across all exposures and allow reliable 

detection of generalizable associations between baseline characteristics and health 

outcomes [190]. Each participant attended one of twenty-two assessment centres across 

England, Scotland, and Wales, where they completed a touchscreen questionnaire followed 

by a brief computer-assisted interview. Physical and functional measures, a 24-hour recall 

diet questionnaire, exercise tests, and fluid samples (blood, urine, and saliva) were collected 

to establish baseline measures. Linked data for death, hospital inpatient, cancer, and primary 

care (GP) records were also collected by the UKB in retrospect and prospectively with 

researcher access to these updates made available on a regular basis. 

7.2 Data extraction: UK biobank 

Permission to access the dataset was granted by UK Biobank to our research group upon  

review of the research proposal and signed material transfer agreements (MTA), which were 

provided by the University of Southampton and University Hospital Southampton NHS 

Foundation Trust (UHSNHSFT). The UK Biobank Project had approval from the North-West 

Multi-centre Research Ethics Committee as a Research Tissue Bank (RTB) approval that 

covered the proposed use of the UK Biobank dataset in most cases where researchers have 

requested data. The RTB was granted initially in 2011 and renews every 5 years on an ongoing 

basis. UK Biobank also possesses a Human Tissue Authority (HTA) licence to allow 

researchers access to participants’ samples under certain obligations without the need to 

obtain a separate HTA licence [191]. For our own study no separate ethics approval process 
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was required by us through our affiliated bodies (University of Southampton and UHSNHSFT) 

for the use of UK Biobank data resource in our work. In addition, no tissue samples were 

required for our research, and this was stated as part of the MTA agreement submitted to 

UK Biobank. 

Encrypted data files were downloaded from the UK Biobank (UKB) dataset in September 

2021, following a UKB Data Showcase Update in August 2021. Full details explaining how the 

encrypted data supplied by UK Biobank was downloaded and decoded for research purposes 

can be accessed via the UK Biobank website [192]. Different variables within the UKB dataset 

were organised by data fields (DF) and examined to determine what inclusion and exclusion 

criteria were required to optimise each variable prior to further data analysis. A key of the 

data fields used in our study is included in the Appendices section. Additional custom 

variables were also created from the DFs available where representative sub-cohorts were 

not designed specifically within the original UKB dataset for our needs. 

7.3 Dataset optimisation 

The large population dataset provided by UKB allowed us to examine comprehensive 

healthcare information on all participants collected from the start of the study. Additional 

prospectively added health data via linked national records database updates were also 

provided by UKB in the form of periodic scheduled updates. Longitudinal outcome data 

within the dataset enabled us to perform our study using models for time-to-event data. As 

the aim of our study was to examine the effect of HbA1c concentration levels on risk for 

PDAC within the UK Biobank dataset,  we embedded a matched nested case-control study 

within the larger prospective cohort to investigate the causal nature of this relationship. For 

the matched nested case-control design to be implemented correctly, several elements of 

the design needed to be properly defined [193].  

7.4 Case definition: PDAC 

To create the case cohort, the outcome measure was first defined as a pancreatic cancer 

diagnosis that occurred after entry into the study. The UK Biobank participants were 

considered to have nonendocrine pancreatic cancer (PDAC) if they had a diagnosis within 

linked death registry and cancer registry records using ICD10 coding (ICD10 codes: C25.1, 

C25.2, C25.3, C25.7, C25.8, C25,9). Cases were identified where PDAC was described as a 

primary cause of death, a contributary (secondary) cause of death, type of cancer was 

pancreatic using ICD10 codes, or if a distinct diagnosis was recorded across any hospital 
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inpatient records in either the primary or secondary position. The corresponding date of each 

diagnosis first recorded across all episodes was also provided by a separate linked time 

variable. 

For this study, PDAC cases were included if PDAC was the first of any incident cancer 

diagnosis diagnosed on or after the participant’s first UKB assessment date. Cases were 

excluded if PDAC diagnoses occurred prior to the date of first assessment, if there was a 

previous history of other cancer, or the pancreatic cancer subtype was labelled as 

neuroendocrine (ICD10 code C25.4). Histological classification was confirmed where possible 

using Cancer Register-linked comparison data. If multiple episodes of different ICD10 codes 

for pancreatic cancer were associated with a single individual, the date of the first episode 

and subtype was used as the single representative outcome. PDAC cases could only be 

included as a case once, and subsequent episodes of non-endocrine pancreatic cancer in the 

same individual were not counted again as additional cases. Once a participant had been 

identified as a case, they could not be reused in any future risk sets for other cases as a 

‘control’ individual.  

7.5 Controls (Risk set) definition: Diabetes and HbA1c 

One of the challenges encountered at the beginning of the model-building process was the 

identification of an appropriate risk set from which study controls could be sampled. The 

control set needed to incorporate the time dependent log data of our key exposure with 

adjustment for known or potential confounders. The current consensus is that diabetes as 

our key exposure, is both causally associated with pancreatic cancer and associated with 

pancreatic cancer consequentially by reverse causality. In either case, the clinical 

manifestation of diabetes in association with pancreatic cancer causes disruption to normal 

glycaemic control, and we chose to focus on this altered glucose control as our main measure 

and key exposure for this study. By investigating the link between diabetes and PDAC by the 

measures  used to detect changes in glycaemic control, we hoped to understand more about 

how changes to HbA1c concentrations attenuates risk of a PDAC diagnosis. It was therefore 

essential that our study included information on time-to-event data for diabetes and PDAC. 

Our study needed to include HbA1c concentration levels taken before PDAC diagnosis and 

ensure that diagnosis of diabetes with dates of diagnosis at any time before or after the study 

start date were also available. This would enable us to divide participants between those 

with a prior history of diabetes and those with no history of diabetes on entry into the study 

for further sub-cohort analysis.   
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To identify those with a diabetes diagnosis, several data-fields were available to indicate 

each participant’s diabetes status at different points in time based on different criteria. 

Participants were considered to have diabetes if there was a confirmation of their diagnosis 

from questionnaire and verbal interview data, linked ICD10 records, or HbA1c taken at 

Instance 0 was 48mmol/mol or greater.  

For the variable ‘diabetes diagnosed by a doctor’, participants were asked “Have you ever 

been diagnosed with diabetes by a doctor” on the initial assessment visit and answered with 

the options: ‘Yes’, ‘No’, ‘Do not know’, and ‘Prefer not to answer’. ICD10 records of diabetes 

diagnosis were identified in two formats. ‘First occurrence’ data-fields were both variables 

created by the UK Biobank by mapping information from Primary care data, Hospital 

inpatient data, Death Register records, and self-reported medical conditions reported at the 

baseline or subsequent UK Biobank assessment centre visits. These provided dates of first 

occurrence of any code mapped to 3-character ICD10 E10 (insulin-dependent diabetes 

mellitus (IDDM)) and E11 (non-insulin-dependent diabetes mellitus (NIDDM)) respectively. 

Event dates given that were apparently before birth were omitted when constructing this 

data field before it was made available for research purposes. ICD10 records data 

summarised distinct diagnosis codes of each participant as recorded across all their hospital 

inpatient records in either the primary or secondary position. 3-character ICD10 codes 

mapped to IDDM (E10) and NIDDM (E11) were identified from this cohort. Although these 

data fields already incorporated information from Hospital Inpatient data, we also 

performed our own manual check of the UKB-provided ICD10 records data to ensure that 

other diabetes diagnoses linked to dates were not omitted from our study.  

We identified 4 key data-fields that provided age and date information linked to the 

categorical variables above: Age diabetes diagnosed; Date of first in-patient diagnosis – 

ICD10; Date E10 first reported insulin-dependent diabetes mellitus; and Date E11 first 

reported non-insulin-dependent diabetes mellitus. ‘Age diabetes diagnosed’ required 

participants answering “yes” to the question of if they had ever been diagnosed with 

diabetes by a doctor to follow up with an answer to the question “What was your age when 

the diabetes was first diagnosed?”. Answers were given as age in years, with options for “Do 

not know”, and “Prefer not to answer” also available. ‘Date of first inpatient diagnosis’ 

contained date information in string format data for all 3-character ICD10 codes found in the 

ICD10 diagnoses data field. String format data was also provided for the data fields for dates 

of ‘E10 – IDDM’ and ‘E11 – NIDDM’ first reported.  
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To define the earliest date of diabetes diagnosis, linked diagnosis dates and partial time data 

from the data fields described were cross-examined. Partial dates and dates coded as 

erroneous were removed. The earliest full date available across these data fields for a 

diabetes diagnosis were then taken as the date of diabetes diagnosis for the study. The 

values from data fields that identified diabetes diagnoses were merged into a new 

categorical variable to represent any participants with a diabetes diagnosis at any point in 

time and coded 0 for no diabetes diagnosis, and 1 for a diabetes diagnosis. An additional 

variable was also generated for participants with a diabetes diagnosis at any point in time 

with available linked dates of diagnosis.  

HbA1c values taken from all participants at date of first attendance were divided into 

categories defined by clinical boundaries: normal = <42 mmol/mol; pre-diabetes = 42 to 47.9 

mmol/mol ; diabetes = 48 mmol/mol or greater and examined as continuous data. Paired 

time data was available from when the blood sample was taken for HbA1c concentration 

levels Date of attending assessment centre; string format data). As HbA1c was the key 

exposure in this study, participants with missing Hba1c concentration level records from 

initial assessment were excluded from our optimised dataset and from further analysis. 

By comparing dates of diabetes diagnosis to the date of the blood test at first assessment, 

participants with no history of diabetes prior to entering the study could be separated into 

further cohorts by HbA1c concentration levels based on the clinical ranges for 

normoglycaemia (<42mmol/mol),  pre-diabetes (42 to 47.9mmol/mol), and diabetes 

(≥48mmol/mol). This variable represented all individuals with no history of diabetes 

diagnosis prior to entry into the UK Biobank, divided into range categories for HbA1c 

concentration levels: 0 = normoglycaemic, 1 = new prediabetes, and 2 = new diabetes.  

7.6 Selection of additional factors 

Additional data was extracted on the following risk factors in all individuals within our nested 

cohort. The covariate data were assessed based on records available at the start of the study 

at index date in each cohort.  

7.6.1 Non-modifiable risk factors 

‘Age when attended a UK Biobank assessment centre’ was a derived variable based on date 

of birth and date of attending assessment centre. Age at initial assessment visit was treated 

as age at index date. Sex (Male and Female) was acquired from central (NHS) registry at 
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recruitment and in some cases updated by the participant during the initial assessment 

period.  

7.6.2 Anthropometric measures 

Other covariates were included in the study to adjust for potential influences on the key 

relationship between HbA1c concentration levels and risk of PDAC diagnosis. Body mass 

index (BMI) and waist circumference are anthropometric measures frequently used to 

examine obesity-related health risks. BMI values were constructed from height and weight 

measured during the initial assessment centre visit. Categorical variables were created out 

of the continuous data for BMI using clinically defined boundaries set according to the 

National Institute for Health and Care Excellence (NICE) definitions [194]. BMI was 

subdivided into different weight classes: Underweight = less than 18.5 kg/m2; Healthy weight 

= 18.5-24.9 kg/m2; Overweight = 25-29.9 kg/m2; and Obese = 30 kg/m2 or higher. Because of 

the known association of BMI with diabetes and pancreatic cancer, BMI was considered an 

important covariate and the optimised dataset had further participants excluded if no BMI 

record was recorded at initial assessment. Waist circumference was measured during initial 

assessment centre visit in centimetres and analysed as a continuous variable.  

7.6.3 Socio-economic status 

Townsend deprivation index (TDI) is a combined measure of owner occupation, car 

ownership, overcrowding and linkage to population census data within a postal area [53]. 

TDI at recruitment was calculated for each participant immediately prior to joining UK 

Biobank by assigning a score corresponding to the output area in which their postcode was 

located. Continuous data for TDI was converted into subcategories ranging from 0 to 19 for 

this study. A score of 6 to 7 covered an original TDI range of -0.99999 to 0.99999, with 0 

representing the area with the overall mean values based on preceding national census 

output areas. Scores of less than 6 on the modified scale leaned towards higher 

socioeconomic status, with a higher score indicating poorer socioeconomic status.  

Deprivation was also examined using quintiles of Townsend scores from ‘1’ (least deprived) 

to ‘5’ (most deprived). 

7.6.4 Smoking 

Smoking is a well-established risk factor for pancreatic cancer [195, 196] and associated with 

a reduction in survival among patients with pancreatic cancer [197]. In this study, ‘smoking 

status at study entry’ summarised current and past smoking status of participants. The data 
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field containing information on the number of cigarettes currently smoked daily amongst 

current cigarette smokers was used to explore the categorical and dose-response 

relationship of smoking with diabetes and pancreatic cancer. The quantitative values for this 

field were subdivided into groups for categorical analysis (0 = non-smoker, 1 = 1 to 5 

cigarettes per day, 2 = 6-10 cigarettes per day, 3 = 11 or more cigarettes per day).  

7.6.5 Alcohol 

For alcohol profiles, alcohol drinker status data was obtained via questionnaire response 

options of ‘Never’, ‘Previous and ‘Current’. Alcohol frequency values were obtained by asking 

participants how often they drank alcohol on average, with the participants choosing from 

the options: ‘Never’, ‘Special occasions only’, ‘One to three times a month’, ‘Once or twice a 

week’, ‘Three or four times a week’, and ‘Daily or almost daily’.   

7.7 Cohort time axis 

For the nested case-control analysis, date of first attendance to a UK Biobank centre for initial 

assessment were used to determine the age of each individual at this time point. Age in 

months at initial assessment was then defined time zero (i.e., time of entry into the survival 

study). We chose to use age as our measure of time. Because most of the time data available 

was provided in date format, calculations of the age of participants at the time were 

performed based on the date of birth information provided by the UK Biobank. This was 

available by ‘year’ and ‘month’ only, and no ‘day’ information was provided for 

confidentiality reasons. All measures in the study with date information such as our risk set 

(diabetes and HbA1c) were also converted to month and year format (mmyyyy) to the last 

complete month. This would align them with the date of birth information, thus 

standardising the date format for ease of use when performing calculations. Participants 

were followed up by time in months until their exit time, which was defined by the first 

occurrence of PDAC (primary event failure), or right censoring for participants leaving the 

study before event occurrence. Right censored individuals included those who were lost to 

follow-up, or to death, and study end date for everyone else (March 2021). 

7.8 Selection of matching factors 

Matching of case-control studies is a commonly implemented technique used in the field of 

public health and medical literature [198].  The purpose of matching cases to controls was to 

improve the efficiency of studying the large population dataset and to a lesser degree, help 

eliminate confounding by matched variables. Age and sex are both non-modifiable risk 
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factors that are known to impact the likelihood of developing pancreatic cancer. Older age 

is known to be associated with increased incidence of pancreatic cancer, which the UK 

Biobank cohort also demonstrated (Figure 13). By using Log-rank test of equality of survival 

functions we also identified from the pre-optimised dataset that risk for pancreatic cancer 

was significantly different between men and women (p<0.05) (Figure 14.).  

(a)   

 

        

(b) 

Figure 13. Older age is associated with increased incidence of PDAC. (a) Histogram showing x-axis: 

Age of participants at the time they develop PDAC within the UKB cohort by years, & y-axis: percentage 

of participants in each age group who develop PDAC relative to the number of PDAC cases in total. (b) 

Cox proportional hazard regression analysis with ‘age at first assessment’ as the independent variable 

shows a significant positive correlation (coefficient value of >0; P <0.01) between increasing age and 

risk for PDAC.  

Sex Numbers 
observed 

Numbers 
expected 

Female 649 720.31 

Male 681 609.69 

Total 1330 1330.00 

Figure 14. Female and Male participants have statistically significantly different risks for PDAC. 

Log-rank test for equality of survivor functions show a significantly higher risk of PDAC in women vs 

men (P-value <0.01). 

0
1

2
3

4
5

P
e
rc
e
n
t

30 40 50 60 70 80
age_pdac

Descriptor Coefficient Standard 
error 

P-value 95% confidence interval 
(lower to upper) 

Age at first 
attendance 

0.0118 0.00359 <0.01 0.00472 - 0.0188 



Study Design and Methodology 
 

75 
 

By matching cases to controls by sex, we were able to control for their effects on our survival 

analysis model and reduce the distortion effect they might have on the associations we 

sought with HbA1c. In our study we chose not to differentiate between female and male 

participants when examining overall risk for pancreatic cancer. This was to ensure that the 

number of pancreatic cancer events in our dataset was sufficient to perform regression 

analysis without adding bias to regression coefficients. Sufficient numbers were also 

essential to maintaining predictive accuracy [199].  

On matching of cases to controls by age, matched controls achieved greater adequacy the 

closer they were in age to the case at time zero. In addition, case-control ratio sampling of 

controls had to consider the total number of controls available for age-matching from within 

the optimised dataset. Ideally, controls would be matched to the exact age of each case by 

month and year. After matching by sex, the study model also had to ensure that enough 

controls in each cohort were then available for matching by age in sufficient numbers to 

prevent the need to recycle any controls for matching again with other cases. To achieve this 

compromise, the age range for matching controls to each case allowed matching of controls 

up to +0.9999 years older than the case age to ensure most cases were successfully matched 

to the recommended number of controls required. 
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7.9 Matching of cases to controls: Power and sample size estimates 

The UKB dataset involved over 500,000 participants and performing sample size estimations 

on this cohort ensured that the number of participant controls required was enough to avoid 

a type II error by providing it with sufficient power (i.e., the ability for tests to detect an effect 

that truly exists). An additional benefit of reducing the cohort to a 1:n ratio (where n = no. of 

controls  matched to each case) was that it would improve the efficiency of the study by not 

including any more controls than was required to detect a true effect with confidence. Power 

and sample size calculations were conducted to determine the smallest sample size needed 

to detect the effect of diabetes (as the key exposure) on the likelihood of PDAC (as the 

primary outcome) at the desired level of significance. The alpha value (Type I error, i.e. 

probability of rejecting the null hypothesis when it is in fact correct) was initially set at 0.05, 

with power set at 95%. The probability of exposure among controls (p0) was determined by 

looking at the prevalence of the diabetes variables within the UKB dataset. Crude odds ratios 

(OR) for the risk of developing PDAC in association with a diabetes diagnosis was used to 

determine the minimal detectable OR required. The details of how each input for the power 

and sample size calculation were derived are explained in the following paragraphs. 

7.9.1 p(0) – the proportion of diabetes in the control population 

In the UK, diabetes prevalence across all ages was approximately 6% in 2019 [200]. The UKB 

dataset cohort had an age range at study start from 36 to 74 years and the proportion of 

participants with any diagnosis of diabetes was 10.6%. This proportion reduced to 9.3% 

(mean age at diagnosis = 60 years) when the cohort was refined to only include cases with 

linked dates of diagnosis. Incidentally, Health Survey for England (HSE) statistical data from 

2018-2019 found that the proportion of doctor-diagnosed diabetes in those aged 45-64 years 

of age was close to this UKB value, lying between 8.5-9.1% from 2018 and 2019 [201]. Sample 

size calculations were performed using both a p0 value of 6% and at 9% to compare the 

number of controls needed for the sample sizes to be adequate in both cases. Comparing 

the calculations between p0 inputs also helped inform the decision on an appropriate case-

control ratio for the remainder of the study. 

7.9.2 OR – the minimum detectable odds ratio 

To perform sample size estimates, the minimum detectable odds ratio needed to be stated. 

Previous meta-analysis of studies examining the odds ratios (OR) for diabetes and risk of 

pancreatic cancer ranged from OR=1.36 (95%CI 1.16-1.96) [82] to OR=1.51 (1.19-1.55) [80] 
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at 10 years from diabetes diagnosis when the association appeared weakest. Based on these 

findings, we could expect that a minimum detectable OR between 1.36-1.51 would be a 

reasonable estimate of the true OR. In our study, the crude odds ratios calculated for the 

individual UKB data fields with linked dates ranged from 2.08 (95%CI 1.74-2.48) to 5.09 

(95%CI 3.90-6.55) as shown in Table 3. The crude odds ratios for HbA1c in the pre-diabetes 

range and diabetes range were 1.81 (95%CI 1.45-2.25) and 2.63 (95%CI 2.4-3.22) 

respectively. The lowest 95% confidence interval amongst these calculations was taken from 

the HbA1c pre-DM range OR results, with a value 1.45. As this figure satisfied our target 

range for possible values to represent the minimum detectable odds ratio,  1.45 was used as 

the reference odds ratio in the sample size estimates. 

 

Variable Odds Ratio 95% CI (upper – lower) P-value 

Diabetes diagnosed by a doctor 2.08 1.74-2.48 < 0.05 

Date E10 (IDDM) first reported  

Date E11 (NIDDM( first reported  

5.09 

4.14 

3.90-6.55 

3.66-4.68 

< 0.05 

< 0.05 

HbA1c concentration levels  

42 – 47.9 mmol/mol (pre-DM range) 

≥48 mmol/mol (DM range) 

 

1.81 

2.63 

 

1.45-2.25 

2.14-3.22 

 

< 0.05 

< 0.05 

Table 3. Table of figures showing the odds ratios for risk of PDAC calculated from variables provided 

by the UK Biobank. With HbA1c as the key exposure, a minimum detectable odds ratio of 1.45 based 

on the lowest end of the 95% confidence interval calculated for HbA1c across the different models for 

defining diabetes and pre-diabetes ranges. This gave us confidence that our ratio of matched controls 

would help us detect an odds ratio or hazards ratio equivalent to this value in our study.  

 

7.9.3 Sample size calculations 

The crude total number of PDAC identified from the UKB dataset based on our calculations 

was n=1329. With probability of exposure (p0) set to 0.06, a ratio of 1:6 cases was deemed 

sufficient to detect an odds ratio of 1.45 with 90% power and 95% significance. If the power 

was increased to 95% whilst keeping the exposure estimate at 0.06, the number of cases 

within the study was insufficient for an adequate number of controls to be matched for 
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detection of the same minimal odds ratio with the same level of significance. Both scenarios 

are displayed in Table 4. 

 

alpha power odds 
ratio 

p0 M N 

0.05 
0.05 
0.05 
| 
0.05 
0.05 
0.05 
0.05 
0.05 
0.05 

0.90 
0.90 
0.90 
| 
0.95 
0.95 
0.95 
0.95 
0.95 
0.95 

1.45 
1.45 
1.45 
| 
1.45 
1.45 
1.45 
1.45 
1.45 
1.45 

0.06 
0.06 
0.06 
| 
0.06 
0.06 
0.06 
0.06 
0.06 
0.06 

1 
5 
6 
| 
10 
100 
500 
2000 
5000 
10000 

2284 
1342 
1303 
| 
1538 
1411 
1400 
1398 
1398 
1397 

Table 4. Sample size estimates for establishing the number of controls needed for the matched case-

control study. Key: alpha = 0.05 (5% risk of Type I error occurring), power = 0.90 (90% likelihood of a 

true effect being detected), odds ratio = minimum detectable odds ratio (1.45), p0 = 0.06 (the 

prevalence of the independent variable – diabetes - in the population, e.g., 6%), M = number of 

controls needed for each case, N = number of cases required in the study (n=1329). With power set 

to 0.9 (90%), a ratio of 1:6 cases to controls could be achieved with the case numbers in our dataset. 

Increasing the power to 0.95(95%) to improve the chance of detecting a true difference with all other 

parameters staying the same, results in numbers of controls needed to match cases being 

unattainable.  

 

In addition to the issues described above, the PDAC frequency after factoring in exclusion 

criteria in our optimised dataset was n=1208. This reduction in cases would require a 

respective increase in the total number of controls to mitigate the issue. With power kept at 

95% and p0 value increased to 0.09, a ratio of 1:5 cases was sufficient to detect the minimal 

odds ratio at 95% significance, with all other input values left unchanged. As we intended to 

investigate specific covariates at a later stage, it was decided that each case would be 

matched to nine controls. The p0 value was also increased to consider the variance in 

diabetes exposure observed within the dataset (i.e., between 6-11%) and the likelihood that 

the true p0 for our study age cohort was also closer to 9% than 6% as discussed earlier. 

Another purpose of increasing the control numbers was to account for the expected loss of 

participant numbers due to exclusion criteria used to generate sub-groups of individuals 

within the HbA1c cohort. Any significant drop in participant numbers would reduce the 
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statistical power of the study and increase the risk of type II errors. Finally, as we planned to 

perform multivariate analyses to adjust for other potential risk factors, we anticipated that 

case and control numbers would drop further still, as more covariates were included in each 

risk model, which would again increase the likelihood of a Type II error. Thus, retaining a 

larger control population for the analysis would aim to limit these negative effects on our 

potential findings. The distribution of sample size calculations with successful matching by a 

true N value of 1208 by 1:5 cases to controls is displayed in Table 5. 

 

alpha power odds 
ratio 

p0 M N 

0.05 
0.05 
0.05 
0.05 
0.05 
0.05 
0.05 
0.05 
0.05 
0.05 

0.95 
0.95 
0.95 
0.95 
0.95 
0.95 
0.95 
0.95 
0.95 
0.95 

1.45 
1.45 
1.45 
1.45 
1.45 
1.45 
1.45 
1.45 
1.45 
1.45 

0.09 
0.09 
0.09 
0.09 
0.09 
0.09 
0.09 
0.09 
0.09 
0.09 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

1967 
1470 
1305 
1222 
1173 
1140 
1116 
1098 
1085 
1074 

Table 5. Sample size estimates for establishing the number of controls needed for the matched case-

control study. Key: alpha = 0.05 (5% risk of Type I error occurring), power = 0.95 (95% likelihood of a 

true effect being detected), odds ratio = minimum detectable odds ratio (1.45), p0 = 0.09 (the 

prevalence of the independent variable - diabetes - in the population, i.e., 9%), M = number of controls 

needed for each case, N = number of cases required in the study (n=1208). With power set to 0.95 

(95%), we can achieve a ratio of 1:5 cases to controls with the case numbers in our dataset.  

  



Study Design and Methodology 
 

80 
 

7.10 Statistical analysis 

After optimisation of the dataset nine controls were matched to each case to generate the 

two cohorts required for the nested case-control model. Baseline characteristics of the 

participants within the UK Biobank dataset were compared with the optimised dataset for 

any differences. This allowed us to observe and account for any changes to the distribution 

of individuals caused by our optimisation process.  The baseline characteristics of PDAC cases 

and 1-to-9 matched control cohort were then also compared. As the control cohort was now 

matched by age and sex, we were able to begin observing key numerical differences between 

the two groups free from significant interference by either of these factors.  

On the basic characteristics table frequency (with percentages) were presented for binary 

and categorical variables, and means (with standard deviations), and median (interquartile 

ranges, with total range) for continuous variables. Chi-squared goodness of fit modelling was 

performed on discrete distributions of data to examine for significant differences between 

the study cohorts for each categorical variable, and Student’s t-test was performed on 

variables with continuous data to show if a statistically significant difference between the 

means of two independent study cohorts was present. 

With survival study end points defined and study outcomes controlled for age and sex, initial 

univariate analyses were performed using Cox proportional hazards regression analyses to 

estimate hazard ratios and 95% confidence intervals (95%CI) for risk of PDAC with each study 

variable and covariate. Kaplan-Meyer survival curves were plotted for all categorical 

variables to test the assumption that risk for PDAC was the same in exposed and unexposed 

participants. Plotting these graphs provided insight into the shape of the survival function 

for each group and gave an idea of whether the groups were proportional by observing if the 

curves were roughly parallel to one another. Log-rank test of equality provided a statistical 

comparison between the same exposed and unexposed categorical covariates in the form of 

a p-value degree of significance for the categorical values. The test for equality with 

continuous variables was performed by univariate Cox proportional hazard regression. These 

tests are commonly used as part of forward or backward stepwise regression modelling for 

multivariate analyses. However, performing these calculations at this stage gave us the 

opportunity to make early observations about the strength of each variable’s one-to-one 

association with PDAC and flag them up as potentially significant predictors for inclusion in 

multivariate models we planned to build beyond the focus of this study. The covariates in 

this study were included because of their likely or possible effect on the outcome as either a 
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confounder or independent variable. Figures showing the Kaplan-Meier plots, log-rank 

calculations, and univariate cox proportional hazard regression calculations were included in 

the Appendices, under section 13.1.1 Univariate analyses: Testing the predictive value of 

variables. 

The models for HbA1c (continuous and categorical) were further adjusted for age, sex, and 

potential confounders including BMI, socioeconomic status (TDI), smoking status and alcohol 

status as these were described in section 6.4.6 Selection of additional factors, and section 

6.4.6 Selection of additional factors. To evaluate the impact of HbA1c concentration levels 

on the time-to-event relationship with PDAC diagnoses, the mean, median, skewness as a 

measure of degree of lop-sidedness in the frequency distribution, and the coefficient values 

from cox proportional hazard regression were all examined for the HbA1c concentration 

levels at study start for participants with no prior history of diabetes at study start, that were 

within the clinical ranges of Normoglycaemia, Pre-diabetes, and Diabetes.  

Finally, ROC curve graphs were plotted to assess the overall diagnostic performance of HbA1c 

as a predictive marker for PDAC for each of the subgroups. Theoretical optimal cut-off values 

were also calculated to evaluate the usefulness of HbA1c as a standalone predictive marker 

for PDAC. All analyses were performed using STATA v16 Data Analysis and Statistical 

Software.  
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8 Results 1: Basic Characteristics 

Of 502,459 patients in the UK Biobank cohort, we identified 1215 incident PDAC diagnoses  

occurring within the study period. After exclusion of individuals due to missing HbA1c and 

BMI data, 463,346 control participants were available within the optimised cohort for 

matching. Matching cases to controls by age and sex, and to a ratio of 1:9 yielded a study 

cohort with 1208 cases to 10,872 controls. 7 cases (0.6% of total PDAC) failed to achieve 

adequate matching to 9 unique controls without the need to reuse controls and were 

therefore omitted from our final study cohort. The flow diagram of the progress of all 

participants through our protocols to create the nested case-control cohort for our study is 

shown in Figure 15. 

8.1 Study population 

At baseline (UKB Dataset) the average age of entry (±SD) into the study was 56.7(±8.16) years 

of age. More women than men (54.4% vs 45.6%) enrolled within the UKB study and more 

participants within the UKB dataset were of white ethnicity (94%) compared to the UK census 

findings (89%) for England and Wales in 2010. After recategorization of TDI for this study, we 

observed that the UKB population were on average marginally better off than the census 

average in the UK (5.21 for UKB vs 6 for UK average; a score of <6 was associated with  higher 

socioeconomic status). Mean BMI was 27.4 with most of the UK Biobank cohort lying within 

the overweight category. 

Following optimisation of the UKB data for this study, most variables showed statistically  

significant differences in distribution of characteristic outcomes between this cohort and the 

original UKB dataset (p<0.05). The full table of basic characteristics showing distribution of 

subjects within the UKB, and the optimised study dataset are displayed in Table 6.  
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Figure 15. Flow diagram of the study design. From 502,459 participants within the UK Biobank 

dataset, we identified 1208 individuals with a diagnosis of PDAC which were matched to controls by a 

ratio of 1:9. 7 cases were excluded for failing the matching process. After excluding 420 participants 

for a history of diabetes before first UKB assessment, the remaining subjects (n=11660) were 

categorised at study entry as having no diabetes, new pre-diabetes, and new diabetes according to 

HbA1c values recorded at their first assessment. 
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Variable UKB Dataset Optimised UKB 
dataset 

Test of 
independence  
(p-value) 

Optimised dataset cases vs controls Test of 
independence 
(p-value) Demographic information Frequency 

(proportion,%) 
Total 
(proportion,%) 

PDAC 
(proportion,%) 

No PDAC 
(proportion,%) 

 
Total no. 
 

 
502,459 

 
464,523 

  
1,208 (0.26) 

 
463,315 (99.74) 

 

 
Age at study start, n 

mean (IQR) (range), y 

 
502,459 
56.7 ± 8.16 (50-63) 
(36-74) 

 
464,523 
56.6 ± 8.15 (50-63) 
(37-74) 

 
 
0.72 

 
1,208 
56.7 ± 8.35 (50-63) 
(38-72) 

 
463,315 
56.6 ± 8.16 (50-63) 
(37-74) 

 
 
0.72 

 
Sex, n 

Female 
Male 

 
502,459 
273,353 (54.4) 
229,106 (45.6) 

 
443,523 
251,964 (54.2) 
212,559 (45.8) 

 
 
 
<0.05 

 
1,208 
582 (48.2) 
626 (51.8) 

 
463,315 
251,382 (54.3) 
211,933 (45.7) 

 
 
 
<0.05 

 
Ethnicity, n 

White 
Mixed background 
Asian 
Black 
Chinese 
Other 

 
499,683 
472,656 (94.6) 
2,956 (0.6) 
9,880 (2.0) 
8,060 (1.6) 
1,573 (0.3) 
4,558 (0.9) 

 
462,404 
439,473 (95.0) 
2,634 (0.6) 
8,744 (1.9) 
6,176 (1.3) 
1,442 (0.3) 
3,935 (0.8) 

 
 
 
 
 
 
 
<0.05 

 
 
1,156 (96.2) 
10 (0.8) 
10 (0.8) 
16 (1.3) 
3 (0.3) 
7 (0.6) 

 
 
438,317 (95.0) 
2,624 (0.6) 
8,734 (1.9) 
6,160 (1.3) 
1,439 (0.3) 
3,928 (0.9) 

 
 
 
 
 
 
 
<0.05 

 
Pancreatic cancer, n 

No 
Yes 

 
502,481 
501,083 (99.7) 
1398 (0.3) 

 
464,523 
463,315 (99.7) 
1,208 (0.3) 

 
 
 
<0.05 

- 
 
 
 

- - 

Table 6. Basic Characteristics of the UK Biobank and optimised datasets with tests of independence. p<0.05 indicate significant 

differences between groups compared.  
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Age at PDAC diagnosis, n 

mean (IQR) (range), in 
years 
 

Location of lesion, n 
Head 
Body 
Tail 
Duct 
Other 
Overlapping 
Unspecified 

 
1375 
63.4 ± 9.2 (57-71) 
(30-82) 
 

1,398 
491 (40.7) 
128 (10.6) 
143 (11.8) 
22(1.8) 
24 (2.0) 
10 (0.8) 
390 (32.3) 

 
1,208 
63.9 ± 9.0 (57-71) 
(40-82) 
 

1,208 
491 (40.7) 
128 (10.6) 
143 (11.8) 
22 (1.8) 
24 (2.0) 
10 (0.8) 
390 (32.3) 

 
 
 
0.29  
 
 
 

 
 
 
 
 
1.00 

 
Diabetes diagnosed by a 
doctor, n 

Prefer not to answer 
Do not know 
No 
Yes 

ICD10 Diagnoses  
(Main or Secondary) 
 
E10 Insulin-dependent 
diabetes mellitus (NIDDM), n 

No 
Yes 

 

 
501,530 
402 (0.1) 
1,248 (0.3) 
471,745 (94.1) 
28,135 (5.6) 

 
 
 
 
 
502,459 
497,382 (99.0) 
5,077 (1.0) 

 

 
464,062 
308 (0.1) 
1,119 (0.2) 
436,984 (94.2) 
25,651 (5.5) 

 
 
 
 
 
464,523 
459,950 (99.0) 
4,573 (1.0) 

 

 
 
 
 
 
<0.05 

 
 
 
 
 
 
 
<0.05 

 

 
1,206 
1 (0.1) 
6 (0.5) 
1,067 (88.5) 
132 (10.5) 

 
 
 
 
 
1,208 
1,150 (95.2) 
58 (4.8) 

 

 
462,856 
307 (0.1) 
1,113 (0.2) 
435,917 (94.2) 
24,519 (5.5) 

 
 
 
 
 
463,315 
458,800 (99.0) 
4,515 (1.0) 

 

 
 
 
 
 
<0.05 

 
 
 
 
 
 
 
<0.05 

 

Table 6. Basic Characteristics of the UK Biobank and optimised datasets with tests of independence (continued) 
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E11 Non-insulin dependent 
diabetes mellitus (NIDDM), n 

No 
Yes 

Any diabetes, n 
No 
Yes 

 
Diabetes with date of 
diagnosis, n 

No 
Yes 

 

HbA1c, n 

Continuous 
mean ± SD (IQR) 
(range), mmol/mol 
 

Categorical 
< 42 mmol/mol 
42 to 47.9 mmol/mol 
>48 mmol/mol 

 
 
 
 
 

 
502,459 
460,383 (91.6) 
42,076 (8.4) 

460,467 
411,608 (89.4) 
48,859 (10.6) 

 
 
59,963 
13,047  (21.8) 
46,916 (78.2) 

 

466,450 

 
36.1 ± 6.8 (32.8-
37.9) (15-515.2) 
 
 
427,541 (91.7) 
21,301 (4.6) 
17,608 (3.8) 

 
 
 
 
 

 
464,523 
426,220 (91.8) 
38,303 (8.2) 

453,545 
408,950 (90.2) 
44,595 (9.8) 

 
 
42,787 
816 (1.9) 
42,076 (98.1) 

 

464,523 

 
36.1 ± 6. 8 (32.8-
37.9) (15-515.2) 
 
 
425,954 (91.7) 
21,151 (4.6) 
17,418 (3.8) 

 
 
 
 
 

 
 
 
<0.05 

 
 
<0.05 

 

 
 
 

 

<0.05 

 
0.52 
 
 
 
 
 
<0.05 

 
 
 
 
 

 
1,208 
879 (72.8) 
329 (27.2) 

1,176 
819 (69.6) 
357 (30.4) 

 
 
369 
15 (4.1) 
354 (95.9) 

 

1,208 

 
38.5 ± 8.5 (34.1-
39.8) (20-97.1) 
 
 
1,006 (83.3) 
92 (7.6) 
110 (9.1) 

 
 
 
 
 

 
463,315 
425,314 (91.8) 
37,974 (8.2) 

452,369  
408,131 (90.2) 
44,238 (9.8) 

 
 
42,523 
801 (1.9) 
41,722 (98.1) 

 

463,315 

 
36.1 ± 6.7 (32.8-
37.9) (15-515.2) 
 
 
424,948 (91.7) 
21,059 (4.6) 
17,308 (3.7) 

 
 
 
 
 

 
 
 
<0.05 

 
 
<0.05 

 
 
 
 
<0.05 
 
 

 
 
<0.05 
 
 
 
 
 
<0.05 

 

 
 
 

Table 6. Basic Characteristics of the UK Biobank and optimised datasets with tests of independence (continued) 
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HbA1c range in non-diabetics 
before study, n 
 

Normoglycaemic 
(<42mmol/mol) 
 
New pre-diabetes  
(42 to 47mmol/mol) 
 
New diabetes 
(≥48mmol/mol) 
 
 
 

452,737 
 
 
424,965 (93.9) 
 
 
18,642 (4.1) 
 
 
9,130 (2.0) 

450,989 
 
 
423,407 (93.9) 
 
 
18,522 (4.1) 
 
 
9,060 (2.0) 

 
 
 
 
 
 
 
 
 
<0.05 

1,134 
 
 
998 (88.0) 
 
 
79 (7.0) 
 
 
57 (5.0) 

449,855 
 
 
422,409 (93.9) 
 
 
18,443 (4.1) 
 
 
9,003 (2.0) 

 

 
 
 
 

 
 
 
<0.05 

 
Townsend Deprivation Index, n 

mean ± SD (IQR) 
(range) 
(<6 = better, >6 worse) 

 

 

 
501,836 
5.21 ± 3.12 (3-7) 
(0-18) 

 
463,957 
5.17 ± 3.24 (3-7) 
(0-18) 

 
 
 
<0.05 

 
1,207 
5.31 ± 3.10 (3-7) 
(0-16) 

 
462,750 
5.17 ± 3.09 (3-14) 
(0-18) 

 
 
 
0.12 

Table 6. Basic Characteristics of the UK Biobank and optimised datasets with tests of independence (continued) 
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Body mass index, n 

mean ± SD (IQR) 
(range), kg/m2 

 
Categorical: 

<18.5 
18.5 – 24.9 
25.0 – 29.9 
≥30.0  

 
499,355 
27.4 ± 4.8 (24.1-
29.9) (12.1-74. 7) 
 
 
2,497 (0.50) 
159,967 (31.8) 
213,326 (42.5) 
126,669 (25.2) 

 
464,523 
27.4 ± 4.8 (24.1-
29.9) (12.1-74.7) 
 
 
2,298 (0.5) 
149,055 (32.1) 
198,835 (42.8) 
114,335 (24.6) 

 
 
 
0.10 
 
 
 
 
 
<0.05 

 
1,208 
28.4 ± 5.1 (25.0-
30.9) (17.4-52.7) 
 
 
3 (0.2) 
296 (24.7) 
532 (44.3) 
377 (30.8) 

 
463,315 
27.4 ± 4.8 (24.1-
29.9) (12.1-74.7) 
 
 
2,295 (0.5) 
148,759 (31.3) 
198,303 (43.7) 
113,958 (24.5) 

 
 
 
<0.05 
 
 
 
 
 
<0.05 

 
Waist circumference, n  

Mean ± SD (IQR) 
(range), cm 

 
500,299 
90.3 ± 13.5 (80-
99) (20-197) 

 
464,429 
90.3 ± 13.5 (80-
99) (20-197) 

 
 
 
0.16 

 
1,208 
94.1 ± 14.0 (84-
103)(62-147) 

 
463,221 
90.3 ± 13.5 (80-
99)(20-197) 

 
 
 
<0.05 

 
Smoking status, n 

Prefer not to answer 
Never 
Previous 
Current 

Cigarettes smoked per day, n 
Non-smoker 
1 to 10 
11 to 20 
21 or 30 
31 to 40 
41 or more 

 
501,568 
2,057 (0.4)± 
273,496 (54.5) 
173,044 (34.5) 
52,971 (10.6) 

502,459 
466,308 (92.8) 
12,939 (2.6) 
17,984 (3.6) 
4,152 (0.8) 
846 (0.2) 
230 (0.0) 

 
464,069 
1,852 (0.4) 
252,716 (54.5) 
160,744 (34.6) 
48,757 (10.5) 

464,523 
431,273 (92.8) 
11,880 (2.6) 
16,572 (3.6) 
3,817 (0.8) 
770 (0.2) 
211 (0.0) 

 
 
 
 
 
<0.05 

 
 
 
 
 
 
<0.05 

 
11,207 
6 (0.5) 
548 (45.4) 
465 (38.5) 
188 (15.6) 

1,208 
1,067 (88.3) 
37 (3.1) 
79 (6.5) 
22 (1.8) 
3 (0.3) 
0 (0.0) 

 
462,862 
1,846 (0.4) 
252,168 (54.5) 
160,279 (34.6) 
48,569 (10.5) 

463,315 
430,206 (92.8) 
11,843 (2.6) 
16,493 (3.6) 
3,795 (0.8) 
767 (0.2) 
211 (0.0) 

 
 
 
 
 
<0.05 

 
 
 
 
 
 
<0.05 

Table 6. Basic Characteristics of the UK Biobank and optimised datasets with tests of independence (continued) 
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Alcohol status, n 

Prefer not to answer 
Never 
Previous 
Current 

Alcohol frequency, n 
Never 
Special occasions only 
1-3 times a month 
1-2 times a week 
3-4 times a week 
Daily or almost daily 
Missing 

 
501,562 
755 (0.1) 
22,384 (4.5) 
18,099 (3.6) 
460,324 (91.8) 

500,959 
40,635 (8.1) 
58,001 (11.5) 
55,848 (11.1) 
129,282 (25.7) 
115,428 (23.0) 
101,765 (20.3) 
1,500 (0.3) 

 
464,066 
646 (0.1) 
20,167 (4.4) 
16,562 (3.6) 
426,691 (91.9) 

463,555 
36,864 (8.0) 
52,990 (11.4) 
51,643 (11.1) 
119,993 (25.8) 
107,434 (23.1) 
94,631 (20.4) 
968 (0.2) 

 
 
 
 
 
<0.05 

 
 
 
 
 
 
 
<0.05 

 
1207 
2 (0.2) 
49 (4.1) 
50 (4.1) 
1,106(91.6) 

1206 
100 (8.3) 
139 (11.5) 
112 (9.3) 
296 (24.5) 
271 (22.3) 
288 (23.8) 
2 (0.2) 

 
462,859 
644 (0.1) 
20,118 (4.4) 
16,512 (3.6) 
425,585 (91.9) 

462,349 
36,764 (7.9) 
52,851 (11.4) 
51,531 (11.1) 
119,697 (25.8) 
107,163 (23.1) 
94,343 (20.4) 
966 (0.2) 

 
 
 
 
 
<0.05 

 
 
 
 
 
 
 
<0.05 
 
 

Table 6. Basic Characteristics of the UK Biobank and optimised datasets with tests of independence (continued) 
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8.2 Pancreatic cancer 

A total of 1375 classifications of pancreatic cancer were identified from within the UKB 

dataset with dates of diagnosis ranging from 26th April 1998 to 2nd April 2021. After 

implementing exclusion criteria and removal of duplicates, 1215 participants with PDAC 

were eligible for inclusion in our nested case-control study. After study optimisation the 

mean age at diagnosis of PDAC was 63.9 years ± 9.0, with an interquartile range (IQR) of 57 

(25%) to 71(75%). Age at diagnosis ranged from 40 to 82 years with a median age of 64 years. 

Most cases in this study were located to the pancreatic head (40.7%), with 10.6% and 11.8% 

in the body and tail respectively. 32.3% of cases did not have a specified location.  

8.3 Diabetes 

48,859 cases of diabetes were recognised within the UKB dataset, of which 46,916 (96%) 

were linked with corresponding dates of diagnosis. Within the optimised study dataset, a 

significantly higher proportion of individuals developed diabetes within the PDAC cohort 

(30.4%) compared to the control population (9.8%; p<0.05). A higher proportion of 

participants with HbA1c concentration levels within the clinical ranges of pre-diabetes and 

diabetes was also found in the PDAC cohort vs controls (p <0.05). Examination of the 

distribution of diabetes diagnoses within the optimised study dataset revealed that a higher 

number of people were found to have diabetes or new-onset diabetes after enrolling in the 

UKB study, in contrast to the percentage of individuals with pre-existing diabetes (6.2% 

compared to 2.9%). 1134 Individuals with no history of diabetes prior to entering the study 

developed pancreatic cancer during our study’s time-window. Based on HbA1c 

concentration levels taken at time of entry, 998 (88%) were classified as normoglycaemic, 79 

(7%) were classified as newly pre-diabetic, and 57 (5%) were classified as newly diabetic.  

Table 7 presents additional information, displaying how participants were distributed within 

the 1:9 matched nested case-control cohort. Furthermore, this table breaks down the cohort 

based on categories derived from HbA1c concentration levels, including normoglycaemic, 

new pre-diabetes, and new diabetes. 

8.4 Basic Characteristics – Comparison of cases to controls  

After matching of controls to cases by age and sex, certain differences in distribution of 

individuals between these two groups became apparent. Chi-square tests of differences with 

P-values of <0.05 performed on categorical data demonstrated a statically significant 

difference between the outcome distribution for PDAC and expected distribution for its 
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respective controls. A p-value of <0.05 for Student’s t-tests of continuous cohorts also 

indicated that the difference in means between the groups being compared were statistically 

different.  

A higher proportion of participants with a PDAC diagnosis were men (Men: 51.8% vs. 

Women: 45.7%). PDAC was also associated with slightly lower socioeconomic status (p 

<0.05).  The distribution of clinically overweight participants between cases and controls in 

the study was 44.3% vs 43.7%, and 30.8% vs 24.5% respectively in the obese category. The 

overall differences in distribution of weight between cases and controls was statistically 

significant (p<0.05). This was observed when differences in BMI distribution was  interpreted 

categorically (p<0.05) and as a continuous variable (p<0.05). Similarly, waist circumference 

showed a significant difference in distribution of size between the PDAC and control cohorts 

with a higher mean circumference in the PDAC cohort (94.1cm ± 14.0cm) vs controls (90.3cm 

± 13.5cm). A difference in distribution of individuals was noted in the study variable for 

current smoking status with a higher proportion of participants in the PDAC case cohort 

reporting themselves as previous smokers (38.5% for cases vs 34.6% for controls) or current 

smokers (15.6% vs 10.5% respectively). Smokers in the case cohort also smoked more when 

the two groups were compared by the number of cigarettes smoked per day (p<0.05). 

Alcohol status showed differences between the case and control cohort populations 

(p<0.05). A slightly higher proportion of individuals in the control cohort recorded 

themselves as ‘Never’ drinkers compared to those in the case cohort (4.4% vs 4.1% 

respectively). Although more individuals in the case cohort described themselves as 

‘Previous’ drinkers, more of the control cohort reported themselves as ‘Current’ drinkers 

(91.9% vs 91.6% for cases). Frequency of alcohol intake revealed that proportionally more 

individuals who developed PDAC and drank alcohol were likely to report drinking alcohol 

daily or almost daily (23.8%) whereas control individuals tended to drink less frequently 

(20.4%). The table of basic characteristics including frequency distribution for these variables 

within the nested case-control cohort is shown in Table 7. 
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 1:9 case control 
cohort  
(n=12080) 

1:9 case control cohort without previous diabetes diagnosis (n=11660) 
Normoglyaemic (HbA1c = <42 
mmol/mol) 

New pre-diabetes (HbA1c = 42 to 
47.9 mmol/mol) 

New diabetes (HbA1c = ≥ 48 
mmol/mol) 

Demographic 
information 

Frequency 
(proportion, %) 

PDAC  
Frequency (%) 

No PDAC  
Frequency (%) 

PDAC  
Frequency (%) 

No PDAC  
Frequency (%) 

PDAC  
Frequency (%) 

No PDAC  
Frequency (%) 

Total no

Age at study entry, n 
mean (IQR) 

(range), y 

12,080 
56.7 ± 8.3 (50-63) 
(38-72) 

998 
56.8 ± 8.3 (50-
64) (38-72) 


56.7 ± 8.3 (50-
63)(38-72) 

79 
56.3 ± 8.3 (51-
63) (38-70) 

434 
57.3 ± 8.5 (51-
65) (38-72) 

57 
56.0 ± 9.3 (47-
64) (40-68) 

201 
56.2 ± 7.9 (50-
62) (38-70) 

Sex, n 
Female 
Male 

12,080 
5,759 (47.7) 
6,321 (52.3) 

998 
495 (49.6) 
503 (50.4) 

9,891 
4,805 (48.6) 
5,086 (51.4) 

79 
39 (49.4) 
40 (50.6) 

434 
193 (44.5) 
241 (55.5) 

57 
26 (45.6) 
31 (54.4) 

201 
68 (33.8) 
133 (66.2) 

Ethnicity, n 
White 
Mixed (any) 
Asian 
Black  
Chinese 
Other 

 

12,030 
11,455 (95.2) 
72 (0.6) 
226 (1.9) 
154 (1.3) 
32 (0.3) 
91 (0.8) 

993 
964 (97.1) 
7 (0.7) 
6 (0.6) 
9 (0.9) 
2 (0.2) 
5 (0.5) 

9,445 
9,448 (95.9) 
58 (0.6) 
155 (1.6) 
103 (1.1) 
24 (0.2) 
69 (0.7) 

78 
73 (93.6) 
0 (0.0) 
2 (2.6) 
2 (2.6) 
1 (1.3) 
0 (0.0) 

432 
379 (87.7) 
3 (0.7) 
23 (5.3) 
15 (3.5) 
3 (0.7) 
9 (2.1) 

57 
50 (87.7) 
0 (0.0) 
2 (1.8) 
3 (5.3) 
0 (0.0) 
1 (1.8) 

199 
173 (86.9) 
0 (0.0) 
14 (7.0) 
8 (4.0) 
1 (0.5) 
3 (1.5) 

 

 

 

 

Table 7. Basic Characteristics Table for the matched nested case-control cohort. 1:9 case control cohort includes participants with diabetes diagnoses prior to 

study entry. Participants without a previous diabetes diagnosis before study entry were subdivided into groups (normoglycaemia, new pre-diabetes, and new 

diabetes) according to HbA1c measurements taken at study entry.  ‘-‘ indicates that no participants were found by this distribution criteria. 
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 1:9 case control 
cohort 

Normoglyaemic (HbA1c = <42 
mmol/mol) 

New pre-diabetes (HbA1c = 42 to 
47.9 mmol/mol) 

New diabetes (HbA1c = ≥ 48 
mmol/mol) 

Demographic 
information 

Frequency 
(proportion, %) 

PDAC  
Frequency (%) 

No PDAC  
Frequency (%) 

PDAC  
Frequency (%) 

No PDAC  
Frequency (%) 

PDAC  
Frequency (%) 

No PDAC  
Frequency (%) 

 
Pancreatic cancer, n 

No 
Yes 

 
Age at PDAC diagnosis 
mean (IQR) (range), in 
years 

 
Location of lesion, n 
 

Head 
Body 
Tail 
Duct 
Other 
Missing 
 

 
12,080 
10,872 (90.0) 
1,208 (10) 

 
 
63.4 ± 9.2 (57-71) 
(30-82) 
 
469 (40.7) 
 
128 (10.6) 
143 (11.8) 
22 (1.8) 
24 (2.0) 
10 (0.8) 
390 (32.3) 

 
10,889 
9,891 (90.8) 
998 (9.2) 

 
 
64.2 ± 9.0  (58-
71) (40-82) 
 
404 (40.5) 
 
103 (10.3) 
126 (12.6) 
20 (2.0) 
22 (2.2) 
9 (0.9) 
314 (31.5) 

 
- 

 
513 
434 (84.6) 
79 (15.4) 

 
 
62.7 ± 9.8  (51-
65) (38-72) 
 
36 (45.6) 
 
10 (12.7) 
5 (6.3) 
1 (1.3) 
1 (1.3) 
0 (0.0) 
26 (32.9) 

 
- 

 
258 
201 (84.6) 
57 (15.4) 

 
 
61.8 ± 9.5 (55-
69)(42-79) 
 
20 (35.1) 
 
7 (12.3) 
6 (10.5) 
1 (1.8) 
0 (0.0) 
0 (0.0) 
23(40.4)  

 
- 

 

 

 

 

 

Table 7. Basic Characteristics Table for the matched nested case-control cohort. (continued) 
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 1:9 case control 
cohort 

Normoglyaemic (HbA1c = <42 
mmol/mol) 

New pre-diabetes (HbA1c = 42 to 
47.9 mmol/mol) 

New diabetes (HbA1c = ≥ 48 
mmol/mol) 

Demographic 
information 

Frequency 
(proportion, %) 

PDAC  
Frequency (%) 

No PDAC  
Frequency (%) 

PDAC  
Frequency (%) 

No PDAC  
Frequency (%) 

PDAC  
Frequency (%) 

No PDAC  
Frequency (%) 

 
Diabetes diagnosed by a 
doctor, n 

Prefer not to answer 
Do not know 
No 
Yes 

ICD10 Diagnoses (Main 
or Secondary) 
E10 - Insulin dependent 
diabetes mellitus 
(NIDDM), n 

No 
Yes 

E11 - Non-insulin 
dependent diabetes 
mellitus (NIDDM), n 

No 
Yes 

 
Any diabetes, n 

No 
Yes 
Missing 

 
 
12,071 
6 (0.0) 
32 (0.3) 
11,262 (93.3) 
771 (6.4) 

 
 
 
 
12,080 
11,891 (98.4) 
189 (1.6) 

 
 
12,080 
10,817 (89.5) 
1,263 (10.5) 

 
11,779 
10,336 (87.8) 
1,443 (12.3) 
- 

 
 
996 
1 (0.1) 
3 (0.3) 
982 (98.6) 
10 (1.0) 

 
 
 
 
998 
974 (97.6) 
24 (2.4) 

 
 
998 
835 (83.7) 
163 (16.3) 

 
996 
819 (82.2) 
177 (17.8) 
- 

 
 
9,886 
5 (0.0) 
17 (0.2) 
9,760 (98.7) 
104 (1.1) 

 
 
 
 
9,891 
9,881 (99.9) 
10 (0.1) 

 
 
9,891 
9,593 (97.0) 
298 (3.0) 

 
9,877 
9,515 (96.3) 
362 (3.7) 
- 

 
 
79 
0 (0.0) 
1 (1.3) 
64 (81.0) 
14 (17.7) 

 
 
 
 
79 
75 (94.9) 
4 (5.1) 

 
 
79 
32 (40.5) 
47 (59.5) 

 
79 
0 (0.0) 
49 (62.0) 
30 (38.0) 

 
 
434 
0 (0.0) 
7 (1.6) 
350 (80.7) 
77 (17.7) 

 
 
 
 
434 
426 (98.2) 
8 (1.8) 

 
 
434  
280 (64.5) 
154 (35.5) 

 
434 
0 (0.0) 
179 (41.2) 
255 (58.8) 

 
 
57 
0 (0.0) 
2 (3.5) 
19 (33.3) 
36 (63.2) 

 
 
 
 
57 
45 (79.0) 
12 (21.0) 

 
 
57 
11 (19.3) 
46 (80.7) 

 
57 
0 (0.0) 
57 (100.0) 
- 

 
 
200 
0 (0.0) 
1 (0.5) 
73 (36.5) 
126 (63.0) 

 
 
 
 
201 
183 (91.0) 
18 (9.0) 

 
 
201 
51 (25.4) 
150 (74.6) 

 
201 
0 (0.0) 
201 (100.0) 
- 

Table 7. Basic Characteristics Table for the matched nested case-control cohort. (continued) 
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Diabetes with date of 
diagnosis, n 

No 
Yes 
missing 

HbA1c, n 
Continuous 

mean ± SD (IQR) 
(range), mmol/mol 

 
Categorical 

< 42 mmol/mol 
42 to 47.9 mmol/mol 
>48 mmol/mol 
 

 
 
 
1,396 
23 (1.7) 
1,373 (98.4) 
- 

12,080 
 
36.4 ± 7.4 (32.8-
38.1) (15.6-266.3) 
 
 
10,949 (90.6) 
599 (5.0) 
532 (4.4) 

 
 
 
187 
12 (6.4) 
175 (93.6) 
- 

998 
 
35.7 ± 3.3 
(33.6-41.6) (20-
41.9) 
 
 
998 (100.0) 
- 
- 
 

 
 
 
321 
9 (2.8) 
312 (97.2) 
- 

9,891  
 
34.7 ± 3.4 (32.4-
41.5) (15.6-
41.9) 
 
9,891 (100.0) 
- 
- 

 
 
 
51 
0 (0.0) 
48 (94.1) 
3 (5.9) 

79 
 
44.4 ± 1.7 (43-
45.9) (42.1-
47.6) 
 
- 
79 (100.0) 
- 

 
 
 
166 
0 (0.0) 
162 (97.6) 
4 (2.4) 

434 
 
44.1 ± 1.7 (42.7-
45.4) (42-47.9) 
 
 
- 
434 (100.0) 
- 

 
 
 
57 
0 (0.0) 
57 (100.0) 
- 

57 
 
57.3 ± 9.2 (50.7-
97.1) (48-97.1) 
 
 
- 
- 
57 (100.0) 

 
 
 
201 
0 (0.0) 
201 (100.0) 
- 

201 
 
60.2 ± 20.1 
(50.2-126.1) (48-
266.3) 
 
- 
- 
201 (100.0) 

 

 

 

 

 

 

 

Table 7. Basic Characteristics Table for the matched nested case-control cohort. (continued) 
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 1:9 case control 
cohort 

Normoglyaemic (HbA1c = <42 
mmol/mol) 

New pre-diabetes (HbA1c = 42 to 
47.9 mmol/mol) 

New diabetes (HbA1c = ≥ 48 
mmol/mol) 

Demographic 
information 

Frequency 
(proportion, %) 

PDAC  
Frequency (%) 

No PDAC  
Frequency (%) 

PDAC  
Frequency (%) 

No PDAC  
Frequency (%) 

PDAC  
Frequency (%) 

No PDAC  
Frequency (%) 

 
Townsend Deprivation 
Index, n 

Mean ± SD (IQR) 
(range), modified 
scale (<6 = better, >6 
worse) 

 

 
12,069 
 
5.2 ± 3.1 (3-7) (0-
17) 

 
997 
 
5.2 ± 3.1 (3-7)  
(0-16) 

 
9,881 
 
5.1 ± 3.0 (3-7) 
(0-17) 

 
79 
 
5.3 ± 3.4 (3-7) 
(1-15) 

 
434 
 
5.9  ± 3.4 (3-8) 
(0-15) 

 
57 
 
7.2 ± 3.8 (4-10) 
(1-15) 

201 
 
5.9 ± 3.5 (3-8) 
(0-15) 

Body mass index, n 
mean ± SD (IQR) 
(range), kg/m2 

 

BMI clinical ranges: 
Underweight <18.5 
Healthy (18.5 –24.9) 
25.0 – 29.9 
≥30.0  

 
12,080 
27.6 ± 4.8 (24.3-
30) (15.2-60.6) 
 
 
53 (0.4) 
3,680 (30.5) 
5,254 (43.5) 
3,093 (25.6) 

 
998 
27.8 ± 4.7 
(24.7-30.2) 
(17.4-52.7) 
 
2 (0.2) 
269 (30.0) 
462 (46.3) 
265 (26.6) 
 

 
9,891 
27.1 ± 4.5 (24-
29.5) (15.2-
68.4) 
 
49 (0.5) 
3,271 (33.1) 
4,359 (44.1) 
2,212 (22.4) 

 
79 
30.0 ± 5.6 (26.3-
33.4) (18.9-
44.3) 
 
0 (0.0) 
12 (15.2) 
34 (43.0) 
33 (41.8) 
 

 
434 
30.5 ± 5.9 (26.4-
33.1) (17.3-
61.5) 
 
1 (0.2) 
55 (12.7) 
167 (38.5) 
211 (48.6) 
 

 
57 
31.9 ± 5.6 (28.5-
34.2) (21-49.3) 
 
 
0 (0.0) 
4 (7.0) 
15 (26.3) 
38 (66.7) 

 
201 
30.8 ± 5.3 (27.4-
33.4) (18.5-47.4) 
 
 
0 (0.0) 
23 (11.4) 
72 (35.8) 
106 (52.7) 

 
Waist circumference, n 
Mean ± SD (IQR) (range), 
cm 
 

 
12,077 
91.3 ± 13.4 (82-
100) (55-171) 

 
998 
92.4 ± 13.1 (83-
101) (62-144) 
 

 
9,890 
89.9 ± 12.8 (81-
98) (57-171) 

 
79 
98.4 ± 14.6 (90-
106) (65-130) 

 
434 
99.4 ± 13.7 
(90.5-107) (55-
156) 

 
57 
105.4 ± 13.3 
(97-114) (72-
135) 

 
201 
 101.8 ± 13.2 
(93-110) (69-
141) 
 

 

Table 7. Basic Characteristics Table for the matched nested case-control cohort. (continued) 
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 1:9 case control 
cohort 

Normoglyaemic (HbA1c = <42 
mmol/mol) 

New pre-diabetes (HbA1c = 42 to 
47.9 mmol/mol) 

New diabetes (HbA1c = ≥ 48 
mmol/mol) 

Demographic 
information 

Frequency 
(proportion, %) 

PDAC  
Frequency (%) 

No PDAC  
Frequency (%) 

PDAC  
Frequency (%) 

No PDAC  
Frequency (%) 

PDAC  
Frequency (%) 

No PDAC  
Frequency (%) 

Smoking status, n 
Never 
Previous 
Current 

 
Cigarettes smoked per 
day, n 

Non-smoker 
1 to 10 
11 to 20 
21 or 30 
31 to 40 
41 or more 

 

12,025 
6,374 (53.0) 
4,302 (35.8) 
1,349 (11.2) 
 
 
12,080 
11,146 (92.3) 
308 (2.5) 
479 (4.0) 
119 (1.0) 
15 (0.1) 
13 (0.1) 

994 
474 (47.7) 
366 (36.8) 
154 (15.5) 
 
 
998 
882 (88.4) 
31 (3.1) 
64 (6.4) 
18 (1.8) 
3 (0.3) 
0 (0.0) 

9,853 
5,384 (54.6) 
3,460 (35.1) 
1,009 (10.2) 
 
 
9,891 
9,206 (93.1) 
242 (2.4) 
347 (3.5) 
77 (0.8) 
10 (0.1) 
9 (0.1) 
 

79 
26 (32.9) 
37 (46.8) 
16 (20.3) 
 
 
79 
66 (83.5) 
2 (2.5) 
8 (10.1) 
3 (3.8) 
0 (0.0) 
0 (0.0) 

430 
207 (48.1) 
150 (34.9) 
73 (17.0) 
 
 
434 
383 (88.3) 
17 (3.9) 
22 (5.1) 
11 (2.5) 
0 (0.0) 
1 (0.2) 
 

57 
25 (43.9) 
27 (47.4) 
5 (8.8) 
 
 
57 
53 (93.0) 
1 (1.7) 
3 (5.6) 
0 (0.0) 
0 (0.0) 
0 (0.0) 

198 
93 (47.0) 
77 (38.9) 
28 (14.1) 
 
 
201 
179 (89.0) 
2 (1.0) 
13 (6.5) 
4 (2.0) 
2 (1.0) 
1 (0.5) 

Alcohol status, n 
Never 
Previous 
Current 
 

Alcohol frequency, n 
Never 
Special occasions only 
1-3 times a month 
1-2 times a week 
3-4 times a week 
Daily or almost daily 

12,060 
497 (4.1) 
433 (3.6) 
11,130 (92.3) 
 
12,063 
933 (7.7) 
2,534 (21.0) 
2,871 (23.8) 
3,090 (25.6) 
1,274 (10.6) 
1,361 (11.3) 

995  
37 (3.7) 
35 (3.5) 
923 (92.8) 
 
996 
73 (7.3) 
253 (25.4) 
236 (23.7) 
247 (24.8) 
85 (8.5) 
102 (10.2) 

9,877 
370 (3.7) 
323 (3.3) 
9,184 (93) 
 
9,879 
695 (7.0) 
2,105 (21.3) 
2,441 (24.7) 
2,565 (26.0) 
1,038 (10.5) 
1,035 (10.5) 

79 
5 (6.3) 
2 (2.5) 
72 (91.1) 
 
79 
7 (8.9) 
20 (25.3) 
14 (17.7) 
18 (22.8) 
12 (15.2) 
8 (10.1) 

434 
38 (8.8) 
24 (5.5) 
372 (85.7) 
 
434 
62 (14.3) 
64 (14.8) 
80 (18.4) 
96 (22.1) 
58 (13.4) 
74 (17.1) 

57 
5 (8.8) 
5 (8.8) 
47 (82.4) 
 
57 
10 (17.5) 
7 (12.3) 
9 (15.8) 
15 (26.3) 
6 (10.5) 
10 (17.5) 

200 
17 (8.5) 
11 (5.5) 
172 (86.0) 
 
200 
28 (14.0) 
31 (15.5) 
34 (17.0) 
50 (25.0) 
22 (11.0) 
24 (17.5) 

Table 7. Basic Characteristics Table for the matched nested case-control cohort. (continued) 
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9 Results 2: Survival analysis 

9.1 Diabetes and PDAC 

Univariate analysis performed on participants with a history of diabetes within the whole 

matched case-control cohort (n = 12080) showed a consistently strong link between having 

a diabetes diagnosis and risk for pancreatic cancer. Having diabetes diagnosed by a doctor 

was associated with an increased risk for PDAC (HR 1.86 95%CI 1.55-2.23; p <0.01) within the 

nested case-control cohort (Table 8.). Definitions of diabetes incorporating IDC10 data from 

national records demonstrated a risk association with PDAC. Risk for PDAC with an ICD10 

diagnosis of IDDM was 3.91 (95% CI 3.00 – 5.09, p <0.05) and risk for PDAC with an ICD10 

diagnosis of NIDDM was 3.67 (95% CI 3.23 – 4.16, p <0.05). The strength of this association 

remained when the criteria for diabetes diagnosis were combined into variables for diabetes 

diagnosis that were created specifically for our study (‘Record of any diabetes’: HR 3.55 95% 

CI 3.14-4.02, p <0.05; ‘Diabetes with date of diagnosis’: HR 3.84 95% CI 3.40 – 4.34, p <0.05).  

HbA1c as a continuous variable showed significant association with risk for PDAC. For each 

increase in HbA1c by 1mmol/mol, the risk of PDAC rose by approximately 2% respectively 

(HR 1.02 95% CI 1.01-1.02, p <0.05). For the purpose of categorising HbA1c measurements 

obtained at study entry, participants were divided based on specific clinically descriptive 

ranges corresponding to normoglycaemia, pre-diabetes, and diabetes, depending on where 

their HbA1c measurements fell. Using HbA1c <42 mmol/mol as the reference value, we 

identified increased risks for PDAC which were statistically significant among participants 

falling within the pre-diabetes category (HR 1.80 95% CI 1.46 – 2.23, p <0.05), as well as the 

diabetes category (HR 2.60 95% CI 2.13-3.16, p <0.05) of measurements. These findings 

strongly indicated that pre-diabetes range HbA1c as a single measurement may be 

associated with incident PDAC, independent of diabetes status.  

9.2 Risk stratified by HbA1c measurement in participants without prior 

diabetes diagnosis at study entry 

Upon exclusion of participants with a diabetes diagnosis prior to study entry, hazard ratios 

were calculated to determine risk for PDAC in the remaining individuals after being grouped 

by the HbA1c range into which their study entry HbA1c measurements fell within.  

For participants defined using the ‘diabetes diagnosis by a doctor’ criteria, calculation of risk 

for PDAC could not be performed reliably. This is because the diabetes diagnoses identified 

within this definition were mostly taken from retrospective data collected before UKB 
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biometric assessments took place. A large proportion of these participants with key exposure 

outcomes were eliminated as part of the exclusion criteria for this step of analysis, thus 

limiting the usefulness of this data beyond our previous observations. 

In participants who developed a diabetes diagnosis after entry into the study, the risk for 

PDAC was significantly raised (p <0.05) in those with HbA1c levels taken at study entry within 

the normoglycaemic range. Hazard ratios ranged from 4.72 to 12.0 when they were grouped 

according to any of the various diabetes definitions we examined. Participants with an HbA1c 

measurement within the pre-diabetes range of values, who subsequently developed NIDDM 

within the study time period demonstrated an increased risk for PDAC (HR 2.40, 95% CI 1.53 

- 3.77, p <0.05). Increased risk for PDAC was also observed in the subgroup representing all 

diabetes diagnoses with linked dates of diagnosis (HR 2.61, 95% CI 1.65 - 4.14, p <0.05). This 

association did not reach statistical significance for those in the IDDM subgroup (HR 2.50, 

95% CI 0.92 - 6.86, p = 0.07). 

Conversely, participants with no diabetes diagnosis before study entry who entered with an 

HbA1c measurement within the diabetes range and had an eventual diagnosis of IDDM or 

NIDDM were associated with a statistically significant risk association with PDAC if their 

eventual diagnosis was IDDM (HR 2.24, 95% CI 1.19 – 4.25, p <0.05). This association was not 

seen in the NIDDM subgroup (HR 1.29, 95% CI 1.19 – 4.25, p <0.05).  

  



Results 2: Survival analysis 
 

100 
 

 

 1:9 case control cohort Normoglycaemic  
(HbA1c = <42 mmol/mol) 

New pre-diabetes 
(HbA1c = 42 to 47.9 
mmol/mol) 

New diabetes  
(HbA1c = ≥ 48 mmol/mol) 

 
Demographic information 

 
HR (95%CI lower-
upper) 
 

 
p-value 

 
HR (95%CI lower-
upper) 

 
p-value 

 
HR (95%CI lower-
upper) 

 
p-value 

  
HR (95%CI lower-
upper) 

 
p-value 

 
Diabetes diagnosed by a 
doctor 

No 
Yes 

 
ICD10 Diagnoses (Main or 
Secondary) 
E10 - Insulin dependent 
diabetes mellitus 

No 
Yes 
 

E11 - Non-insulin 
dependent diabetes 
mellitus 

No 
Yes 

 
 
Record of any diabetes 

 
 
 
1.00 (ref) 
1.86 (1.55-2.23) 
 
 
 
 

1.00 (ref) 
3.91 (3.00-5.09) 
 
 
 
 
1.00 (ref) 
3.67 (3.23-4.16) 
 
 
 

 
 
 
 
<0.05 
 
 
 
 
 
 
<0.05 
 
 
 
 
 
<0.05 
 
 
 

 
 
 
 
0.83 (0.52-1.32 
 
 
 
 
 

12.0 (8.02-18.0) 
 
 
 
 
 
5.11 (4.32-6.04) 

 
 

 
 
 
 
00.44 
 
 
 
 
 
 
<0.05 
 
 
 
 
 
<0.05 
 
 
 

 
 
 
 
1.06 (0.61-1.78) 
 
 
 
 
 
 
2.50 (0.92-6.86) 
 
 
 
 
 
2.40 (1.53-3.77) 
 
 
 

 
 
 
 
0.87 
 
 
 
 
 
 
0.07 
 
 
 
 
 
<0.05 
 
 
 

 
 
 
 
0.80 (0.48-1.35) 
 
 
 
 
 
 
2.24 (1.19-4.25) 
 
 
 
 
 
1.29 (0.67-2.49) 
 
 
 

 
 
 
 
0.41 
 
 
 
 
 
 
<0.05 
 
 
 
 
 
0.45 
 
 
 

Table 8. Univariate analysis using cox proportional hazards regression. Hazard ratios (HR) for the various definitions of diabetes (key exposure) are presented 

with 95% confidence intervals and p-values of significance. From left to right: The first column represents HR calculated for the whole optimised cohort. The 

second (Normoglycaemic), third (New pre-diabetes), and fourth (New diabetes) columns show HR for these subgroups.  
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No 
Yes 
 

Diabetes with date of 
diagnosis 

No 
Yes 
 

 
HbA1c  
  Continuous (mmol/mol) 
  Categorical 

< 42 mmol/mol 
42 to 47.9 mmol/mol 
>48 mmol/mol 

 

1.00 (ref) 
3.55 (3.14-4.02) 

 
 
 
1.00 (ref) 
3.84 (3.40-4.34) 
 
 
 
1.02 (1.01-1.02) 
 
1.00 (ref) 
1.80 (1.46-2.23) 
2.60 (2.13-3.16) 
 

 
<0.05 
 
 
 
 
<0.05 
 
 
 
<0.05 
 
 
<0.05 
<0.05 
 
 

 
4.72 (4.01-5.55) 
 
 
 
 
5.47 (4.66-6.41) 
 
 
 
1.09 (1.07-1.11) 
 
 
1.81 (1.44-2.28) 
2.80 (2.15-3.66) 
 

 
<0.05 
 
 
 
 
<0.05 
 
 
 
<0.05 
 
 
<0.05 
<0.05 

 
- 
 
 
 
 
2.61 (1.65-4.14) 
 
 
 
1.09 (0.96-1.24) 
 
 
- 
 
 

 
- 
 
 
 
 
<0.05 
 
 
 
0.16 

 
- 
 
 
 
 
- 
 
 
 
0.99 (0.97-1.01) 
 
 
- 

 
- 
 
 
 
 
- 
 
 
 
0.27 

 

 

Table 8. Univariate analysis using cox proportional hazards regression. (continued) 
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9.3 HbA1c as an independent risk factor  

To validate our findings, univariate analysis was repeated after excluding all individuals with 

a history of diabetes prior to study entry. The likelihood of developing PDAC with HbA1c 

measurements within the pre-diabetes and diabetes clinical ranges was still increased in 

both groups. Newly detected pre-diabetes was associated with increased risk for PDAC (HR 

= 1.81, 95% CI 1.44 - 2.28, p<0.01). When multivariate analysis was performed with 

adjustment for age, sex, BMI, socioeconomic status, smoking status and alcohol status, the 

risk continued to be significant (HR = 1.62, 95% CI 1.28-2.05; p<0.01). The results of the 

univariate analysis calculations for covariates within the adjusted multivariate model are 

available within the Appendices section. Within the same model shown in Table 9., newly 

detected diabetes was also associated with a higher risk for PDAC (HR = 2.80, 95% CI 2.15-

3.66; p<0.01) versus the new pre-diabetes cohort, which persisted after multivariate analysis 

with adjustments for the same covariates (HR = 2.56, 95% CI 1.95-3.37; p<0.01).  

 

Table 9. Table showing hazard ratios (HR) for non-diabetic participants with HbA1c concentration 

levels within the pre-diabetes and diabetes range of values. The association between newly elevated 

HbA1c concentration levels in the non-diabetic population into the UK Biobank study and risk for PDAC 

after adjusting for age, sex, BMI, socioeconomic status, smoking status and alcohol status is significant 

in the newly pre-diabetic cohort as well as the newly diabetic cohort. 

 

A Kaplan-Meyer graph of failure estimates was plotted to better show the cumulative 

incidence of the 1208 PDAC cases for the new pre-diabetes and new diabetes cohorts over 

time, displayed in months (Figure 16.). Those found to be newly pre-diabetic (dark red line) 

and newly diabetic (dark green line) at study start had a consistently higher probability of 

developing PDAC up to the study end date when compared with those found to be 
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normoglycaemic (dark blue line) at the beginning of the study. When 95% confidence 

intervals were factored in (pale green, pale red, and pale blue areas), a clear separation 

between the normoglycaemic and pre-diabetic confidence intervals was observed from as 

early as 12 months beyond the study start date. The graph demonstrated how higher single 

HbA1c measurements are associated with increased risk of incident PDAC over time, 

independent of BMI and other potential risk factors for PDAC.  

 

 

Figure 16. Kaplan-Meyer graph of failure estimates showing cumulative incidence of PDAC 

diagnoses over time in months for non-diabetic participants on entry into the UK Biobank with 

normoglycaemic, pre-diabetes range, and diabetes range HbA1c levels on first assessment. Key: 

<42mmol/mol  = normoglycaemia, 42 to 48mmol/mol = new pre-diabetes, ≥48mmol/mol = new 

diabetes. Table below the graph shows the number of participants remaining at risk at each 12-month 

interval after numbers are removed for a diagnosis of PDAC, loss to follow-up, and deaths over time.  
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9.4 The effect of higher measurements of HbA1c on time-to-event PDAC 

outcomes 

To compare the risk for PDAC between groups, log-rank test for equality of survivor functions 

was performed. These calculations comparing normoglycaemic, newly pre-diabetic and 

newly diabetic subgroups generated a p-value of <0.05 (See Appendices) allowing us to reject 

the null hypothesis and determine that differences between the three groups were found to 

be statistically significant. 

Additional log-rank tests were subsequently performed to identify if the differences existed 

previously were still present when direct 1-to-1 comparisons between each HbA1c category 

were made (i.e., normoglycaemia vs new prediabetes; normoglycaemia vs new diabetes;  

new pre-diabetes vs diabetes), with all comparisons returning p-values of <0.05. This showed 

that a statistically significant difference in probability of developing a PDAC diagnosis that 

persisted over time existed between all three different clinical classifications based on the 

HbA1c measurement taken at study start. Furthermore, when we reviewed the mean time-

to-event data, we noted that the mean time to PDAC diagnosis for each of these decreased 

as the HbA1c concentration levels rose, dropping from 7.38 years (±3.33) to 6.35 years 

(±3.33) to 5.82 years (±3.83) as we moved from the normoglycaemic > new pre-diabetes > 

new diabetes cohorts respectively. The other attributes of time-to-event data for these 

categories are shown with their histogram plots in Figure 17. (normoglycaemia), Figure 18. 

(New pre-diabetes), and Figure 19. (New diabetes). Right skewness was also noted to 

increase with each elevation in HbA1c concentration range (Skewness = -0.295 > - 0.245 > 

0.187), although variance also increased.   
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Figure 17. Histogram of time to PDAC diagnosis in participants with no previous history of diabetes 

and a normoglycaemic HbA1c concentration level at initial assessment. X-axis: time to PDAC 

diagnosis in years, Y-axis: frequency of PDAC diagnoses in each time interval 

  

Figure 18. Histogram of time to PDAC diagnosis in participants with no previous history of diabetes 

and a new pre-diabetes HbA1c concentration level at initial assessment. X-axis: time to PDAC 

diagnosis in years, Y-axis: frequency of PDAC diagnoses in each time interval 
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Figure 19. Histogram of time to PDAC diagnosis in participants with no previous history of diabetes 

and a new diabetes HbA1c concentration level at initial assessment. X-axis: time to PDAC diagnosis 

in years, Y-axis: frequency of PDAC diagnoses in each time interval 

 

Coefficients were generated using Cox regression analysis of time-to-event association for 

normoglycaemic, pre-diabetes, and diabetes cohorts of HbA1c concentration levels who 

develop PDAC. Participants without a previous diagnosis of diabetes at study entry with 

normoglycaemic HbA1c levels taken at study start had an HR-associated coefficient of -2.40 

(95% CI -2.52 to -2.28, p <0.05). Participants with single measurements of HbA1c at study 

entry within the new pre-diabetes range showed coefficients of -2.48 (95% CI -2.99 to -1.97, 

p <0.05), participants with HbA1c measurements within the new diabetes range showed 

coefficients of -2.56 (95% CI -3.24 to -1.88, p <0.05). The more negatively trending 

coefficients seen with each elevation in HbA1c concentration range indicated that rises in 

HbA1c concentrations are not only proportional to the risk for developing PDAC but are also 

associated with shorter time-to-event intervals to developing a PDAC diagnosis.  

 

 

 



Results 3: Testing the predictive performance of HbA1c 
 

107 
 

10 Results 3: Testing the predictive performance of HbA1c 

10.1 Predictive value of HbA1c for PDAC in participants with new pre-diabetes 

and new diabetes diagnosis at study entry. 

For individuals with no prior history of diabetes and a new pre-diabetes or new diabetes 

diagnosis on entry into the study, HbA1c failed as a standalone predictive marker for PDAC. 

ROC curve graph plots for both groups gave area under curve (AUC) values of 0.593 after 

adjusting for age, sex, BMI, socioeconomic status, smoking status and alcohol status (Figure 

21.).  

Dichotomising the predictive value of HbA1c according to optimal cut-point thresholds failed 

to generate a diagnostic threshold that was useful for predicting risk of PDAC in this 

participant cohort. Youden index modelling for participants with a new pre-diabetes 

diagnosis generated an empirical optimal cut-point of HbA1c = 36.45 mmol/mol (Youden 

index = 0.121; Sensitivity = 0.45; Specificity = 0.66), which was within the normoglycemic 

range. Youden index calculations for the new diabetes diagnosis group yielded the same 

optimal cut-point  of HbA1c = 36.45 mmol/mol (Youden index = 0.137; Sensitivity = 0.67; 

Specificity = 0.57). 

10.2 Predictive value of HbA1c for PDAC in individuals with known diabetes 

and elevated HbA1c on study entry 

HbA1c also failed as a predictive marker for PDAC when used alone in the groups of 

participants with known history of diabetes who would subsequently develop PDAC. ROC 

curve plots with AUC calculations for these participants were 0.581 for HbA1c in the pre-

diabetes range, and AUC = 0.587 for those with an HbA1c in the diabetes range (Figure 22.).  

Diabetic participants with HbA1c levels in the pre-diabetes range had an optimal cut-point 

of HbA1c = 35.05 mmol/mol; Youden index = 0.104; Sensitivity = 0.57; Specificity = 0.53). The 

optimal cut-off point for diabetic participants with HbA1c concentration levels in the 

diabetes range at study entry was 36.45 (Youden index = 0.116; Sensitivity = 0.43; Specificity 

= 0.68). As with all the other cohorts in this study, these cut-points fell well within the 

normoglycaemic range, demonstrating that basing prediction models for PDAC on 

categorical thresholds for HbA1c as a standalone test is not a viable strategy. 
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(a)  

(b)  

 

Figure 21. ROC curve analysis with and AUROC curve values representing the predictive 

performance of HbA1c for PDAC in (a) individuals with new pre-diabetes diagnosis (AUC = 0.593) and 

(b) individuals with a new diabetes diagnosis (AUC = 0.593). The sensitivity (y-axis) and 1-specificity (x-

axis) of HbA1c for PDAC at each HbA1c concentration level recorded at study entry for included 

participants are plotted (blue curved line). 
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(a)  

(b)  

 

Figure 22. ROC curve graph plots and AUROC curve value demonstrating predictive performance of 

HbA1c for PDAC in participants with pre-existing diabetes whom either (a) have HbA1c 

concentration levels in the pre-diabetes range at study entry (AUC = 0.581), and (b) have HbA1c 

concentration levels in the diabetes range (AUC = 0.587). The sensitivity (y-axis) and 1-specificity (x-

axis) of HbA1c for PDAC associated with each HbA1c value recorded at study entry for included 

participants are plotted (blue plotted dots forming the curved line). 

 

The sensitivity and specificity at cut-off points for the pre-diabetes diagnostic threshold of 

42mmol/mol and the diabetes threshold ≥48 mmol/mol in both the NODM and LSDM 

cohorts were calculated. In all groups, HbA1c showed low sensitivity and high specificity test 

performance outcomes. This indicated that using HbA1c as a standalone predictive test for 

PDAC would carry a higher risk of missing PDAC diagnosis where one exists (low sensitivity), 
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despite demonstrating a strong ability to ensure positive tests detected are truly positive 

(high specificity) (Table 10.).  

Diabetes 
status  

HbA1c Cut-off 
point  

Sensitivity (%) Specificity (%) 

NODM 42 mmol/mol 19.94 91.15 
 48 mmol/mol 10.86 95.98 

LSDM 42 mmol/mol 
48 mmol/mol 

10.30 
5.81 

94.48 
97.83 

    

 

Table 10. HbA1c is unable to act as a predictive marker for PDAC when used alone. The low 

sensitivity (%) and high specificity (%) for cut-off points on the ROC curve of 42 mmol/mol (pre-

diabetes diagnostic threshold) and 48 mmol/mol (diabetes diagnostic threshold) makes HbA1c a test 

that is likely to miss many underlying diagnoses. Setting categorical cut-off points for HbA1c is of no 

benefit to its usefulness as an early risk marker for PDAC.  
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11 Discussion 

In this study, we explored the value of HbA1c as a predictive marker of risk for PDAC. We 

demonstrated that for participants with DM, a rise in HbA1c concentration levels by any 

magnitude raises the overall risk for PDAC in a proportional manner without violating the 

proportional hazards assumption. We were also able to demonstrate that for individuals with 

no prior history of diabetes, higher HbA1c levels at study entry were associated with a higher 

likelihood of having a shorter time-interval until diagnosis of PDAC. This was despite the 

absence of repeat HbA1c test results to explore this relationship in greater detail, which was 

a significant limitation of the UK Biobank dataset. ROC curve analysis confirmed that HbA1c 

fails as a predictive marker for PDAC with NODM and LSDM individuals when used as a 

standalone test. Finally, optimal cut-off points derived from the ROC curves showed that 

categorising HbA1c does not make it a useful predictive marker of risk for PDAC when used 

as a single value measure. Generally, the findings of our study were in keeping with the work 

of other authors. Validation of our findings and a review of the limitations, bias and 

confounding identified in our study will be discussed further in this section.   

11.1 Validation of HbA1c as a marker of diabetes 

To validate HbA1c as a surrogate marker of diabetes within our dataset, we compared 

adjusted HRs for HbA1c as a continuous and categorical marker internally against other UKB 

dataset definitions for diabetes and found them to be in concordance. The other definitions 

of diabetes we examined within the UKB dataset also yielded HRs that were in keeping with 

the increased risk found in previous studies. For example meta-analyses and pooled analyses 

suggested that in diabetic cohorts, pancreatic cancer risk increased by 1.5-2.0-fold [138, 202] 

and one study found that pancreatic cancer risk increased by 1.77-fold in individuals with 

pre-existing diabetes [203]. A large-scale study in Korea also demonstrated that diagnosis of 

diabetes prior to pancreatic cancer diagnosis was a significantly independent risk factor on 

multivariate analysis (HR = 1.48; 95% CI, 1.43-1.53; p < 0.0001) [204]. Although our HR yields 

were higher than those identified in the external studies this could be due to many factors 

such as demographic  differences in ethnicity, and criteria for diabetes definition [204]. 

11.2 Elevation in HbA1c and PDAC 

Higher HbA1c concentration levels measured at study entry were associated with significant 

rises in adjusted HR for PDAC when HbA1c was treated as a continuous variable and when 

grouped into clinically defined diagnostic thresholds for pre-diabetes and diabetes. In the 
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sub-cohort of participants with no prior history of diabetes, we showed that elevated HbA1c 

concentrations were independently associated with increased risk of developing PDAC after 

multivariate analysis with adjustment for age, sex, BMI, socioeconomic status, smoking 

status and alcohol status, which was in keeping with previous studies. This risk association 

was significant for those with HbA1c measurements within the pre-diabetes and diabetes 

ranges. We also demonstrated that when treated as separate categorical cohorts of 

individuals, the differences in risk for PDAC associated with newly pre-diabetic individuals 

compared with risk for PDAC in  newly diabetic individuals was statistically significant. This 

may advocate the incorporation of HbA1c in either continuous or categorical form into future 

strategies for early detection. For example,  as a continuous variable,  routine monitoring for  

incremental changes over time may provide the earliest clues to an underlying and as-yet 

undetectable lesion, prompting closer monitoring or further investigation. Such a protocol 

might overlap with protocols where rising HbA1c levels reaching thresholds for pre-diabetes 

or diabetes might trigger further investigation and follow-up.  

11.3 HbA1c analysed at single time points 

Categorisation of continuous risk factors is common practice in observational 

epidemiological studies. Good practice recommendations include appropriate choice of 

groupings and explanation for grouping, clear analysis strategies and presentation of 

findings, and drawing valid conclusions from categorical analyses, avoiding injudicious use of 

multiple alternative analyses [205]. However, the simplicity gained from categorisation can 

also lead to loss of statistical power in studies and incomplete correction for confounding 

factors [206]. In this study, the direct correlation between higher single time-point HbA1c 

concentration levels at study entry and increased risk for PDAC supports the use of individual 

HbA1c values in statistical analysis. However, we also demonstrated that using single HbA1c 

values as a standalone marker to predict risk of PDAC based on optimal cut-off values is not 

a useful approach. Based on our findings we recommend that future studies utilise HbA1c 

single values alongside interval HbA1c repeat measurements for the purpose of risk 

modelling as it provides the most accurate measure of any manifestation of changes which 

may be associated with an underlying PDAC diagnosis over time.  

11.4 Risk of PDAC in newly diabetic vs non-diabetic population cohorts 

In our study, the average length of time from the measurement of HbA1c at study entry to 

PDAC diagnosis was 1.5 years less for participants with measurements within the new 

diabetes range compared to those with normoglycaemia at study entry. Although the range 
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of time-to-events overlapped between sub-cohorts, the shorter mean time to PDAC 

diagnosis in the diabetes sub-cohort could be interpreted as a greater need to prioritise the 

NODM cohort over the normoglycaemic non-diabetic cohort with regards to referral for 

further investigations. 

Although our study suffered a significant limitation from the absence of HbA1c repeat values 

taken at regular intervals, our ability to demonstrate that higher HbA1c concentration levels 

are also associated with a higher likelihood of quicker PDAC diagnosis is supported by the 

results of several other studies that had repeat HbA1c measurements over time to examine 

this hypothesis in greater detail. For example, hyperglycaemia based on FBG profiles has 

been seen to arise up to 36 months before PDAC diagnosis  in  those with or without diabetes 

at baseline, and in those with or without resection at diagnosis [101]. FBG levels were also 

shown to increase with tumour volume, although activity was not associated with tumour 

grade. More recently Lemanska et al. published the first population-based study using large 

nationally representative database from the UK to demonstrate the temporal associations 

between HbA1c and pancreatic cancer [207]. In this matched case-control study, data from 

590 primary care practices in England identified 8,777 patients with a diagnosis of pancreatic 

cancer between January 2007 and August 2020, which were matched by age, gender and 

diabetes to 34,979 controls. Log regression models were calculated for HbA1c data for a 

cohort of individuals with a history of diabetes and for a cohort without diabetes at six points 

in time, starting from five years before the diagnosis of PDAC. Adjustments were made for 

BMI, other HbA1c measurements within the same year, ethnicity, index of multiple 

deprivation as quintiles, smoking and alcohol consumption. Longitudinal plots for HbA1c 

demonstrated an increase before diagnosis of pancreatic cancer in both the non-diabetic and 

diabetic subgroups, with changes starting about 2 years earlier in the diabetic subgroup 

compared to cases without diabetes (-3 years verses -1year). The degree of increase was also 

larger in the diabetic group as compared to the non-diabetic group. Interestingly, average 

HbA1c for the subsample without diabetes was 43.1 (95%CI 42.6 to 43.6) at baseline which 

is consistent with our findings that non-diabetic hyperglycaemia still carries a significant 

increase in risk for PDAC. The pattern of changes in HbA1c levels associated with diagnosis 

of pancreatic cancer differed between the diabetes and non-diabetes subgroups. A higher 

risk of pancreatic cancer was associated with an increase in HbA1c for people without 

diabetes than for people with diabetes. For a 10 mmol/mol increase in HbA1c, non-diabetic 

individuals were 2.1 (95% CI 1.9 to 2.4, p <0.01) times more likely to be diagnosed with 

pancreatic cancer than people whose HbA1c did not increase. For the diabetic subgroup, the 
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increased likelihood was significant but to a lesser degree, with the likelihood increased by 

1.4 times (95% CI 1.9 to 2.4, p<0.001). The length of time over which HbA1c change occurred 

also had a different effect on the two subgroups. Increases in HbA1c by 1mmol/mol between 

cases and controls in the year before pancreatic cancer was associated with an adjusted OR 

of 1.04 (95% CI 1.03 to 1.04, p <0.001) for people with diabetes and 1.09 (95% CI 1.07 to 1.11, 

p < 0.001) for people without diabetes.  

In a different study, Wu et al sought to apply criteria other than those traditionally used in 

the definition of diabetes to improve sensitivity for early detection of patients with 

pancreatic cancer [208] . They concluded that screening with pancreatic cancer based solely 

on elevation in HbA1c was not an effective way, and that factors such as racial/ethnic 

differences in cancer risk should be taken into consideration while examining the effect of 

glycaemic parameters on risk of cancer [208, 209].  

In our study of individuals without a prior diagnosis of diabetes before study entry who 

subsequently developed DM within the study time period, we identified risk for PDAC which 

appeared to decrease in association with higher HbA1c levels measured at study entry. This 

pattern of risk appeared to be in direct contradiction to our predictions that higher HbA1c 

measurements would be associated with proportionally increased risk for PDAC. However, 

on further examination of the data, we recognised that a significant number of individuals 

entering our study with newly identified dysglycaemia developed PDAC diagnoses within a 

very short period early into the study (i.e., within the first 12 months) which provided a clue 

as to the cause of our abnormal findings. Following the generation of our outcomes within 

the limitations of the study, a colleague within our research group re-examined the dataset, 

taking an alternative approach in determining the association between HbA1c and PDAC 

[210]. In addition to the positively skewed number of PDAC cases identified towards the start 

of the study period, the strength of association between the HbA1c parameters and incident 

PDAC attenuated over time. This revealed the non-linear relationship between exposure and 

outcome, which was subsequently acknowledged to cause a violation of  the proportional 

hazards assumption. This violation raised the possibility that the non-linear relationship 

between HbA1c and PDAC identified in our participant cohort was likely due to the presence 

of reverse causality [210]. Such a violation of the proportional hazards assumption could also 

explain why examination of the data within the limits of our own approach resulted in 

seemingly conflicting findings. Within this extended study, the alternative approach applied 

new time-varying coefficient interaction terms which were created to link HbA1c at the time 

of enrolment to censor date and DM range (categorically, those with HbA1c within the pre-
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diabetes and diabetes range of values) for participants with no prior diagnosis of diabetes. 

The time-varying coefficient interactions for this group were then stratified into 12-monthly 

time intervals. The hazard ratios generated thus took the varying interactions over time into 

account. In this study by McDonnell et al., for those without prior diagnosis of DM, an inverse 

association between HR and duration of follow-up was identified. Hazard ratios for newly 

dysglycaemic individuals were 2.10 ( 95% CI 1.31 – 3.37, p <0.002) and 8.55 ( 95% CI 4.58-

15.99, p = 0.002) after multivariate adjustments [210], confirming our original findings but 

showing an even stronger association between single HbA1c measurements within these 

dysglycaemic range cohorts and PDAC once the violation of proportional hazards assumption 

was accounted for. 

11.5 Limitations of the UK Biobank dataset 

All epidemiological studies are subject to multiple sources of chance, bias and confounding 

with measures taken to mitigate these as much as possible. Although the results of our study 

may reflect the true effect of elevated Hba1c concentration levels on risk for pancreatic 

cancer, there is always the possibility that the findings may be due to an alternative 

explanation. Findings because of chance, bias, or confounding may have provided a singular 

or combined effect of generating spurious results, giving the impression that a valid 

statistical association existed where one did not actually exist. Conversely, such results could 

have led to the conclusion that no association exists when one was present.  

For example, diabetes is a complex disease that can be diagnosed through a combination of 

presenting symptoms and clinical investigations. In this study, DF variables for diabetes-

related measures ranged from self-completed questionnaire data to hospital coded ICD10 

records. Questionnaire and interview answers rely heavily on memory and are a significant 

source of recall bias. Although these were overcome largely by the inclusion of data from 

medical records, our study required a further level of detail in the form of dates of diagnosis. 

The primary source of dates of diagnosis in our study came from ICD10 records. These dates 

were provided within the context of the clinical circumstances in which the diagnoses were 

given. For example, Hospital Record level data may have provided a date of diagnosis of 

diabetes based  on coding as a secondary diagnosis in relation to a primary condition that 

led to the individual’s admission to hospital. The diabetes diagnosis may have been present 

before, or undiagnosed until hospital admission. Variability in presentation of diabetes and 

patient-led management through diet control and lifestyle factors also influences the rate of 

disease progression. In the primary care setting, disease presentation, management, and 
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effectiveness of monitoring by both the patient and clinician would all have an influence on 

when a date of diagnosis was determined.  

All data within our study was derived from the UKB database for exploration of the risk 

association relationship between HbA1c and PDAC. For any inferences drawn from the study 

to be warranted, the effects of potential bias, chance, and confounding had to be accounted 

for and minimized where possible. UKB performed its own set of internal validation steps 

prior to releasing the data it had collected to researchers. The details of which regarding 

initial study protocols and strategy for obtaining healthcare data can be found in the original 

study rationale [211]. This meant that pre-existing selection and information bias arising 

from the UK Biobank dataset became a bias in our own study, in addition to any further bias 

arising from our own methodology. One of the major forms of selection bias encountered on 

recruitment of participants for the UKB study was identified as the "healthy volunteer effect" 

[212]. On average, individuals volunteering for research studies tend to be more health-

conscious than non-volunteers and the voluntary basis on which participants enrolled into 

the UKB made this cohort vulnerable to the same effects. To understand more about the 

value of UKB data as a representative sampling of the general population, a study by Fry et 

al in 2017 examined if the differences between the UK Biobank cohort and different sampling 

frames (e.g. Health Survey for England, 2008; HSE 2008) existed with regard to a range of 

characteristics due to this effect [212]. When compared with the same variables within the 

HSE census data for England, Scotland, and Wales, participants within the UKB study cohort 

were on average, taller, leaner and had a smaller waist circumference than the general 

population. Mean body mass index in UK Biobank men and women was 27.9 and 27.3 

respectively, compared with 28.5 and 28.0 in the general population based on data from the 

HSE 2008. UK Biobank men and women were also less likely to be obese (BMI >=30) across 

all age groups examined in comparison with the general population. The percentage of men 

and women categorised as clinically obese and aged 55-64 years in the UK Biobank was 26.3% 

and 23.0% respectively, compared with 35.6% and 32.2% of the UK population from HSE 

2008 data.  

 

11.6 Other sources of bias, and study limitations 

In this study the information used to define prevalent diabetes for each participant was 

reliant on the quality and detail of UK Biobank baseline assessment data, and on our ability 

to identify dates of diabetes diagnosis occurring by this date. 
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Self-reported data from questionnaire-derived data fields 'Diabetes diagnosed by a doctor' 

and data 'Age diabetes diagnosed' were subject to recall bias, a known and major limitation 

with regards to data quality [213, 214]. For example, the prevalence of self-reported diabetes 

within the UKB was lower than the general population, consistent with previous comparisons 

of UKB with data obtained from HSE 2009 data [215]. In the study by Fry et al., 4.5% of men 

within the UKB cohort aged 45-54 were identified as having diabetes verses 8.1% in HSE 

2009. This pattern persisted with older men (Age 55-64 years, UKB = 7.8% vs. HSE = 10.5%), 

and women in the lower and upper age cohorts (Age 45-54 years, 2.4% and 3.5% 

respectively; Age 55-64 years, 6.3% and 8.0% respectively). For further comparison, Public 

Health England released a diabetes prevalence report in 2016 based on HSE data from 

2012,2013 and 2014, showing that the expected diabetes prevalence for England in 2015 for 

all adults aged 45-54 years was 9.0% (Public Health England, Diabetes Prevalence Model. 

September 2016 publication).  

Incorporating data from linked ICD-10 Hospital records enabled diagnoses of diabetes to be 

obtained directly from clinical records databases. However, using secondary care data 

yielded its own forms of bias as secondary care admission data with coding for diabetes in 

most cases is not the primary or secondary cause for hospital admissions (Eastwood et al).  

A study by Eastwood et al. examining the quality of UKB data aimed to develop algorithms 

to define prevalent and incident diabetes for UK Biobank with the further aim of having these 

implemented by the UKB for results to be made available to researchers on request [216]. 

The results of this study confirmed that just under half of those identified with diabetes in 

primary care also had a record of this diagnosis on hospital admission data. As can be 

expected, the cohort of individuals were typically older, more likely to be on insulin, and 

more likely to have diabetes complications than those without secondary care evidence of 

diabetes. For individuals identified with diabetes from secondary care data, a third had no 

evidence of diabetes in primary care. Where a proportion of individuals were identified as 

having type 2 diabetes from secondary care records alone, there was less evidence of 

antidiabetic medication use, hyperglycaemia, and microvascular complications in their 

primary care records compared to those identified with the Read code for T2DM in primary 

care. From the information provided by Eastwood et al. these significant gaps are indicative 

of the various risk factors, presentation of complications and diabetes management seen in 

clinical practice and the challenges faced in deriving accurate diagnostic data from 

individuals across the full spectrum of clinical diabetes diagnoses. 
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A more optimal method for deriving diabetes diagnosis dates from linked healthcare records 

comes from having sufficient primary care and secondary care data for all participants within 

the dataset. A mid-point between the dates of last primary care consultation or hospital 

admission and the date of first diabetes code could then be taken as the event date and be 

closer to the true onset of diabetes than the date of first diabetes code alone.  

Having incomplete primary care record data for the full UKB cohort was a significant 

limitation for our study, as most of our pancreatic cancer case participants were not included 

within the primary care data that was available at the time. As of 2016, UKB was only able to 

obtain GP primary care data for half of the volunteer cohort. For the remaining participants, 

UKB had to request permissions from each Primary Care group/practice, which was then 

given on a case-by-case basis. This process, combined with varied individual concerns about 

handling of confidential patient data added complications that hindered the UKG group aims 

of building a complete dataset of primary care items. Without primary care data for the full 

cohort, we were unable to implement a more refined method to define date of diabetes 

diagnosis for each participant case and were reliant on the earliest date of diagnosis data 

from ICD10 records provided by UK Biobank. 

11.7 Confounding 

Confounding variables are often defined as variables that correlate positively or negatively 

with both the dependent variable and the independent variable [217]. The presence of these 

variables affects the variables being studied so that the results do not reflect the actual 

relationship between the variables under study [217].  

In this study, the nested-cohort design enabled us to examine those with and without the 

key exposure (Hba1c at different clinically diagnostic thresholds, and as a continuous 

variable), and see how they differed with respect to the outcome. This type of study design 

requires the elimination of confounding and to approximate a randomizer control trial as 

best possible. As such, matching, weighting, and regression-based methods were 

appropriate. 

A major strength of our study was the implementation of an experimental design that sought 

to minimize the effects of Type I error. For example, we described in detail the use of power 

and sample size calculations to generate an adequate number of controls to be matched with 

cases in our case control study. Working with the large UK Biobank base-cohort, calculations 

for sample size allowed us to achieve greater power despite the relatively small case 
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outcome numbers available. The large control population made matching by 1 case to 9 

controls possible, which was more than the required minimum to achieve the power and 

sensitivity demanded of the study. This also helped avoid type II errors by adjusting sample 

size to account for the power demanded of the study to detect a result at the level of 

significance required. 

The process of matching was also restricted by selection of participants within the full 

biobank population based on inclusion and exclusion criteria to eliminate potential 

confounding by age, sex, and other potential confounders such as a prior history of non-

melanoma cancer. In the statistical analysis phase of the study, cox regression and log 

regression analyses were all performed with adjustments for covariates to also control for 

confounders. 
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12 Conclusion 

Our study confirmed that single time-point HbA1c concentration levels are not helpful as a 

standalone predictive marker for PDAC. However, a standalone HbA1c result combined with 

knowledge of previous diabetes status is capable of estimating levels of risk for underlying 

PDAC in individuals found to be newly pre-diabetic or newly diabetic. The findings of our 

study and follow-up study by McDonnell et al. also highlighted the importance of recognizing 

the potential for violation of the proportional hazards assumption when reverse causality 

becomes a factor in the risk relationship between HbA1c and PDAC. Careful examination of 

the data for violation of the proportionality assumption and the adjustment for this with 

time-varying coefficient interaction terms may be an important step to refining our approach 

to HbA1c as grouped values with the aim of integrating this biomarker into future composite 

risk model building strategies. 

In conclusion, this study demonstrated that for non-diabetic individuals aged over 50 in the 

UK, newly elevated HbA1c concentration levels measured within the pre-diabetes or 

diabetes ranges of dysglycaemia without a prior history of diabetes had an increased 

likelihood of underlying PDAC being the primary cause. The current NICE criteria advise a 

combination of NODM diagnosis, age over 60 and evidence of weight loss to be identified in 

an individual for their risk to be sufficient for urgent referral for further investigations. Our 

study has shown that future thresholds for referring individuals for specialist investigations 

might benefit from inclusion of individuals aged 50 and above, with new pre-DM or NODM 

diagnosis as part of the clinical evidence for further investigations. Repeated HbA1c testing 

over time to generate longitudinal data may play an important and vital role in monitoring 

for changes to glycemic status associated with increased risk for PDAC. Performing more 

prospective large cohort studies with time-dependent follow-up datasets and repeat HbA1c 

values will enable researchers to study variations in sequential HbA1c values and determine 

how the magnitude of change in HbA1c over time may modulate the risk for PDAC. It is also 

our recommendation that future studies should consider combining HbA1c testing with 

novel methods such as polygenic risk scoring. This approach may enhance front-line clinical 

risk detection models that are needed to quickly identify individuals most at risk of sporadic 

PDAC sooner, with the overall aim of achieving better outcomes by improving opportunities 

for curative treatment and reducing overall mortality. 
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13 Appendices 

13.1 Key of UK Biobank data fields used in this study 

 

Data Field 
(DF) 

Description 

31 Sex 

48 Waist circumference (cm) 

56 Date of attendance to a UK Biobank assessment centre  

189 Townsend deprivation index (TDI) 

1558 Alcohol intake frequency 

2443 Diabetes diagnosed by a doctor 

2976 Age diabetes diagnosed (linked to 2443) 

3456 Number of cigarettes currently smoked amongst current 
cigarette smokers 

21001 Body mass index (BMI) 

21003 Age when attended a UK Biobank assessment centre 

20116 Smoking status 

20117 Alcohol drinker status 

30750 HbA1c concentration level measurements (mmol/mol) 

40001 Primary cause of death  

40002 Contributory (secondary) cause of death 

40006  Type of cancer: ICD10 

40011 Histology of cancer tumour -Record of histological subtype from 
records 

41270 Diagnoses - ICD10; Record of primary or secondary diagnoses 
from hospital patients records 

41280 Date of first inpatient Diagnosis - ICD10 (linked to 41270 - ICD10 
record of diagnosis) 

130706 Date E10 first reported – Insulin-dependent diabetes mellitus 

130708 Date E11 first reported – Non-insulin-dependent diabetes 
mellitus 
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13.2 Additional Results for Chapter 7: Statistical analyses  

13.2.1.1 Age at study start 

 

 

13.2.1.2 Sex 
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13.2.1.3 Ethnicity 

   

13.2.1.4 Diabetes diagnosed by a doctor (dmdxdr) 

   

13.2.1.5 Any diabetes diagnosis (dmdxonly) 
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13.2.1.6 Age at diabetes diagnosis 

 

13.2.1.7 HbA1c (continuous variable) 
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13.2.1.8 HbA1c (clinical categorical variable) 

  

13.2.1.9 New HbA1c concentration in Pre-diabetes or Diabetes range 
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13.2.1.10 Townsend Deprivation Index (socioeconomic status) 

 

13.2.1.11 Body Mass Index (continuous) 
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13.2.1.12 Body mass index (clinical categories variable) 

  

13.2.1.13 Waist circumference 

 



Appendices 
 

128 
 

13.2.1.14 Smoking status 

  

13.2.1.15 Cigarettes smoked per day (average) 

  

13.2.1.16 Alcohol status 
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13.2.1.17 Alcohol frequency 
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13.3 Additional results for Chapter 9: Survival analysis 
 

 

 

 1:9 case control cohort Normoglycaemic  
(HbA1c = <42 mmol/mol) 

New pre-diabetes 
(HbA1c = 42 to 47.9 
mmol/mol) 

New diabetes  
(HbA1c = ≥ 48 mmol/mol) 

 
Demographic information 

 
HR (95%CI lower-
upper) 
 

 
p-value 

 
HR (95%CI lower-
upper) 

 
p-value 

 
HR (95%CI lower-
upper) 

 
p-value 

  
HR (95%CI lower-
upper) 

 
p-value 

Age at study entry 
(continuous) 

 

1.00 (0.99 – 1.01) 0.73 1.00 (1.00 - 1.01) 0.46 0.99 (0.96 – 1.01) 0.36 1.00 (0.97-1.03) 0.98 

Sex 
Female 
Male 

 
1.00 (ref) 
0.99 (0.89-1.11) 

 
- 
0.92 

 
1.00 (ref) 
0.97 (0.86-1.10) 

 
- 
0.67 

 
1.00 (ref) 
0.89 (0.57-1.38) 

 
- 
0.59 

 
1.00 (ref) 
0.65 (0.38-1.09) 

 
- 
0.10 

Ethnicity 
White 
Mixed (any) 
Asian 
Black  
Chinese 
Other 

 

 
1.00 (ref) 
1.39 (0.74-2.58) 
0.44 (0.24-0.83) 
1.08 (0.66-1.77) 
0.91 (0.29-2.82) 
0.78 (0.37-1.64) 

 
- 
0.30 
0.01 
0.76 
0.87 
0.51 

 
1.00 (ref) 
1.15 (0.55-2.43) 
0.40 (0.18-0.90) 
0.92 (0.48-1.77) 
0.81 (0.20-3.24) 
0.75 (0.31-1.81) 

 
- 
0.71 
0.03 
0.79 
0.77 
0.52 

 
1.00 (ref) 
- 
0.48 (0.12-1.97) 
0.69 (0.17-2.80) 
1.78 (0.25-12.83) 
- 

 
- 
- 
0.31 
0.60 
0.57 
- 

 
1.00 (ref) 
14.8 (3.5-62.5) 
0.26 (0.36-1.90) 
1.29 (0.40-4.13) 
- 
1.31 (0.18-9.53) 

 
- 
< 0.01 
0.19 
0.67 
- 
0.79 

Pancreatic cancer Location 
Head 
Body 

 
1.00 (ref) 
1.01 (0.83-1.23) 

 
- 
0.93 

 
1.00 (ref) 
0.95 (0.77-1.19) 

 
- 
0.67 

 
1.00 (ref) 
1.61 (0.79-3.28) 

 
- 
0.19 

 
1.00 (ref) 
1.35 (0.57-3.22) 

 
- 
0.50 

Table 8. (Continued) Univariate analysis using cox proportional hazards regression. Hazard ratios (HR) for the covariates are presented with 95% confidence 

intervals and p-values of significance. From left to right: The first column represents HR calculated for the whole optimised cohort. The second 

(Normoglycaemic), third (New pre-diabetes), and fourth (New diabetes) columns show HR for these subgroups.  

 

 

 

 



Appendices 
 

131 
 

Tail 
Duct 
Other 
Overlapping 
Unspecified 

0.85 (0.70-1.02) 
0.75 (0.49-1.16) 
0.99 (0.66-1.49) 
1.22 (0.65-2.28) 
0.96 (0.84-1.10) 

0.08 
0.20 
0.97 
0.53 
0.57 

0.91 (0.75-1.11) 
0.74 (0.47-1.16) 
1.06 (0.69-1.62) 
1.31 (0.68-2.54) 
0.98 (0.85-1.14) 

0.37 
0.19 
0.80 
0.43 
0.82 

0.68 (0.26-1.79) 
2.16 (0.29-16.2) 
1.38 (0.19-10.2) 
- 
1.25 (0.74-2.09) 

0.44 
0.45 
0.75 
- 
0.41 

0.23 (0.08-0.65) 
1.29 (0.17-9.74) 
- 
- 
0.60 (0.32-1.12) 

0.01 
0.81 
- 
- 
0.11 

Townsend Deprivation Index 1.01 (1.00-1.03) 0.14 1.01 (0.99-1.03) 0.40 0.95 (0.89-1.02) 0.18 1.10 (1.02-1.18) 0.01 

Body mass index 
(continuous) 
 
BMI clinical ranges: 

Healthy (18.5 –24.9) 
Underweight <18.5 
25.0 – 29.9 
≥30.0  

1.04 (1.02-1.05) 
 
 
1.00 (ref) 
0.67 (0.22-2.10) 
1.26 (1.10-1.46) 
1.56 (1.34-1.82) 

<0.01 
 
 
 
0.50 
<0.01 
<0.01 
 

1.03 (1.02-1.04) 
 
 
1.00 (ref) 
0.49 (0.12-1.98) 
1.26 (1.09-1.47) 
1.43 (1.21-1.70) 
 

<0.01 
 
 
 
0.32 
<0.01 
<0.01 

0.99 (0.95-1.03) 
 
 
1.00 (ref) 
- 
0.94 (0.49-1.82) 
0.75 (0.39-1.45) 

0.47 
 
 
 
 
0.86 
0.39 

1.03 (0.98-1.08) 
 
 
1.00 (ref) 
- 
1.16 (0.38-3.50) 
1.86 (0.66-5.20) 

0.19 
 
 
 
 
0.79 
0.24 

Waist circumference 1.02 (1.01-1.02) <0.01 1.01 (1.01-1.02) <0.01 1.00 (0.98-1.01) 0.64 1.02 (1.00-1.04) 0.07 

Smoking status 
Never 
Previous 
Current 

 
Cigarettes smoked per day 

Non-smoker 
1 to 10 
11 to 20 
21 or 30 
31 to 40 
41 or more 

 

 
1.00 (ref) 
1.29 (1.14-1.46) 
1.71 (1.45-2.02) 
 
 
1.00 (ref) 
1.28 (0.92-1.77) 
1.85 (1.47-2.32) 
2.13 (1.40-3.26) 
2.23 (0.72-6.93) 
- 

 
 
<0.01 
<0.01 
 
 
 
0.14 
<0.01 
<0.01 
0.17 
- 

 
1.00 (ref) 
1.20 (1.05-1.38) 
1.72 (1.43-2.06) 
 
 
1.00 (ref) 
1.33 (0.93-1.91) 
1.90 (1.47-2.45) 
2.33 (1.46-3.72) 
2.95 (0.95-9.18) 
- 

 
 
<0.01 
<0.01 
 
 
 
0.12 
<0.01 
<0.01 
0.06 
- 

 
1.00 (ref) 
1.96 (1.19-3.24) 
1.70 (0.91-3.17) 
 
 
1.00 (ref) 
0.65 (0.16-2.64) 
1.88 (0.90-3.92) 
1.63 (0.51-5.19) 
- 
- 

 
 
<0.01 
<0.01 
 
 
 
0.54 
0.09 
0.41 
- 
- 

 
1.00 (ref) 
1.33 (0.77-2.29) 
0.82 (0.32-2.15) 
 
 
1.00 (ref) 
1.42 (0.20-10.3) 
0.95 (0.30-3.06) 
- 
- 
- 

 
 
0.30 
0.69 
 
 
 
0.73 
0.94 
- 
- 
- 
 

Alcohol status 
Never 

 
1.00 (ref) 

 
 

 
1.00 (ref) 

 
 

 
1.00 (ref) 

 
 

 
1.00 (ref) 

 
 

Table 8. Univariate analysis using cox proportional hazards regression. (continued) 
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Previous 
Current 

 
 
Alcohol frequency 

Never 
Special occasions only 
1-3 times a month 
1-2 times a week 
3-4 times a week 
Daily or almost daily 

 

1.22 (0.82-1.81) 
1.00 (0.75-1.34) 
 
 
 
1.00 (ref) 
1.05 (0.84-1.32) 
0.86 (0.68-1.08) 
0.87 (0.69-1.09) 
0.79 (0.60-1.04) 
0.95 (0.73-1.22) 

0.32 
0.98 
 
 
 
0.67 
0.19 
0.22 
0.09 
0.67 
- 

1.12 (0.70-1.77) 
1.00 (0.72-1.39) 
 
 
 
1.00 (ref) 
1.12 (0.87-1.46) 
0.91 (0.70-1.18) 
0.90 (0.70-1.17) 
0.77 (0.56-1.05) 
0.93 (0.69-1.27) 

0.64 
0.99 
 
 
 
 
0.38 
0.46 
0.43 
0.10 
0.66 
 

0.64 (0.12-3.31) 
1.50 (0.61-3.71) 
 
 
 
1.00 (ref) 
2.80 (1.18-6.63) 
1.59 (0.64-3.94) 
1.66 (0.69-3.97) 
1.80 (0.71-4.58) 
1.00 (0.36-2.77) 

0.60 
0.38 
 
 
 
 
0.02 
0.32 
0.26 
0.22 
0.99 

1.58 (0.46-5.48) 
0.97 (0.39-2.44) 
 
 
- 
 

0.47 
0.95 
 

 

Table 8. Univariate analysis using cox proportional hazards regression. (continued) 
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13.4 Log-rank test for equality of survivor functions for new  pre-diabetes and 

new diabetes  subgroups 
Log-rank testing of the subgroups within this cohort confirmed that statistically 

significant risks for PDAC were significantly different to one another. 

HbA1c 
measurement group 

Events observed  Events Expected 

Normoglycaemia 998 1065.71 

New pre-diabetes  79 46.58 

New diabetes 57 21.71 

TOTAL 1134 1134.00 

P-value <0.001  
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