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ABSTRACT

Laser cutting is a fast, precise, and noncontact processing technique widely applied throughout industry. However, parameter specific
defects can be formed while cutting, negatively impacting the cut quality. While light-matter interactions are highly nonlinear and are,
therefore, challenging to model analytically, deep learning offers the capability of modeling these interactions directly from data. Here, we
show that deep learning can be used to scale up visual predictions for parameter specific defects produced in cutting as well as for predicting
defects for parameters not measured experimentally. Furthermore, visual predictions can be used to model the relationship between laser
cutting defects and laser cutting parameters.
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I. INTRODUCTION

Laser materials processing is a noncontact technique that has
industrial applications in many areas including manufacturing,1–4

energy harvesting,5 and defence.6 Industrial laser processing tech-
niques include cutting,7–9 welding,10 cladding,11 and drilling.12 Fiber
lasers are compact, energetically efficient with high wall-plug effi-
ciency, high-power and high-brightness capable,13 and as such are
beneficial for processing of materials. Due to the laser properties, high
precision laser cutting is widely applicable across many areas of man-
ufacturing, as well as having advantages over competing techniques
such as electric discharge machining14 or abrasive water jet cutting.15

In general, the laser cutting process of the metal occurs in
several stages. First, the laser is used to drill a small hole into the
metal workpiece forming a molten pool at the irradiation site. A
gas-assisted jet then blows away the molten and vaporizes material,
leaving a hole. This gas can be reactive, such as oxygen,16 or inert,
such as nitrogen,17 to avoid the thermodynamic effects associated

with oxygen cutting. The laser then “drills” in further, with the
molten and vaporized material blown away through the bottom.
Cutting begins as the nozzle (and laser beam) starts scanning
across the workpiece.18 After cutting, surface defects such as welts
and striations can be present.19 Also present is a heat affected zone
(HAZ), which has properties that differ from those of the bulk
material before cutting.17,20 The origins of laser cutting-induced
striations are only partially understood, but explanations include
an interplay between laser power variations and gas pressure fluctu-
ations21 as well as possible effects caused within the molten mate-
rial.11 Striation-free, laser cutting has been achieved with
single-mode fiber lasers.22 However, since the power of single-mode
lasers is limited13 in comparison to multimode lasers and not
always suited for the thick material, striation-free laser cutting
remains a challenge. These effects result in machined parts with a
complex surface topography that can be analyzed to determine
how input parameters, such as laser power and cutting speed, influ-
ence output parameters such as surface roughness or kerf profiles.
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Due to the highly nonlinear nature of laser cutting as well as
difficulty visualizing the laser cutting mechanism,23 modelling of
laser cutting is an extremely complex process. Arai19 has studied
the origins of laser cutting defects extensively using thermal models
and showed that the high temperature molten material exerts pres-
sure on the walls of the cut while cooling periodically as the laser
beam shifts along the sample. As such, variations in energy density
allow for a periodic heating and cooling of the workpiece in the
cutting region. Bocksrocker et al.16 have investigated laser and
material input parameters and their effects on output parameters
such as the melt flow and dross formation. Miraoui et al.20 have
analyzed heat affected zones using analytical models and found
that the depth and microhardness of the heat affected zones
depended on input parameters, specifically, laser power and beam
diameter. However, many of these investigations involved the use
of high-speed imaging and specialized cutting techniques that are
not representative of real-world cutting examples.23

Deep learning can be used as a data-driven modelling tech-
nique that can model complex phenomena directly from observed
data24,25 and is completed using neural networks (NNs). Neural
networks, of which there are many types, can act as universal func-
tion approximators.26 This work will focus on convolutional neural
networks (CNNs) for image classification27,28 and generative adver-
sarial networks (GANs) for image-to-image generation.29 CNNs
can identify features by applying convolutional filters to learn the
spatial relationship between data points.30–33 GANs use similar
techniques to break down data into features and then use trans-
posed convolutions to reconstruct the original shape of the experi-
mental data34 via a network known as a generator.35 A separate
discriminator network can then be used to determine whether the
output from the generator network is experimental or predicted.36

Both networks have associated loss functions that act as feedback
mechanisms,37 and as such, each network uses feedback from the
other network to improve their assigned task. A variation in GANs
that can use experimental conditions as an additional input is
called conditional generative adversarial neural networks
(cGANs).38 An important application for cGANs is image inpaint-
ing, i.e., filling in missing information in an image,39,40 and it is
this approach that enables the predictive capability presented here.
As modelling of laser cut topographies is highly challenging, the
hypothesis introduced here is that deep learning could be a useful
tool for predicting (and subsequently optimizing) the topographies
of surface defects formed by laser cutting.

Laser materials processing has already been studied using
deep learning, with processes such as laser cutting,41–46 laser
welding,10,47–49 fabrication,50,51 and machining52–61 investigated.
Deep learning has also widely been applied to image data62–67 and
topographic data.68,69 Pacher et al.41 have used visually a combina-
tion of visual techniques such as edge detection, gradient-based
methods and gray relational analysis to measure burr profiles, iden-
tification of process zones, and computation of striation angles.
Santolini et al.43 used Gaussian Mixture Models, recurrent Neural
Networks and CNNs on multisensory laser cutting data from input
parameters to classify the quality of the cut into three categories,
good cut, bad cut, and missed cut. Furthermore, Pacher et al.46

have also studied the attachment of dross in real time using process
emission images with CNNs. Stadter et al.47 have used ANNs in

combination with optical coherence tomography to estimate the
severity of defects in laser welding. Wasmer et al.48 used gradient
boost to improve the monitoring capabilities of acoustic emissions
and x-ray imaging of laser processing. Anastasiou et al.50 used
support vector regression to classify the quality of computer-
generated holograms into a quality score of 1–5. Yao et al.51 used
clustering techniques to classify additive manufacturing features
into similar groups and then used a support vector machine to
determine the limits for these features. Mills et al.57,59 have ana-
lyzed images of femtosecond machining using CNN to extract the
laser machining parameters directly from images of machined
samples. Tatzel et al.68,69 have used CNNs to calculate surface
roughness values directly from images and from laser cutting
parameters. Franceschetti et al. have used CNNs to classify defects
formed in the laser cutting process as well as dross formation using
CNNs.45 This work aims to improve on previous studies by using
CNN, GANs, and image inpainting to model topographic data
directly from parameters, reducing the number of images needed to
accurately model laser cutting defects as well as modelling the
effects of changing parameters while cutting.

In this work, machine learning techniques are used for two
purposes: to classify laser cut surfaces based on their surface topo-
graphic defects (e.g., estimating the cutting speed used) and to
make visual predictions of laser cutting output topography under
different parameters (i.e., synthesizing topographic image data).
The two key objectives were (i) to develop a cGAN that could
extend a given input topography using image inpainting and (ii) to
use the cGAN to generate fully synthetic surface topographies for
different cutting speeds. These artificial laser-cut surfaces were sub-
sequently tested using a regression CNN (which was capable of
predicting cutting speed from real-world laser cut topographies) to
verify that the simulated topography accurately represented the
intended cutting speed. Work similar to this work has been per-
formed by Courtier et al.70 This paper aims to build on this work
by applying NNs to laser cutting topographies instead of images
and does so by predicting the appearance of laser cutting topogra-
phies using image inpainting to increase the size of experimental
topographies as well as predicting the laser cutting topography for
cutting conditions not used experimentally, saving time on inspec-
tion costs. Section II details how each stainless steel sample was cut,
how it was used and presented for the machine learning analysis.
Section III contains methods and results for extending the range of
predictive visualization of laser cut topographies. Section IV dis-
cusses the simulation of different cutting speeds using image
inpainting and the implications for the relationship between
surface defects and laser cutting speed, along with potential appli-
cations of such a simulation method. Conclusions are presented in
Sec. V.

II. SAMPLE TOPOGRAPHY COLLECTION AND
PROCESSING VIA DEEP LEARNING

For sample cutting, a 6 kW fiber laser was used, with multi-
mode output delivered via a Ø100 μm fiber. The processing work-
station was a TRUMPF TruLaser 1030 flatbed cutting machine
fitted with a Precitec ProCutter cutting head that had magnification
2.0× and used high pressure nitrogen as the co-axial assist gas. Ten
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stainless steel samples were laser cut at speeds of 15–24 m/min,
with 12 bar of N2 assist gas pressure, with a nozzle diameter of
2 mm, and with a beam diameter of 200 μm (1/e2). The beam
parameter product was 4.5 mmmrad. The cutting head had two
lenses: a collimator lens with a focal length of 100 mm and a focus-
ing lens of focal length 200 mm, giving a magnification ratio of 2.0.
The Rayleigh range is 2.24 mm. These cutting parameters were
chosen to highlight the difference of defects that occur at this range
cutting speeds. The purpose behind choosing the level of process
parameters, especially cutting speed, was due to the association
between cutting speed and cut quality. There is a need for faster
cutting speeds as it saves time for processing; however, faster
cutting speeds limit the quality of the cut. Testing for optimal
cutting speeds is performed through trial and error that is costly in
terms of time and resources. This specific range of cutting speeds
was chosen as the quality of the cut changes significantly over this
range of cutting speeds. Samples cut at 15 m/min are significantly
less rough and more vertical than samples cut at 24 m/min. As
such this range of cutting speeds is interesting for study. Modelling
the variation of cutting quality with speed allows for predictions of
quality to be associated with cutting speed, saving time and
resources on parameter testing. This approach could be applied to
other parameters with further investigation. The cutting nozzle
head had a stand-off distance of 1 mm, which was maintained
using a capacitive height sensor, ensuring that the focal position
would have been 1 mm below the metal surface. Each sample had a
length of 116.0 mm, a thickness of 2.0 mm, and a width of 9.5 mm.
While thicker sheets would provide a different set of geometrical
details, we are limited by the field of view of the topographer. The
topographer has a measuring field of 3.4 × 2.8 mm2 when using a
5× objective, giving an array of 2456 × 2054 pixels. These are then
cropped to a size of 1536 × 2000 pixels. To ensure that both upper
and lower surfaces were captured in each topographic measure-
ment, we used 2 mm thick steel sheets. Laser cutting of sheet of
this type (1.5–3 mm) is relevant to a wide range of industries and
has been studied in a variety of applications including drilling,71,72

welding,73 and industrial manufacturing.74 As indicated by the
schematic in Fig. 1(a), the topographic profile of the edges of the
cut samples was measured using a SmartWLI Compact white light
interferometer (GBS/Omniscan) with a Michelson interferometric
5× objective lens (Nikon). Each measured topography is repre-
sented as an image with resolution 3000 × 2000 pixels and size of
3.4 × 2.8 mm, and multiple topographies were recorded along the
length of each sample. During each topographic measurement, the
objective sweeps through a range of focus heights, spanning
0.5 mm. The absolute position of the scanning range was adjusted
so that all relevant features came into focus during the scan. Each
sample was imaged at 12 locations, giving 12 images per sample
(120 unprocessed images across all cutting speeds).

Figure 1 includes flow charts that show the various experimen-
tal procedures used in this work. The left of Fig. 1(a) shows the
process of laser cutting and subsequent measurement of the topogra-
phy of the cut edge. The right of Fig. 1(a) shows an example of the
laser cut stainless steel topography in 2D and 3D (with the light blue
box indicating the crop size used for the deep learning input). As
observed in the figure, the light blue box covers the full width of the
sample. Brighter regions indicate regions of higher elevation while

darker regions indicate areas of lower elevation. Figure 1(b) shows
the functioning of an inpainting cGan which fills in missing topo-
graphic information from a masked input. A cGAN that predicts
hidden topography from surrounding topography could be used to
model the topography in between measured regions of a sample.
Such a cGAN could, therefore, reduce the number of regions that
need to be measured in order to fully model the topography of the
laser cut edge of the stainless-steel samples. Figure 1(c) shows a
CNN that can classify topographic inputs by estimating the cutting
speed used to produce them. Figure 1(d) shows the combined use of
the NNs illustrated in Figs. 1(b) and 1(c), i.e., the inpainting cGAN
is used repeatedly (in a chain-like loop) to produce synthetic surface
topographies that extend over longer distances. The classifier CNN is
then used to examine the effectiveness of making long distance pre-
dictions of laser cutting topography and to examine the effect of the
laser cutting speed on the cutting defects produced.

Figure 2 contains example topographies from samples cut at
different speeds, illustrating the variation in appearance and defects
that occurs. All topographic data were measured using a white light
interferometer; this device contains an integrated light source that
illuminates the sample via its measurement objective. Light condi-
tions were, therefore, constant for all topographic data. Where
topographic data are displayed in 2D image form, a color bar has
been included to indicate the relationship between color and
height. Where topographic data are plotted as a 3D surface, the Z
axis is scaled differently to X and Y axes; this is done to emphasize
the features of the laser cut edge topography, which might other-
wise be difficult to see. Defects include striations (periodically
spaced ridges) and welts, which are rounded and elongated defects
such as those seen in the bottom half of Figs. 2(c)–2( j), which
appear more randomly. As seen in Fig. 2, each topographic section
has a region of high elevation at the top of the cut, which gradually
descends toward the middle of the cut. For lower cutting speeds,
this gradual descent continues unless there are welts, which only
occasionally appear at lower speeds. For higher cutting speeds, the
appearance of welts is more consistent, with an increase in eleva-
tion occurring at the bottom half of the topographic sections. The
vertical position in the image sections at which the welts start to
appear increases with speed, which is consistent with previous
studies.75

Figure 3 shows a comparison between the average output
parameters for each of the ten cutting speeds. Figure 3(a) shows the
average kerf profile for each of the ten cutting speeds, while Fig. 3(b)
shows the average roughness profiles for the edge of the stainless-
steel samples. As the cutting speed is increased, the bottom half of
the sample becomes higher. This is due to the shorter interaction
time for the laser cutting head, which, in turn, influences the viscos-
ity of the layer of the molten metal. As such, the rate of material
removal at the bottom of the sample will be lower as the cutting
speed increases. This results in more molten and resolidified material
being left at the bottom of the sample.76 The roughness in
this region will also be higher for each speed increase, as shown in
Fig. 3(b). For example, lower speeds tend to be smoother, as shown
in Figs. 2(a) and 2(b), while higher speeds are rougher as seen in
Figs. 2(i) and 2( j). The dip in the average kerf profile for all speeds
coincides with the position of the focus of the laser beam. This is the
point of highest energy density in the beam path and, therefore,
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contributes the most heat. This means that the heating gradient is
positive with respect to the direction of the gas flow above the focus
position, while the heating gradient is negative below the focus posi-
tion. This, in-part, may explain why defects formed above the focus
position are different to those formed below. This is further evi-
denced by the difference in roughness shown in Fig. 3(b) for the top
and bottom half of each sample (left and right of the sample width
axis, respectively).

For neural network processing, topographic sections were ran-
domly chosen from the full-sized, measured, topographies (which
were represented in the form of monochrome images). This
allowed data augmentation by varying the cropping coordinates.
The dimensions and shape of all topographic sections were chosen
to ensure that the full width of the sample was contained in each

section and to allow the use of well-established neural network
architectures for topographic modelling.

For the image inpainting cGAN, topographic sections with
768 × 768 pixels were chosen since this allowed a wide field of view
for topographic predictions. For the inpainting network, topographic
sections with the central half of each section occluded were used as
inputs and the nonoccluded topographic sections were used as
outputs. It is not expected that the topographic predictions of the
cGAN generator will be identical to the experimental data; rather,
during training they will gradually improve until they are realistic
enough that they can regularly deceive the cGAN discriminator.

For the classification CNN, topographic sections with a size of
768 × 768 pixels were chosen as this allowed a larger number of
example topographies to be created for each cutting speed (i.e., it

FIG. 1. Flow chart showing the process of measuring topographies of laser cut stainless-steel as well as the concepts for topography prediction and inpainting. Panel (a)
shows the process of laser cutting and measurement with an example of a laser cut topography section (cut at 15 m/min) plotted in 2D and 3D. The red arrow indicates
the direction of the laser beam while the black arrow indicates the direction of scan. The blue box shows a section of topographic data to be used for deep learning. Panel
(b) shows the concept for image inpainting for a laser cut topography section. Panel (c) shows the functioning of a CNN to predict the cutting speed. Panel (d) shows the
combined use of NNs to study the prediction of defects via inpainting and how they depend on the cutting speed.
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increased the amount of training data that could be created, from
the same quantity of measured data). For this regression-based
CNN, a topographic section of the laser cut edge was used as an
input, and the output was the prediction of the laser cutting speed
used to create the topography.

III. PREDICTIVE VISUALISATION OF LASER CUTTING
TOPOGRAPHY

The purpose of this section is to demonstrate that NNs have
the capability to predictively visualize laser cutting topographies on

a large scale. The cGAN used for this modelling approach was a
Pix2Pix architecture77 with minor modifications, namely, the
increase in input and output dimensions by a factor of 3, up to
768 × 768 pixels, and the use of partial convolutions instead of tra-
ditional convolutions. The unmodified architecture used for this
paper can be found at Ref. 78.

Topographic image sections were produced from stainless-
steel samples laser-cut at 15–24 m/min in 1 m/min intervals. This
yielded a total of 24 000 topographic sections. Of these, the topo-
graphic sections from cutting speeds of 15 and 20 m/min were
reserved for testing, while the topographic data from other cutting

FIG. 2. Experimental examples of topographic sections of stainless-steel samples cut by a fiber laser at (a) 15, (b) 16, (c) 17, (d) 18, (e) 19, (f ) 20, (g) 21, (h) 22, (i) 23,
and ( j) 24 m/min.
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speeds were used for training. The network was, therefore, trained
using 20 000 topographic sections, with 4000 topographic sections
being held back for testing. The batch size of training was 1, with
the activation function at each layer being ReLU. The optimizer
used was ADAM, with moments of 0.9 for beta 1 and 0.999 for
beta 2 used for the generator and discriminator and a learning rate
of 0.0001 for the generator and 0.000 01 for the discriminator. L1

loss has been used to regularize the network preventing overfit and
underfit. Dropout layers are also used in the upscaling portion of
the Pix2Pix network to prevent underfit. Data augmentation was
used to prevent underfit as shown in Fig. 4. The testing data speeds
of 15 and 20 m/min were chosen to allow the assessment of
the NN’s ability to extrapolate and interpolate, respectively, as
15 m/min lies outside of and 20 m/min lies within the range of

FIG. 3. Comparison of output parameters for each of the ten cutting speeds. (a) Comparison of average kerf profiles. (b) Comparison of the average roughness profiles.

FIG. 4. Concept of data augmentation for topographic sections.
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experimental values contained in the training data. As mentioned
in Sec. I, image inpainting is the filling in of missing information
in image data.40 The cGAN used for this approach uses partial con-
volutions instead of convolutional layers. A partial convolution is
essentially a convolution that distinguishes between masked and
nonmasked features, such that only nonmasked features are used to
fill in missing information in the topography.39 This is done by
multiplying the output of the convolutional filter of each convolu-
tional layer at each position in the image by a proportion of non-
masked pixels contained at each point in the image such that only
regions with nonmasked data are fully learned, and masked or
mostly masked regions are virtually ignored.

The hyperparameters that were tuned were the learning rates
of the generator and discriminator, the lambda value for the L1
loss, and the resolution of the network. It is common practice to
have a higher generator learning rate than the discriminator as it
allows the generator to be penalized less harshly for attempting dif-
ferent solutions to optimize the output data. The lambda value of
the L1 loss was taken from Isola et al.78 The resolution was
changed to 768 × 768 instead of 256 × 256 (the default network res-
olution) as it allowed for higher resolution of defects while preserv-
ing the ability to capture the full width of the sample. This means
that the middle layer in the generator has a dimension of
3 × 3 × 1024 instead of the default 1 × 1 × 1024.

The topographic data were collected over the course of a week,
taking around 30 h in total. Using dataset augmentation, 24 000
topographic images were generated in 4 h. The data augmentation
was performed by cropping 1536 × 1536 pixel topographic sections
from a larger 1536 × 2000 topography and completed 200 times for
each image. Each topographic section is then scaled down by a
factor of 2, giving topographic sections of size 768 × 768. Twelve
larger topographic sections were collected for each cutting speed,
and there were 10 cutting speeds. This gave a total dataset size of
24 000 topographic sections after data augmentation. This process
is shown in Fig. 4.

Inputs were 768 × 768 pixel topographic sections, with either
the middle halves of the images masked, and the outputs were
768 × 768 pixel images of unmasked topographic sections. The
network was trained on 20 000 topographic sections of stainless
steel cut at 16, 17, 18, 19, 21, 22, 23, and 24 m/min, and it was
tested on 4000 topographic sections cut at 15 and 20 m/min.
Figure 5 demonstrates the concept of using image inpainting to fill
in missing information for a laser cut topographic section, in order
to predict a realistic topography based on the surrounding data.
Figure 5(a) shows the process in detail, with blue dashed outlines
highlighting sections of experimentally measured data, and orange
outlines marking sections that are produced by the inpainting
cGan. Figure 5(b) shows an example of a ∼16.5 mm long section of
laser-cut topography, predicted by the inpainting cGan for a
cutting speed of 20 m/min.

Figure 6 compares the statistical distributions of the experi-
mentally measured data and NN inpainted data. Figures 6(a)
and 6(b) are histograms of the pixel values contained within the exper-
imental and inpainted topographic sections for 15 and 20m/min,
respectively. In both cases, the overall shape of the curves is well
matched, with the peaks of experimental and inpainted distributions
lining up with each other. The pixel distribution for inpainted data at

20m/min [Fig. 6(b)] matches the experimental pixel distribution
more closely than the 15m/min one [Fig. 6(a)]. This is likely to be
because the cutting rate of 15m/min falls outside of the range of
speeds on which the NN was trained (and, therefore, requires the NN
to extrapolate). In contrast, the NN inpainting at 20m/min requires
only interpolation, allowing a closer match to be achieved. The reason
for the single peak for 15m/min and the double peak for 20m/min is
due to the time spent on each region by the laser head at each cutting
speed. The 15m/min pixel distribution exhibits a single peak, while in
the 20m/min case, a double peak is observed. This is because, at
15m/min, the laser head spends more time at each region, removing
more material and leaving a single high region at the top of each topo-
graphic section (the pixel distribution peaks at lower height values,
centered at approximately 100). At 20m/min, the laser head spends
less time at each region, removing less material and creating more
defects at the bottom of each topography. This leaves a high region at
both the top and bottom of each topographic section, which contrib-
utes a greater number of brighter pixels (a second peak in the distribu-
tion appears, centered near a height value of 140). Figures 6(c) and 6
(d) show the average kerf profiles for samples cut at 15 and 20m/min,
respectively. The average kerf of inpainted topographic sections
matches the experimental average kerf of samples cut at 20 m/min
very well. The NN training has likely been aided by the fact that the
average kerfs of 19 and 21m/min cut speeds are similar to that of
the 20m/min case. As was observed for pixel value distributions,
the 15m/min case matches less well and for the same reasons.
Figures 6(e) and 6(f) show the average roughness criteria (Rz) along
the width of experimental and inpainted topographic sections for
samples cut at 15 and 20m/min, respectively. The roughness criterion
Rz was calculated using79

Rz ¼
XN

i

Rzi

N
¼

XN

i

(RP � RT)i
N

, (1)

where RZi is the peak to trough distance of a small sampling length,
while RP is the peak height while RT is the trough height. The rough-
ness criterion was measured over five sampling lengths of length
0.44mm, giving the total measurement length of 2.2mm. The stan-
dard measurements are given by DIN ISO 9013.80 Typically, the
number of sampling lengths used is 5. In both cases (15 and 20m/
min), the roughness of inpainted topographic sections were lower
than the experimentally measured ones. This is likely because the
depth of inpainted defects does not match the experimentally mea-
sured ones exactly. Furthermore, during training, the NN will tend to
learn the most statistically likely surface texture for each cutting speed.
However, attempting to predict the most likely surface topography
may have an inherent smoothing effect—causing predicted topogra-
phies to lack extreme height outliers that can be found in experimental
data while producing the most commonly occurring defects.

The average profile was generated using the mean of the topo-
graphic profile along the horizontal direction. The roughness
profile was generated by applying Eq. (1) to each of the pixel height
values in a topographic section in the horizontal direction. This
value was then collected for each vertical coordinate in the topo-
graphic section. For each topographic section, these calculations
were applied to each line of topographic data pixels, along the laser
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cut direction. This produced roughness values for each point across
the thickness of the sample. Each of these profiles was averaged
over 500 topographic sections of the same cutting speed. These
evaluation metrics were used to compare the physical dimensions
of the predicted data to the experimental data. The pixel distribu-
tions were compared to highlight the resemblance of the images
produced using image inpainting, while the kerf profile and the

roughness profile are closely linked with the cut quality.80 As there
are many possible defects that can be produced for each input, is it
not appropriate to use standard machine learning metrics such as
the FCN score. It is clear that inpainting within the range of
cutting speeds used for training is more accurate than extrapolating
to values outside the range of cutting speeds used for training.
Inpainting outside of the range of training cutting speeds appears

FIG. 5. (a) Flow chart showing the process of producing long distance laser cutting topographies of a sample cut at 20 m/min. (b) Example of a long section (16.5 mm) of
inpainted laser cut topography.
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FIG. 6. Plots comparing the statistical distribution of experimental topographies and inpainted topographies of samples cut at 15 and 20 m/min. Histograms showing the
distribution of pixel values in topographies for samples cut at (a) 15 and (b) 20 m/min. Plots of the average kerf profile across the thickness of samples cut at (c) 15 and
(d) 20 m/min. Plots of the roughness Rz across the thickness of samples cut at (e) 15 and (f ) 20 m/min.
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to more closely resemble the topography of the closest speed within
the training dataset.

It is necessary to show how the inpainting cGAN performs on
each of the cutting speeds individually. Figure 7 shows the mean
absolute error (MAE) of inpainted topography relative to experimen-
tal topography as a function of cutting speed. In this case, inpainted
topographies were produced from nonadjacent experimental topog-
raphies for each cutting speed. For each cutting speed, the MAE was
calculated for 500 examples and averaged. In each case, the inpainted
topography was produced using five inpainting steps.

Until now, this approach has only allowed for interpolation
and extrapolation capabilities to be tested on one cutting speed
each. It is necessary to further analyze the quality of inpainted
topography of interpolated and extrapolated cutting speeds.
Figure 8(a) shows the average kerf profile for samples cut at
15 m/min calculated by CGANs trained on the upper 80%
(17–24 m/min), the upper 60% (19–24 m/min), and upper 40%
(21–24 m/min) of the available cutting speeds. Figure 8(b) shows
the average kerf profile for samples cut at 20 m/min calculated
by CGANs trained on the outer 80% (15–18 m/min and
21–24 m/min), the outer 60% (15–17 m/min and 22–24 m/min),
and outer 40% (15–16 m/min and 23–24 m/min) of the available
cutting speeds. Figures 8(c) and 8(d) show the average roughness
profile for samples cut at 15 and 20 m/min, respectively, using the
same CGANs as in Figs. 8(a) and 8(b). In this case, the kerf profiles
and roughness profiles for 20 m/min perform better than those for
15 m/min, with the network performance depending on the pro-
portion of the available cutting speeds used for training. This indi-
cates a dependence of the quality of interpolating and extrapolation
on how representative the training data is of the intended

interpolated and extrapolated data. In all cases, the models trained
on the outer available cutting speeds performed better than those
trained on the upper available cutting speeds, showing that this
modelling approach is more effective for interpolation than for
extrapolation.

It is noteworthy that the striation patterns produced in the
extended topographies such as those in Fig. 5(b) appear to repeat
themselves after a certain number of inpainting steps. It is, there-
fore, necessary to further investigate the periodicity of the inpainted
topography as related to the number of inpainting steps. In this
case, the periodicity was investigated by taking a sample section of
the inpainted topography and plotting the recurrence error of the
sample inpainted topography relative to the total inpainted topog-
raphy. If there is repetition in the inpainted topographic defects,
the recurrence error will also show periodic behavior. The recur-
rence error was measured by taking the mean absolute error
(MAE) of the sample topography relative to the total inpainted
topography along the length of the total inpainted topography. The
sample topography in this case was a 768 × 256 section taken from
the middle of the inpainted topography. These dimensions were
chosen as it corresponds to a single step of inpainted topography as
well as being the last section of the topography produced during
the inpainting process. The periodicity of the inpainted topography
was measured using Fourier Transforms of the recurrence error.
Spatial frequencies smaller than 0.1 cycles/mm and larger than
150 cycles/mm were not taken into account as they are not repre-
sentative of defects produced during the laser cutting process.
Figure 9(a) shows the number of frequencies above the amplitude
of noise for the recurrence error of inpainted topographies of 15
and 20 m/min. The number of frequencies above noise reaches a
constant with the number of inpainting steps. This shows that
while the inpainting process does produce new defects with each
inpainting step, while also showing that fewer new defects appear
after each step. The pattern appears to repeat itself after approxi-
mately 10 steps. Figure 9(b) shows a sample recurrence error
plot for inpainted topographies of 15 and 20 m/min. Figures 9(c)
and 9(d) show a samples’ Fourier transform for extended topogra-
phies of 15 and 20 m/min produced using 20 inpainting steps.
Each measurement was averaged over 100 topographies for each
inpainting step. This is done to show the total number of frequen-
cies present throughout the extended inpainting process. As these
periods vary somewhat along the length of the topography, it is
indicative that the striation patterns produced via inpainting do not
repeat themselves identically and, therefore, still allow for some var-
iation in the prediction of striations.

IV. ANALYZING THE EFFECT OF CUTTING SPEED ON
DEFECTS

The purpose of this section is to study the effect of inpainting
the space between topographies produced at two different cutting
speeds. Given that an inpainting cGAN can fill in the space in
between two portions of topographic data, it might be able to fill in
the space between topographic data from two samples cut at differ-
ent speeds. If this were possible, perhaps the cGAN might produce
laser cutting defects representative of a cutting speed halfway
between those of the give input topographies. If so, we could

FIG. 7. Mean absolute error of as a function of cutting speed evaluated over
five inpainting steps for each cutting speed.
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consider the halfway cutting speed as a target speed for the cGAN
to reproduce (without access to any input topography that corre-
sponds to this cutting speed). To test this hypothesis, a classification
CNN capable of accurately estimating the laser-cut speed of any
given topographic section was developed. If the inpainting cGan can

successfully produce topographies that mimic those of the interme-
diate cutting speed, then the classification CNN should identify the
topography as having been cut at the middle speed.

The classification CNN receives a topographic section of the
laser cut stainless steel edge as an input and outputs an estimate of

FIG. 8. In-depth comparison between extended topographies and experimental topographies for the purposes of interpolation and extrapolation of cutting speeds.
(a) Average kerf profile for samples cut at 15 m/min as calculated by CGANs trained on the upper 40%, 60%, and 80% of the available cutting speeds. (b) Average kerf
profile for samples cut at 20 m/min as calculated by CGANs trained on the outer 40%, 60%, and 80% of the available cutting speeds. (c) Average roughness profile for
samples cut at 15 m/min as calculated by CGANs trained on the upper 40%, 60%, and 80% of the available cutting speeds. (d) Average roughness profile for samples cut
at 20 m/min as calculated by CGANs trained on the outer 40%, 60%, and 80% of the available cutting speeds.

Journal of
Laser Applications ARTICLE scitation.org/journal/jla

J. Laser Appl. 35, 032007 (2023); doi: 10.2351/7.0000957 35, 032007-11

© Author(s) 2023

 30 August 2023 14:27:05

https://lia.scitation.org/journal/jla


the cutting speed used to create that sample. Stainless-steel samples
were cut at speeds ranging from 15 to 24 m/min in intervals of
1 m/min. Topographic data were collected from each sample, with
the cutting speed stored in the filename for each image. Of the 120
topographic images, such as those shown in Fig. 2, 96 were used
for training and 24 were used for testing. From these sets of topo-
graphic images, topographic sections with a shape 768 × 768 pixels

were procedurally generated by randomized cropping. As such
topographic sections used for training and testing were drawn from
different images to prevent overlap.

The architecture of the CNN was inception,81 the implemen-
tation of which can be found in Ref. 82. The CNN was trained for
10 epochs, with 9600 training topographic sections procedurally
generated during each epoch. The CNN was then tested on 2400

FIG. 9. Study of the periodicity of inpainted topography with respect to the number of inpainting steps. (a) The number of frequencies of the Fourier transform of the MAE
compared to the number of inpainting steps for 15 and 20 m/min. (b) Average MAE for inpainted topographies of samples cut at 15 m/min and 20 m/min using 20 inpaint-
ing steps. (c) Example Fourier transform of the MAE for an extended topography of a sample cut at 15 m/min. (d) Example Fourier transform of the MAE for an extended
topography of a sample cut at 20 m/min.
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FIG. 10. (a) (1) Example of topographic data inpainted between two experimental topographies with laser cut speeds of 15 and 17 m/min. (2) Example of the topographic
data inpainted between two artificial topographies with theoretical speeds of 16 and 18 m/min. (b) (1) Correlation plot comparing cutting speeds predicted by the regression
CNN with actual experimental cutting speeds. (2) Plot showing the relationship between the middle speed and the regression CNN’s estimate of the laser cut speed based
on the inpainted topography in the case where the inpainting input topographies are experimentally measured. (3) Plot of error between the middle cutting speed and the
regression CNN’s estimate of the laser cutting speed, as a function of the difference in cutting speed of the two input topographies. (4) Plot showing the relationship
between the middle speed and the regression CNN’s estimate of the laser cut speed based on the inpainted topography, in the case where the inpainting input topogra-
phies are themselves artificially generated by inpainting.
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procedurally generated examples. The predictions for the cutting
speed were then compared to the actual experimental cutting
speeds. For the purposes of classification, predictions of the cutting
speed were rounded to the nearest integer. The mean absolute error
for the regression CNN was 0.10 m/min.

The results of inpainting the space in between two
topographies of different cutting speeds are shown in Fig. 10.
Figure 10(a)(1) shows an example of topographic data inpainting
between experimentally measured topographies for samples cut at
15 and 17 m/min. Figure 10(a)(2) shows an example of topographic
data inpainting between two topographies that had themselves
been generated by the inpainting cGan, with theoretical speeds of
16 and 18 m/min. These two artificial input topographies were
inpainted between experimental topographies cut at 15 and
17 m/min and 17 and 19m/min, respectively. Figure 10(b)(1)
shows a confusion matrix comparing cutting speeds predicted by
the regression CNN with the actual experimental cutting speeds.
Darker regions indicate high correlation. In the event of perfect
accuracy, there would be a single diagonal line in the matrix from
bottom left to top right. For the regression CNN, it is clear that
certain cutting speeds have topographic features in common,
making them difficult to distinguish. It is evident that cutting
speeds of 15 and 16 m/min have defects in common, as well as
cutting speeds 20–24 m/min. Figure 10(b)(2) shows, when inpaint-
ing between experimentally measured topographic sections, the
relationship between the middle speed (experimental) and the
speed estimate made by the classifier NN for the inpainted topog-
raphy. Figure 10(b)(3) shows the error between the middle cutting
speed and the classifier NN’s estimate of cutting speed (based on
the topography), as a function of the difference between the cutting
speeds of the two topographies used as inpainting inputs. In the
event of perfect prediction accuracy, a horizontal line with a value
of 0 would be seen. Figure 10(b)(4) is similar to Fig. 10(b)(2) in
that it shows the relationship between the middle speed and the
speed estimate made by the classifier NN; except that in this case,
the two input topographies are themselves generated by inpainting,
rather than by direct experimental measurement.

Figure 10 demonstrates that when inpainting the topography
between topographic data from two different cutting speeds, the
inpainted topography will contain surface defects similar to those
of the intermediate cutting speed. Given that the regression plot in
Fig. 10(b)(1) demonstrates good accuracy for predicting cutting
speed from experimental data, if the inpainting cGAN produces
accurate simulations of the middle cutting speed (between the
speeds of the two input topographies), then the regression CNN
should be able to accurately determine the middle cutting speed
from the inpainted topographies. As the plots in Fig. 10(b)(2),
10(b)(3), and 10(b)(4) show, the mean predicted speed for each
inpainted topography lies along the theoretical middle speed in
between the speeds used for the inputs. In particular, Fig. 10(b)(3)
shows that the accuracy of the predicted speeds has a dependence
of how big the difference between the starting and ending speed
are. On average, the difference between the middle speed and the
regression CNN’s estimate of the cutting speed, is smaller for
smaller speed differences. In both Fig. 10(b)(2) and Fig. 10(b)(4),
there are no inpainted topographies where the regression CNN esti-
mates the cutting speed to be v = 15m/min. This is likely to be

because the inpainting network was not trained on the samples cut
at v = 15 m/min and as such highlights the difference between the
interpolating and extrapolating capabilities of NNs. This might also
be responsible for some bias within other predictions. For all other
speeds, however, the mean predicted speed falls very close to the
target cutting speed. This demonstrates the potential capability of
cGANs to be used to model intermediate cutting speeds between
those already measured. This modeling process could drastically
reduce the number of experiments needed to simulate the results of
laser cutting over a wide range of parameters. It also demonstrates
that the surface defects produced during laser cutting are on
average linearly dependent on the cutting speed. This modelling
process could also be used to determine the linearity of dependence
on other laser cutting parameters such as laser power, gas pressure,
focus position, and stand-off distance. This modeling process could
also be used to model acceleration of cutting speeds in real time as
well as measuring the impact of varying other parameters while
cutting.

V. CONCLUSIONS

In conclusion, an inpainting cGAN was used to model the
surface topography of samples of stainless-steel cut by a fiber laser
at speeds of 15–24 m/min in steps of 1 m/min. A regression CNN
was then used to determine the accuracy of inpainted features com-
pared to experimental results.

Predictions of surface topography made by the inpainting
cGAN were successful in matching experimentally measured
parameters such as height distribution, kerf profile, and roughness
criteria across the thickness of the sample. Furthermore, the
inpainting cGAN was shown to be capable of interpolating the
region between the two input topographies with different cutting
speeds. This was demonstrated both with experimentally measured
input topographies and with input topographies that had them-
selves been artificially generated by inpainting. The classifier CNN
was first shown to be able to correctly predict the cutting speed
used to produce a given (experimentally measured) surface topog-
raphy. Subsequently, this classifier CNN was used to verify that
artificial topographies, generated by inpainting, matched the
expected appearance for their chosen target cutting speed.

It is possible to conclude, based on the mean of the predic-
tions of the regression CNN, that the inpainting cGAN can predict
laser cutting topographies that are statistically similar to topogra-
phies not experimentally measured given than in all cases the CNN
predicts the same cutting speeds as for experimental cutting topog-
raphies. The major benefits offered by this novel approach to mod-
eling laser cutting topographies are as follows: First, it allows
topographic defects in laser cut stainless steel to be predicted based
on the surrounding topography. Second, it can be applied to cases
where the two input topographies have been produced using differ-
ent laser parameters, allowing, via interpolation, the creation of
artificial topographies that correspond to laser parameters that may
not have been experimentally measured. Third, it also allows the
generation of large areas of surface topography from minimal input
data, meaning that far fewer experimental examples of laser cutting
data would be needed for large area simulations. The roughness cri-
teria can be accurately calculated from topographic predictions
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made by inpainting; this is of key importance as the roughness cri-
terion is inextricably linked to the final quality of the laser cut
edge.79 Furthermore, this approach also offers the possibility of
modeling the effect of changing laser parameters during
cutting.81,82

In terms of real world applications, this work allows for theo-
retical optimization of the laser cutting process for a given parame-
ter range without needing to physically test each parameter setting.
Furthermore, it could be used for real-time prediction of defects
produced during laser cutting, thereby enabling a self-optimizing
cutting system to maximize the final cut quality according to the
needs of the user.
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