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Abstract
Networks have provided extremely successful models of data and complex systems. Yet, as
combinatorial objects, networks do not have in general intrinsic coordinates and do not typically
lie in an ambient space. The process of assigning an embedding space to a network has attracted
great interest in the past few decades, and has been efficiently applied to fundamental problems in
network inference, such as link prediction, node classification, and community detection. In this
review, we provide a user-friendly guide to the network embedding literature and current trends in
this field which will allow the reader to navigate through the complex landscape of methods and
approaches emerging from the vibrant research activity on these subjects.

1. Introduction

Networks are simple yet powerful and versatile models to represent and analyse complex data and systems
across a wide variety of user domains and research fields [1, 2]. In social sciences, social networks are useful
for different tasks, such as items or friends classifications, friends recommendations or targeted advertising
[3]. Using social networks, community detection or link prediction can help to better understand the
spreading process of rumours or epidemics [4]. In biology, link prediction in biological networks is
commonly used for predicting new interactions between proteins, new therapeutic applications for existing
drugs or new gene–disease associations [5, 6]. Overall, the study of networks as mathematical models has
developed into the fully established discipline of network science [1, 2].

Networks are intrinsically combinatorial objects (i.e. interconnected nodes, where certain pairs of nodes
are connected by links), with no a priori ambient space, nor node geometric information such as
‘coordinates’. Network embedding (also known as representation learning) is the process of assigning such an
ambient space (called the latent or embedding space) to a network. This is typically done by mapping the
nodes to a geometric space, such as a Euclidean space Rn, while preserving some properties of the nodes,
links, and/or network [7]. Overall, network embedding methods are used for learning a low-dimensional
vector representation from a high-dimensional (as measured by the number of nodes) network. The
relationships between nodes in the network are represented by their distance in the low-dimensional
embedding space. Then, the low-dimension vector representation can be used for visualisation, and in a wide
variety of downstream analyses, from network inference or link prediction to node classification or
community detection. Moreover, network embedding can provide insights into the geometry of the
underlying data. For instance, by using measures defined through diffusion process which preserve the
geometry of networks [8] or multilayer networks [9]. These insights can be useful for performance
improvement, by working on a lower dimensional space, or exploiting the richer geometry of the embedding
space. Finally, some downstream analyses, such as machine learning techniques, require a vector
representation of the network. In this context, embedding network into a vector space is a prerequisite [10].
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Network embedding raises many challenges. First, a fundamental question is which network properties
should be preserved by the embedding. For instance, the embedding space may preserve the
intra-community similarity, the structural role similarity, or the similarity between nodes labels. A second
challenge is related to the choice of dimension. The dimension of the embedding space will be a trade-off
between two competing requirements: preserving the information encoded in the original network (favours
high-dimensional space representations) and reducing the complexity or noise in the original network
(favours low-dimensional space representations). Third, the scalability of network embedding methods is
important: embedding methods applied to real networks face low parallelisability and data sparsity issues.
Methods need to be efficient for networks of the size of typical modern-day network data sets, that is, up to
several million nodes and edges [11–13]. Lastly, the interpretation of the results of network embedding can
be difficult [14].

For decades, dimensionality reduction methods based on factorisation matrices appeared as a relevant
way to encode topological network information [15–17]. These methods provided an initial set of network
embedding techniques due to the success and ubiquity of network models. Over the past few years, there has
been a significant surge in the number of embedding methods, making it challenging to navigate this
fast-evolving field. The purpose of this review is to provide an overview based on a novel taxonomy that
extends previous ones [18, 19] and describe current trends in network embedding.

First, we introduce the basic concept of network embedding and the state-of-the-art taxonomies of these
methods. Next, we present our own taxonomy based on the common mathematical processes that underlie
the embedding methods. This taxonomy aims to assist readers in navigating the field. We describe the two
well-established classes of methods: the shallow embedding methods, and the deep learning methods. In
addition to these two classical approaches, we include two sections dedicated to the higher-order network
embedding methods and the emerging network embedding methods. These sections highlight current trends
in the field, although the taxonomy is broad enough to integrate these new methods. Finally, we illustrate the
wide range of network embedding applications, with one section devoted to the classical applications that
include a user guideline and another section dedicated to the emerging applications that are currently
growing in popularity.

2. Definitions and preliminaries

A network, defined formally as a pair G= (V,E), consists of a non-empty set V of vertices (or nodes), and a
set of edges (or links) E connecting certain pairs of nodes. In the case of undirected networks, we can define E
as a subset of {{u,v} | u,v ∈ V}, and call {u,v} ∈ E an undirected edge between vertices u and v, so that
{u,v}= {v,u}. In the case of directed networks, we can define E⊆ V×V, and call (u,v) ∈ E a directed edge
from vertex u to vertex v, so that (u,v) 6= (v,u). If we agree on a labelling of the vertices, V= {v1, . . . ,vn, . . .},
we can write eij ∈ E for a vertex between vi and vj (undirected case) or from vi to vj (directed case).
Depending on the network model, we can also add node or edge weights and types (see below).

In its simplest form, a network embedding maps each node of a network to a space X, typically a
Euclidean vector space X= Rd with d� n the number of nodes. This space is called the latent space or
embedding space. In the latent space, certain properties (of the nodes, edges, or the whole network) are
preserved. Hence, a network embedding (into X= Rd) is a mapping function

f : V→ Rd

vi 7→ zi.

The embedding vector zi is expected to capture the topological properties of the original network while
reducing the network dimension n. Network embedding methods can embed different components of the
network. The previous definition is describing the most common embedding, namely node embedding
method. In node embedding methods, each node of the network is embedded into an embedding space X,
typically a reduced vectorial representation, that is, a mapping function V →X. However, some methods
handle edge embeddings E→X, where each edge of the network is embedded into an embedding space X.
Other embedding methods target subgraph or whole-network embedding, where the whole network, or
some of its parts, are projected into an embedding space, such as a vector space.

To design efficient network embedding methods, several criteria need to be considered:

(i) Adaptability: embedding methods need to be applicable to different data and task, without, for
instance, repeating a learning step.

(ii) Scalability: embedding methods need to process large-scale networks in a reasonable time.
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(iii) Topology awareness: the distance between nodes in latent space should reflect the connectivity and/or
homophily (similar nodes in a network will be close in the embedding space) of the nodes in the
original network. The homophily is the tendency of nodes to be connected to similar nodes.

(iv) Low dimensionality: embedding methods should reduce the dimension of the network, by mapping a
network with n nodes to a d-dimensional space, with d� n.

(v) Continuity: the latent space should be continuous, which is beneficial in some tasks like classification
[20].

As mentioned, while reducing the dimension, the embedding space should preserve some node, edge,
and/or network properties. Focusing on node properties, the most common properties preserved by network
embedding methods include:

• The first-order similarity between two vertices, which is the pairwise similarity between the vertices. In
other words, the weight of the edge between vertices defines a first-order similarity measure. Let svi (respect-
ively svj) be the first-order vector similarity associated with the node vi (resp. vj) to every other node in the
network.

• The second-order similarity between two vertices, which considers the similarity of vertices in terms of
neighbourhood structures. The second-order similarity between the nodes vi and vj is defined as the simil-
arity between the first-order vectors svi and svj . Higher-order similarities are based on the same idea. These
second or higher-order similarities define structural equivalence between nodes.

• The regular equivalence similarity, which defines the similarity between vertices that share common roles
in their neighbourhood, i.e. that have similar local network structures. For instance, if a node is a bridge
between two communities, or if a node belongs to a clique. The regular equivalence aims to unveil the
similarity between distant vertices which share common roles, in contrast to to common neighbourhood.

• The intra-community similarity, which defines the similarity between vertices in the same community.
The intra-community similarity aims to preserve the cluster structure information of the network.

Embedding methods are often designed to use specific types of networks as input. These network types
include:

• Homogeneous networks, which correspond to the standard definition of networks mentioned above G=
(V,E), where V is a non-empty set of vertices (nodes) and E a set of (directed, or undirected) edges (links).
A more general setup, which allows multi-edges, is G= (V,E, s, t) where V 6= ∅ and E are arbitrary (vertex,
edge) sets, and s, t : E→ V are the source, respectively target, functions. Homogeneous networks can also be
weighted: an edge, respectively a vertex, a weight function is a function wE : E→ XE, respectively wV : V→
XV, where XE and XV are weight sets, typically numeric XV = XE = R.

• Heterogeneous networks. In homogeneous networks, the nodes and the edges are all the same type. In a
heterogeneous network, nodes and edges can have types. Formally, a heterogeneous network is a network
G= (V,E), associated with two type functions ϕ : V→ A and ψ : E→ R. These functions associate each
node (respectively edge) to its type. More precisely, we define A= {a1,a2, . . . ,aα}, with α the number of
node types, andR= {r1, r2, . . . , rβ}, with β the number of edge types. If |A|= |R|= 1, the network is homo-
geneous.

• Signed networks. This is a particular case of a weighted homogeneous network with weights ±1. Namely,
G= (V,E) is a network, and τ : E→{−1,1} is a mapping function that associates a sign to each edge.

• Multilayer networks.Amultilayer network is a type of heterogeneous network where the nodes are grouped
into layers, and the edges can connect nodes in the same, or different, layers. Formally, amultilayer network is
a tripletM= (Y,G,G), whereY is the layer index set,G= {Gα | α ∈ Y} are (homogeneous) networksGα =
(Vα,Eα), and G = {Gαβ | α,β ∈ Y} are bipartite networks Gαβ = (Vα,Vβ ,Eαβ) encoding the inter-layer
connectivity. There is a rich literature on multilayer networks, with different special cases such as multiplex
or temporal networks [21–26]. The interested reader can refer to [21] for an extended overview.

• Temporal networks. Temporal networks are specific cases of multilayer networks where the layers are
ordered by time, that is, they represent the evolution of a graph over time [21, 27, 28].

• Knowledgenetworks.Knowledge graphs are defined as a set of triples (u, r,v) ∈ V×R×V, where the nodes
u and v belong to the nodes set V, and they are connected by edges of type r ∈ R.
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3. Existing taxonomies of network embedding methods

The huge amount and variety of embedding methods [29] make their classification into a unified taxonomy
a difficult task. The methods can indeed be sorted according to several criteria. We will briefly present some
of the most common taxonomies.

A first way to classify network embedding methods is based on the type of networks used as input. Some
authors thereby distinguish the methods designed for homogeneous or heterogeneous networks [29]. The
same strategy can be used to classify embedding methods designed for static and temporal networks, or
single and multilayer networks. Based on this taxonomy, it is possible to add a layer of complexity by
considering the type of component that the methods embed in the vectorial space, i.e. the nodes, the edges,
the subgraphs, or the whole network. Other authors use some properties of the network embedding process
to classify the different methods [30]. For instance, the network embedding methods may be classified
depending on the network properties they intend to preserve, in addition to the part of the network the
methods is focused (on the nodes, edges, or the whole network). Focusing on nodes, three different types of
property preservations can be defined, at different scales: microscopic, mesoscopic, and macroscopic
properties. Methods preserving microscopic properties retain structural equivalences between nodes, such as
first-order, second-order, or high-order similarities. They hence seek to preserve the homophily existing in
the original network. Methods preserving mesoscopic properties focus on the regular equivalence between
nodes, on intra-community similarity, or, more generally, on properties that are in between the close node
neighbourhood and the whole network. Finally, methods preserving macroscopic properties tend to preserve
whole network properties, like the scale-freeness [31]. Based on the same idea, a different taxonomy has been
adopted by Cui et al [7]. In this work, the authors discriminate the network embedding based on the
information they wish to encode. The first class of methods, called structure and property preserving
methods, preserves structural information like the neighbourhood or the community structures. The second
class, called information-preserving methods, constructs the embedding using complementary information
like node labels and types (for heterogeneous networks) or edge attributes. The third class, called advanced
information-reserving method, gathers supervised methods that propose an end-to-end solution (learning
process where all parameters are trained jointly) and use various complementary information to learn the
embedding space.

In conclusion, multiple taxonomies have been proposed, based on several criteria: the properties
preserved by the network embedding methods [7, 30], the type and the properties of input networks [20,
29], or based on mathematical considerations [19, 32–34]. Our approach for the review is based on
mathematical considerations and similar to those in Chami et al [19]. However, while Chami et al extended
the encoder–decoder framework of Hamilton et al [18] (see section 4) to include deep-learning methods as a
special case. Herein, we have defined a more flexible approach to organise these methods that are not
constraints by the encoder–decoder framework, while this framework can be a useful tool for understanding
the methods, we believe that a more flexible approach will offer easier integration of new methods into this
taxonomy. Significantly, our review includes higher-order network embedding methods that were not
covered in [19]. Note that our review presents a wide range of methods akin to a diverse set of ‘species’
coexisting within a ‘zoo’, hence the chosen title for our review. In this way, the objective of this new taxonomy
is to be fine-grained, to offer a consensual view, and to be easily extended to integrate novel methods. In
addition, our approach is independent of the scientific domain of development and application of the
embedding methods.

4. Taxonomy of network embedding methods

Recently, important efforts have been made to produce general frameworks defining different embedding
methods under a common mathematical formulation [18, 19, 35]. Notably, Hamilton et al [18] proposed an
encoder–decoder framework to define embedding methods, following four components:

(i) A pairwise similarity function: sG : V×V→ R+.
This function defines the similarity measure between the nodes in the original (i.e. direct) network
space.

(ii) An encoder function: Enc : V→ Rd.
This function encodes the nodes into the embedding space. For instance, the node vi ∈ V is embedded
into the vector zi ∈ Rd.

(iii) A decoder function: Dec : Rd ×Rd → R+.
This function associates a similarity measure in the embedding space to each pair of embedding vectors.

(iv) A loss function: l : R×R→ R.

4
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This function measures the quality of the pairwise reconstruction. The objective is to minimise the
errors of the reconstruction as follows: Dec(Enc(vi),Enc(vj)) = Dec(zi,zj)≈ sG(vi,vj). Most
approaches minimise an empirical loss function around a set of training nodes (notedD) rather than
the theoretical loss function

L=
∑

(vi,vj)∈D

l
(
Dec

(
zi,zj

)
, sG

(
vi,vj

))
. (1)

Many embedding techniques align with this taxonomy, but a few of them are inaccurately described. For
instance, higher-order network embedding techniques [36–38] do not only use pairwise similarity functions
(see section 4.3). While this framework has been extended and enhanced to incorporate deep learning
techniques [19], it still does not cover higher-order network embedding methods.

Another general framework has been proposed by Yang et al [35] to classify heterogeneous network
embedding (HNE) methods. The idea of this framework is to convert the homophily principle (similar nodes
in a network will be close in the embedding space) into a generic objective function:

J =
∑

vi,vj∈V

wvivjd
(
zi,zj

)
+JR. (2)

The term wvivj denotes the proximity weight, d(zi,zj) is the embedding distance between the embedding
vectors associated with the nodes vi and vj, and JR represents some additional objectives such as regularisers.

The taxonomy proposed in this work is based on a mathematical point of view, illustrated in figure 1,
which splits the methods into two main classes depending on their depth: the shallow embedding methods
(4.1), and the deep learning methods (4.2). We complement these two classes by including higher-order
methods (4.3), which can be classified as either shallow embedding or deep learning methods, enabling us to
spotlight these new types of methods. In the next sections, we adopt the notation defined in section 2 for
both the network and the associated embedding. In the following, we write ‖.‖F for the Frobenius norm, and
‖.‖2 for the Euclidean norm.

4.1. Shallow network embedding methods
In this section we will consider the shallow network embedding methods, which are a set of methods with an
encoder function that can be written as follows:

Enc(vi) = Zvi, (3)

where Z corresponds to the matrix with the embedding vectors of all nodes, and vi corresponds to the
indicator vector associated with each node vi (vector of zeros except in position i, where the element is equal
to 1). In this case, the objective of the embedding process is to optimise the embedding matrix Z in order to
have the best mapping between the nodes and the embedding vectors (figure 2). We define three major
classes of shallow embedding methods based on different mathematical processes: the matrix factorisation
methods, the random walk methods, and the optimisation methods.

4.1.1. Matrix factorisation methods
Matrix factorisation is based on the fact that a matrix, such as the adjacency matrix or the Laplacian matrix,
can fully represent a network. This fact implies that existing methods from matrix algebra, such as matrix
factorisation, can be used for network embedding. Network embedding methods based on matrix
factorisation are directly inspired by linear dimensionality reduction methods, such as principle component
analysis (PCA) [39], linear discriminant analysis (LDA) [17], or multidimensional scaling (MDS) [20].
Other methods are inspired by non-linear dimensionality reduction methods such as Isomap [40], which is
an extension of MDS [20], locally linear embedding (LLE) [41], t-distributed stochastic neighbour
embedding (t-SNE) [42], or more recently uniform manifold approximation and projection (UMAP) [43].
The factorisation process depends on the properties of the matrices. For positive semi-definite matrices, like
graph Laplacians, the embedding can be obtained by eigenvalue decomposition. However, for unstructured
matrices, like covariance matrices, gradient descent or singular value decomposition (SVD) should be used
to obtain the network embedding. Thereafter, we will describe the most common network embedding
methods based on matrix factorisation.

• Laplacian eigenmaps (LEs) [44] aims to embed the network in such a way that two nodes close in the
original network are also close in the low-dimensional embedding space, by preserving a similarity measure
defined by the weight between nodes. In that way, we define the weight matrix denoted by W, where W ij
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Figure 1. Pie charts describing the new taxonomy defined in this manuscript. In the top pie chart, the methods are divided into
two main categories: shallow embedding methods and the deep learning methods, complemented by higher-order methods that
can be either a shallow embedding or a deep learning methods. The bottom pie chart highlights the three major emerging groups
of methods. Notably, these emerging groups of methods can be classified into our defined taxonomy due to its flexibility.

Figure 2. Shallow network embedding: to perform shallow network embedding, a network is projected into a low-dimensional
vector space, such as a two-dimensional embedding space. This projection is achieved using a mapping function f that enables the
mapping from the direct space to the embedding space. The mapping function f is derived by optimising a loss function L, which
aims to minimise the difference between the similarity measures of nodes in the direct space (SD) and their equivalents in the
embedded space (SE) obtained through the decoder function.
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encodes the weight between the nodes i and j. The learning process is done by optimising the following
objective function:

L=
∑

vi,vj∈V

Dec
(
zi,zj

)
· sG

(
vi,vj

)
, (4)

with Dec(zi,zj) = ‖zi − zj‖22, and sG(vi,vj) =Wij.
We can introduce the Laplacian matrix L, defined as L= D−W, withDii =

∑
jWji. The equation (4) can

be written as:

L=
1

2

∑
i,j

‖zi − zj‖22Wij

L=
∑
i,i

‖zi‖22Dii +
∑
i,j

‖zizj‖2Wij

L=
∑
i,i

‖zizj‖2Lij

L= Tr
(
ZZTL

)
= Tr

(
ZTLZ

)
, (5)

with Z= (z1,z2, . . . ,zn) ∈ Rd×n. The loss function needs to respect the constraint ZTDZ= I to avoid trivial
solutions. The solution can be obtained by finding the matrix composed of the eigenvectors associated with
the d smallest eigenvalues of the generalised eigenvalue problem LZ= ΛDZ, withΛ = diag([λ1,λ2, . . . ,λn])
[45].

It is important to note that LEs use a quadratic decoder function. This function does not preserve the
local topology because the quadratic penalty penalises the small distance between embedded nodes.

• Cauchy graph embedding [46] aims to improve the previous method (LEs), which does not preserve the

local topology. Cauchy graph embedding use a different decoder function Dec(zi,zj) =
∥zi−zj∥2

2

∥zi−zj∥2
2+σ2 = 1−

σ2

∥zi−zj∥2
2+σ2 , with σ

2 representing the variance. Consequently, the loss function can be written as follows:

L=
∑
i,j

1

‖zi − zj‖22 +σ2
Wij , (6)

with the following constraints:
∑

i zi = 0, and ZTZ= I, where Z= (z1,z2, . . . ,zn) ∈ Rd×n. The solution is
obtained by an algorithm that mixes gradient descent and SVD.

• Graph factorisation [47] proposes a factorisationmethod that is designed for network partitioning. It learns
an embedding representation that minimises the number of neighbouring vertices across the partition. The
loss function can be written as follows:

L=
∑

vi,vj∈V

‖Dec
(
zi,zj

)
− sG

(
vi,vj

)
‖22 +

λ

2

∑
vi∈V

‖zi‖22 , (7)

with Dec(zi,zj) = zTi zj, sG(vi,vj) =Wij, and λ a regularisation parameter. Notably, this method is scalable
and can deal with networks with millions of vertices and billions of edges.

• GraRep [48] extends the skip-gram model [49] to capture higher-order similarity, i.e. k-step neighbours of
nodes. The value of k is chosen such as 1⩽ k⩽ K, with K the highest order. GraRep is also motivated by the
noise-contrastive estimation (NCE) approximation [50] which consists in learning a model that converges
to the objective function. NCE trains a binary classifier to distinguish between node samples coming from
the similarity distribution sG and node samples generated by a noise distribution over the nodes. GraRep
defines its k-step loss function as follows:

Lk =
∑
vi∈V

∑
vj∈V

Tk
i,j log

(
σ
(
xTi xj

))
+λEvj∼pk(V)

[
log

(
σ
(
−xTi xj

))] , (8)

where the matrix T represents the transition matrix, defined as T= D−1A, with A the adjacency matrix,
and D the degree matrix. The vectors xi and xj are the vector representations of the nodes vi and vj in
the direct space. The term Evj∼pk(V) is the expectation of the node vj, obtained by negative sampling. The
expectation follows the noise distribution over the nodes in the network, denoted by pk(V). The parameter
λ indicates the number of negative samples, and σ(.) is the sigmoid function defined as σ(x) = (1+ e−x)−1.
GraRep reformulates its loss functionminimisation into a matrix factorisation problem. Each k-step term is
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computed from the matrix Xk defined as Xk
ij =max([log

( Tk
ij∑

m Tk
mj

)
− log(β)],0). Then, the low-dimensional

representation of the matrix Ck is constructed from the SVD: SVD(Xk). Finally, the final representation is
obtained by concatenating all order-term matrices, C= [C1,C2, . . . ,CK].

• High-orderproximitypreserved embedding (HOPE) [51] has been developed to encode higher-order sim-
ilarity of large-scale networks while also capturing the asymmetric transitivity, i.e. going from node vi to
node vj can be different from going from node vj to node vi. HOPE can hence deal with directed networks.
The loss function is equal to:

L=
∑

vi,vj∈V

‖Dec
(
zi,zj

)
− sG

(
vi,vj

)
‖22 , (9)

with Dec(zi,zj) = zTi zj and sG(vi,vj) denoting any similarity measure between vi and vj. The authors of
HOPE introduce a general factorisation in which the similarity measure can be factorised in one matrix
associated with the global similarityMg and another matrix associated with the local similarityMl. So, the
similarity matrix can be expressed as S=M−1

g Ml, where both local and global similarities are polynomial
sparse matrices. This also enables HOPE to use efficient SVD decomposition for embedding large-scale net-
works. The authors considered different similarity measures such as Katz index (Skatz = (I−βA)−1(βA)),
rooted PageRank (SRPR = (I−αT)−1((1−α)I)), common neighbours (SCN = I(A2)), or Adamic–Adar
(SAA = I(ADA)), where A indicates the adjacency matrix, T represents the transition matrix, α a value
∈ [0,1), and β a value less than the spectral radius of the adjacency matrix.

• Modularised nonnegative matrix factorisation (NMF) [52] aims to obtain an embedding representation
aware of the community structure of the original network while maintaining the microscopic information
from the first-order and second-order similarities. Let us define the similarity measure S= S(1) + ηS(2) ∈
Rn×n, where S(1) is the first-order similarity matrix, for instance, S(1)ij = Aij with A the adjacency matrix,

and S(2) is the second-order similarity matrix, defined as S(2)ij =
NiNj

∥Ni∥2∥Nj∥2
, with Ni = (S(1)i1 ,S

(1)
i2 , . . . ,S

(1)
in )

the first-order similarity vector of the node i. The parameter η is the weight of the second-order term (often
chosen equal to 5 [52]). The embedding of the microscopic structure can be expressed in the NMF frame-
work as the following optimisation problem:

min
M,U

‖S−MUT‖2F; M> 0 , U> 0, (10)

withM ∈ Rn×d and U ∈ Rn×d two non-negative matrices; U i is the embedding of the node i.
The community structure is obtained with modularity maximisation, which is expressed for two com-

munities as Q= 1
4m

∑
ij(Aij − kikj

2m )hihj, with ki the degree of the node i, hi is equal to 1 if the node i belongs
to the first community, otherwise is equal to−1, andm is the total number of edges. Let us define B such as

Bij = Aij − kikj
2m , so themodularity becomesQ= 1

4mh
TBh, where h ∈ Rn. The generalisation of themodularity

optimisation problem for k communities is defined as:

min
H

−βTr
(
HTBH

)
; Tr

(
HTH

)
= n, (11)

with H ∈ Rn×k, β is a positive parameter. The second equation imposes the association of each node to
one community. The two models are combined using a term that uses the community structure to guide
the node representation learning process. Formally, we define C ∈ Rk×d as the community representation
matrix; Cr as the representation of the community r, and UiCr represents the propensity of the node i to
belong to the community r. So the last term to optimise is equal to α‖H−UCT‖2F, with the constraint that
C> 0, and α a positive parameter. Finally, the equation to be optimised is the following one:

min
M,U,H,C

‖S−MUT‖2F −βTr
(
HTBH

)
+α‖H−UCT‖2F

M> 0 , U> 0 , C> 0 , Tr
(
HTH

)
= n . (12)

Due to the non-convex behaviour of the previous function, a non-trivial optimisation process has been
developed [52].

• Text-associated deepwalk (TADW) [53] aims to integrate text data information into the network embed-
ding process. The authors first prove that the learning process used in the deepwalk embeddingmethod (see
the section about random walk network embedding methods) is equivalent to the optimisation of a matrix
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factorisation problem,M=WTH, withM ∈ Rn×n the matrix of the original network,W ∈ Rd×n the weight
matrix, and H ∈ Rd×n the factor matrix. The factorisation matrix problem is the following:

min
W,H

‖M−WTH‖2F +
λ

2

(
‖W‖2F + ‖H‖2F

)
. (13)

The idea of TADW is to take into account a text factor matrix T into the decomposition, such that M=
WTHT, withM ∈ Rn×n,W ∈ Rd×n, H ∈ Rd×k, and T ∈ Rk×n. The new factorisation matrix problem is:

min
W,H

‖M−WTHT‖2F +
λ

2

(
‖W‖2F + ‖H‖2F

)
. (14)

The optimisation process is obtained with the gradient descent algorithm introduced by Yu et al [54].
• Othermatrix factorisationmethods: the methods detailed above are some of the most common ones, and
there are used as basis for alternative or extended methods. Notably, several strategies propose variations
of the LEs. For instance, the locality preserving properties method [55] uses a linear approximation of LE.
Themethod structure-preserving embedding [56] extends LE by including connectivity structure similarity
as a constraint during the learning process. Similarly, augmented relational embedding [57] modifies the
Laplacian matrix to integrate feature information.

Spectral techniques such as label informed attributed network embedding [58] are also promising for
preserving node structure similarities and the correlations between their labels.

Some methods dedicated to multi-class node classification have also been developed. These methods can
be seen as variations of the TADW method. For instance, the method homophily, structure, and content
augmented [59] adds a regularisation term to the objective function of TADW to enforce the structure
homophily existing between nodes in the network. Max-margin deepwalk [60] adds a multi-class support
vector machine (SVM) to integrate labelling information of the nodes. Discriminative matrix factorisation
[61] uses a linear classifier trained on labelled nodes to complement the TADW objective function.

A large number of other embedding methods based on matrix factorisation have been developed. For
instance, several embedding methods applied to knowledge graphs, use matrix factorisation (or tensor fac-
torisation). These methods can be defined as relation learning methods. We can mention some of the most
common ones, such as RESCAL [62], DistMult [63] andComplEx [64]. DistMult is a special case of RESCAL
developed to reduce overfitting and ComplEx extents DistMult to complex matrices.

Finally, matrix factorisationmethods can extract network embeddings from a time-dependent node sim-
ilarity measure inspired by dynamical systems and control theory notions [65].

4.1.2. Random walk methods
The idea behind random walk embedding is to encode the scores of the random walk into an embedding
space. Most methods use ideas initially developed in the DeepWalk paper [66]. In this section, we describe
the most common methods and some of their extensions.

• DeepWalk [66] is a scalable network embedding method that uses local information obtained from trun-
cated randomwalks to learn latent representations. DeepWalk treats the walks as the equivalent of sentences.
The process is inspired by the famous word2vec method [49, 67], in which short sequences of words from a
text corpus are embedded into a vectorial space. The first step of DeepWalk consists in generating sequences
of nodes from truncated random walks on the network. Then, the update procedure consists in applying
the skip-gram model [49] on the sequences of nodes, in order to maximise the probability of observing a
node neighbour conditioned on the node embedding. The loss function is defined as follows:

min
ϕ

− log(P({vi−w, . . . ,vi+w} \ vi | ϕ(vi))) , (15)

with w indicating the window size (in terms of node sequence), and ϕ : V→ Rd indicating the mapping
function. We can also see ϕ ∈ Rn×d as the matrix of the embedding representation of the nodes. The skip-
gram model transform the equation (15) as follows:

min
ϕ

− log

 i+w∏
j=i−w

P(vj| ϕ(vi)

 . (16)
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Then, the hierarchical softmax function [68] is applied to approximate the joint probability distribution as:

P
(
vj | ϕ(vi)

)
=

log(n)∏
l=1

P(bl | ϕ(vi))

=

log(n)∏
l=1

1

1+ exp(−ϕ(vi)ψ (bl))
, (17)

where vj is defined by a sequence of tree nodes (b0,b1, . . . ,blog(n)), with b0 the root of the tree, and blog(n)
the node vj. Notably, similarly to the TADW method, Deepwalk is equivalent to the following matrix fac-
torisation problem:M=WTH [53, 69], withW ∈ Rd×n the weight matrix, andH ∈ Rd×n the factor matrix.
Several extensions of the deepwalk have been adapted for multilayer networks [70, 71].

• node2vec [72] is a modified version of DeepWalk, with two main changes. First, node2vec uses a negat-
ive sampling instead of a hierarchical softmax for normalisation. This choice improves the running time.
Second, node2vec uses a biased randomwalk that offers more flexible learning with control parameters. The
biased random walk can be described as:

P(ci = x | ci−1 = y) =

{ πyx

Z if (y,x) ∈ E
0 otherwise

, (18)

where πyx is the unnormalised transition probability between node y and node x, and Z is the normalising
constant. The variable π is defined as follows:

πyx =


1
pωyx if dtx = 0

ωyx if dtx = 1
1
qωyx if dtx = 2

, (19)

whereωyx is theweight of the edge between the node y and the node x, and dtx is the shortest path between the
node x and the node t, which is the node reached before the node y. The parameters p and q are two control
parameters of the random walk. The return parameter p controls the likelihood of immediately revisiting a
node in the walk, while the in-out parameter q controls the likelihood of visiting a node in the neighbour-
hood of the node that was just visited. Both parameters control if the random walk follows a breadth-first
sampling strategy or a depth-first sampling strategy. The first strategy preserves the structural equivalence
of the nodes, the second one preserves their homophily. Recently, multinode2vec [73] and PMNE [74], two
extensions of node2vec, adapted the random walk process to multilayer networks.

• HARP [75] is an algorithm thatwas developed to improve theDeepWalk andnode2vec embeddingmethods.
The idea is to capture the global structure of an input network by recursively coalescing edges and nodes of
the network into smaller networks with similar structures (see also section 5.2 on network compression).
The hierarchy of these small networks is an appropriate initialisation for the network embedding process,
because it directly express a reduced-dimension version of the input network while preserving its global
structure. The final embedding is obtained by propagating the embedding of the smallest network through
the hierarchy.

• Discriminative deep randomwalk (DDRW) [76] is particularly suitable for the network classification task.
It can be seen as a DeepWalk extension that considers the label information of nodes. To do so, DDRW
jointly optimises the DeepWalk embedding loss function and a classification loss function. The final loss
function to optimise is defined as:

L= ηLDW +LC , (20)

LC = C
n∑

i=1

(
σ
(
1− yiβ

Tzi
))2

+
1

2
βTβ, (21)

where η is a weight parameter, and σ the Heaviside function, i.e. σ(x) = x for x> 0 and σ(x) = 0 other-
wise. Moreover, zi is the embedding vector of the node vi, yi is the label of the node vi, C is the regulariser
parameter, and β the subsequent classifier.

• Walklets [77]. Given the observation that DeepWalk can be derived from a matrix factorisation contain-
ing the powers of the adjacency matrix [78], it appears that DeepWalk is biased towards lower powers of
the adjacency matrix, which correspond to short walks. This can become a limitation when higher-order
powers are the most appropriate representations, for instance to embed the regular equivalence between
nodes. To bypass this issue, Walklets propose to learn the embedding from a multi-scale representation.

10
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This multi-scale representation is sampled from successive higher powers of the adjacency matrix obtained
from random walks. Then, after partitioning the representation by scale, Walklets learns the representation
of each node generated for each scale.

• Struct2vec [79] aims to capture the regular equivalence between nodes in a network. In other words, two
nodes that have identical local network structures should have the same embedding representation. The
construction of the embedding representation is based on different steps. The first step is to determine the
structural similarity between each pair of nodes for different neighbourhood sizes. The structural similarity
between the nodes vi and vj, when considering their k-hop neighbourhoods (all nodes at a distance less or
equal to k and all edges among them), is defined as follows:

dk
(
vi,vj

)
= dk−1

(
vi,vj

)
+ g

(
s(Rk (vi)) , s

(
Rk

(
vj
)))

;

k⩾ 0 and |Rk (vi) |, |Rk

(
vj
)
|> 0 , (22)

where Rk(vi) is the set of nodes at a distance less or equal to k from the node vi, s(S) is the ordered degree
sequence of a set of nodes S, and g(S1,S2) is a distance measure between the two ordered degree sequences
S1 and S2. The distance used is the dynamic time warping [80] and by convention d−1 = 0.

This procedure produces a hierarchy of structural similarities between nodes of the network. The hier-
archy is used to create a weighted multi-layer network, in which layers represent node similarities for differ-
ent levels of the hierarchy. The edge weights between node pairs are inversely proportional to their struc-
tural similarity. After that, a biased random walk process is applied to the multilayer network to generate
sequences of nodes. The sequence of nodes are used to learn a latent representation with the skip-gram
process.

• Other randomwalkmethods: somemethods are designed to integrate additional information in the learn-
ing process. For instance, SemiNE [81] is a semi-supervised extension of DeepWalk that takes into account
node labels. GENE [82] also integrates node labels. Node labels, as well as additional node contents, are also
integrated into TriDNR [83].

SNS [84] is another method that aims to preserve structural similarity in the embedding representation.
SNS measures the regular equivalence between nodes by representing them as a graphlet degree vectors:
each element of the graphlet degree vector represents the number of times a given node is touched by the
corresponding orbit of graphlets.

Random walk approaches are widely used for HNE. Examples of HNE method include MRWNN [85],
SHNE [86], HHNE [87], GHE [88], JUST [89], HeteSpaceyWalk [90], and TapEm [91]. The interested
reader can refer to Yang et al [35] for a detailed review of HNE. Finally, random walks are also often used
for metapath-based methods, another set of methods relevant for network embedding. This set of methods
includes Metapath2vec [92], HIN2vec [93], HINE [94], or, more recently, HERec [95].

4.1.3. Optimisation methods
The two previous groups of methods involve two distinct mathematical processes: matrix factorisations, and
random walks. (Matrix factorisation is a common mathematical operation, while random walk encompasses
several methods that share a common principle.) However, there are additional embedding techniques that
do not fit into either category, but they do share a common objective of optimising a loss function. In
essence, these methods use a broad range of mathematical processes but ultimately involve an optimisation
step, which is usually achieved through gradient descent. As a result, these approaches can be viewed as
hybrid methods that all utilise a shared optimisation step.

The most important step in optimisation methods is to define a loss function that encodes all the
properties that should be preserved through the embedding. This loss function often gathers similarities
between nodes in the direct space, together with some regulariser terms that depend on network features that
we want to preserve. The embedding representation is obtained based on the optimisation of this loss
function. We will present the most common optimisation-based network embedding methods and some of
their extensions.

• VERtex similarity embeddings (VERSE) [96] is a versatile network embedding method that accepts any
network similarity measure. Let G be a network with an associated similarity measure sG : V×V→ R+.
The VERSEmethod constructs the embedding representation of the networkG, noted Z ∈ Rd×n, associated
with a similarity measure in the embedding space Dec : Rd ×Rd → R+. Each column of the matrix Z is
the embedding vector zi of the node vi. The embedding representation is based on the optimisation of a loss
function, noted L, corresponding to the Kullback–Leibler divergence between the similarity matrix in the
direct space (i.e. original network) and the similarity matrix in the embedding space:
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L=
n∑

i=1

sG (vi, .) · ln
(

sG (vi, .)

Dec(vi, .)

)

=−
n∑

i=1

sG (vi, .) · ln(Dec(vi, .))+C , (23)

with sG(vi, .) (resp.Dec(vi, .)) the similarity vector between the node vi and all the other nodes of the network
in the direct space (resp. embedding space). Notably,

∑n
j=1 sG(vi,vj) =

∑n
j=1Dec(vi,vj) = 1. Moreover,

C=
∑n

i=1 sG(vi, .) · ln(sG(vi, .)) defines a constant that does not affect the optimisation algorithm, and can
therefore be neglected. The vector sG(vi, .) corresponds to the vector associated with the node vi in the sim-
ilarity matrix defined in the direct space. As stated above, the similarity matrix in the direct space (network)
can be defined by several measures. The authors proposed three different similarity matrices: the adjacency
matrix, the SimRank similarity matrix [97], and a similarity matrix based on randomwalk with restart. The
vector Dec(vi, .) corresponds to the vector associated with the node vi in the similarity matrix defined in the
embedding space. The vector Dec(vi, .) can also be seen as the similarity vector between the vectors zi and zj
with j 6= i, j ∈ [[1,n]], where n is the number of nodes in the network. The vectors gathered in the similarity
matrix in the embedding space are defined by the following equation:

Dec(vi, .) =
exp

(
zTi Z

)
n∑

j=1
exp

(
zTi zj

) . (24)

The node embedding is obtained by optimising the loss function with a gradient descent algorithm. Usually,
the embedding vectors are initialised with a normal distribution with a mean equal to zero. Because the
Kullback–Leibler optimisation is a time-consuming process, a negative sampling procedure, such as NCE
[50, 98] is often used. Recently, an extension of VERSE to heterogeneous multiplex networks, named
MultiVERSE, has been developed [99].

• Large scale information network embedding (LINE) [100] aims to embed both first-order and second-
order similarities.
– The embedding space of the first-order similarity can be obtained by the following optimisation
algorithm.
Let us define the theoretical expected probability as:

p1
(
vi,vj

)
=

1

1+ exp
(
−zTi zj

) ; zi ∈ Rd , (25)

and the empirical probability as:

p∗1
(
vi,vj

)
=

wij

W
; W=

∑
(i,j)∈E

wij . (26)

The main goal of LINE is to minimise the error between the theoretical expected probability p1 and the
empirical probability p∗1 . To do so, the loss functionO1 minimises the distance d(p∗1 (., .),p1(., .)) by using
the Kullback–Leibler divergence. Hence, O1 can be written as follows:

O1 =−
∑

(i,j)∈E

wij log
(
p1
(
vi,vj

))
. (27)

– The embedding space of the second-order similarity is obtained with the optimisation process described
as follows. Let us define the theoretical expected probability as:

p2
(
vj | vi

)
=

exp
(
zTj zi

)
∑n

k=1 exp
(
zTk zi

) ; zi ∈ Rd . (28)

The empirical probability is defined as:

p∗2
(
vj | vi

)
=

wij

di
; di =

∑
i∈N(i)

wik , (29)

where N(i) is the neighbourhood of the node i, and di defines the out-degree of the node i. The idea is
again to minimise the error between the theoretical expected probability and the empirical probability.
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To do so, the loss functionO2 minimises the distance d(p∗2 (. | vi),p2(. | vi)) by using the Kullback–Leibler
divergence. Hence, O2 can be written as follows:

O2 =−
∑

(i,j)∈E

wij log
(
p2
(
vj | vi

))
. (30)

The first and second-order node representations are computed separately, and both first and second-order
embedding representations are concatenated for each node.

• Transductive LINE (TLINE) [101] is a transductive version of LINE that also uses node labels to train an
SVM classifier for node classifications. Both node embedding and the SVM classifier are optimised sim-
ultaneously, in order to make full use of the label information existing in the network. Notably, TLINE as
LINE permits fast embedding of large-scale networks by using edge sampling and negative sampling in the
stochastic gradient descent process. The method optimises a loss function OT composed of the same loss
functions as LINE, O1 and O2 to embed both first and second-order similarity, and the SVM loss function
OSVM, that is,

OT = O+βOSVM, (31)

OSVM =
n∑

i=1

K∑
k=1

max
(
0,1− ykiw

T
k zi

)
+λ‖wk‖2, (32)

where β is a trade-off parameter between LINE and SVM, n the number of nodes, K the number of label
types in the network, zi the embedding vector representation of the node vi, wk the parameter vector of the
label class k, and yki is equal to 1 if the node vi is in the class k.

• Other optimisation methods: a wide range of optimisation methods are applied to heterogeneous net-
works. Many of them are similar to LINE and optimise first and second-order similarities. In predictive text
embedding [102], the loss function is divided into several loss functions, each associated with one network
of the heterogeneous network. The asymmetric proximity preserving [103] network embedding method is
similar to VERSE, and captures both asymmetric and high-order similarities between node pairs thanks to
an optimisation process over random walk with restart results.

Recently, many network embeddingmethods have been adapted or designed formultilayer networks, and
a significant portion of them are based on an optimisation process [104–108]. In addition, several embed-
ding methods applied to knowledge graphs are optimisation methods. These methods are often called rela-
tion learningmethods.We canmention some of themost common ones, like the translation-basedmethods
first defined by Bordes et al [109]. This method, named TransE, embeds multi-relational data that uses dir-
ected graphs. Edges can be defined by three elements: the head node (h), the tail node (t), and the edge label
(l). The embedding vector of the tail node t should be close to the embedding vector of the head node h, plus
some vector that depends on the relationship l. This approach constructs the embedding representation by
optimising a loss function that integrates these three elements. This method has given rise to several altern-
ative methods: TransH [110] that improves TranSE for reflexive/one-to-many/many-to-one/many-to-many
relationships, TransR [111] that builds entity and relation embeddings in separate entity space and relation
space (in contrast to the two previous methods), and TransD [112], which is an improvement of TransR for
large-scale networks. Recently, the RotatE method has been developed [113]. RotatE is a knowledge graph
embedding method that can model and infer various relation patterns such as symmetry, inversion, and
composition.

4.2. Deep learning methods
In recent years, the use of deep learning for data analysis has increased steadily, and network analysis,
including network embedding [114], is no exception. The success of deep learning methods can be explained
by their ability to capture complex features and non-linearity among input variables. We define three major
classes of deep learning embedding methods: the conventional neural networks based methods, the graph
neural networks (GNNs) based methods, and the graph generative methods. All three of these classes of
methods are based on different philosophies and mathematical formulations of deep learning.

4.2.1. Conventional neural networks
The first network embedding methods based on deep learning methods use conventional deep learning
techniques. We can cite the following class of deep learning architectures:

• Autoencoder: autoencoders and their various variants been widely used for feature extraction. This capabil-
ity has been utilised by several high-performing network embeddingmethods such as: deep neural networks
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for learning graph representations (DNGRs) [115], structural deep network embedding (SDNE) [116], vari-
ational graph auto-encoders [117]. In the case of SDNE, nodes are represented by their high-dimensional
neighbourhood vectors, which are then fed into the autoencoder. This approach allows SDNE to preserve
high-order proximity while also incorporating the LEs proximity measure in order to maintain 1st-order
proximity. On the other hand, DNGR achieves node embeddings by applying an autoencoder to the posit-
ive pointwise mutual information matrix, which is a matrix derived using random surfing.

• Convolutional neural networks (CNNs): CNNmethods have shown high performance [118] for detecting
the significant features, this ability has been used by various network embedding methods. Description-
embodied knowledge representation learning [119], PATCHY-SAN [120]. As mentioned in the case of
autoencoders, the type of input of the deep learning methods can be very diverse. In the case of a neural
network, not only the weights of the neural layers [121] determine the node coordinates of the embedded
network, but the chosen type of input network representation may also affect the embedding space.

• Otherneural networks: for instance, amulti-layer perceptron is used by themethod predicting anchor links
via embedding [122], and a recurrent neural network is used by the method DeepCas [123].

4.2.2. GNNs
Recently, an important class of deep learning methods for network embedding has been developed: GNNs
[124]. GNNs generalise the notion of CNNs (typically applied to image datasets, with an image seen as a
lattice network of pixels) to arbitrary networks. GNNs encode high-dimensional information about each
node neighbourhood into a dense vector embedding. GNNs algorithms can be divided into two main
components. The encoder, which maps a node vi into a low-dimensional embedding vector zi, based on the
local neighbourhood and the attributes of the node, and a decoder, which extracts user-specified predictions
from the embedding vector. This kind of method is suitable for end-to-end learning and offers
state-of-the-art performance [124, 125]. GNNs and their application to network embedding can be divided
into different classes of methods.

• Graphconvolutionalnetworks (GCNs):GCNs is the generalisation of CNNs to graphs [126]. The basic idea
behind CNN is to apply convolutional operations during the learning process to capture local properties of
the input data, recognising identical features regardless of the spatial locations. Several similar successful
approaches have been developed, and we can mention Chebyshev networks [124] and SAGE [127].

• Graph attention network (GAT): a well-known shortcoming of the graph convolutions procedure is that
they consider every node neighbour as having the same importance. GATs are neural networks architectures
that leverage masked self-attentional layers to address this shortcoming [128–130].

• OtherGNNs: several other embeddingmethods based on alternative architectures of GNNs exist [131–133].
The interested reader can refer to the review of Zhou et al on GNNs for more details [134].

4.2.3. Graph generative methods
Graph generative methods are other deep learning methods mostly known for generative adversarial
networks (GANs) [135]. The principle of GANs is based on two components: a generator, and a
discriminator. The idea of GANs is to train a generator until it is efficient enough to mislead the
discriminator. The discriminator is misled when it cannot discriminate real data from the data generated by
the generator. Based on this idea, several embedding methods appeared, including GraphGAN [136],
adversarial network embedding [137], and ProGAN [138]. In the case of GraphGAN, for a given vertex, the
generator tries to fit its underlying true connectivity distribution over all other vertices and produces ‘fake’
samples to fool the discriminator, while the discriminator tries to detect whether the sampled vertex is from
the ground truth or generated by the generative model. An alternative method to GAN is the restricted
Boltzmann machine [139], which inspired different embedding methods (pRBM [140]).

4.3. Higher-order network methods
We have seen in section 4.1 that shallow embedding methods use pairwise similarity functions. This choice is
imposed by the structure of the graphs, which by definition connect nodes by pairwise interactions. However,
generalisations of graphs that can encode higher-order interactions, such as hypergraphs and simplicial
complexes, are increasingly being studied [141–144]. Hypergraphs encode arbitrary relations between any
number of nodes, that is, edges are generalised to hyper-edges which can contain any number of nodes, not
just two. Simplicial complexes generalise graphs by allowing triangles, tetrahedrons, and higher-dimensional
‘cliques’ to be represented, and are closely related to topology, particularly topological data analysis [145,
146]. Note that simplicial complexes are a type of hypergraphs, so, at least in principle, hypergraph methods
also apply to simplicial complexes. Recently, network embedding methods have been extended to consider
these new types of higher-order networks. In the case of higher-order networks, the adjacency matrix, which
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describes pairwise interactions between nodes, cannot uniquely characterise their structure. This is not
surprising, as an n× nmatrix can only represent n2 pairwise interactions between n objects. Instead, the
incidence matrix (hypergraphs) or the boundary matrices (simplicial complexes) are chosen to characterise
higher-order networks [141]. These are n×mmatrices where n is the number of nodes andm the number of
higher-order relations (of certain dimension, for a simplicial complex). Some of the existing network
embedding methods described in sections 4. 1-2 have been extended to hypergraphs, using the incidence
matrix of the hypergraph instead of the adjacency matrix. Methods capable of embedding hypergraphs
include shallow embedding methods: learning hypergraph-regularised [147] (matrix factorisation method),
spectral hypergraph embedding [36] (random walk method), LBSN2Vec++ [148] and hyperedge-based
embedding [37, 149] (optimisation methods). There are also methods derived from deep learning processes:
deep hypergraph network embedding [150] (autoencoder), hypergraph neural networks [38] (GNN),
hypergraph attention embedding [151] (GAT). As explained above, simplicial complexes are a special type of
hypergraphs which are amenable to be treated by powerful tools based on algebraic topology [152],
including topology data analysis [145, 146]. The literature on simplicial complexes embedding and simplicial
neural networks is rapidly growing [152]. It includes simplicial and cell complex neural networks [153–159]
and geometric LEs embedding [160]. Simple graphs can also be described as higher-order set-of-sets formed
by node neighbourhoods, for which recently a new graph embedding has been proposed (HATS) [161].

4.4. Emerging methods
Here we highlight some key emerging methods for network embeddings which deserve particular attention.
Specifically, we discuss key results in the rapidly growing literature focusing on network embeddings in
non-Euclidean spaces, including hyperbolic and Lorentzian spaces. Moreover, we cover the very vibrant
research activity on a new generation of neural networks using magnetic and connection Laplacians which
provide powerful tools to treat directed networks and to improve the explainability of the algorithms. Finally,
we discuss the important research direction aiming at comparing different embedding algorithms.

4.4.1. Network embedding in hyperbolic and Lorentzian spaces
Embedding in hyperbolic spaces [162] offers advantages for representing hierarchical network data [163,
164] with applications ranging from the navigability of the internet [165] to the representation of natural
systems including the olfactory system and neuronal circuits [166, 167]. Among the benefits of hyperbolic
spaces, the most relevant one is probably the fact that hyperbolic spaces are natural spaces to embed trees
having a number of nodes growing exponentially with the distance from the root, and in general to embed
small-world networks. In the case of non-Euclidean space, two approaches can be distinguished:
vector-based and point-based representations. In vector-based embeddings, nodes are represented as vectors,
and the similarity is calculated using vector functions like the inner product. On the other hand, in
point-based embeddings, each node is mapped to a point in (not necessarily a vector) space, and similarity is
determined by the distance between these points. In Euclidean spaces, these approaches are equivalent, as any
vector is uniquely defined by its endpoint starting from the origin. In non-Euclidean spaces, point-based
representations are often favoured due to their ease of comparing two points, which is particularly useful for
hyperbolic embeddings. Although vector-based representations are possible, comparing vectors from nodes
located at different points can be challenging and may involve complex parallel transport techniques. We
distinguish three major approaches to embedding networks in hyperbolic spaces:

• Embedding based on the complex hyperbolic network models [168, 169] in the H2 plane. According to
the spatial hyperbolic network [168] and popularity-similarity optimisation(PSO) [169] models, the radial
coordinate of the node embedding is determined by the degree of the nodes and the angular coordinate of
the node embedding is determined by a similarity metric. The hyperbolic embedding can be used to for-
mulate a greedy algorithm for network navigability [164, 170], to predict missing edges [171], and also to
relate the clusters found along the angular coordinates to network communities [172, 173]. For a general
review of this approach see [162]. The original embedding algorithm HyperMap [170], used to determine
the angular coordinates of the nodes and revisited in [174], maximises the likelihood that the data is drawn
from the model. Mercator [175] improves this algorithm by initialising the position of the nodes using LEs
and, for each optimisation step, the angular positions of the nodes is updated by choosing, among a set of
several possible moves, the one that optimises the likelihood. The possible new moves are drawn from a
Gaussian distribution centred on the mean angles among the neighbour nodes. This algorithm has compu-
tational complexity O(n2) on sparse networks. A fast and efficient alternative to this approach is provided
by the noncentered minimum curvilinear embedding (ncMCE) [176] which provides a machine learning
pipeline including three main steps: (i) a pre-weighting procedure which identifies the network backbone;
(ii) the extraction of thematrixD of nodes similarities (distances)measured on this network backbone (iii) a
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dimensionality reduction of the matrixD. The ncMCE has been further extended in [177] to further reduce
the loss calculated according to the PSO loglikelihood. Recently, an exact and rapid one-dimensional embed-
ding algorithm [178] based on dynamic programming has been proposed. This algorithm can determine
the angular coordinates of the hyperbolic embedding inH2 and, more generally, extract other types of one-
dimensional embeddings. Hyperbolic latent space contains geometric information associated with the ori-
ginal network; in the context ofH2, a recent study showed that shortest paths in the hyperbolic latent space
are aligned along geodesic curves connecting endpoint nodes, and this alignment is sufficiently strong to
allow the identification of shortest path nodes even in the case of substantially incomplete networks [179].
Finally, note that the hyperbolic embedding in the case of directed networks has been addressed in [180].

• Embedding of hierarchical data. Hyperbolic spaces allow the embedding of hierarchical data and in par-
ticular trees without distortion in spaces of low dimension [181] while the same data would require a high
dimensional Euclidean embedding if low distortion is desired. This fundamental property of hyperbolic
spaces has been exploited in [182] to first embed a network in a tree and then embed the tree into hyper-
bolic spaces achieving a fast and reliable hyperbolic embedding. This approach has been extended to know-
ledge graphs in [183] while in [184] hyperbolic graph CNNs have been proposed to learn the hyperbolic
embedding. Note that embedding a network into another network (which might not in general be a tree) is
a generalised embedding problem tackled also in [185].

• Filtering of networks generating the triangulated maximally filtered graph (TMFG) [186]. The TMFG
generalises the minimal spanning tree and has the topology of a ‘fat tree’ formed by d connected (d+ 1)-
cliques (d-simplices). The structure of TMFG reduces to the structure of the model network geometry with
flavour [187]with natural hyperbolic embedding inHd [188]. Therefore TMFGs have a hyperbolic geometry
while the previously proposed maximally filtered planar graphs [189] have a natural R2 embedding.

Finally, we point out also that network embeddings in Lorentzian (Minkowskian) spaces have been proposed
[190] and applied to the study of directed acyclic networks as citation networks. This embedding can be used
for paper recommendation, identifying missing citations, and fitting citation models.

4.4.2. Network embeddings using magnetic and connection Laplacians
Despite many networks being directed, machine learning methods are typically developed for undirected
networks. One challenge in directed networks is that they are naturally encoded by asymmetric adjacency
matrices with a complex spectrum while machine learning techniques usually require a loss function that is
real and positive definite. In order to address this challenge, the use of magnetic Laplacians is attracting
growing attention. Magnetic Laplacians are Hermitian matrices (hence having a real and non-negative
spectrum) that encode the direction of edges through a complex phase. Using a magnetic Laplacian, it is
possible to formulate Eigenmap embeddings [191–193] that can detect non-trivial periodic structure in the
network such as three or more communities whose connection pattern is cyclic. Additionally, in [194], the
magnetic Laplacian is also used to proposemagnet, a novel and efficient neural network for directed
networks. This vibrant research activity on the magnetic Laplacian is indicative of the recent interest in
network structure with complex weights [195]. The magnetic Laplacian can be considered a special case of
the connection Laplacian, which can be used for vector diffusion maps [196]. Moreover, the connection
Laplacian is used for formulating Sheaf neural networks [197, 198], which are a new generation of neural
networks obtaining excellent performance on several machine learning tasks. Finally, the non-backtracking
matrix that identifies non-backtracking cycles and efficiently detects the network communities [199], has
been recently proposed for embedding oriented edges (non-backtracking embedding dimensions) [200].

4.4.3. Comparison of different algorithms
An important question is how to choose among the different network embedding algorithms and how to
select their hyperparameters. For instance, the selection of the embedding dimension is a crucial
hyperparameter for network embedding algorithms. Gu et al [201] provides a method to determine the value
of the embedding dimension that constitutes the best trade-off between favouring low dimensions and
requiring the generation of a network representation close to the best representation that the chosen
algorithm can achieve. The comparison between different embedding algorithms [202] and the investigation
of network embedding algorithms as opposed to alternative inference approaches such as community
detection [203] is attracting increasing attention and can guide the choice of the most suitable algorithm. A
conventional approach to evaluating the results of network embedding methods is to compare their
performance across various tasks, such as link prediction, network reconstruction, or node clustering. Most
of these tasks rely on cross-validation or the computation of an F1 score, which assesses the quality of
predictions made by the given embedding method. Finally, we note that a unifying approach of node
embeddings and structural graph representation has been recently proposed [204].
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Figure 3.Workflow for choosing a network embedding method. The application of network embedding starts with some
preliminary questions (top box). Depending on the answers, and the task to be performed, different network embedding methods
can be applied. Here, we list the most common methods associated with the most common network embedding tasks. Once the
embedding representation has been obtained, the workflow could further perform some ‘sanity checks’ to measure the efficiency
of the network embedding setup (bottom box). Depending on the results of these sanity checks, we can either stop the
development or go back to the preliminary questions in order to improve the workflow. These improvements are usually based on
adding complementary information, tuning the parameters, or redefining the properties to be preserved by the embedding
representation.

5. Applications

A wide variety of applications exist for network embedding methods. Some methods have been designed
focusing on specific task(s) but others admit versatile applications. In the following sections, we will present
the most common applications of network embedding methods as well as some emergent applications
offering promising results. We associate each application with some widely used embedding methods in
order to give the interesting reader a guideline for applying network embedding in different tasks (figure 3).

5.1. Classical applications of network embedding
• Node classification: the aim is to predict labels for unlabelled nodes based on the information learned
from the labelled nodes. Network embedding methods embed nodes into vectors which can be used in
an unsupervised setting. In this case, the nodes associated with similar node embedding vectors will have
similar labels. In a supervised setting, the classifier is trained with the vectors associated with the labelled
nodes. The classifier is then applied to predict the labels of unlabelled nodes.

• Link prediction: the aim is to infer new interactions between pairs of nodes in a network. The similarity
between the nodes encodes the propensity of the nodes to be linked. The similarity can be computed, for
instance, with an inner product or a cosine similarity between each pair of node embedding vectors. In the
embedding space, several operators exist to infer edges between pairs of embedding vectors [72]. These oper-
ators can be, for instance, binary operators (table 1), or, heuristic scores (table 2). Link prediction can extend
to non-Euclidean latent spaces, such as hyperbolic latent spaces, which exhibit several compelling proper-
ties, hinting at their potential as more powerful tools for link prediction; an example is the HYPERLINK
embedder [171], an optimised embedding method specifically designed for link prediction.

• Node clustering/community detection: The aim is to determine a partition of the network such that the
nodes belonging to a given cluster are more similar to each other than to the nodes belonging to other
clusters. In practice, any classic clustering method can be directly applied in the latent space to cluster the
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Table 1. Binary operators to compute infer edges between pairs of embedding vectors. The variable zi defines the embedding vector
associated with the node vi, and zi(k) defines the kth element of the embedding vector zi.

Operator Definition

Average
zi(k)+zj(k)

2
Hadamard zi(k)⊙ zj(k)
Weighted-L1 |zi(k)− zj(k)|
Weighted-L2 |zi(k)− zj(k)|2

Cosine
zi(k)·zj(k)
∥zi∥∥zj∥

Table 2.Heuristic scores are used to predict edges between pairs of nodes in the direct space. The variableN (vi) defines the neighbour
set of nodes associated with the node vi.

Score Definition

Common neighbours |N (vi)∩N (vj)|
Jaccard’s coefficient |N (vi)∩N (vj)

N (vi)∪N (vj)
|

Adamic–Adar score
∑

t∈N (vi)∩N (vj)
1

ln |N (vt)|
Preferential attachment |N (vi)||N (vj)|

nodes. K-means [205] is often used for this purpose. However, it is useful to notice that some embedding
methods are designed specifically for this task [47]. A recent study [206], illustrate that classical network
embedding methods, without non-linear activation, such as DeepWalk [66], node2vec [72], or LINE [100]
encode community structure as well as, or even better than, spectral embedding methods for both dense
and sparse networks, with and without degree and community size heterogeneity. Furthermore, this result
suggest that the two common components of deep learning embedding, the ‘deep’ layers and the non-linear
activation are not necessary to perform community detection in the embedding space context.

• Network reconstruction: the aim here is to reconstruct the whole network based on the learned embedding
representation. Let us define n as the total number of nodes in the network. The reconstruction imposes
n(n− 1)/2 evaluations to test each potential edge, and each evaluation is equivalent to a link prediction.

• Visualisation: network embedding methods, as other reduction dimension methods, can be used to visual-
ise high-dimensional data in a lower-dimensional space.We expect similar nodes to be close to each other in
the visualisation. However, network embedding methods that were not designed for this specific task show
poor results when directly projected into a two-dimensional embedding space [30, 100]. To bypass this
shortcoming, the visualisation of the result of network embedding methods is frequently projected into a d-
dimensional embedding space (2< d� n), and then into a two-dimensional space. The two-dimensional
space is obtained with a dimension reduction method suitable for visualisation, like PCA [15, 39], t-SNE
[42], or UMAP [43]. Recently, an extension of PCA for data lying in hyperbolic spaces has been developed
[207].

Finally, visualisation is a powerful tool to investigate the results obtained by embedding methods. The
interpretability of results can be enhanced through visualisation, and a recent method has been proposed
to address questions related to bias and fairness in results [208].

5.2. Emerging applications
• Network compression and coarsening: the aim of network compression is to convert a large network into
a smaller network containing a reduced number of nodes and edges. This compression is expected to store
the network more efficiently and to allow running the network algorithms faster. Network coarsening is
often used as a preliminary step in the network embedding process to produce a compression by collapsing
pairs of nodes and edges with appropriate criteria. One example is network compression using symmetries.
Real-world networks have a large number of symmetries [209, 210] and this can be exploited in practice for
compression or coarsening, as well as for speeding up calculations [211, 212].

• Network classification: the aim is to associate a label to a whole network. Network classification can easily
be applied in the context of whole network embedding. A wide range of applications has been proposed,
such as classifying molecular networks according to their properties [120, 213–215], predicting therapeutic
effects of candidate drugs based onmolecular networks [215], or classifying images that have been converted
into networks representation [216].

• Applications to knowledge graphs: let us consider a knowledge graph defined by a set of triples (u, r,v) ∈
V×R×V. There are three main applications of embedding for knowledge graphs. Link prediction is used
to infer the interaction between u and v. Triplet classification, which is a standard binary classification task,
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determines if a given triplet (u, r,v) is correct. And finally, knowledge completion aims to determine the
missing element in a triplet where only two of the pieces of information are known [29, 217].

• Illustration of network embedding with biological applications: network embedding is an active research
topic in bioinformatics [34], and all the classical applications previously mentioned also flourish in the
context of biological networks. Some applications emerge as particularly relevant to network biology. We
describe here some of them and the interested reader can refer to [10, 34] for detailed reviews. A first
important application in biology is related to network alignment, which aims to find correspondences
between nodes in different networks. This can be useful to reveal similar subnetworks, and thereby bio-
logical processes, in different species, by aligning their protein–protein interaction networks [218, 219].
Another important application pertains to network denoising, which consists of projecting a graph into an
embedding space to reduce noise by preserving the most relevant properties of the original network. For
instance, high-order structures of the original networks can be preserved by diffusion processes. Network
embedding methods can also be used to predict the functions of proteins [104], or to detect modules in
chromosome conformation networks [10]. LEs have also been used to map the niche space of bacterial eco-
systems from genomic information [220]. In genomics, UMAP embedding has been shown to be useful
to identify overlooked sub-populations and characterise fine-scale relationships between geography, geno-
types, and phenotypes in a given population [221]. Moreover, the prediction of edges (also known as asso-
ciations in the biological context) is a common task in biological network embedding. For instance, a recent
method named GCN-MF [222] used GCNs and matrix factorisation to predict gene–disease associations.
Another method, named NEDTP [108], used a multiplex network embedding based on an optimisation
method to predict drug–target associations. Finally, knowledge graphs are also used in biomedical contexts.
For example, electronic health record can be represented as a knowledge graph and embedded jointly with
other networks integrating proteins, diseases, or drug information, to predict patient outcomes [223, 224].

6. Conclusion

Network embedding methods are powerful tools for transforming high-dimensional networks into
low-dimensional vector representations that can be used for visualisation and a wide range of downstream
analyses, such as network inference, link prediction, node classification, and community detection. The
resulting low-dimensional representation also enables the use of deep-learning analysis, which is often not
possible directly on the original network as it is inherently a combinatorial object. Moreover, the latent space
generated through the embedding process can highlight relevant features of the original network and filter
out the noise inherent in the dataset used to construct the network. This helps to reveal the underlying
structure and organisation of the network, making it easier to analyse and interpret its properties.
Furthermore, employing network embedding methods in non-Euclidean spaces may offer more relevant
representations for nonlinear data. For instance, hyperbolic geometry provides a more natural space for
representing scale-free networks and hierarchical structures.

More generally, let us mention the large body of literature in discrete and computational geometry about
practical and theoretical methods to embed a general metric space (such as a graph with a choice of metric)
into a normed or a metric space of low dimension with minimal distortion (a formal way of comparing the
difference between the source and the target metrics in an embedding), see e.g. [225–229]. The focus of this
approach is often on the optimal (minimum) distortion possible from one type of space into another (see
e.g. table 8.4.1 in [229]); this, beyond a guiding principle, may be less relevant on practical applications,
where the typical performance in practical real-world scenarios is decisive. Therefore, we have focused on
practical embedding network embedding methods in this review.

Despite the numerous advantages of network embedding methods, there are still significant questions
surrounding their use, particularly with regard to selecting appropriate methods and assessing their
properties, interpreting the results, and ensuring adaptability across a range of contexts. These questions are
especially critical as datasets become more complex and require more sophisticated tools to achieve the
desired level of adaptability and interpretability, particularly in the biological contexts, where datasets may be
particularly noisy, leading to errors in the learning process.

Another relevant aspect is quantifying the quality of the embedding by comparing it to methods
operating directly in the original space. For example, Nelson et al [10] showed that, in the context of
biological networks, working in the latent space is not consistently superior to working in the original space,
with the exception of clustering. This observation can be explained by the fact that most embedding methods
preserve the neighbourhood structure, which significantly influences node clustering. However, when
addressing tasks like link prediction or network alignment, this question needs careful consideration. We
therefore advocate more awareness to this issue in current and future network embedding methods.
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In recent years, there has been a substantial increase in the number of network embedding methods,
making it challenging to stay up-to-date in this rapidly evolving field. Therefore, it is crucial to have access to
a comprehensive review of the state-of-the-art methods. Our network embedding review provides not only a
summary of the current state-of-the-art, but also lays the foundation for future developments by presenting
a flexible yet rigorous mathematical perspective-based taxonomy of embedding methods. Despite the many
advancements in the field, challenges remain regarding the selection and interpretability of these methods.
To address these issues, we offer a set of guidelines for practical applications that take into account these
considerations and are aligned with the latest developments in the field.
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Laplacians Topological, Algebraic and Geometric Learning Workshops 2022 (PMLR) pp 28–36
[199] Krzakala F, Moore C, Mossel E, Neeman J, Sly A, Zdeborová L and Zhang P 2013 Spectral redemption in clustering sparse

networks Proc. Natl Acad. Sci. 110 20935–40
[200] Torres L, Suárez-Serrato P and Eliassi-Rad T 2019 Non-backtracking cycles: length spectrum theory and graph mining Appl.

Netw. Sci. 4 1–35
[201] Gu W, Tandon A, Ahn Y Y and Radicchi F 2021 Principled approach to the selection of the embedding dimension of networks

Nat. Commun. 12 3772
[202] Zhang Y J, Yang K C and Radicchi F 2021 Systematic comparison of graph embedding methods in practical tasks Phys. Rev. E

104 044315
[203] Tandon A, Albeshri A, Thayananthan V, Alhalabi W, Radicchi F and Fortunato S 2021 Community detection in networks using

graph embeddings Phys. Rev. E 103 022316
[204] Srinivasan B and Ribeiro B 2019 arXiv:1910.00452
[205] Macqueen J 1967 Some methods for classification and analysis of multivariate observations 5th Berkeley Symp. on Mathematical

Statistics and Probability pp 281–97
[206] Kojaku S, Radicchi F, Ahn Y Y and Fortunato S 2023 Network community detection via neural embeddings (arXiv:2306.13400)
[207] Chami I, Gu A, Nguyen D P and Re C 2021 HoroPCA: hyperbolic dimensionality reduction via horospherical projections Proc.

38th Int. Conf. on Machine Learning (Proc. Machine Learning Research vol 139) ed MMeila and T Zhang (PMLR) pp 1419–29
(available at: https://proceedings.mlr.press/v139/chami21a.html)

[208] Rissaki A, Scarone B, Liu D, Pandey A, Klein B, Eliassi-Rad T and Borkin M A 2022 BiaScope: visual unfairness diagnosis for
graph embeddings 2022 IEEE Visualization in Data Science (VDS) pp 27–36

[209] MacArthur B D, Sánchez-García R J and Anderson J W 2008 Symmetry in complex networks Discrete Appl. Math. 156 3525–31
[210] MacArthur B D and Sánchez-García R J 2009 Spectral characteristics of network redundancy Phys. Rev. E 80 026117
[211] Sánchez-García R J 2020 Exploiting symmetry in network analysis Commun. Phys. 3 87
[212] Wang J, Huang Y, Wu F X and Pan Y 2012 Symmetry compression method for discovering network motifs IEEE/ACM Trans.

Comput. Biol. Bioinform. 9 1776–89
[213] Dai H, Dai B and Song L 2016 Discriminative embeddings of latent variable models for structured data Proc. 33rd Int. Conf. on

Int. Conf. on Machine Learning (ICML ’16) vol 48 (JMLR.org) pp 2702–11
[214] Duvenaud D K, Maclaurin D, Iparraguirre J, Bombarell R, Hirzel T, Aspuru-Guzik A and Adams R P 2015 Convolutional

networks on graphs for learning molecular fingerprints Advances in Neural Information Processing Systems vol 28, ed C Cortes,
N Lawrence, D Lee, M Sugiyama and R Garnett (Curran Associates, Inc.) (available at: https://proceedings.neurips.cc/paper/
2015/file/f9be311e65d81a9ad8150a60844bb94c-paper.pdf)

[215] Kearnes S, McCloskey K, Berndl M, Pande V and Riley P 2016 Molecular graph convolutions: moving beyond fingerprints J.
Comput.-Aided Mol. Des. 30 595–608

[216] Bruna J, Zaremba W, Szlam A D and LeCun Y 2014 CoRR (arXiv:1312.6203)
[217] Feng J, Huang M, Yang Y and Zhu X 2016 GAKE: graph aware knowledge embedding Proc. COLING 2016, the 26th Int. Conf. on

Computational Linguistics: Technical Papers (The COLING 2016 Organizing Committee) pp 641–51 (available at: https://
aclanthology.org/C16-1062)

[218] Fan J, Cannistra A, Fried I, Lim T, Schaffner T, Crovella M, Hescott B and Leiserson M D 2018 bioRxiv Preprint (22 March 2023)
[219] Heimann M, Shen H, Safavi T and Koutra D 2018 REGAL: representation learning-based graph alignment Proc. 27th ACM Int.

Conf. on Information and Knowledge Management (CIKM ’18) (Association for Computing Machinery) pp 117–26
[220] Fahimipour A K and Gross T 2020 Mapping the bacterial metabolic niche space Nat. Commun. 11 4887
[221] Diaz-Papkovich A, Anderson-Trocmé L, Ben-Eghan C and Gravel S 2019 UMAP reveals cryptic population structure and

phenotype heterogeneity in large genomic cohorts PLoS Genet. 15 e1008432
[222] Han P, Yang P, Zhao P, Shang S, Liu Y, Zhou J, Gao X and Kalnis P 2019 GCN-MF: disease-gene association identification by

graph convolutional networks and matrix factorization Proc. 25th ACM SIGKDD Int. Conf. on Knowledge Discovery and Data
Mining (KDD ’19) (Association for Computing Machinery) pp 705–13

[223] Rotmensch M, Halpern Y, Tlimat A, Horng S and Sontag D 2017 Learning a Health Knowledge Graph from Electronic Medical
Records Sci. Rep. 7 5994

[224] Wu T, Wang Y, Wang Y, Zhao E, Yuan Y and Yang Z 2019 arXiv:1910.02574
[225] Graham R L and Winkler P M 1985 On isometric embeddings of graphs Trans. Am. Math. Soc. 288 527–36
[226] Linial N, London E and Rabinovich Y 1995 The geometry of graphs and some of its algorithmic applications Combinatorica

15 215–45
[227] Linial N 2003 arXiv:math/0304466
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