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Abstract—Deploying reconfigurable intelligent surfaces (RIS)
is promising for enhancing the transmission reliability of wireless
communications by controlling the wireless environment, in
which the active beamforming at the base station and the
passive beamforming at the RIS are jointly designed based on
the acquisition of channel state information. Hence, channel
estimation is crucial for RIS-aided systems. Due to the lack of
active radio frequency chains at the RIS to process and transmit
pilot sequences, only the cascaded twin-hop transmitter-RIS-
receiver channel can be estimated, which results in extremely
high pilot overhead, when a large number of RIS reflecting
elements is used. As a remedy, we propose a channel estimation
method relying on low pilot overhead, namely the Karhunen-
Loève transformation based linear minimal mean square error
(KL-LMMSE) estimator. This exploits the spatial correlation
of the RIS-cascaded channels, for our multi-cell multiple-input
and multiple-output RIS-aided systems. Furthermore, we extend
our investigations to the effects of realistic phase quantization
errors. Additionally, we derive the theoretical mean square error
(MSE) of our proposed channel estimators verified by numerical
simulations, and compare the results to various benchmark
schemes. We show that the MSE performance of our proposed
KL-LMMSE estimator is better than that of the state-of-the-art
low-overhead channel estimators.

Index Terms—Reconfigurable intelligent surfaces (RIS), chan-
nel estimation, linear minimal mean square error (LMMSE),
Karhunen-Loève (KL) transformation, phase quantization error.

I. INTRODUCTION

IN the fifth-generation (5G) systems, various advanced
technologies, such as millimeter wave (mmWave) [1] and

massive multiple-input and multiple-output (MIMO) schemes
[2], are employed for increasing the performance of ultra-
dense networks. Recently, reconfigurable intelligent surfaces
(RIS) have been widely hailed as a promising technique
of improving the spectral efficiency, energy efficiency and
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coverage range of the next-generation systems [3]. Briefly, the
RIS is an artificial metamaterial surface comprised of a large
number of passive reflecting elements employed between the
base station (BS) and the user equipment (UE) [4]–[7]. By
adjusting the RIS coefficients, i.e. the phase and amplitude
of the reflecting elements, the wireless channel environment
can be beneficially ameliorated. The RIS has a wide range of
promising applications, such as increasing the channel gains
via passive beamforming at the RIS and the active beamform-
ing at the BS [8], [9], constructing physical layer security
networks [10], reducing the inter-cell interference for cell-edge
users [11], providing simultaneous wireless information and
power transfer [12], and aiding mobile edge computation [13]
and over-the-air computation [14], etc. However, to support
these applications and realize performance enhancements for
wireless systems, high-precision channel state information
(CSI) acquisition is a crucial issue. Since the RIS operating
passive, without active signal processing units, the BS-RIS
channel links and RIS-UE channel links cannot be directly
estimated. Therefore, channel estimation is more challenging
in RIS-aided systems than in conventional wireless networks.

Firstly, in the case of a single UE, the least square (L-
S) method is widely employed [15]–[18] for the channel
estimation of RIS-aided wireless communications. In [15],
Mishra et al. proposed simple ON/OFF RIS training patterns
for estimating the cascaded BS-RIS-UE links. However, in
the context of ON/OFF patterns, only a single reflecting
element is activated in each symbol slot for the estimation
of the cascaded link. Hence, a large number of elements
are not fully utilized, which degrades the channel estimation
accuracy. To deal with this issue, Jensen et al. [16] conceived a
discrete Fourier transformation (DFT) matrix based method for
designing RIS training patterns, demonstrating that the DFT-
based RIS training patterns succeed in achieving the minimal
mean square error (MSE) of channel estimation. However, in
practice the RIS elements has finite phase resolution, hence
only a set of discrete phase shifts can be used by the RIS
elements. In this practical context, Zhou et al. [17] employed
the Hadamard matrix for the design of RIS patterns, where
only two phase shifts, namely 0 and π, are used for each
RIS reflecting element. They demonstrated that only a slight
MSE performance erosions imposed compared to the DFT-
based RIS training patterns [16]. In [18], An et al. proposed an
optimal pilot power allocation strategy for the LS estimator to



2

improve the throughput of RIS-aided communication systems.
In this LS method, the receiver estimates the channels purely
based on its own observations without any prior knowledge
of the channels. When the statistical channel information is
available, the linear minimum mean square error (LMMSE)
method can be employed for enhancing the channel estimation
performance [19]. In [20], Zhang et al. proposed an optimized
channel estimator in a closed-form for RIS-assisted systems in
mmWave channels based on the MSE minimization criterion.

However, the above methods have extremely high pilot
overhead, when a large number of reflecting elements are
employed, since at least N + 1 symbol slots are required in
each coherence intervals at the stage of channel estimation
for an N -element RIS system. To deal with this, an element
grouping based idea was adopted in [21]–[24] for the LS
estimator to cut down pilot overhead. Specifically, the N
reflecting elements of the RIS are partitioned into NG compact
groups, and the cascaded channel links corresponding to the
elements in the same group are assumed to have identical
CSI by exploiting the high spatial correlation among adjacent
RIS-cascaded channels. In this case, only a minimum of
NG + 1 symbol slots are required in each coherence interval
for channel estimation, which can significantly reduce the pilot
overhead upon reducing the number of groups NG , albeit at
the cost of degrading the estimation accuracy. Furthermore,
in [25], Huang et al. proposed a novel semi-blind channel
estimator which exploits the data symbols for channel estima-
tion enhancement and only a fraction of full-pilot signaling
overhead is required.

On the other hand, upon considering multiple UEs, Al-
wazani et al. [26] proposed to extend the single-UE channel
method. Specifically, when there are K UEs in the RIS-aided
wireless system, each RIS training pattern lasts K symbol
slots, in which the K UEs send orthogonal pilot sequences
to eliminate the inter-user interference. At the BS, the CSI
of each UE can be estimated similarly to the single-UE case
by using a Bayesian minimum mean squared error (MMSE)
estimator. In this case, at least K(N + 1) symbol slots are
required in each coherence interval at the stage of channel
estimation for an N -element RIS system. In [27], [28], the
authors cut down the pilot overhead by exploiting the property
that all users share the common BS-RIS link. Specifically, first
the cascaded BS-RIS-UE channel of a selected reference UE
is estimated via the same methods in the single-UE case. Then
the RIS-UE links of other K − 1 UEs are estimated based on
the estimation of the selected reference UE, which requires the
minimal pilot overhead of K+N+max(K−1, (K−1)dNM e)
instead of K(N+1), where M is the number of BS antennas.
However, the minimum number of symbol slots required for
channel estimation in each coherence interval in [27], [28] is
still larger than the number of RIS elements, resulting in a
high pilot overhead when a large number of RIS elements are
used. Besides, in [27], [28], the authors focused on single-cell
wireless communication. While the RIS is promising in terms
of reducing the inter-cell interference in multi-cell systems
[29], it relies on the accurate of CSI acquisition, including
both the channels from the UEs in the local cell to the BS
and the channels from the UEs in the adjacent cells to the BS.

Furthermore, the above channel estimation methods are based
on the assumption that the phase shift of each RIS element
can be adjusted perfectly. However, due to the limited phase
shift resolution, the RIS having phase quantization errors is
inevitable in the reflecting elements. Thus, it is meaningful to
take the RIS phase quantization error into account in designing
the channel estimation algorithm.

In this paper, we propose a low-overhead instantaneous CSI
acquisition method for RIS-aided multi-cell MIMO commu-
nications, namely the Karhunen-Loève transformation based
LMMSE (KL-LMMSE) channel estimator, by exploiting the
spatial correlation of the cascaded channels. Furthermore, our
channel estimators takes into account the phase quantization
error of RIS. Additionally, we verify the accuracy of our
theoretical analysis by simulation results. Furthermore, we
compare them to various benchmark schemes. Against this
background, the novelty of the proposed low pilot overhead
channel estimator is compared to the existing solutions in the
literature [15]–[28] of the RIS-aided systems in Table I. The
contributions of our paper are further derived as follows:

• By considering the high pilot overhead of the state-of-
the-art (SoA) LMMSE estimator, we propose the novel
KL-LMMSE estimator, where we compress the cascaded-
RIS channels via the Karhunen-Loève (KL) transform
applied to the cascaded-RIS channel covariance matrix
for reducing the pilot overhead. Since the KL transform is
the optimal transform for linear approximations, it leads
to lower MSE for the estimated channels compared to the
estimators based on grouping ideas proposed in [21]–[24].

• We further extend the SoA LMMSE estimator and the
proposed KL-LMMSE estimator by considering practical
limited phase shift resolution of the RIS, including the
RIS phase quantization error having both von Mises
distribution and uniform distribution, and we also derive
the theoretical MSE.

• Finally, the theoretical analysis and simulation results
demonstrate that the LMMSE estimators have lower MSE
than the LS estimators due to the utilization of the first
moment and second moment of signal links. Furthermore,
it is shown that the MSE performance of our proposed
KL-LMMSE estimator tends to that of the SoA LMMSE
estimator upon increasing the RIS spatial correlation,
despite having a reduced pilot overhead.

The rest of this paper is organized as follows. In Section
II, we present the system model. The low-overhead LMMSE
channel estimator is derived in Section III. Section IV presents
the theoretical analysis of the proposed channel estimator,
while our simulation results are presented in Section V. Finally
we conclude in Section VI.

Notations: Vectors and matrices are denoted by boldface
lower and upper case letters, respectively, (·)T, (·)∗, and (·)H

represent the transpose, conjugate and Hermitian transpose
operation, respectively, dae is the minimal integer larger than
a, Cm×n denotes the space of m×n complex-valued matrix, �
and ⊗ denotes the Hadamard product and Kronecker product,
respectively, ai is the ith element in vector a, 0n and 1n rep-
resent the n×1 zero vector and n×1 one vector, respectively,



3

TABLE I: The novelty comparison of the proposed low pilot overhead channel estimation for the RIS-aided wireless
communications to the existing solutions in the literatures [15]–[28].

Our paper [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] [28]

Multi-user 4 4 4 4

Spatial correlated RIS 4 4 4 4 4 4 4 4

Estimation method KL-LMMSE LS LS LS LS LMMSE MMSE LS LS LS LS Semi-blind MMSE LMMSE LS

Reduced pilot overhead 4 4 4 4 4 4 4 4

RIS phase quantization error 4

Multi-cell 4

On1×n2
represents the n1×n2 zero matrix, In represents the

n×n identity matrix, diag{a} denotes a diagonal matrix with
the diagonal elements being the elements in a in order. A
circularly symmetric complex Gaussian random vector with
mean µ and covariance matrix Σ is denoted as CN (µ,Σ),
E[x] represents the mean of the random vector x, Cxy is the
covariance matrix between the random vectors x and y.

II. SYSTEM MODEL

The system model of the RIS-aided multi-cell wireless
MIMO systems [29], [30] is shown in Fig. 1, where L cells
are supported by a RIS to increase the transmission reliability
and diminish the inter-cell interference. We denote these cells
as cell-1, cell-2, · · · , cell-L and the corresponding BSs as
BS-1, BS-2, · · · , BS-L, each of which is equipped with
M1,M2, · · · ,ML antennas, respectively, to communicate with
several multi-antenna users. We denote the number of users in
cell-l as Ul, where each of them is equipped with Vl antennas.
Thus, the total number of user antennas (UANs) in cell-l is
given by Kl = UlVl with each of them denoted as UAN-kl
(kl = 1, 2, · · · ,Kl). Thus, cell-l is essentially an Ml × Kl

MIMO system supported by a RIS. The parameters of the
RIS elements are configured by the RIS controller, which
can deliver the control data with the aid of the BSs via a
Central Processing Unit (CPU). We consider the uplink in a
time division duplex (TDD) channel estimation scenario by ex-
ploiting the channel’s reciprocity [31]. Specifically, the phase
of each RIS element is designed based on the pre-defined
RIS patterns, and the UANs transmit user pilot sequences
(orthogonal or non-orthogonal) to the BSs. The BSs estimate
the CSI, including the RIS-related links and the direct UAN-
BS links, based on its observation.

Although employing RIS is beneficial for enhancing the
channel capacity, it brings about many challenges for the
channel estimators. Specifically, as shown in Fig. 1, the
observation at BS-l includes the pilot sequences transmitted
not only from the UANs in cell-l but also from the UANs
in the other L − 1 cells, although the CSI in cell-l can be
accurately estimated at BS-l, provided that all the UANs in
all cells employ orthogonal pilot sequences. However, this
results in an extremely high pilot overhead, when a large
number of RIS elements is used due to the limitation of
each coherence interval length. In a practical system, usually
non-orthogonal pilot assignment is adopted, where the pilot
sequences transmitted within the same cell are orthogonal,

but they are reused in all the cells [31]. In this case, the
intra-cell interference can be eliminated, but some inter-
cell interference will still exist. Furthermore, compared to
the family of conventional wireless communication systems
operating without RIS, the RIS may in fact precipitate extra
inter-cell interference, which degrades the channel estimation
performance. For example, in Fig. 1, the inter-cell interference
at BS-l results from both the direct UAN-BS links plus also
from the RIS-related links arriving from the user antennas
in the other L − 1 cells to BS-l. Furthermore, the inter-cell
interference is exacerbated with the increase of the number of
RIS elements. As shown in Fig. 1, the inter-cell interference
at UAN-RIS links can be strengthened upon increasing the
number of deployed RIS elements. Harnessing the RIS for
enhancing the channel capacity also requires accurate channel
estimation, including both the desired links and inter-cell
interference links. Therefore, we propose a channel estimation
method for RIS-aided multi-cell communications, which can
effectively deal with the issue of inter-cell interference, despite
requiring a low pilot overhead.

A. RIS Architecture
The RIS is a uniform rectangular planar array (URPA) con-

taining N = Nx ×Ny reflecting elements, where Nx and Ny
represent the numbers of reflecting elements in the horizontal
and vertical directions. The distance between the adjacent
RIS elements is δ(x) and δ(y) in the horizontal and vertical
directions, respectively. The phase shift of each RIS element is
configured by the RIS controller, as shown in Fig. 1. We denote
the RIS phase shift vector as θ = [ejθ1 , ejθ2 , · · · , ejθN ], where
θn is the phase shift of the n-th RIS element and θn ∈ [−π, π).
Due to the limited RIS phase shift resolution, the phase shift
of each RIS element cannot be precisely designed. Therefore,
in a practical RIS, the phase shift of each reflecting element
can be modelled as θ′n = θn + θ̃n, where θn represents the
expected phase shift of the n-th reflecting element and θ̃n
represents the phase quantization error of the n-th reflecting
element [32].

Referring to [32]–[34], the phase shift of each reflecting el-
ement is subject to RIS phase error due to the finite-resolution
quantization, which results from hardware impairments (HWI),
since the high-resolution phase shift of each reflecting element
is tuned by the bias voltage of the varactor diode on the RIS
metasurface [35]. Due to the uncertainty of the hardware cir-
cuit response, the RIS phase error is time-varying. Therefore,
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Fig. 1: System model of the RIS-aided multi-cell MIMO wireless communications, where only the links to BS-l is presented
and the links to other BSs can be obtained similarly.

the phase quantization errors can be modelled as independent
and identically distributed (i.i.d.) random variables having the
mean of 0 [32]–[34]. The most widely used probability density
functions to describe the phase quantization error are the von
Mises distribution and the uniform distribution, denoted as
θ̃n ∼ VM(0, κp) and θ̃n ∼ U(−ιp, ιp), respectively, where
κp is the concentration parameter in the von Mises distribution
and (−ιp, ιp) is the support in the uniform distribution. If we
denote the desired RIS phase shift vector by θ, and the phase
quantization error vector by θ̃ = [ejθ̃1 , ejθ̃2 , · · · , ejθ̃N ], then
the practical phase shift vector θ′ = θ � θ̃.

B. Channel Model

For simplicity, we combine the UAN index sets {k1|k1 =
1, 2, · · · ,K1}, {k2|k2 = 1, 2, · · · ,K2}, · · · , {kL|kL =
1, 2, · · · ,KL} into the set {k|k = 1, 2, · · · ,K}, where K =∑L
l=1Kl. We denote the large scale fading between UAN-k

and BS-l as %b(k,l) , from the UAN-k to the RIS as %g(k) , and
from the RIS to the BS-l as %A(l) , where %b(k,l) = C0d

−αb

b(k,l) ,
%g(k) = C0d

−αg

g(k) , and %A(l) = C0d
−αA

A(l) [36]. Here C0 is the
path loss at the reference distance of 1 meter. Furthermore,
db(k,l) represents the distance between UAN-k and the BS-l,
dg(k) is the distance between the UAN-k and the RIS, and
dA(l) is the distance between the RIS and the BS-l. Finally,
αb, αg αA represent the path loss exponent of the UAN-BS
path, UAN-RIS path, and RIS-BS path, respectively.

As for the small-scale fading, the direct links impinging
from UAN-k to the BS-l is denoted as b(k,l) ∈ CMl×1.
The links impinging from UAN-k to the RIS is denoted as
g(k) ∈ CN×1. The link spanning from the RIS to the BS-l
is given by A(l) = [a

(l)T
1 ,a

(l)T
2 , · · · ,a(l)T

Ml
]T, where a

(l)
ml =

[a
(l)
ml,1

, a
(l)
ml,2

, · · · , a(l)
ml,N

] represents the channel vector from
the RIS to the mlth BS-l antenna. Therefore, the equivalent
channel spanning from UAN-k to BS-l can be represented as

h(k,l) =
√
%g(k)%A(l)A(l)Θg(k) +

√
%b(k,l)b(k,l), (1)

where Θ = diag{θ}.

We assume that the direct links from the UANs to BS-l are
blocked, so the RIS creates reflected paths between the UANs
and BS-l [37]. Therefore, it is reasonable to assume that the
UAN-BS links follow Rayleigh fading, while the UAN-RIS
links and the RIS-BS link obey Rician fading. The Rayleigh
channel spanning from UAN-k to BS-l is given by

b(k,l) ∼ CN (0Ml
, IMl

), (2)

and the Rician channel impinging from UAN-k to the RIS is

g(k) =

√
κg

1 + κg
g(k) +

√
1

1 + κg
g̃(k), (3)

where κg is the Rician factor of the UAN-RIS links, while
g(k) ∈ CN×1 and g̃(k) ∈ CN×1 represent the line-of-sight
(LoS) and non-line-of-sight (NLoS) components, respectively.
The LoS component g(k) is expressed as [38]

g(k) =
[
1, e−j

2π
λ (δ(x) sinφ

(A)
k cosϕ

(A)
k +δ(y) cosφ

(A)
k ), · · · ,

e−j
2π
λ (δ(x)(Nx−1) sinφ

(A)
k cosϕ

(A)
k +δ(y)(Ny−1) cosφ

(A)
k )
]T
, (4)

where λ is the carrier wavelength, φ(A)
k and ϕ

(A)
k are the

elevation and azimuth angle of arrival (AoA) of signals from
UAN-k to the RIS, respectively. The NLoS component g̃(k)

is represented as g̃(k) ∼ CN (0N ,R), with R ∈ CN×N being
the covariance matrix of the channel vector g̃(k). In most
literature, it was assumed that the NLoS links corresponding
to all RIS elements are uncorrelated, so R = IN . However,
since a large number of passive RIS elements are densely
employed in a practical system, it is reasonable to model
the NLoS links corresponding to all RIS elements as being
spatially correlated [39]. Here, we employed the widely used
exponential correlation channel model to describe the spatial
correlation between the RIS-related links [39]–[42], since it
can characterize the impact of the reflecting element distance
on the channel correlation. It is worth noting that our proposed
channel estimation method is also suitable for other spatial
correlation models, such as the Bessel correlation model [43].
According to the exponential correlation channel model, R is



5

determined by the distance between the RIS elements, where

[R]n1,n2
= e−

δn1,n2
δ0 , in which δn1,n2

is the distance between
the n1th and n2th RIS element, and δ0 is a constant that
controls the level of correlation. For a user equipment, δ0
would be around half a wavelength, whereas for a stationary
equipment it could be as high as tens of wavelengths [44].
Therefore, g(k) is distributed as

g(k) ∼ CN
(√ κg

1 + κg
g(k),

1

1 + κg
R
)
. (5)

The Rician channel from the RIS to BS-l is given by

A(l) =

√
κA

1 + κA
A

(l)
+

√
1

1 + κA
Ã(l), (6)

where κA is the Rician factor of the RIS-BS links, A
(l) ∈

CMl×N and Ã(l) ∈ CMl×N represent the LoS and N-
LoS components, respectively. The LoS component A

(l)
=

f
(A(l))
AoA f

(A(l))
AoD , where f

(A(l))
AoD is the response of an N =

Nx ×Ny URPA at the RIS, given by [38]

f
(A(l))
AoD =

[
1, e−j

2π
λ (δ(x) sinφ

(D)
l cosϕ

(D)
l +δ(y) cosφ

(D)
l ), · · · ,

e−j
2π
λ (δ(x)(Nx−1) sinφ

(D)
l cosϕ

(D)
l +δ(y)(Ny−1) cosφ

(D)
l )
]
, (7)

where φ(D)
l and ϕ

(D)
l are the elevation and azimuth angle of

departure (AoD) of signals from the RIS to BS-l, respectively.
Furthermore, f

(A(l))
AoA is the response of the Ml-antenna uniform

linear array (ULA) at BS-l, based on [38]

f
(A(l))
AoA =

[
1, e−j

2π
λ d0 sinψ

(A)
l , · · · , e−j 2π

λ d0(Ml−1) sinψ
(A)
l

]T
,

(8)

where d0 is the distance between adjacent BS antennas,
and ψ(A) is the AoA of signals from the RIS to BS-l. We
introduce A

(l)
= [aT

1 ,a
T
2 , · · · ,aT

Ml
]T, where aml represents

the LoS channel from the RIS to the mlth BS-l antenna. The
NLoS component is Ã(l) = [ãT

1 , ã
T
2 , · · · , ãT

Ml
]T, where ãml

represents the NLoS channel from the RIS to the mlth BS-l
antenna, given by ãT

ml
∼ CN (0N ,R), with R ∈ CN×N being

the covariance matrix of the channel vector ãml . Since the
UAN-RIS links and the RIS-BS links share the same reflecting
surfaces, the covariance matrix of the channel vector ãml is the
same as that of UAN-RIS links. Therefore, aml is distributed
as

aT
ml
∼ CN

(√ κA
1 + κA

aT
ml
,

1

1 + κA
R
)
. (9)

III. LOW-OVERHEAD LMMSE CHANNEL ESTIMATION

The channel estimation regime of RIS-aided wireless sys-
tems is shown in Fig. 2. The statistical CSI, which mainly
depends on the AoA and AoD of each link and on the
location of mobile equipments, and the RIS covariance matrix
R, remain unchanged in a stationary interval. The statistical
CSI is estimated at the beginning of each stationary block,
and each stationary block can be divided into Q coherence
intervals, within each the instantaneous CSI are considered
constant [45]. Each coherence interval is comprised of 3

Fig. 2: Diagram of channel estimation for RIS-aided wireless
communication systems.

stages, including the instantaneous CSI estimation, joint RIS
and BS beamforming based on the estimated channels, and
data transmission. In this paper, we assume that the statistical
CSI, which can be estimated based on [46], is known and our
objective is that of estimating the instantaneous CSI in each
coherence interval.

A total of TK symbol slots are utilized for instantaneous
CSI estimation at the beginning of each coherence interval,
and T pre-defined RIS training patterns θ1,θ2, · · · ,θT are
activated in order. Specifically, from the 1st to the Kth symbol
slot, the RIS employs θ1. Then from the (K + 1)st to the
2Kth symbol slot, the RIS employs θ2 and so on. In the
duration of each RIS training pattern, orthogonal user pilots
are transmitted by the K UANs in the K symbol slots to
prevent pilot contamination. Specifically, the K × K DFT
matrix can be employed as orthogonal user pilots for K UANs.
We denote the K × K DFT matrix as Ω, given by Ω =
[x(1),x(2), · · · ,x(K)], where x(k) ∈ CK×1 represents the kth
column in Ω with x

(k)
i representing the pilot transmitted for

UAN-k during the ith symbol slot in each RIS training pattern.
Without loss of generality, we focus on the estimation of the

links to cell-l based on the observation at BS-l. The channel
estimation of links to the other L− 1 cells can be carried out
similarly. Thus, the subscript or superscript l is omitted in the
following analysis.

A. Channel Estimations for a Perfect RIS Architecture

Firstly, we focus our attention on RIS-aided communica-
tions relying on a perfect RIS architecture, i.e. without RIS
phase quantization error. The equivalent channel h(k) is

h(k) =
√
%g(k)%AAΘg(k) +

√
%b(k)b(k)

=[
√
%b(k)IM ,

√
%g(k)%AIM ⊗ θ]s(k), (10)

where s(k) = [b(k)T, s
(k)T
1 , · · · , s(k)T

M ]T, in which s
(k)
m ∈

CN×1 is the cascaded channel given by s
(k)
m = aT

m �
g(k) = [am,1g

(k)
1 , am,2g

(k)
2 , · · · , am,Ng(k)

N ]T. The UAN-RIS
channel g(k) and the RIS-BS channel A cannot be estimated
separately, since the RIS elements are passive. Fortunately,
estimating the cascaded channel s(k) is sufficient for designing
the RIS phase shift matrix for data transmission without loss of
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optimality. Therefore, our objective is to estimate s(k). Firstly,
we present the SoA LMMSE method, followed by our new
low-overhead method, namely the KL transformation based
LMMSE estimator.

1) SoA LMMSE method: In the state-of-the-art LMMSE
method, the observation at the BS in the ith symbol slot of
the tth (t = 1, 2, · · · , T ) RIS training pattern from the kth
UAN, denoted as y

(k)
i,t ∈ CM×1, is given by

y
(k)
i,t =

√
P [
√
%b(k)IM ,

√
%g(k)%AIM ⊗ θt]s

(k)x
(k)
i + n

(k)
i,t ,

(11)

where P is the transmit power at UANs, n
(k)
i,t ∈ CM×1 is

the noise at the BS antennas, and n
(k)
i,t ∼ CN (0M , σ

2
nIM )

with σ2
n being the noise power at the BS antennas, while

θt = [ejθt,1 , ejθt,2 , · · · , ejθt,N ]. By stacking the observation
y

(k)
i,1 ,y

(k)
i,2 , · · · ,y

(k)
i,T , we can get

y
(k)
i =[y

(k)T
i,1 ,y

(k)T
i,2 , · · · ,y(k)T

i,T ]T =
√
PZ(k)s(k)x

(k)
i + n

(k)
i ,

(12)

where n
(k)
i = [n

(k)T
i,1 ,n

(k)T
i,2 , · · · ,n(k)T

i,T ]T and

Z(k) =


√
%b(k)IM ,

√
%g(k)%AIM ⊗ θ1√

%b(k)IM ,
√
%g(k)%AIM ⊗ θ2

...√
%b(k)IM ,

√
%g(k)%AIM ⊗ θT

 . (13)

Since s(k) is an M(N + 1) × 1 vector and Z(k) is an
MT ×M(N + 1) matrix, to ensure that s(k) can be uniquely
estimated, the number of RIS training patterns must satisfy
T ≥ N + 1. As for the design of RIS training patterns, we
have the following two scenarios.

• DFT matrix: Referring to [16], a 2dlog2 Te×2dlog2 Te DFT
matrix can be employed for the design of the RIS training
patterns θ1,θ2, · · · ,θT . Specifically, [1,θt] is used for the
first N + 1 elements in the tth row of the 2dlog2 Te ×
2dlog2 Te DFT matrix.

• Hadamard matrix: Referring to [17], since the RIS train-
ing patterns based on the DFT matrix require accurate
phase shift resolution, we can employ a 2dlog2 Te ×
2dlog2 Te Hadamard matrix to replace the DFT matrix. In
this scenario the Hadamard matrix representing the RIS
pattern assists us in avoiding the RIS phase quantization
error, since it is based on two discrete phase shifts, i.e. 0
and π.

In each RIS training pattern, the conjugate transpose of
the user pilot sequences, i.e. [x

(k)∗
1 , x

(k)∗
2 , · · · , x(k)∗

K ], is de-
signed as the receive combining vector for the BS observation
y

(k)
1 ,y

(k)
2 , · · · ,y(k)

K to estimate s(k). Thus, we can get the
equivalent BS observation for the estimation of s(k), denoted
by y(k), as

y(k) =

K∑
i=1

y
(k)
i x

(k)∗
i

=
√
P

K∑
i=1

( K∑
k=1

Z(k)s(k)x
(k)
i x

(k)∗
i

)
+

K∑
i=1

n
(k)
i x

(k)∗
i

=K
√
PZ(k)s(k) + n′

(k)
, (14)

where n′
(k) ∼ CN (0MT ,Kσ

2
nIMT ). Therefore, (14) is equiv-

alent to

y(k) =
√
KPZ(k)s(k) + n(k), (15)

with n(k) ∼ CN (0MT , σ
2
nIMT ).

To design the LMMSE algorithm, the mean and the covari-
ance matrix of s(k) should be obtained. Firstly, the mean of
s(k) is given by

E[s(k)] =E[b(k)T, s
(k)T
1 , · · · , s(k)T

M ]T

=

√
κAκg

(1 + κA)(1 + κg)


0M

aT
1 � g(k)

...
aT
M � g(k)

 . (16)

Then, the covariance matrix of s(k) is formulated
as Cs(k)s(k) = E[s(k)s(k)H] − E[s(k)]E[s(k)H], where
E[s(k)]E[s(k)H] can be calculated based on (16) as

E[s(k)]E[s(k)H]

=


OM×M OM×N · · · OM×N

ON×M A1,1 �G
(k) · · · A1,M �G

(k)

...
...

. . .
...

ON×M AM,1 �G
(k) · · · AM,M �G

(k)

 ,
(17)

and E[s(k)s(k)H] can be expressed as

E[s(k)s(k)H]

=


OM×M OM×N · · · OM×N
ON×M A1,1 �V(k) · · · A1,M �V(k)

...
...

. . .
...

ON×M AM,1 �V(k) · · · AM,M �V(k)


+

[
IM OM×MN

OMN×M IM ⊗ (RA �V(k))

]
, (18)

where V(k) = G
(k)

+ Rg. In (17) and (18), RA = 1
1+κA

R,

Rg = 1
1+κg

R, G
(k)

=
κg

1+κg
g(k)g(k)H and Am1,m2

=
κA

1+κA
aT
m1

a∗m2
. According to (17) and (18), we arrive at

Cs(k)s(k) =


OM×M OM×N · · · OM×N
ON×M A1,1 �Rg · · · A1,M �Rg

...
...

. . .
...

ON×M AM,1 �Rg · · · AM,M �Rg


+

[
IM OM×MN

OMN×M IM ⊗ (RA �V(k))

]
. (19)

Based on (16) and (19), the SoA LMMSE estimator of s(k),
denoted as ŝ

(k)
S , is given by

ŝ
(k)
S = E[s(k)] + Cs(k)y(k)C−1

y(k)y(k)(y
(k) − E[y(k)]), (20)

where the detailed derivation can be found
in [31]. Since E[y(k)] =

√
KPZ(k)E[s(k)],
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Cs(k)y(k) =
√
KPCs(k)s(k)Z

(k)H and Cy(k)y(k) =

KPZ(k)Cs(k)s(k)Z
(k)H + σ2

nIMT , and we can get the
SoA LMMSE estimator of s(k) as

ŝ
(k)
S =E[s(k)] +

√
KPCs(k)s(k)Z

(k)H(KPZ(k)Cs(k)s(k)Z
(k)H

+ σ2
nIMT )−1(y(k) −

√
KPZ(k)E[s(k)]). (21)

In the SoA LMMSE estimator, the number of RIS training
patterns T must satisfy T ≥ N + 1. Since a large number
of reflecting elements are used in a practical RIS-aided com-
munication systems, the SoA LMMSE cannot work when the
coherence interval length is limited. Therefore, it is necessary
to conceive low-overhead channel estimation methods. In
[21]–[24], the authors partitioned the N RIS elements into
NG groups, each of which contains N

NG
elements, where it was

assumed that the channel links corresponding to the reflecting
elements in the same group have identical CSI. Therefore,
we can combine the grouping idea and the LMMSE method
to derive a grouping-based LMMSE estimator to reduce the
pilot overhead. However, the grouping idea has the drawback
that it assumes the NLoS CSI corresponding to the RIS
elements in the same group is identical, while the NLoS
CSI corresponding to the RIS elements in different groups is
uncorrelated. In practice, this assumption is difficult to satisfy,
because this grouping idea is based on the assumption that
the spatial correlation matrix is R = ING ⊗

(
1 N
NG
· 1T

N
NG

)
.

To overcome these drawbacks, we propose the following KL-
LMMSE method.

2) KL transformation based LMMSE method: As described
in [47], an N × 1 correlated random vector can be ap-
proximately represented by an NE (NE ≤ N ) parameter-
s after the Karhunen-Loève transform. Specifically, if an
N × 1 correlated random vector x ∈ CN×1 has a mean
of 0N and a covariance matrix of Cxx, the NE -order (1 ≤
NE ≤ N ) Karhunen-Loève transform of x is given by
xE =

∑NE
i=1

√
λiwiui, where λ1, λ2, · · · , λN are the eigen-

values of Cxx in the descending order, and u1,u2, · · · ,uN
are the corresponding eigen-vectors. This means that the
N × 1 vector x can be approximately represented by NE
parameters w1, w2, · · · .wNE . The corresponding Karhunen-
Loève transform error is xE,e = x−xE =

∑N
i=NE+1

√
λiwiui.

The random variables w1, w2, · · · , wN are i.i.d. with zero
mean and a variance of 1. The Karhunen-Loève transform
is optimal for linear approximations, since it results in the
least mean square error of xE,e [47], where the value of
NE determines the approximation accuracy. Therefore, we
can employ the Karhunen-Loève transform for estimating the
vectors s(k). Here, we reserve the direct link b(k) in s(k), and
only employ the Karhunen-Loève transform for the vectors
s

(k)
1 , s

(k)
2 , · · · , s(k)

M . Specifically, we select s
(k)
1 , s

(k)
2 , · · · , s(k)

M

from s(k) and introduce s′
(k)

= [s
(k)T
1 , s

(k)T
2 , · · · , s(k)T

M ]T.
The covariance of s′

(k) can be readily obtained by selecting
the corresponding elements in Cs(k)s(k) . The Karhunen-Loève
transform of s(k), denoted as s

(k)
E , is given by

s
(k)
E = E[s(k)] + T

(k)
E w

(k)
E , (22)

while the Karhunen-Loève transform error of s(k) is

s
(k)
E,e = T

(k)
E,ew

(k)
E,e, (23)

where w
(k)
E = [b(k)T, w

(k)
1 , w

(k)
2 , · · · , w(k)

MNE
]T, w

(k)
E,e =

[w
(k)
MNE+1, w

(k)
MNE+2, · · · , w

(k)
MN ]T and

TE =

[
IM OM×MNE

OMN×M

[√
λ

(k)
1 u

(k)
1 , · · · ,

√
λ

(k)
MNE

u
(k)
MNE

] ] ,
(24)

TE,e =
[√

λ
(k)
MNE+1u

(k)
MNE+1, · · · ,

√
λ

(k)
MNu

(k)
MN

]
, (25)

in which λ
(k)
1 , λ

(k)
2 , · · · , λ(k)

MN are the eigen-values of
Cs′(k)s′(k) in the descending order, and u

(k)
1 ,u

(k)
2 , · · · ,u(k)

MN

are the corresponding eigen-vectors. Then, the KL-LMMSE
method has the following two stages.

In the first stage, the LMMSE associated with the RIS
training patterns satisfying T ≥ NE + 1 is employed for
estimating the vector w

(k)
E based on the BS observation y(k).

Here, the BS observation y(k) can be represented as

y(k) =
√
KPZ(k)s(k) + n(k)

= E[y(k)] +
√
KPZ(k)(s(k) − E[s(k)]) + n(k)

= E[y(k)] +
√
KPZ(k)(T

(k)
E w

(k)
E + T

(k)
E,ew

(k)
E,e) + n(k),

(26)

where Z(k) is given in (13). Based on (26) and on the definition
of the LMMSE algorithm, the LMMSE estimator of w

(k)
E is

formulated as

ŵ
(k)
E = E[w

(k)
E ] + C

w
(k)
E y(k)C

−1
y(k)y(k)(y

(k) − E[y(k)]), (27)

where E[y(k)] =
√
KPZ(k)E[s(k)], and E[w

(k)
E ] = 0MT .

C
w

(k)
E y(k) and Cy(k)y(k) are given by

C
w

(k)
E y(k) =

√
KP (C

w
(k)
E w

(k)
E

T
(k)H
E Z(k)H

+ C
w

(k)
E w

(k)
E,e

TH
E,eZ

(k)H), (28)

Cy(k)y(k) = KPZ(k)Cs(k)s(k)Z
(k)H + σ2

nIMT , (29)

in which Cs(k)s(k) is given in (19), and

C
w

(k)
E w

(k)
E

= IM(NE+1), (30)

C
w

(k)
E w

(k)
E,e

= OM(NE+1)×M(N−NE). (31)

Thus, upon substituting (28) and (29) into (27), we can
formulate the LMMSE estimator of w

(k)
E as

ŵ
(k)
E =

√
KPT

(k)H
E Z(k)H(KPZ(k)Cs(k)s(k)Z

(k)H

+ σ2
nIMT )−1(y(k) −

√
KPZ(k)E[s(k)]). (32)

In the second stage, when the vector w
(k)
E is estimated, the

recovered vector s is ŝ
(k)
E = E[s(k)]+T

(k)
E ŵ

(k)
E . According to

(32), we can get the KL-LMMSE estimator of s(k) as

ŝ
(k)
E =E[s(k)] +

√
KPT

(k)
E T

(k)H
E Z(k)H(KPZ(k)Cs(k)s(k) ·
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Z(k)H + σ2
nIMT )−1(y(k) −

√
KPZ(k)E[s(k)]). (33)

It is notable that when the direct channel is unobstructed, the
performance gain attained by deploying a RIS would become
less obvious due to the twin-hop path-loss characterize of
the RIS, i.e. %b(k) � %g(k)%A [36]. However, the channel
estimation method proposed in this paper would still work
well, since it is not affected by the presence or absence of the
direct channel link.

B. Channel Estimation in the Face of RIS Phase Quantization
Error

As we mentioned in Section II-A, the RIS phase quantiza-
tion error is inevitable due to its limited phase shift resolution
[33]. In this section, we derive the SoA LMMSE algorithm
and the KL-LMMSE algorithm for the channel estimator of
multi-cell MIMO systems while considering the RIS phase
quantization error.

When considering the RIS phase quantization error, the
perfect RIS training patterns θ1,θ2, · · · ,θT having no phase
quantization error will be replaced by the more realistic
imperfect RIS training patterns θ′1,θ

′
2, · · · ,θ

′
T with phase

quantization error, where the matrix Z(k) presented in (13)
will become Z′

(k) given by

Z′
(k)

=


√
%b(k)IM ,

√
%g(k)%AIM ⊗ θ′1√

%b(k)IM ,
√
%g(k)%AIM ⊗ θ′2

...√
%b(k)IM ,

√
%g(k)%AIM ⊗ θ′T

 , (34)

in which θ′t is the tth RIS training pattern with RIS
phase quantization error, given by θ′t = θt � θ̃t =

[ej(θt,1+θ̃t,1), ej(θt,2+θ̃t,2), · · · , ej(θt,N+θ̃t,N )], with θt being
the desired RIS phase shift vector and θ̃t being the RIS phase
quantization error vector. We define ∆θt and ∆Z as

∆θt = θ′t − θt = [ej(θt,1+θ̃t,1) − ejθt,1 ,

ej(θt,2+θ̃t,2) − ejθt,2 , · · · , ej(θt,N+θ̃t,N ) − ejθt,N ], (35)

∆Z(k) =Z′
(k) − Z(k) =


OM×M ,

√
%g(k)%AIM ⊗∆θ1

OM×M ,
√
%g(k)%AIM ⊗∆θ2

...
OM×M ,

√
%g(k)%AIM ⊗∆θT

 .
(36)

In the following, we present three corollaries.
Corollary 1. When considering the RIS phase quantization

error, the mean of ∆Z(k) is given by

E[∆Z(k)] = (ξ − 1)Z(k)
p , (37)

where ξ =
I1(κp)
I0(κp) when the RIS phase quantization error

follows the von Mises distribution of VM(0, κp), and ξ =
sinc(ιp) when the RIS phase quantization error follows the
uniform distribution of U(−ιp, ιp), where Ii(·) represents the
modified Bessel functions of the first kind of order i, and
sinc(ιp) represent the sinc function given by sinc(ιp) =
sin(ιp)
ιp

. The RIS phase quantization error power is σ2
p =

E[θ̃2] = 1
κp

and σ2
p = E[θ̃2] = 1

3 ι
2
p, when it follows the von

Mises distribution and the uniform distribution, respectively.
Furthermore, Z

(k)
p = [OMT×M ,1MT1T

MN ] � Z(k), which
retains the RIS-related link component and turns the direct
link component to 0 in matrix Z(k).

Proof: See Appendix A.

Corollary 2. When considering the RIS phase quan-
tization error, the means of ∆Z(k)s(k)s(k)HZ(k)H and
Z(k)s(k)s(k)H∆Z(k)H are identical, having the value of (ξ −
1)Z

(k)
p E[s(k)s(k)H]Z

(k)H
p .

Proof: See Appendix B.

Corollary 3. When considering the RIS phase quantization
error, the mean of ∆Z(k)s(k)s(k)H∆Z(k)H is given by

E[∆Z(k)s(k)s(k)H∆Z(k)H]

=(ξ − 1)2Z(k)
p E[s(k)s(k)H]Z(k)H

p + (1− ξ2)Cp, (38)

where Cp is formulated as:

Cp =%A%g(k)IT ⊗


D

(k)
1,1 · · · D

(k)
1,M

...
. . .

...
D

(k)
M,1 · · · D

(k)
M,M


+ %A%g(k)IMT ⊗ (1T

N (RA �V(k))1N ), (39)

with D
(k)
m1,m2 = 1T

N (Am1,m2
�V(k))1N .

Proof: See Appendix C.
When considering the RIS phase quantization error, the

mean of the observation y(k) is given by

E[y(k)] =
√
KPE[Z′

(k)
s(k)]

(a)
=
√
KPZ(k)E[s(k)] +

√
KPE[∆Z(k)]E[s(k)]

(b)
=
√
KP (Z(k) + (ξ − 1)Z(k)

p )E[s(k)], (40)

where (a) is based on the fact that the random matrix ∆Z(k)

is independent of s(k), and (b) is based on Corollary 1.
Furthermore, Cs(k)y(k) is given by

Cs(k)y(k) = E[(s(k) − E[s(k)])(y(k) − E[y(k)])H]

=
√
KPE[(s(k) − E[s(k)])(s(k) − E[s(k)])HZ′

(k)H
]

(a)
=
√
KPCs(k)s(k)Z

(k)H +
√
KPCs(k)s(k)E[∆Z(k)]H

(b)
=
√
KPCs(k)s(k)Z

(k)H +
√
KP (ξ − 1)Cs(k)s(k)Z

(k)H
p

=
√
KPCs(k)s(k)(Z

(k) + (ξ − 1)Z(k)
p )H, (41)

where (a) is based on the fact that ∆Z(k) is independent of
s(k), and (b) is based on Corollary 1.

When considering the RIS phase quantization error, the
covariance matrix Cy(k)y(k) is formulated as:

Cy(k)y(k) = E[y(k)y(k)H]− E[y(k)]E[y(k)]H. (42)

Based on (40), E[y(k)]E[y(k)]H is given by

E[y(k)]E[y(k)]H = KPZ(k)E[s(k)]E[s(k)]HZ(k)H

+KP (ξ − 1)Z(k)E[s(k)]E[s(k)]HZ(k)H
p

+KP (ξ − 1)Z(k)
p E[s(k)]E[s(k)]HZ(k)H
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+KP (ξ − 1)2Z(k)
p E[s(k)]E[s(k)]HZ(k)H

p

(a)
=KPZ(k)E[s(k)]E[s(k)]HZ(k)H

+KP (ξ2 − 1)Z(k)
p E[s(k)]E[s(k)]HZ(k)H

p , (43)

where (a) is based on Z
(k)
p = [OMT×M ,1MT1T

MN ] � Z(k),
and E[y(k)y(k)H] is given by

E[y(k)y(k)H] = KPE[Z′
(k)

s(k)s(k)HZ′
(k)H

] + σ2
nIMT

=KPE[(Z(k) + ∆Z(k))s(k)s(k)H(Z(k) + ∆Z(k))H] + σ2
nIMT

=KP (Z(k)E[s(k)s(k)H]Z(k)H + (ξ2 − 1)

(Z(k)
p E[s(k)s(k)H]Z(k)H

p −Cp)) + σ2
nIMT . (44)

Based on Cs(k)s(k) = E[s(k)s(k)H] − E[s(k)]E[s(k)]H, and
substituting (43) and (44) into (42), we can get

Cy(k)y(k) =KP (Z(k)Cs(k)s(k)Z
(k)H + (ξ2 − 1)

(Z(k)
p Cs(k)s(k)Z

(k)H
p −Cp)) + σ2

nIMT . (45)

Firstly, we focus our attention on the SoA LMMSE method,
where we substitute (40), (41) and (45) into (20), and then we
can get the LMMSE estimator of s(k) as

ŝ
(k)
S =E[s(k)] +

√
KPCs(k)s(k)(Z

(k) + (ξ − 1)Z(k)
p )H

(KPZ(k)Cs(k)s(k)Z
(k)H +KP (ξ2 − 1)·

(Z(k)
p Cs(k)s(k)Z

(k)H
p −Cp) + σ2

nIMT )−1·
(y(k) −

√
KP (Z(k) + (ξ − 1)Z(k)

p )E[s(k)]). (46)

Then, we focus on the KL-LMMSE method, where
C

w
(k)
E y(k) is given by

C
w

(k)
E y(k) = E[(w

(k)
E − E[w

(k)
E ])(y(k) − E[y(k)])H]

=
√
KPE[T

(k)
E ((w

(k)
E − E[w

(k)
E ])(w

(k)
E − E[w

(k)
E ])HT

(k)H
E

+ (w
(k)
E − E[w

(k)
E ])(w

(k)
E,e − E[w

(k)
E,e])HT

(k)H
E,e )Z′

(k)H
]

(a)
=
√
KPT

(k)
E (C

w
(k)
E w

(k)
E

T
(k)H
E + C

w
(k)
E w

(k)
E,e

T
(k)H
E,e )Z(k)H+

√
KPT

(k)
E (C

w
(k)
E w

(k)
E

T
(k)H
E + C

w
(k)
E w

(k)
E,e

TH
E,e)E[∆Z(k)]H

(b)
=
√
KPT

(k)
E (C

w
(k)
E w

(k)
E

T
(k)H
E + C

w
(k)
E w

(k)
E,e

T
(k)H
E,e )Z(k)H+

√
KP (ξ − 1)T

(k)
E (C

w
(k)
E w

(k)
E

T
(k)H
E + C

w
(k)
E w

(k)
E,e

T
(k)H
E,e )Z(k)H

p

(c)
=
√
KPT

(k)
E T

(k)H
E (Z(k) + (ξ − 1)Z(k)

p )H, (47)

where (a) is based on the fact that the random matrix ∆Z(k)

is independent of w
(k)
E , (b) is based on Corollary 1, and (c)

is based on (30) and (31). Then, upon substituting (40), (45)
and (47) into (33), we can get the KL-LMMSE estimator of
s(k) as

ŝ
(k)
E =E[s(k)] +

√
KPT

(k)
E T

(k)H
E (Z(k) + (ξ − 1)Z(k)

p )H·
(KPZ(k)Cs(k)s(k)Z

(k)H +KP (ξ2 − 1)·
(Z(k)

p Cs(k)s(k)Z
(k)H
p −Cp) + σ2

nIMT )−1·
(y(k) −

√
KP (Z(k) + (ξ − 1)Z(k)

p )E[s(k)]). (48)

TABLE II: Pilot overhead of various estimators in cell-l.

Channel estimation methods Pilot overhead τp

SoA LS/LMMSE (OUP) (
∑L

l′=1Kl′ )TS

SoA LS/LMMSE (NOUP) KlTS

G-LS/G-LMMSE (
∑L

l′=1Kl′ )TG

KL-LMMSE (
∑L

l′=1Kl′ )TE

IV. PERFORMANCE ANALYSIS

In this section, firstly we analyze the theoretical normalized
MSE performance of the SoA LMMSE estimator, and of
the proposed KL-LMMSE methods. Then, we compare the
pilot overhead and computational complexity of these channel
estimation methods.

A. Normalized Mean Square Error

In the SoA LMMSE method, the estimation error of s(k),
denoted as š

(k)
S , is defined as š

(k)
S = s(k) − ŝ

(k)
S . We can get

the estimation error covariance matrix of s(k) as

C
š
(k)
S š

(k)
S

= E[(s(k) − ŝ
(k)
S )(s(k) − ŝ

(k)
S )H]

(a)
= Cs(k)s(k) −C

ŝ
(k)
S s(k)

−C
s(k)ŝ

(k)
S

+ C
ŝ
(k)
S ŝ

(k)
S

(b)
= Cs(k)s(k) −Cs(k)y(k)C−1

y(k)y(k)C
H
y(k)s(k) , (49)

where (a) is based on the same mean of s(k) and ŝ
(k)
S , (b)

is based on (21), while Cs(k)s(k) , Cs(k)y(k) and Cy(k)y(k)

are given in (19), (41) and (45), respectively. Therefore, the
normalized MSE for UAN-k of the SoA LMMSE method is
given by NMSE

(k)
S = 1

M(N+1)Tr(C
š
(k)
S š

(k)
S

).

In the KL-LMMSE method, the estimation error of s(k),
denoted as š

(k)
E , is defined as š

(k)
E = s(k) − ŝ

(k)
E . We can

express the estimation error covariance matrix of s(k) as

C
š
(k)
E š

(k)
E

=E[(s(k) − ŝ
(k)
E )(s(k) − ŝ

(k)
E )H]

(a)
=Cs(k)s(k) −C

ŝ
(k)
E s(k)

−C
s(k)ŝ

(k)
E

+ C
ŝ
(k)
E ŝ

(k)
E

(b)
=Cs(k)s(k) −TECw

(k)
E y(k)C

−1
y(k)y(k)C

H
s(k)y(k)

−Cs(k)y(k)C−1
y(k)y(k)C

H

w
(k)
E y(k)

TH
E

+ TECw
(k)
E y(k)C

−1
y(k)y(k)C

H

w
(k)
E y(k)

TH
E , (50)

where (a) is based on the same mean of s(k) and ŝ
(k)
E ,

(b) is based on (48), while Cs(k)s(k) , Cs(k)y(k) , Cy(k)y(k)

and C
w

(k)
E y(k) are given in (19), (41), (45) and (47), re-

spectively. Therefore, the normalized MSE of the UAN-
k in the KL-LMMSE method is given by NMSE

(k)
E =

1
M(N+1)Tr(C

š
(k)
E š

(k)
E

).

B. Pilot Overhead

We define pilot overhead τp as the number of symbol
slots required for channel estimators in each coherence in-
terval. Table. II compares the pilot overhead of the SoA LS
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method [15]–[18], of the SoA LMMSE method [19], including
orthogonal user pilot (OUP) and non-orthogonal user pilot
(NOUP) sequences, the grouping based LS (G-LS) method
[21]–[24], the grouping based LMMSE (G-LMMSE) method
and the KL-LMMSE method of cell-l, where the variables
TS , TG and TE denote the number of RIS training patterns
in the SoA methods, grouping methods and the proposed
KL-LMMSE method, respectively, satisfying TS ≥ N + 1,
TG ≥ NG + 1 and TE ≥ NE + 1. By exploiting the spatial
correlation of RIS-related channels, the pilot overhead of the
G-LS/G-LMMSE method and the KL-LMMSE method are
approximately proportional to NG and NE respectively, instead
of the number of RIS elements N . When a large number
of passive RIS elements are used at a high spatial density,
the G-LS/G-LMMSE method and the KL-LMMSE method
can promise significantly lower pilot overhead than the SoA
LS/LMMSE method.

The channel capacity of UAN-k can be shown to be
Rk =

τc−τp
τc

log 2(1+γk), where τc represents the total number
of samples in each coherence interval and γk represents the
signal-to-interference-plus-noise-ratio (SINR) at UAN-k [31].
Hence, the channel capacity of UAN-k is determined by both
the pre-log factor τc−τp

τc
and the SINR γk. Compared to

the SoA LS/LMMSE (OUP) estimator, the G-LS/G-LMMSE
estimator and our proposed KL-LMMSE estimator can ensure
higher pre-log factor τc−τpτc

due to their reduced pilot overhead
τp, but this is achieved at the cost of degradation of γk.
It means that in fast fading channels both the low-overhead
G-LS/G-LMMSE estimator and the KL-LMMSE estimator
achieve higher channel capacity than the SoA LS/LMMSE
(OUP) estimator. Furthermore, the value of TG in the G-LS/G-
LMMSE estimator and TE in the KL-LMMSE estimator can
be adaptively adjusted to increase the channel capacity based
on the total number of samples in each coherence interval.

C. Computational Complexity
The complexity of various channel estimation methods

can be quantified in terms of the number of complex mul-
tiplications in each coherence interval. Since the statistical
information, e.g. the values of E[s(k)], E[y(k)], Cs(k)s(k) ,
Cy(k)y(k) , Cs(k)y(k) and C

w
(k)
E y(k) , are updated only at the

beginning of each stationary block, the complexity of these
values can be ignored. In each coherence interval, firstly the
received signal vector y(k) is combined with the conjugate
transpose of the user pilot sequences, in which the calculation
complexity is equal to the pilot overhead times the number
of antennas at BS-l. Then, the CSIs are estimated for each
UAN by the various channel estimators. Table. III compares
the calculation complexity of the SoA LS method, the SoA
LMMSE method, including the OUP sequences and NOUP
sequences, the G-LS method, the G-LMMSE method, and the
KL-LMMSE method for estimating the CSI in cell-l. Since
the number of RIS elements N is significantly higher than
the number of UANs in all L cells in a practical RIS-aided
wireless system, the G-LS/G-LMMSE method and the KL-
LMMSE method have the complexity order of O(M2

l N
2
G) and

O(M2
l NEN), respectively, which are significantly lower than

the SoA LS/LMMSE complexity order of O(M2
l N

2).
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Fig. 3: Comparison of the pilot overhead and computational
complexity versus the number of UANs per cell Kl in SoA
LS/LMMSE (OUP), SoA LS/LMMSE (NOUP), G-LS, G-
LMMSE, and KL-LMMSE method.

V. SIMULATION RESULTS

In this section, we qualify both the pilot overhead and the
computational complexity, as well as the theoretical and simu-
lation based normalized MSE of different channel estimators,
including the SoA LS method, the SoA LMMSE method,
the G-LS method in [21]–[24], the G-LMMSE method, and
our proposed KL-LMMSE method, all in multi-cell RIS-aided
wireless communications.

We use the system model of Fig. 1, where a RIS is
supporting four cells. The 3-dimensional Cartesian coordinate
of the RIS is (0m, 30m, 8m), and the four BSs are located
at (0m, 0m, 20m), (−Dc, 0m, 20m), (0m, −Dc, 20m) and
(Dc, 0m, 20m), respectively, where Dc is the distance between
adjacent BSs. We focused our attention on the channel esti-
mation performance of the users in cell-1 to BS-1, i.e. the one
having coordinates of (0m, 0m, 20m). Therefore, the signals
transmitted from the users in others cells surrounding cell-
1 can be viewed as interference. The users in each cell are
at 25m in front of the corresponding BS, at the height of
3m and the adjacent users are 3m apart. Unless otherwise
specified, the simulation parameters employed in this section
are as follows. The number of antennas at BS-1 is M1 = 4.
The number of RIS elements is N = 12 × 10 = 120. The
number of users in each cell is 4 with each user equipped
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TABLE III: Calculation complexity of various channel estimators in cell-l.

Channel estimation methods Combined with user pilots Estimated per user Total complexity

SoA LS/LMMSE (OUP) Ml(
∑L

l′=1Kl′ )TS M2
l (N + 1)TS TS(M

2
l Kl(N + 1) +Ml(

∑L
l′=1Kl′ ))

SoA LS/LMMSE (NOUP) MlKlTS M2
l (N + 1)TS TS(M

2
l Kl(N + 1) +MlKl)

G-LS/G-LMMSE Ml(
∑L

l′=1Kl′ )TG M2
l (NG + 1)TG +MlNG TG(M

2
l Kl(NG + 1) +MlNG +Ml(

∑L
l′=1Kl′ ))

KL-LMMSE Ml(
∑L

l′=1Kl′ )TE M2
l (N + 1)TE TE(M

2
l Kl(N + 1) +Ml(

∑L
l′=1Kl′ ))
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Fig. 4: Comparison of the normalized MSE versus transmit power per UAN P in SoA LS (OUP), SoA LMMSE (OUP), G-LS,
G-LMMSE, and KL-LMMSE method, with different number of total UANs in each cell.
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Fig. 5: Comparison of the normalized MSE versus transmit power per UAN P in SoA LS (OUP), SoA LMMSE (OUP), G-LS,
G-LMMSE, and KL-LMMSE method, with different correlation reference distance.

with 2 antennas. The Rician factor are κg = κA = 0dB.
Since the direct UE-RIS links are blocked, referring to [18],
the path loss exponents αb would be much larger than αA

and αg. Here we set the path loss exponents to αA = 2,
αg = 2.2 and αb = 4.8, along with %0 = −30dB. The additive
noise power is σ2

n = −100dBm. The distance between the
adjacent RIS elements is δ(x) = δ(y) = 1

30λ. The correlation
reference distance is δ0 = 100λ. The distance between
adjacent BS antennas d0 = 1

2λ. AoA at BS-1 is ψ(A)
1 = π

3 .
The distance between adjacent cells is Dc = 60m. The values
of φ(A)

1 , φ
(A)
2 , · · · , φ(A)

K , ϕ(A)
1 , ϕ

(A)
2 , · · · , ϕ(A)

K , φ(D)
1 and ϕ(D)

1

are calculated according to the relative position of the BSs,

the RIS and the UANs.

We compare the SoA LS, SoA LMMSE, G-LS, G-LMMSE
and our proposed KL-LMMSE methods. We set the number
of RIS training patterns to TS = 128 for the SoA LS/LMMSE
method, set TG = 2 and 32 for the G-LS/G-LMMSE method
with NG = 1 and 30, respectively, and TE = 2 and 32 for
the KL-LMMSE method with NE = 1 and 30, respectively.
In all channel estimation methods, the generation of the
correlated channel links of all channel estimation methods in
the simulation are identical. In the G-LMMSE estimator, it
just considers the correlation among different groups while
it assumes that the links corresponding to the elements in
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the same group have identical CSI, which is an impractical
assumption. This is the flaw of the grouping based estimation
method, and our proposed KL-LMMSE estimator avoids this
assumption.

Fig. 3 shows both the pilot overhead and computational
complexity versus the number of UANs per cell Kl in the
SoA LS/LMMSE (OUP), SoA LS/LMMSE (NOUP), G-LS,
G-LMMSE, and the proposed KL-LMMSE method, based on
Table II and Table III. Explicitly, both the estimators based on
grouping ideas and our proposed KL-LMMSE method have
significantly lower pilot overhead than the SoA LS/LMMSE
(OUP) method, while the G-LS/G-LMMSE (NG = 30), and
KL-LMMSE (NE = 30) have the same pilot overhead as
the SoA LS/LMMSE (NOUP) method. Additionally, both the
estimators based on grouping ideas and our proposed KL-
LMMSE method have a significantly lower computational
complexity than the SoA LS/LMMSE method, as shown in
Fig. 3.

From Fig. 4 to Fig. 7, we utilize lines, e.g. ‘−−’ and
‘−·−·’, to represent the theoretical analysis of the normalized
MSE, and utilize markers, e.g. ‘�’ and ‘×’, to represent
the simulation results. In order to investigate the normalized
MSE performance of different channel estimators, in Fig.
4, Fig. 5 and Fig. 6, the RIS patterns are designed based
on the Hadamard matrix to avoid phase quantization error,
i.e. σ2

p = 0. It is worth noting that the normalized MSE
performance of the SoA LMMSE (OUP) method is better
than that of the G-LMMSE and of our proposed KL-LMMSE
methods, albeit at the cost of a higher pilot overhead and
computational complexity, as shown in Fig. 3. In Fig. 4, we
compare the normalized MSE versus the transmit power per
UAN P in the SoA LS (OUP), SoA LMMSE (OUP), G-LS, G-
LMMSE, and KL-LMMSE methods, with the number of users
in each cell set to 1, 2, 4, respectively. Each user is equipped
with 2 antennas, i.e. the total number of user antennas per
cell is Kl = 2, 4, 8, respectively. Fig. 4 shows that the MSE
performance of the SoA LMMSE method is better than that
of the SoA LS method, and the G-LMMSE method performs
better than the G-LS method, especially in the low transmit
power region. This is because the statistical information of the
first-order moment and the second-order moment of the chan-
nels are utilized in the LMMSE methods. Additionally, in the
high transmit power region of Fig. 4, the normalized MSE of
the G-LMMSE method and the KL-LMMSE method performs
worse than the SoA LMMSE (OUP) method. Explicitly, a
residence MSE arises, since non-negligible channel estimation
error is inflicted owing to the discarded channel information
in the G-LMMSE and KL-LMMSE, which dominates the
gradually diminishing noise at the BS. However, in the low
transmit power region, the normalized MSE of the G-LMMSE
method and the KL-LMMSE method is comparable to that
of the SoA LMMSE (OUP) method, since the BS’s noise
is the main factor governing the channel estimation error.
Furthermore, the KL-LMMSE outperforms the G-LMMSE, s-
ince the KL-LMMSE relies on the Karhunen-Loève transform,
which results in the least mean square error during information
compression. Furthermore, Fig. 4 shows that with the increase
of NE , the MSE performance of KL-LMMSE method tends

towards that of the SoA LMMSE (OUP) method.
In Fig. 5, we compare the normalized MSE versus the

transmit power per UAN P in SoA LS (OUP), SoA LMMSE
(OUP), G-LS (NG = 1, 30), G-LMMSE (NG = 1, 30),
and KL-LMMSE (NE = 1, 30) methods, at the correlation
reference distance of δ0 = 1λ, 10λ, 100λ. Fig. 5 shows
that the normalized MSE performance of the KL-LMMSE
method tends to that of the SoA LMMSE (OUP) method upon
increasing of the correlation reference distance. However, the
G-LMMSE has a consistently high normalized MSE because
the G-LMMSE method assumes that the NLoS CSI corre-
sponding to the RIS elements in the same group is identical.
However, when the LoS links exist, i.e. κA > 0 or κg > 0,
according to (19) the covariance of channels corresponding to
the RIS element in the same group is not necessarily identical.
Therefore, the low pilot overhead KL-LMMSE method is
suitable for the RIS-aided systems with a large number of
compact RIS elements employed.

In Fig. 6, we compare the SoA LS (NOUP) and SoA
LMMSE (NOUP), G-LS (NG = 30) and G-LMMSE (NG =
30), and KL-LMMSE (NE = 30) methods, while us-
ing the same pilot overhead for fairness of comparison
and also employing the adjacent BSs distances of Dc =
60m, 120m, 180m. Since the user pilot sequences in the G-
LS, G-LMMSE and KL-LMMSE methods are orthogonal,
varying the distance between the adjacent cells has no effect on
the channel estimation performance. However, in the SoA LS
(NOUP) and SoA LMMSE (NOUP) methods, the normalized
MSE performance degrades with the reduction of the distance
between adjacent cells, since the neighbouring cells cause
higher interference levels. As shown in Fig. 6, the performance
of the proposed KL-LMMSE method is significantly better
than that of the SoA LS (NOUP) method and SoA LMMSE
(NOUP) method, even when the distance between adjacent
cells is large.

Next, we investigate the normalized MSE performance of
various LMMSE channel estimation methods in the face of
RIS phase quantization error, when the RIS patterns are
designed based on the DFT matrix. To ensure the same pilot
overhead for the SoA LMMSE (NOUP) and the low pilot
overhead estimator of G-LMMSE and KL-LMMSE, we set
TG = 32 along with NG = 30 and TE = 32 in conjunction
with NE = 30. In Fig. 7, we compare the normalized MSE
versus the transmit power per UAN P in the SoA LMMSE
(OUP), SoA LMMSE (NOUP), G-LMMSE (NG = 30), and
KL-LMMSE (NE = 30) methods, where the RIS phase
quantization error has a power of σ2

p = 0.05 and follows the
von Mises distribution and uniform distribution. In each figure,
we compare the normalized MSE performance both with and
without RIS phase quantization error, where ‘consider’ in
legend means considering the RIS phase quantization error
in the design of the estimator, while ‘ignore’ in legend means
ignoring the RIS phase quantization error in the design of the
estimator. Fig. 7 shows that our proposed KL-LMMSE method
performs significantly better than the SoA LMMSE (NOUP)
method and the G-LMMSE method. Furthermore, observe in
Fig. 7 that as expected, when the power of RIS phase quan-
tization error is σ2

p = 0.05, the normalized MSE performance



13

-70 -60 -50 -40 -30 -20 -10 0 10 20
10-4

10-3

10-2

10-1

100

Fig. 6: Comparison of the normalized MSE versus transmit
power per UAN P in SoA LS (NOUP), SoA LMMSE
(NOUP), G-LS, G-LMMSE, and KL-LMMSE method, with
the adjacent BSs distance Dc = 60m, 120m, 180m.

is better upon considering the RIS phase quantization error
during the design of channel estimation methods than upon
ignoring it. Explicitly, Fig. 7 shows that when the RIS phase
quantization error is ignored, the normalized MSE escalates
in the region of high transmit power values, since the ignored
statistical information concerning the RIS phase quantization
error in (40), (41), (45) and (47) increases upon increasing the
transmit power.

VI. CONCLUSIONS

In this paper, a low-overhead channel estimation method,
termed as the KL transformation based LMMSE estimator,
was proposed for RIS-aided multi-cell MIMO systems by
exploiting the spatial correlation of the channels. The numer-
ical results show that the MSE performance of our proposed
method tends to that of the SoA LMMSE estimator relying
on orthogonal pilot sequences upon increasing the RIS spatial
correlation, despite its reduced pilot overhead. Furthermore,
by exploiting the statistical spatial correlation information of
RIS-cascaded channel links, our proposed KL transformation
based LMMSE estimator has better MSE performance than
that of the grouping based LMMSE estimator. In general, we
provided a methodology for designing low-overhead channel
estimation methods by exploiting the spatial correlation of
cascaded RIS-aided channel links and by theoretically ana-
lyzing the corresponding MSE performance. Furthermore, we
evaluated the impact of the RIS phase quantization error on
the channel estimation accuracy and showed the significance
of considering the RIS phase quantization error effects on
the channel estimator’s design. Finally, this work opens new
research directions for the low-overhead channel estimation of
RIS-aided multi-cell wireless systems.

APPENDIX A
PROOF OF Corollary 1

Since the RIS phase quantization error θ̃t,n are i.i.d. for t =
1, 2, · · · , T and n = 1, 2, · · · , N , we can omit the subscripts in
θ̃t,n and we denote it as θ̃ for simplicity. Since the distribution
of RIS phase quantization error is also independent of the
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Fig. 7: Comparison of the normalized MSE versus transmit
power per UAN P in SoA LMMSE (OUP), SoA LMMSE
(NOUP), G-LMMSE, and KL-LMMSE method, with the
RIS phase quantization error having the power σ2

p = 0.05
following von Mises distribution and uniform distribution,
respectively.

matrix Z(k), based on (35) and (36), we can get the mean of
∆Z(k) as E[∆Z(k)] = E[ejθ̃ − 1]Z

(k)
p . Firstly, we focus on

the RIS phase quantization error θ̃ following the von Mises
distribution, i.e. θ̃ ∼ VM(0, κp). Since E[ejθ̃] =

I1(κp)
I0(κp) when

θ̃ ∼ VM(0, κp) [48], we can get E[ejθ̃ − 1] =
I1(κp)
I0(κp) − 1,

and the RIS phase quantization error power σ2
p = E[θ̃2] =

1
κp

. Then, we focus on the RIS phase quantization error θ̃
following the uniform distribution, i.e. θ̃ ∼ U(−ιp, ιp). When
θ̃ ∼ U(−ιp, ιp), the ith-order moment of θ̃, denoted as E[θ̃i],
equal to 0 when i is odd and equal to 1

i+1 ι
i
p when i is even.

Thus, we can arrive at E[ejθ̃ − 1] =
∑∞
i=1

(−1)i

(2i)! E[θ̃2i] =∑∞
i=1

(−1)iι2ip
(2i+1)! =

sin(ιp)−ιp
ιp

= sinc(ιp) − 1. Besides, the RIS
phase quantization error power σ2

p = E[θ̃2] = 1
3 ι

2
p.

APPENDIX B
PROOF OF Corollary 2

In Z
(k)
p E[s(k)s(k)H]Z

(k)H
p , the element with the row cor-

responding to the m1th BS antenna in the t1th RIS train-
ing pattern and the column corresponding to the m2th B-
S antenna in the t2th RIS training pattern, denoted as
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{Z(k)
p E[s(k)s(k)H]Z

(k)H
p }(t1,t2),(m1,m2), is given by

{Z(k)
p E[s(k)s(k)H]Z(k)H

p }(t1,t2),(m1,m2)

=%A%g(k)

N∑
n1=1

N∑
n2=1

E[sm1,n1
s∗m2,n2

]eθt1,n1 e−θt2,n2 , (51)

where sm1,n represents the element corresponding to the nth
reflecting surface in s(k) when n > 0, and represents the
element corresponding to the direct link in s(k) when n = 0.

In E[∆Z(k)s(k)s(k)HZ(k)H] the element with the row cor-
responding to the m1th BS antenna in the t1th RIS train-
ing pattern and the column corresponding to the m2th B-
S antenna in the t2th RIS training pattern, denoted as
{E[∆Z(k)s(k)s(k)HZ(k)H]}(t1,t2),(m1,m2), is given by

{E[∆Z(k)s(k)s(k)HZ(k)H]}(t1,t2),(m1,m2)

=%A%g(k)

N∑
n1=1

N∑
n2=1

E[sm1,n1
s∗m2,n2

]ejθt1,n1 e−jθt2,n2 ·

E[(ejθ̃t1,n1 − 1)] +
√
%b(k)

√
%A%g(k) ·

N∑
n1=1

E[sm1,n1
s∗m2,0]ejθt1,n1E[(ejθ̃t1,n1 − 1)]

(a)
=%A%g(k)

N∑
n1=1

N∑
n2=1

E[sm1,n1s
∗
m2,n2

]ejθt1,n1 e−jθt2,n2 ·

E[(ejθ̃t1,n1 − 1)]

(b)
=(ξ − 1){Z(k)

p E[s(k)s(k)H]Z(k)H
p }(t1,t2),(m1,m2). (52)

where (a) is based on that E[sm1,n1
s∗m2,0] = 0, and

(b) is based on (51). Thus, E[∆Z(k)s(k)s(k)HZ(k)H] =

(ξ − 1)Z
(k)
p E[s(k)s(k)H]Z

(k)H
p . Similarly, we can get that

E[Z(k)s(k)s(k)H∆Z(k)H] = (ξ − 1)Z
(k)
p E[s(k)s(k)H]Z

(k)H
p .

APPENDIX C
PROOF OF Corollary 3

In E[∆Z(k)s(k)s(k)H∆Z(k)H] the element with the row
corresponding to the m1th BS antenna in the t1th RIS
training pattern and the column corresponding to the m2th
BS antenna in the t2th RIS training pattern, denoted as
{E[∆Z(k)s(k)s(k)H∆Z(k)H]}(t1,t2),(m1,m2), is given by

{E[∆Z(k)s(k)s(k)H∆Z(k)H]}(t1,t2),(m1,m2)

=%A%g(k)

N∑
n1=1

N∑
n2=1

E[s(k)
m1,n1

s(k)∗
m2,n2

]ejθt1,n1 e−jθt2,n2 ·

E[(ejθ̃t1,n1 − 1)(e−jθ̃t2,n2 − 1)]. (53)

In (53), when t1 6= t2 or n1 6= n2, E[(ejθ̃t1,n1 −1)(e−jθ̃t2,n2 −
1)] is given by

E[(ejθ̃t1,n1 − 1)(e−jθ̃t2,n2 − 1)]

=E[ejθ̃t1,n1 − 1]E[e−jθ̃t2,n2 − 1] = (ξ − 1)2; (54)

otherwise, when t1 = t2 and n1 = n2,

E[(ejθ̃t1,n1 − 1)(e−jθ̃t2,n2 − 1)] =E[(ejθ̃t,n − 1)(e−jθ̃t,n − 1)]

=2(1− ξ). (55)

Then, substituting (54) and (55) into (53), we can get when
t1 6= t2,

{E[∆Z(k)s(k)s(k)H∆Z(k)H]}(t1,t2),(m1,m2)

=%A%g(k)

N∑
n1=1

N∑
n2=1

E[s(k)
m1,n1

s(k)∗
m2,n2

]ejθt1,n1 e−jθt2,n2 (ξ − 1)2

=(ξ − 1)2{Z(k)
p E[s(k)s(k)H]Z(k)H

p }(t1,t2),(m1,m2); (56)

and when t1 = t2, we have

{E[∆Z(k)s(k)s(k)H∆Z(k)H]}(t1,t2),(m1,m2)

=%A%g(k)

N∑
n1=1

N∑
n2=1

E[s(k)
m1,n1

s(k)∗
m2,n2

]ejθt1,n1 e−jθt2,n2 (ξ − 1)2

+ (1− ξ2)%A%g(k)

N∑
n=1

E[s(k)
m1,ns

(k)∗
m2,n]

=(ξ − 1)2{Z(k)
p E[s(k)s(k)H]Z(k)H

p }(t1,t2),(m1,m2)

+ (1− ξ2)%A%g(k)

N∑
n=1

E[s(k)
m1,ns

(k)∗
m2,n]. (57)

In (57), according to (16) and (19),
∑N
n=1 E[s

(k)
m1,ns

(k)∗
m2,n] is

N∑
n=1

E[s(k)
m1,ns

(k)∗
m2,n] =


D

(k)
1,1 · · · D

(k)
1,M

...
. . .

...
D

(k)
M,1 · · · D

(k)
M,M

 . (58)

Thus, according to (39), (56), (57) and (58), we can arrive
at E[∆Z(k)s̃(k)s̃(k)H∆Z(k)H] = (ξ−1)2Z

(k)
p Cs(k)s(k)Z

(k)H
p +

(1− ξ2)Cp.
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