First all-sky upper limits from LIGO on the strength of periodic gravitational waves using the Hough transform
First all-sky upper limits from LIGO on the strength of periodic gravitational waves using the Hough transform
We perform a wide parameter-space search for continuous gravitational waves over the whole sky and over a large range of values of the frequency and the first spin-down parameter. Our search method is based on the Hough transform, which is a semicoherent, computationally efficient, and robust pattern recognition technique. We apply this technique to data from the second science run of the LIGO detectors and our final results are all-sky upper limits on the strength of gravitational waves emitted by unknown isolated spinning neutron stars on a set of narrow frequency bands in the range 200 400 Hz. The best upper limit on the gravitational-wave strain amplitude that we obtain in this frequency range is 4.43×10-23.
102004-[22pp]
Abbott, B.
9d06072e-d002-47e9-a49b-d209a2c79e00
Abbott, R.
ceb7bd1e-f214-46dd-9972-a194692a86aa
Adhikari, R.
09554275-026e-4fa9-a28c-9165f58be847
Jones, D.I.
470dd157-c8be-404c-991b-bfa1e1ab4e31
LIGO Scientific Collaboration, None
545a14ec-cd8f-41e0-9287-acfe4ffaf8e8
LIGO Scientific Collaboration
November 2005
Abbott, B.
9d06072e-d002-47e9-a49b-d209a2c79e00
Abbott, R.
ceb7bd1e-f214-46dd-9972-a194692a86aa
Adhikari, R.
09554275-026e-4fa9-a28c-9165f58be847
Jones, D.I.
470dd157-c8be-404c-991b-bfa1e1ab4e31
LIGO Scientific Collaboration, None
545a14ec-cd8f-41e0-9287-acfe4ffaf8e8
Abbott, B., Abbott, R., Adhikari, R., Jones, D.I. and LIGO Scientific Collaboration, None
,
LIGO Scientific Collaboration
(2005)
First all-sky upper limits from LIGO on the strength of periodic gravitational waves using the Hough transform.
Physical Review D, 72 (10), .
(doi:10.1103/PhysRevD.72.102004).
Abstract
We perform a wide parameter-space search for continuous gravitational waves over the whole sky and over a large range of values of the frequency and the first spin-down parameter. Our search method is based on the Hough transform, which is a semicoherent, computationally efficient, and robust pattern recognition technique. We apply this technique to data from the second science run of the LIGO detectors and our final results are all-sky upper limits on the strength of gravitational waves emitted by unknown isolated spinning neutron stars on a set of narrow frequency bands in the range 200 400 Hz. The best upper limit on the gravitational-wave strain amplitude that we obtain in this frequency range is 4.43×10-23.
This record has no associated files available for download.
More information
Published date: November 2005
Identifiers
Local EPrints ID: 48559
URI: http://eprints.soton.ac.uk/id/eprint/48559
ISSN: 1550-7998
PURE UUID: 7c1a5298-8985-49de-bbef-04e8ae49a6a1
Catalogue record
Date deposited: 28 Sep 2007
Last modified: 15 Mar 2024 09:47
Export record
Altmetrics
Contributors
Author:
B. Abbott
Author:
R. Abbott
Author:
R. Adhikari
Author:
D.I. Jones
Author:
None LIGO Scientific Collaboration
Corporate Author: LIGO Scientific Collaboration
Download statistics
Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.
View more statistics