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Abstract: In this paper, we propose a novel machine learning (ML) assisted low-latency low density parity check (LDPC) coded 
adaptive modulation (AM) system, where short block-length LDPC codes are used. Conventional adaptive modulation and coding 
(AMC) system includes fixed look-up table method, which is also called inner loop link adaptation (ILLA) and outer loop link adap-
tation (OLLA). For ILLA, the adaptive capability is achieved by switching the modulation and coding modes based on a look-up 
table using signal-to-noise ratio (SNR) thresholds at the target bit error rate (BER), while OLLA builds upon the ILLA method by 
dynamically adjusting the SNR thresholds to further optimize the system performance. Although both improve the system overall 
throughput by switching between different transmission modes, there is still a gap to optimal performance as the BER is compar-
atively far away from the target BER. Machine learning (ML) is a promising solution in solving various classification problems. In 
this work, the supervised learning based k-nearest neighbours (KNN) algorithm is invoked for choosing the optimum transmission 
mode based on the training data and the instantaneous SNR. This work focuses on the low-latency communications scenarios, 
where short block-length LDPC codes are utilized. On the other hand, given the short block-length constraint, we propose to 
artificially generate the training data to train our ML assisted AMC scheme. The simulation results show that the proposed ML-
LDPC-AMC scheme can achieve a higher throughput than the ILLA system while maintaining the target BER. Compared with 
OLLA, the proposed scheme can maintain the target BER while the OLLA fails to maintain the target BER when the block length 
is short. In addition, when considering the channel estimation errors, the performance of the proposed ML-LDPC-AMC maintains 
the target BER, while the ILLA system’s BER performance can be higher than the target BER.

the internet of thing (IoT) requires huge amounts of data transmis-
sion between smart devices, such as Radio-Frequency IDentification
(RFID) tags, sensors, actuators, mobile phones, etc. to interact with
each other and cooperate with their neighbours [9–11]. In the near
future, autonomous driving, remote medical surgery and virtual real-
ity (VR) experiences will further interact with the human in daily
life [12–14]. In addition, lots of new technologies will emerge
benefiting from the higher capacity, higher transmission rate and
ultra-low latency of the next-generation wireless network[15]. The
5G new radio (5G NR) cellular system is characterized by three main
usage scenarios, namely the enhanced mobile broadband (eMBB),
the ultra-reliable and low latency communications (URLLC), and
the massive machine type communications, which also requires
improved throughput, latency, and reliability [16].

Low density parity check (LDPC) code is a powerful capacity-
approaching channel coding technique, which has been selected as a
candidate in the 5G NR standard [17]. As a powerful channel coding
scheme, LDPC codes are designed to support high throughput and
variable code rate in addition to their powerful error correcting capa-
bility [16]. Many IoT applications including industrial automation,
haptic feedback in virtual/augmented reality and the tactile internet
require URLLC[18]. Given the low latency requirements of such IoT
applications, in this paper we consider the use of short block length
LDPC coded system.

The utilization of high coding rate channel codes is crucial to
improve the coded throughput performance [2]. The general moti-
vation of applying channel coding in AM system is to utilize its
error correcting and detection capability to improve the bit error rate
(BER) and throughput performance compared with the uncoded AM
system [2]. Lots of research have been done on combining channel
coding with AM, which forms AMC system. For example, a convo-
lutional coded AM system was investigated in fading environments
in [19], while turbo coding has also been investigated in [20, 21].
LDPC coded AM system was also investigated with irregular mod-
ulation that applies different coding rate in different sub-blocks of a
codeword [22].

1 Introduction

Wireless communication requires reliable and robust communica-
tion techniques that can adapt to the fading channel for maintaining 
the quality of service [1]. The primary motivation of applying adap-
tive modulation (AM) in wireless communication is to combat the 
fading effects of narrowband channel as well as to increase the 
overall system throughput by adaptively changing the transmission 
modulation mode [2]. With the development of emerging commu-
nication technologies, the required overall bandwidth has increased 
dramatically, which in turn requires the AM system to utilise the 
transmission mode more efficiently. H istorically, t he r esearch of 
AM began in 1968, when Hayes [3] adapted the signal amplitude 
based on the channel environment. In 1994, a variable-rate variable-
modulation AM scheme was introduced [4]. The AMC problem 
has been traditionally addressed through two methods: the inner 
loop link adaptation (ILLA) and the outer loop link adaptation 
(OLLA) technique[5]. The ILLA approach involves uses a prede-
termined look-up table to determine the appropriate modulation and 
coding scheme based on the channel conditions, which is the con-
ventional solutions to the adaptive modulation and coding (AMC) 
problems[6]. On the other hand, the OLLA technique builds upon 
the ILLA method by dynamically adjusting the SNR thresholds to 
further optimize the performance of the system [6]. In the ILLA 
scheme, the transmission mode is selected based on the thresh-
olds set according to the channel state information (CSI) fed-back 
from the receiver. However, the switching thresholds in the ILLA 
system are usually difficult to implement in practice to achieve opti-
mum performance. This is due to the deficiencies introduced at the 
various stages of the transmission, including time-varying channel, 
non-linearity of amplifier and transmission frequency instability [7]. 
In recent years, the AM was further assisted by machine learning 
(ML), which shows a near-optimal performance with significantly 
lower complexity [8].

The world becomes more and more connected with advanced 
wireless communication technologies. From 1st generation (1G) to 
the 5th generation (5G) and beyond 5G telecommunication systems,
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Table 1 Comparison of the State-of-the-art AMC systems
Adaptive

Modulation Coding Channel Estimation
Error

Short Block
Length

Machine
Learning

Liu et al. (2020) [7] x x
Zhou et al. (2005) [27] x x
Yang et al. (2019) [8] x x

Kojima et al. (2019) [28] x x x
Ha et al. (2006) [29] x x

Paris et al.(2004) [30] x x
Daniels et al. (2010) [31] x x x

Ha et al. (2019) [32] x x
Mota et al. (2020) [33] x x x

This work x x x x x

More specifically, fixed mode transmission with fixed modulation
scheme cannot satisfy the increasing need of the data throughput.
Traditional communication system requires fixed modulation order
while the AM system takes the channel condition into consideration.
AM technique has been used to change the modulation scheme at the
transmitter based on the CSI from the receiver. The aim is to increase
the throughput by switching to higher modulation order when the
channel quality is improved. By contrast, a lower modulation order
is used when the channel quality degrades. Prior research has been
done in the conventional AM system including ILLA and OLLA
[23]. The AM estimates the CSI and feed them to the transmitter
to decide the suitable modulation scheme [24, 25]. Same method
has also been applied in global navigation satellite system where six
modulation and coding schemes (MCS) have been applied [26].

However, the thresholds in the ILLA scheme are often not opti-
mum due to the uncertainty from the hardware and the channel [7].
The common issue with existing AMC systems is either inaccu-
racy due to model-based approximations or unmanageability due to
large-scale lookup tables [34, 35]. By contrast, ML is capable of
jointly optimizing the AMC-aided system by using a unified non-
linear framework [36]. During the past few decades, ML has been
widely applied in many fields of study, such as natural language pro-
cessing (NLP), predictive analytics and computer vision [37, 38].
It is also commonly applied in wireless communication systems to
improve the system performance and reduce the complexity [39].

On one hand, long block-length codes tend to give very sharp edge
in the BER curves, where the AMC switching boundaries are not
overlapping and hence ML is not needed for classifying these bound-
aries. On the other hand, short block-length codes would not be able
to provide training data at low BER although their AMC switching
boundaries overlapped and ML based classification is beneficial.

The foundation of AM can be simplified as a classification prob-
lem, which can be solved by different ML techniques. In recent
years, researchers have applied different ML techniques to the AM
problem, as in [7, 39]. KNN algorithm has been widely applied
in uncoded AM system design. In [40], the KNN aided MIMO-
OFDM-AM framework was regarded as a classification problem
using channel quality information (CQI), transmitted signal energy
and receiver noise power. Recently, KNN algorithm was applied in
OFDM-aided system supported by the compressed sensing assisted
index modulation (OFDM-CSIM), where the KNN algorithm was
used to maximize the system’s throughput [7]. A so-called ECOST
KNN method was proposed in [41] to improve the performance of
link adaptation (LA) of MIMO systems. The CQI of the MIMO
system is used to get the corresponding modulation coding scheme
(MCS). By minimizing the ECOST , the parameters of the learn-
ing method are adjusted to improve the spectral efficiency. Similar
method has also been utilized for AMC in underwater acoustic
communications [42].

Support Vector Machine (SVM), also known as maximum mar-
gin classifier, has also been applied in adaptive transmission for
classification problem [31, 43, 44], where [43] and [44] used the
training dataset offline, while [31] applied the online training data,
which updates the channel environment simultaneously for higher
accuracy.

Reinforcement learning (RL) is also a popular ML technique
applied in wireless communication [45]. The agent automatically
determine the optimal behaviour to achieve a specific goal based
on the feedback it receives from the environment in which it oper-
ates after taking an action from a known set of appropriate actions
[46]. The RL assisted AMC selection system has been exploited,
where the proposed RL-AMC framework was used to overcome the
mismatch between the present channel state and the feedback CQI
caused by time delay, known as CQI ageing [47]. Specifically, the
proposed RL-AMC framework determines the best MCS based on
the previous AMC decisions by comparing the correction factors,
which significantly reduce the impact of channel estimation errors
on link adaptation.

In [48], the AMC mode selection is based on the real-time signal
to interference-plus-noise ratio (SINR) value by interacting with the
radio channel. More specifically, the mean SINR value was used to
identify the channel environment states. Then, based on MCS, the
interactions with the environment and optimal policy, the optimal
MCS can be chosen. RL based AMC technique was also investigated
in 5G NR networks in [6], where the proposed framework trains
the agent at specific time instants using the Q-learning algorithm.
Compared to [48], the agent finds its best policy by considering the
values of a predefined action-value Q-function Qπ(st, at), which
represents the overall expected reward for taking an action at in a
state st and then following a policy π. However, the applications
of ML for AMC in [6, 47, 48] are all related to channel estimation
mismatches rather than related to improving the throughput.

Deep learning (DL) is part of a broader family of ML methods
based on artificial neural networks (ANN) [28]. The application of
deep neural network (DNN) in wireless communication has attracted
a lot of research interest in recent years [49, 50]. Examples include
CSI prediction [51, 52], MIMO system design [53] and sparse code
multiple access (SCMA) application[54]. The modern wireless com-
munication networks become increasingly complicated because of
various channel coding techniques and MIMO applications, which
requires high-load computing capacity and large data sets. DL has
the advantage of providing high prediction accuracy over channel
variation, interference, etc. by utilizing the hidden layers to abstract
the in-depth patterns of the input parameters [55]. In [28], a simi-
lar work has been done by introducing convolutional code in AM
design using ML. ANN was applied to estimate the received SNR
by extracting the features from the power spectrum density (PSD)
at the receiver. The ANN algorithm showed very high accuracy in
SNR estimation. Although the proposed framework is similar with
this work, the main target in [28] is to increase the accuracy of SNR
estimation while this work is to optimise the AM system design in
order to increase the throughput while maintaining a low BER. In
[39], DNN was applied in uncoded adaptive index modulation sys-
tem for mmWave communications, where the DNN improves the
throughput compared to the ILLA system.

The large amounts of data available can be redundant and highly
correlated, which can reduce the efficiency of ML algorithm. The
principal component analysis (PCA) technique can be applied to
reduce the complexity of raw data, which shows significant perfor-
mance improvement when preprocessing high dimensional data [56–
60]. In [32], the proposed hybrid DNN-PCA assisted AM framework
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shows the advantage on the throughput performance. The PCA block
implements unsupervised learning to improve the performance of
classification performance of supervised learning, therefore the PCA
can transform the raw data features into a more easily interpreted
format for the DNN to work more efficiently.

In summary, ML assisted AMC schemes have not been properly
investigated in the literature. In this paper, we invoke the k-Nearest
Neighbour (KNN) supervised learning technique, which is based on
majority voting rules of the nearest K neighbours. The basic idea
of KNN assisted AMC system is to classify the instantaneous target
signal-to-noise ratio (SNR) value based on the artificially generated
training dataset. The decision is used to choose the modulation type
and the coding rate for the next transmission frame.

Compared with other ML techniques, the advantage of applying
KNN algorithm to solve the classification problem is that it does
not require the information of the functional mapping between the
classifier and the feature sets, and it does not require any knowledge
or assumption of the collected data distribution in practical scenarios
[61].

Against this background, we propose a ML assisted short block-
length LDPC coded AMC (ML-LDPC-AMC) system. We com-
mence with a single objective aimed at improving the throughput
while maintaining the target BER. We use KNN as an example
to show the advantages of ML applied in AMC systems. The
contributions of this paper are summarized as follows:

1. We propose a short-delay ML-LDPC-AMC scheme by applying 
short block-length LDPC code. In the proposed system, the modula-
tion order and coding rate are adaptively chosen according to the ML 
decision, which was trained based on the varying channel condition, 
with the objective of maximizing the overall throughput at a target 
BER. Our proposed system is beneficial to the low latency scenario.
2. For a short block-length LDPC code, the simulation uses the 
frame length of less than 1000 bits, which results in the 
instantaneous BER being consistently higher than the target BER of 
10−3. In other words, collecting the training data for the ML model 
becomes infea-sible. Therefore, we propose a method to generate the 
training data artificially. The ML algorithm considered was KNN, 
where the near-est K neighbours were considered to make the 
decision. We use KNN as an example to show the advantages of ML 
applied in AMC systems.
3. We also consider the effect of channel estimation error on the 
performance of the considered system. The simulation results show 
that our ML-LDPC-AMC system can maintain the target BER while 
the conventional ILLA system does not meet the target BER when 
the channel estimation error is considered.
4. The novel low-latency ML-LDPC-AMC system is capable of 
choosing better transmission modes than the ILLA and OLLA meth-
ods while always maintaining the required BER performance. The 
throughput is improved at a given SNR compared to the ILLA 
method.

In Table 1, we explicitly contrast this work to the most relevant
adaptive system design. The rest of the paper is organised as follows,
Section 2 discusses the design of the proposed ML-LDPC-AM sys-
tem and then Section 3 discusses the simulation result by comparing
to the ILLA system. Finally, Section 4 concludes the paper.

2 Proposed ML-LDPC-AMC System

2.1 LDPC coded System Model

In this section, we discuss the short block-length LDPC coded sys-
tem, as shown in Fig. 1. We first describe the transmitter and receiver
processing without the ’Adaptive Algorithm’ block in Fig. 1. The
input binary information bits are encoded by an LDPC encoder,
where the LDPC encoder introduces parity bits into the input bit
stream. Due to the latency requirement, short block-length LDPC
code was considered with the maximum output bits length less
than 1000 bits [62]. After the encoding process, M-ary modula-
tor would map the coded bits onto M-ary symbols, where the

modulation scheme used are M-ary phase shift keying (M-PSK)
and M-ary quadrature amplitude modulation (M-QAM). We con-
sider a Rayleigh fast and slow fading channel, where there is no
line of sight (LoS) from the transmitting antenna to the receiving
antenna. The received signals are first soft demodulated by the M-ary
demodulator, then decoded by the LDPC decoder.

Adding parity bits into a bit stream can ensure that information
bits are correctly decoded at the receiver. In this process, actual
throughput is decreased as parity bits are considered as redundant
bits, which has no information. Therefore, the number of parity bits
must be considered to balance between detection performance and
throughput. For the subject of block code, code rate R is given by

R =
k

n
, (1)

where k is the number of input bits into the encoder and n is the
number of output bits from the encoder, which is called block length.
The number of parity bits added is n− k, while the n output bits
will be modulated by M-ary PSK/QAM after the encoding process.
In order to maximize the throughput of a LDPC coded system and to
operate near Shannon capacity, only one parity bit is added to each
modulated symbol. Based on the multilevel coding principle [63],
the code rate of LDPC code in this case is given by

RLDPC =
log2(M)− 1

log2(M)
, (2)

or close to it. In other words, each M -ary modulation symbol consist
of one LDPC parity bit and log2(M)− 1 information bits.

In addition, the latency of the transmission should also be con-
sidered. Specifically, short block-length code has been applied in
URLLC system, which is designed as a part of the recent 5G NR
standard that aims to improve the transmission accuracy and reduce
delay[17]. The challenge of implementing a short block-length
LDPC code is to maintain a BER at the acceptable level.

2.2 Achievable Rate

The number of information bit transmitted per modulated symbol is
given by [64]:

η = log2(M)Rc , (3)

where M is the number of modulation levels and Rc is the code
rate of the channel encoder. Finally, the average received SNR of a
symbol experiencing Rayleigh fading channel can be represented by
[64]:

γr =
Eb

N0
|h|2η , (4)

where the channel gain is |h|2 and Eb
N0

is the SNR per information
bit. The received signal y can be modeled as

y = hx+ z , (5)

where h represents the complex Gaussian channel fading, x rep-
resents the transmitted signal and z represents the additive noise.
The closed-form channel capacity of Rayleigh fading channel
for Continuous-Input Continuous-Output Memoryless Channels
(CCMC) is expressed in [65] as

CRay,CCMC = E [log2(1 + γr)] [bit/s/Hz], (6)

where E(·) denotes the expected value of (·), which is averaged over
h and z. As for the Discrete-Input Continuous-Output Memoryless
Channel (DCMC), its capacity is further limited by the modulation
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Fig. 1: System block diagram.

scheme used. The DCMC is presented in [65] as

CRay,DCMC = log2(M)− 1

M

M∑
m=1

E

[
log2

M∑
n=1

eΦm,nxm

]
,

(7)
where M is the number of modulation levels of PSK/QAM scheme
and Φm,n is given by

Φm,n =
−|h(xm − xn) + z|2 + |z|2

N0
. (8)

2.3 Link Adaptation

The purpose of LA is to adjust the various parameters of the commu-
nication link to optimize its performance based on the current chan-
nel conditions and the requirements of the data being transmitted. 
Traditional LA schemes include ILLA and OLLA, where the ILLA 
is used to determine the optimal MCS based on the predefined fixed 
look-up table, given the estimated SNR values. The OLLA method 
is proved to increase the throughput further by adjusting the 
estimated SNR value with an offset (∆OLLA) value, which is 
updated online based on a feedback representing the accuracy of the 
transmitted information [33]. To be more specific, the OLLA 
updates the esti-mated SNR value up and down (i.e., ∆up and 
∆Down respectively) based on the Hybrid Automatic Repeat 
Request (HARQ) acknowl-edgments (ACKs) and negative 
acknowledgments NACKS, received from the User Equipment (UE) 
[33].

Let us denote the index of a transmission time interval as k. The 
evolution of the discrete time OLLA offset is given by [33]:

∆k
OLLA = ∆k

O
−1
LLA + ∆up · ek − ∆down · (1 − ek), (9)

where ek = 0 for ACK, and ek = 1 for NACK. In this paper, we 
consider four OLLA schemes, denoted as OLLA 1, 2, 3 and 4, which 
consider ∆up 0.001dB, 0.01dB, 0.1dB and 1dB, respectively, as 
suggested in [33, 66].

2.4 Adaptive System Design

In this section, we discuss the proposed the ML assisted short block-
length LDPC coded AMC system, as shown in Fig. 1. Based on the 
single loop of the LDPC coded system, we add the adaptation to 
the existing system by considering the ‘Adaptive Algorithm’ which 
implements the feedback information (the estimated SNR) from the 
receiver side. Having the CSI information at the transmitter, the mod-
ulation and coding modes can be adapted to achieve the optimum 
throughput for the given channel fading [40, 47]. The ILLA sys-
tem uses a pre-defined lookup table of MCS based on the estimated 
CSI [47, 67]. The details the proposed ML-LDPC-AMC system are 
described below.
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Fig. 2: Average fixed mode simulation result to obtain the thresh-
olds.

Table 2 Switching Thresholds for Conventional Scheme at a target BER of 10−3.
Mod Rate Tp SNR Thresholds(dB)

Perfect Channel θNoise = 1%
BPSK 1/2 1/2 0.991 1.158
4QAM 5/12 5/6 2.521 2.695
4QAM 1/2 1 3.825 4.040
4QAM 3/5 6/5 5.495 5.745
8PSK 1/2 3/2 7.228 7.575
8PSK 3/5 9/5 9.030 9.509
8PSK 2/3 2 10.333 10.960

16QAM 2/3 8/3 12.273 13.137
16QAM 3/4 3 14.120 15.544

The ‘Adaptive Algorithm’ as shown in Fig. 1 can work as either
conventional based or ML-aided. Both of the algorithms are used to
make a decision concerning the transmitter parameters for the next
transmission frame. Specifically, index i is referred to as a class, and
the corresponding mode, namely, MODEi corresponds to a given
coding rate and modulation type. In the ILLA system, a fixed lookup
table consist of pre-defined SNR thresholds at the target BER. Fig. 2
illustrates an example of the curves of average BER against SNR
over a flat Rayleigh fading channel of the 9 modes mentioned in
Table 2. The SNR thresholds at BER = 10−3 for look-up table based
AM system are shown in Table 2. The SNR switching threshold val-
ues of the ILLA system are the crossover point between the average
BER curve and the target BER level of 10−3. In Table 2, ‘Mod’ rep-
resents the modulation scheme and ‘Tp’ represents the throughput
with the unit of bits per symbol (BPS).

Additionally, we have investigated the effect of channel estima-
tion error in our AMC scheme. Due to the powerful decoding ability
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Fig. 3: BER performance of the 8PSK with half rate LDPC coded
system with different channel estimation error noise variance.
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Fig. 4: A simple KNN illustration for cases of K=3 and K=7 [69].

of LDPC code, low estimation error will not affect the performance,
where the estimated channel is given by ĥ = h+ n, with n repre-
senting the channel estimation error with a specific variance [68].
The corresponding SNR thresholds are given in Table 2, where the
channel estimation error noise variance (θNoise) is chosen as 1%.
In Fig. 3, different estimation error variance values are examined.
As shown on Fig. 3, the effect of channel estimation error having a
variance of 1% has very little effect on the performance.

2.5 KNN for Adaptive System Design and Training Data
Generation

KNN algorithm has been widely used for solving classification prob-
lems [70], where the simple non-parametric procedure decision rule
to determine the K-closest neighbours is based on the majority
voting principle. Fig. 4 illustrates a simple KNN decision making
diagram, where the dash line circle around the example has several
red stars and green triangles. The inner dotted line circle represents
group of the nearest 3 neighbours (k=3). Inside the circle, there are
two green triangles with one red star. According to the majority vot-
ing rule, the target star is classified as Class B. In other words, the
number of samples inside the circle represents the value of k, which
means the nearest neighbour.

In order to determine the transmission parameters such as coding
rate and modulation type, the KNN algorithm has to be trained with
the training data. Valid training data should train the system to main-
tain a BER that is lower than 10−3. Hence, the training BER data
should also be lower than 10−3.

For a short block-length LDPC code (less than 1000 bits per
frame), the BER in a frame cannot be lower than 10−3 if there are

Fig. 5: Plot of PDF vs SNR of the artificially generated training data.

erroneous bits after LDPC decoding. In other words, for any given 
frame, the BER value of the simulation output are always higher than 
the target BER level (10−3) except the values at BER=0. Hence, for 
short block-length, there is no valid training data that can be used as 
there’s no valid training data below the target BER that can be used 
to train the model.

In this work, the training data is artificially generated based on a 
Gaussian distribution with a mean value of µ and a variance of σ. An 
example probability density function (PDF) of the 9 modes training 
data plot is shown on Fig. 5.

There are 9 modes in our scheme and each mode has 1000 training 
data. The mean value µ of the training data is taken from the aver-
age value of two SNR thresholds at two different BER level, 10−3 

and 10−4. In other word, instead of just considering the thresholds 
value at 10−3, taking the middle SNR values at BER of 10−3 and 
10−4 could provide a higher order modulation, which in turn could 
improve the throughput. Moreover, both Rayleigh distributed train-
ing data and Gaussian distributed training data have been tested. We 
found that Gaussian distributed training data can maintain the target 
BER value better than that of the Rayleigh distributed one.

During the model testing, 80% of the training data has been 
randomly selected to train the model and the rest are used to test 
the model. The accuracy of the model can achieve 81.2% when 
K=20. Please note that in wireless communications we use differ-
ent measure of performance such as throughput and BER, which 
give a more accurate characterization of the system compared to the 
accuracy. The 81.3% accuracy is capable of providing an improved 
performance as will be shown in the following section.

3 Result and Analysis

Table 3 Parameters of fixed mode simulation, where ‘NrMS’ represents the 
number of modulated symbols and ‘Tp‘ represents the information throughput.

No. Mod M Rate Lk Ln NrMS Tp(BPS)
1 BPSK 2 1/2 120 240 240 1/2
2 4QAM 4 5/12 200 480 240 5/6
3 4QAM 4 1/2 240 480 240 1
4 4QAM 4 3/5 288 480 240 6/5
5 8PSK 8 1/2 360 720 240 3/2
6 8PSK 8 3/5 432 720 240 9/5
7 8PSK 8 2/3 480 720 240 2
8 16QAM 16 2/3 640 960 240 8/3
9 16QAM 16 3/4 720 960 240 3

In our simulation, the slow fading channel coefficient is set to
−2 < 10 log10 |hs|2 < 2 dB. All other simulation parameters are
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Fig. 8: BER result of adaptive system considering channel estima-
tion error (error variance of 1%).

shown in Table 3, where ’L_k’ represents the number of LDPC 
input bit length and ’L_n’ represents the number of LDPC output 
bit length. The short block-length LDPC code has a maximum block 
length of 1000 bits per frame.

As shown in Fig. 6, the BER curve of both the KNN assisted and 
ILLA system can maintain the target BER below 10−3, where the 
BER curve of the KNN assisted AMC scheme has a BER curve that
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Fig. 9: Throughput performance result of adaptive system consider-
ing channel estimation error (error variance of 1%).

is closer to the target BER compared to that of the ILLA system. 
However, all of the BER curves of the OLLA method are above the 
target BER of 10−3 when considering the short block-length LDPC 
code. The BER performance of OLLA system becomes better with 
the smaller ∆up value, but the lowest ∆up value of 0.001 dB still 
cannot satisfy the BER requirement of 10−3.

As shown in Fig. 7, the KNN assisted AMC system achieves 
a higher throughput than the ILLA system for all SNR range. In 
other words, the KNN assisted AMC system can satisfy the target 
BER requirement while improving its throughput. The throughput 
curve of both ILLA and KNN assisted AMC system starts from 0.5 
BPS when the BPSK half-rate mode was applied prominently. The 
throughput curve grows steadily based on the 9 modes as seen in 
Fig. 7, where both KNN and ILLA schemes could achieve the max-
imum 3 BPS, because the last mode used is the rate-3/4 16QAM 
mode. However, the KNN assisted AMC system can achieve a higher 
throughput compared to that of the ILLA method at an SNR range 
of 4dB to 17dB.

The results shown in Fig. 8 considers the effect of channel esti-
mation error. As discussed before, the estimation error variance is 
set to 1%. As shown in Fig. 8, the BER curve of both KNN and 
ILLA system is below the target BER when SNR is smaller than 
about 10dB. At the SNR range of 10dB to about 18dB, ILLA system 
fails to maintain the target BER, while the KNN-aided system per-
formance can still maintain the target BER requirement. As shown 
in Fig. 9, the throughput curve of the ILLA system is higher than 
that of the KNN assisted AMC from a SNR of 10dB, where its BER 
performance fails to meet the target.

4 Conclusion

In this contribution, we proposed a novel ML-LDPC-AM system by 
using the KNN algorithm, where our system is specifically designed 
for short block-length LDPC code, which has the advantage of short 
delay and low latency. As our target BER is 10−3, it was not possible 
to generate valid training data during the fixed mode simulation of 
each LDPC coded modulation scheme. Hence, we proposed a tech-
nique to artificially generate training data to train the KNN assisted 
AMC system. From our simulation, we found that for given through-
put, the SNR performance gain is improved by 0.5 dB compared to 
the ILLA system, when assuming perfect channel knowledge. More-
over, the proposed system has the advantages compared with the 
OLLA methods in maintaining the BER below the target.We also 
investigated the effect of channel estimation error, where we showed 
that our proposed ML-LDPC-AM system is capable of maintain-
ing a BER below the target BER threshold, while the conventional 
ILLA based AMC system fails to maintain the required target BER 
requirement.
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