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We consider two-dimensional conformal field theories (CFTs) that exhibit a hallmark feature of
quantum chaos: universal repulsion of energy levels as described by a regime of linear growth of the
spectral form factor. This physical input together with modular invariance strongly constrains the spectral
correlations and the subleading corrections to the linear growth. We show that these are determined by the
Kuznetsov trace formula, which highlights an intricate interplay of universal physical properties of chaotic
CFTs and analytic number theory. The trace formula manifests the fact that the simplest possible CFT
correlations consistent with quantum chaos are precisely those described by a Euclidean wormhole in
AdS3 gravity with ½torus� × ½interval� topology. For contrast, we also discuss examples of nonchaotic
CFTs in this language.
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Introduction. Given the abundance of systems exhibiting
statistical universalities referred to as quantum chaos,
including black holes [1], it is of obvious interest to
study these universalities in some of the most important
models for holography: two-dimensional conformal field
theories (CFTs).
A prototypical example of a gravitational off-shell

solution with two boundaries is the asymptotically anti–
de Sitter (AdS) wormhole with [torus] × [interval] (T 2 × I)
topology [2]. The two-boundary CFT partition function
associated with such a geometry was studied by Cotler and
Jensen [3]. In particular, it was found that, interpreted as a
spectral form factor (SFF), this wormhole amplitude
exhibits random matrix universality in the near-extremal
long-time limit and hence describes correlations in what
can be called a chaotic CFT. The same authors also
initiated a bootstrap approach, which aims to derive the
wormhole amplitude from minimal assumptions about
CFTs [4]. This idea has benefited enormously from
expressing CFT quantities in a manifestly modular invari-
ant basis [5]. In particular, Di Ubaldo and Perlmutter
derived the wormhole amplitude using spectral theory and

making only few natural assumptions about the pairing of
eigenvalues and eigenfunctions of the Laplacian on the
fundamental domain [6]. Similarly, in [7] we show how the
wormhole amplitude can be discovered by demanding
random matrix universality (for a single CFT) in the
appropriate limit, independently in each spin sector.
The study of quantum chaos in 2D CFTs is complicated

by the fact that these systems enjoy an enormous amount of
symmetry, which rigidly dictates much of the spectrum. To
discuss chaos,1 one needs to focus on a superselection sector
by (i) removing Virasoro descendants and (ii) discarding
states that are images under modular transformations of the
nonchaotic “censored” states, i.e., those states with con-
formal weights satisfying minðh; h̄Þ ≤ c−1

24
[9,10]. This can

always be achieved in a way that preserves modular
invariance [5]. The result of this procedure is the “fluctuat-
ing” part of the spectrum of primary states, describing
oscillations around the average physical density of states,
i.e., statistical fluctuations in the dual Bañados-Teitelboim-
Zanelli black hole microstate spectrum. We refer to its
partition function as Z̃P. Finally, (iii) we focus on the
partition function Z̃m

P of states with definite spinm ¼ h − h̄.
Quantum chaos refers to the fact that states with nearby

energies are correlated in a universal way that encodes the
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1This is in the spirit first introduced in [8], where we envision
an effective coarse-graining of states in a single CFT, similar to
the coarse-graining underlying quantum statistical mechanics of
closed unitary systems.

PHYSICAL REVIEW D 108, L101902 (2023)
Letter

2470-0010=2023=108(10)=L101902(6) L101902-1 Published by the American Physical Society

https://orcid.org/0000-0001-7426-0962
https://orcid.org/0009-0002-5540-3248
https://orcid.org/0000-0002-7183-2125
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.108.L101902&domain=pdf&date_stamp=2023-11-06
https://doi.org/10.1103/PhysRevD.108.L101902
https://doi.org/10.1103/PhysRevD.108.L101902
https://doi.org/10.1103/PhysRevD.108.L101902
https://doi.org/10.1103/PhysRevD.108.L101902
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


repulsion of energy levels. E.g., if ρ̃mP ðEÞ denotes the
density of spin m operators counted by Z̃m

P , random matrix
universality is the statement that

hρ̃m1

P ðE1Þρ̃m2

P ðE2Þi∼−
δm1m2

π2jωj2 ðω≪Ek−Emk
≪ 1Þ; ð1Þ

where ω≡ E1 − E2 and Emk
≡ 2πðmk − 1

12
Þ is the lowest

energy in the spectrum of Z̃mk
P . In the time domain, the

effect of this term is a linear growth of the SFF, often
referred to as a ramp: we place two copies of the CFT on
tori with modular parameters τk ¼ xk þ iyk and analyti-
cally continue y1;2 → β � iT. In the near-extremal β ≫ 1

and late-time T ≫ β limit the linear (in T) ramp follows
from the following (Euclidean) behavior2:

hZ̃m1

P ðy1ÞZ̃m2

P ðy2Þi ¼
δm1m2

π

y1y2
y1þ y2

e−2πjm1jðy1þy2Þ þ � � � ð2Þ

up to subleading terms in the limit yk ≫ 1 with y1
y2

held
fixed. We refer to these asymptotics as a “bare ramp,” as it
encodes nothing further than the minimum amount of
information that follows universally from quantum chaos.3

The presence of this ramp is the defining feature of
quantum chaos and it is the main assumption we make
about the spectrum of the CFT. We revisit the following
question: assuming only a linear ramp (2) for every spin
sector, how can we make it consistent with modular
invariance and what do we learn about the SFF of the full
theory? The elegant answer is that certain subleading terms
need to be added to the bare ramp in order to restore
modular invariance [6]. These terms are dictated by general
symmetry considerations, which we phrase as stringent
requirements rooted in analytic number theory. We quantify
a minimality assumption about subleading corrections to
the bare ramp, which leads to the T 2 × I gravitational
constrained instanton of [3].

Spectral theory and Kuznetsov trace formula. The central
result, which we use to find the subleading terms minimally
completing the bare ramp into a modular invariant ampli-
tude, is the Kuznetsov trace formula. The formula connects
the spectral theory of the Laplacian on the fundamental
domain F ¼ H=SLð2;ZÞ to geometric Poincaré series. To
set up notation, we briefly review the spectral part of this
formalism. The spectrum of the Laplacian on F has a

continuous and a discrete part. A basis of modular invariant
parity-invariant functions are the following Eisenstein
series (labeled by α∈R) and Maass cusp forms (labeled
by n∈Zþ)

4:

E1
2
þiα ¼

X
m≥0

cosð2πmxÞ ð2 − δm;0Þ
Λð−iαÞ aðαÞm

ffiffiffi
y

p
Kiαð2πmyÞ;

νn ¼
X
m≥1

cosð2πmxÞaðnÞm
ffiffiffi
y

p
KiRn

ð2πmyÞ; ð3Þ

where Λðs
2
Þ≡ Λð1−s

2
Þ≡ π−s=2Γðs=2ÞζðsÞ is the completed

Riemann ζ function. The eigenvalues of the Laplacian are
1
4
þ α2 and 1

4
þ R2

n, respectively, where the Rn > 0 are
sporadic, Poisson distributed numbers whose density grows
linearly with the value of Rn. The Fourier coefficients of

Eisenstein series are aðαÞm ≡ 2jmj−iασ2iαðjmjÞ.5 The Fourier
coefficients of the cusp forms, aðnÞm ≡ aðnÞ−m, are again erratic
discrete numbers, which are statistically distributed accord-

ing to known distributions (we normalize aðnÞ1 ¼ 1). For

instance, aðnÞp ∈ ð−2; 2Þ are independently distributed for
different primes p with a distribution that approaches a
Wigner semicircle centered at 0 for large p; the coefficients
for nonprime spins can be constructed from those with
prime spin via the fact that νnðτÞ are eigenfunctions of
Hecke operators. This random but highly constrained
structure and its statistical properties is called arithmetic
chaos [14,15].
Modular invariant quantities of sufficiently fast decay at

the cusp y → ∞ can be expanded in the basis of Eisenstein
series and cusp forms [16]. In particular,

Z̃PðτÞ ¼ hZ̃Pi þ
Z
R

dα
4π

z1
2
þiαE1

2
þiαðτÞ þ

X
n≥1

znνnðτÞ

z1
2
þiα ¼ ðZ̃P; E1

2
þiαÞ; zn ¼

ðZ̃P; νnÞ
kνnk2

; ð4Þ

where ð·; ·Þ denotes the Petersson (L2-)inner product on F .
The first term in (4) is the spectral average of Z̃P, i.e., its
overlap with ν0 ≡ 1; it vanishes by construction. Since the
assumption of quantum chaos should be unconstrained by
symmetries, it is natural to expand the SFF hZ̃Pðτ1ÞZ̃Pðτ2Þi
in (two copies of) the manifestly modular invariant basis (3).
The coefficients in such an expansion will be correlators of
the overlap coefficients z1

2
þiα and zn. Such correlators should

be understood in the sense of coarse-graining: they quantify
the correlations in the spectrum as a function of the spectral

2Our normalization of the wormhole amplitude differs by a
factor of 2 from [3]. This is in order to describe the Gaussian
orthogonal ensemble universality class; cf. [11] and comments
in [6].

3On first inspection, our “linear” ramp grows as T2. This is due
to the modular invariant construction of Z̃P, which introduces a
spurious factor of

ffiffiffiffiffiffiffiffiffi
y1y2

p ∼ T. The physical SFF follows after
removing this factor. See, e.g., [5,12].

4We focus on CFTs with parity symmetry, where we can project
onto the parity-even superselection sector that only requires
parity-even cusp forms. See Supplemental Material [13] for a
discussion of odd forms.

5The divisor sum is σzðmÞ≡Pdjm dz, implying aðαÞm ¼ að−αÞm .
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parameters α and n (which is related to the more common
correlations in nearby energy windows by an integral
transform).
The central result we use from analytic number theory is

the following (see [17,18], also [19]).
Theorem (Kuznetsov). Let hðαÞ be an even function,

which is holomorphic and sufficiently fast decaying in
an appropriate region of the complex plane.6 Then, for
jmkj ≥ 1:

Z
R

dα
4π

aðαÞm1
aðαÞm2

2Lð2αÞ
E ð1Þ

hðαÞ þ
X
n≥1

aðnÞm1
aðnÞm2

LðnÞ
ν×νð1Þ

hðRnÞ

¼ δm1m2

π

Z
R

dα
4π

α tanhðπαÞhðαÞ þ Gþ
m1m2

; ð5Þ

where the final term mixes spin sectors and is given in
terms of Kloosterman sums7:

Gþ
m1m2

¼ 2i
X
c≥1

Sðjm1j; jm2j;cÞ
c

×
Z
R

dα
4π

αhðαÞ
coshðπαÞJ2iα

 
4π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffijm1m2j
p

c

!

þ 4

π

X
c≥1

Sðjm1j;−jm2j;cÞ
c

×
Z
R

dα
4π

αhðαÞ sinhðπαÞK2iα

 
4π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffijm1m2j
p

c

!
: ð6Þ

The lhs of the theorem involves Rankin-Selberg L
functions for Eisenstein series and cusp forms. These are
generalizations of the Riemann ζ function, which can be
defined as series over m involving the Fourier coefficients:

LðαÞ
E ðsÞ ¼ 1

2

X
m≥1

aðαÞm

ms ; LðnÞ
ν×νðsÞ ¼ ζð2sÞ

ζðsÞ
X
m≥1

ðaðnÞm Þ2
ms ð7Þ

for ReðsÞ > 1. Similar to the Riemann ζ function the L
functions admit a meromorphic continuation to the entire
complex plane. Evaluated at s ¼ 1 these simplify as
follows [20]:

Lð2αÞ
E ð1Þ ¼ jζð1þ 2iαÞj2 ≡ coshðπαÞjΛðiαÞj2;

LðnÞ
ν×νð1Þ ¼ 8 coshðπRnÞkνnk2: ð8Þ

The result (5) is a trace formula as it computes the trace
of certain Hecke operators. Their eigenvalues are propor-
tional to the Fourier coefficients and the trace formula
contains these in a pattern with correlated (“diagonal”)
eigenvalues α and n. The L functions provide the number
theoretic kernels for the traces of Hecke operators. The rhs
of the trace formula should be understood in a geometric
sense: it originates from computing Fourier coefficients of a
Poincaré series. The first term, which is diagonal in spin,
arises from translations. The spin-mixing second term
arises from all other SLð2;ZÞ transformations. Clearly
quantum chaos, being an independent feature of fixed spin
sectors, should be encoded in the first term.

Minimal modular completion and spectral decomposition
of the ramp. Let us now apply the Kuznetsov trace formula
to the universal ramp in chaotic CFTs. First note that, if

hðαÞ ¼ 4
ffiffiffiffiffi
y1

p
Kiαð2πjm1jy1Þ

ffiffiffiffiffi
y2

p
Kiαð2πjm2jy2ÞgðαÞ ð9Þ

with g independent of yk and spins, then the lhs of (5)
involves fixed spin components of Eisenstein series and
cusp forms, thus providing an SLð2;ZÞ spectral decom-
position for the trace of a product of modular invariant
functions.8

We first consider the simplest possible function that
furnishes such a spectral decomposition: a constant,

gðwhÞðαÞ ¼ 1; ð10Þ

and denote by hðwhÞðαÞ the corresponding function (9).
Using a standard Bessel function integral, the spin-diagonal
first term on the rhs of (5) is the bare ramp:

δm1m2

π

Z
R

dα
4π

α tanhðπαÞhðwhÞðαÞ

¼ δm1m2

π

y1y2
y1 þ y2

e−2πjm1jðy1þy2Þ: ð11Þ

Note that only for the choice (10) will (11) be the bare ramp

with all corrections subsumed in GþðwhÞ
m1m2

, thus realizing the
quantum chaos assumption in a minimal way. This has
several immediate consequences. First, the lhs of the trace
formula must provide a spectral decomposition of the ramp.
We can simply read off the coefficients of this decom-
position from (5) and (8):

6More precisely, it is required that hðαÞ is regular for jImðαÞj ≤
1
2
þ δ and in that region jhðαÞj ≪ ð1þ jαjÞ−2−δ for some δ > 0.
7Recall Sða; b; cÞ≡Pl e

2πiðalþblÞ=c where the sum is
over 1 ≤ l ≤ c with gcdðl; cÞ ¼ 1. Here, l is such that
ll ¼ 1 ðmod cÞ. 8This is sometimes called “pre-Kuznetsov formula.”
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hz1
2
þiα1z12þiα2iðwhÞ ¼

1

2 coshðπα1Þ
× 4πδðα1 − α2Þ;

hzn1zn2iðwhÞ ¼
1

2 coshðπRn1Þ
1

kνn1k2
× δn1n2 : ð12Þ

These are indeed known expressions: (12) has recently
been identified as the spectral decomposition of the T2 × I
wormhole in AdS3 gravity [6].

9 Further, in [7] we derive the
same result from statistical considerations by demanding
consistency across spin sectors of the quantum chaos
assumption in a minimal way. Here, we got this result
as an immediate consequence of the Kuznetsov trace
formula applied to the ramp. To summarize, we write this
minimal application of the trace formula, which describes
the wormhole amplitude as follows:Z

R

dα
4π

1

2 coshðπαÞE
m1
1
2
þiα

ðy1ÞEm2
1
2
þiα

ðy2Þ

þ
X
n≥1

1

2 coshðπRnÞ
νm1
n ðy1Þ
kνnk

νm2
n ðy2Þ
kνnk

¼ δm1m2

π

y1y2
y1 þ y2

e−2πjm1jðy1þy2Þ þ GþðwhÞ
m1m2

; ð13Þ

where Em
1
2
þiα

and νmn are the spin m components of the basis

functions (3). The cusp form norms appearing in denom-
inators ensure that the expansion is with respect to an
orthonormal basis.
The first term on the lhs of (13) can be shown

to generate the linear ramp for spin 0; for jmkj ≥ 1
it contributes a subleading term of the form
∼δm1m2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y1y2=ðy1 þ y2Þ

p
e−2πjm1jðy1þy2Þ—cf. [12]. The sec-

ond term on the lhs generates the linear ramp for spins
jmkj > 0 (plus further subleading terms)—cf. [6,7].
Consider now the rhs of (13): it tells us precisely which

terms are required in order for the bare ramp (first term) to
be made consistent with modular invariance and the trace
formula, while organizing them in a useful fashion. From
the comments above, we must expect that GþðwhÞ

m1m2
matches

the subleading corrections found in the gravity calculation
of [3]. To see that this is the case, we begin with the second
line of (6), which is elementary and yields, for hðwhÞðαÞ:

GþðwhÞ
m1m2

⊃
X
c≥1

Sðjm1j;−jm2j; cÞ
c2Bc

e−2πðjm1jy1þjm2jy2ÞBc ; ð14Þ

where Bc ≡ ð1þ 1
c2y1y2

Þ1=2. It is immediately clear that this

is subleading compared to the ramp (11) in the late-time
near-extremal limit. Further, (14) indeed matches the
subleading terms found in the gravity analysis of the
wormhole [3] in the case where sgnðm1m2Þ ¼ −1.

The first line of (6) is more complicated but can be shown
to match the gravity result when sgnðm1m2Þ ¼ 1 (see
Supplemental Material [13])10—ultimately because the
latter implements a Poincaré sum over certain modular
invariant seed functions, which is precisely what the rhs of
the trace formula captures.
On the one hand, these subleading terms are rather subtle:

they contain all the erratic information about “arithmetic
chaos” exhibited by the infinite set of cusp forms in just the
right way (cf., [7]), reorganizing it cleanly into Kloosterman
sums. On the other hand, the subleading terms are very
simple—in fact as simple as they can possibly be: they
complete the bare ramp in all spin sectors, i.e., the
fundamental input required by the assumption of quantum
chaos, into a quantity that is consistent with conformal
symmetry in the minimal way. Indeed, the choice gðwhÞðαÞ
leading to the wormhole amplitude was manifestly the
minimal option that would yield any modular invariant
spectral decomposition at all. This simplicity of the gravity
amplitude was first emphasized in [6] and was dubbed as
MaxRMT (“maximal random matrix theory”) principle.11

Note that our application of the trace formula did not use
any input other than the assumption of universal level
repulsion (linear ramp).12 In particular, the following
features were already built into the mechanism of the
trace formula and are hence identified as a natural and
consistent starting point: (i) the diagonal pairing of
SLð2;ZÞ eigenvalues; (ii) the diagonality in spin at leading
order for large yk; (iii) the fact that the correlations of
overlap coefficients (12) had the same functional form in
the continuous and discrete sectors; and (iv) the determi-
nation of subleading terms in the large yk limit.

Examples without chaos. Narain CFTs. For contrast, and
to usefully extend the applicability of the trace formula, we
will now discuss a different application, which describes
the SFF of an integrable ensemble of 2D CFTs; namely, we
consider the Narain theories ofD free lattice bosons, which
enjoy a Uð1ÞD ×Uð1ÞD global symmetry [21,22]. A dual
description in terms of Chern-Simons theory has been
further explored in [4] (see also [23]). We will momentarily
reproduce the associated T2 × I amplitude from the trace
formula, using a similar approach as for the wormhole in
pure gravity.

9We also thank S. Collier for private communication on
this result.

10Our analysis of only the parity even spectrum corresponds
to adding up the result of [3] for same and for opposite sign
spins. Variations of this analysis are described in Supplemental
Material [13].

11Their discussion rests on similar assumptions and minimality
requirements realized by the wormhole amplitude [in particular
the diagonal pairing of eigenvalues and eigenfunctions of (13)],
but formalized in the context of the Gutzwiller trace formula.

12The trace formula applies to objects with an underlying
structure of Poincaré sums; see Supplemental Material [13]. This
explains the consistency with the results of [3,6].
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The primary state counting partition function is

ZPðDÞ ¼ yD=2jηðxþ iyÞj2DZNarain; ð15Þ
where the prefactor removes Virasoro descendants of D
bosons in a modular invariant way. ZPðDÞ is amenable to
spectral analysis without further modification [5]. The
T2 × I wormhole contribution to the SFF is [4,24]

hZm1

PðDÞZ
m2

PðDÞiðwhÞ ¼ δm1m2

2π
D
2

ΓðD
2
Þ
� jm1j
y1 þ y2

�D−1
2

× ðy1y2ÞD2KD−1
2
ð2πjm1jðy1 þ y2ÞÞ: ð16Þ

The interpretation of (16) is in terms of a universal
plateau, which reflects the discreteness of the spectrum
of this nonchaotic theory. The late-time limit of the SFF is
a temperature-dependent constant:

ðy1y2Þ−D
2hZm1

PðDÞðy1ÞZm2

PðDÞðy2Þijy1;2→β�iT

∼ const × β−
D
2e−4πjm1jβδm1m2

ðT ≫ βÞ: ð17Þ
We can obtain this expression from the trace formula by
choosing a function gðαÞ that generalizes the simplest
option (10):

gðwh;DÞðαÞ ¼ nD

���Γ�D−1
2

þ iα
����2���Γ�12þ iα
����2 ; nD ¼ 2

5−D
2 π

1þD
2

Γ
�
D
2

�
2
: ð18Þ

The spin-diagonal first term on the rhs of the trace
formula gives for this choice of g [or h via (9)] precisely
the plateau (16):

δm1m2

π

Z
R

dα
4π

αtanhðπαÞhðwh;DÞ
m1m2

ðαÞ¼hZm1

PðDÞZ
m2

PðDÞiðwhÞ: ð19Þ

The spectral overlap coefficients for the SLð2;ZÞ decom-
position of the Narain CFT plateau can simply be read off
from the trace formula:

hz1
2
þiα1z12þiα2iðwh;DÞ ¼

nD
π

����Γ
�
D−1

2
þ iα1

�����24πδðα12Þ;
hzn1zn2iðwh;DÞ ¼

nD
π

����Γ
�
D−1

2
þ iRn1

�����2 δn1n2
kνn1k2

: ð20Þ

The spin-off-diagonal remainder term in the trace formula

scales as Gþðwh;DÞ
m1m1

∼ e−2πðjm1jy1þjm2jy2Þ for large yk by the
same reasoning described in Sec. III. It therefore gives a
subleading contribution to the SFF, which is suppressed
by an additional factor β−D=2 relative to (17).
Higher spin theories. As a final example, consider a 2D

CFT with WN symmetry, ZWN
, dual to higher spin gravity

realized as an SLðN;RÞ Chern-Simons theory. These
theories have known unphysical features; e.g., they violate

the chaos bound on the Lyapunov exponent [25,26]. The
SFF for these models was studied in [27] (see also [28]) and
similarly violates random matrix universality. We briefly
review this feature in light of the trace formula.
The definition of the WN primary counting partition

function involves the removal of (N − 1) free bosons:

ZPðNÞ ¼ yðN−1Þ=2jηðxþ iyÞj2ðN−1ÞZWN
: ð21Þ

This parallels the case of the Narain CFTs withD → N − 1.
Indeed, the SFF for ZPðNÞ is of exactly the same form as in
the Narain ensemble, (16), however with the replacement
D → 2ðN − 1Þ:

hZm1

PðNÞZ
m2

PðNÞi ¼ ½hZm1

PðDÞZ
m2

PðDÞi�D→2ðN−1Þ: ð22Þ

The different identifications of D in terms of N lead to a
different asymptotic behavior in higher spin theories:

ðy1y2Þ−N−1
2 hZm1

PðNÞðy1ÞZm2

PðNÞðy2Þijy1;2→β�iT

∼ const × β−
D
2e−4πjm1jβTN−1δm1m2

ðT ≫ βÞ: ð23Þ
For N ≥ 3 this power law growth in T is not consistent with
the universal ramp expected for quantum chaotic theories.
In this sense, the corresponding spectral overlap coeffi-
cients [i.e., (20) with D → 2ðN − 1Þ] violate spectral

universality. The spin-mixing remainder term Gþðwh;NÞ
m1m2

was calculated for N ¼ 3 in [27] and matches the pre-
diction from the trace formula. As previously, it has
additional polynomial suppression in y1y2 and is thus
subleading compared to (23).

Discussion. Our analysis concerns general chaotic CFTs,
i.e., CFTs whose spectral form factor exhibits universal
level repulsion (a “linear ramp”) at late times in all spin
sectors. We have illustrated that both the completion of this
bare ramp into a modular invariant SFF as well as their
combined modular invariant spectral decomposition are
naturally implied and explained by the Kuznetsov trace
formula. While the subleading corrections are theory
dependent, we quantified the sense in which the T2 × I
wormhole amplitude in AdS3 pure gravity is the simplest
SFF describing random matrix statistics in CFTs. This
emphasizes the universality of the gravity result beyond
holography. Any other contributions to a consistent SFF will
either give subleading corrections to every term of the trace
formula or will amount to nontrace terms. It is clearly of
interest to explore these cases further and characterize
quantum chaos beyond the linear ramp.
Our findings streamline some recent discoveries

and illuminate the highly constrained interplay between
the assumption of quantum chaos and modular invariance.
They furthermore manifest that this interplay has
deep connections to analytic number theory, thus introduc-
ing new concepts and powerful tools into the study of CFTs.
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To show how the trace formula captures the spectral
decomposition of other SFFs that arise from Poincaré
sums over suitably modular invariant seed functions, we
contrasted the linear ramp to examples which either have
no ramp (Narain CFTs) or a power law ramp (higher spin
theories). In these cases the spectral decomposition is
still captured by the trace formula [i.e., it is diagonal both
in SLð2;ZÞ eigenvalues and the functional form of
spectral correlations], but the trace part encoded by
hðαÞ is more complicated than for the bare ramp and
pure gravity.13 In these cases the first term on the rhs of the

trace formula (5) still dominates over the Kloosterman
term Gþ

m1m2
, which always correlates different spin sectors.

This illustrates an important point: the connection
between CFTs and random matrix universality, independ-
ently for each spin sector, can only be asserted in the near-
extremal limit, where the term diagonal in spin dominates.
The trace formula completes this information into a
modular invariant object.
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