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Aspects of the Renormalisation Group for gauge theories and gravity

by Vlad-Mihai Mandric

This thesis is devoted to exploring various aspects of the renormalisation group for gauge

theories and gravity. After introducing the necessary concepts, we study a manifestly

gauge invariant and background independent ERG flow equation for gravity and Yang-

Mills theories, which seeks to bypass the usual problems regarding gauge-fixing and

ghosts by implementing a geometric version of the higher covariant derivative regular-

isation scheme. In the process we develop the machinery needed to study it rigorously

and show that, under rather loose assumptions, the regularisation is at odds with gauge

invariance. Next we investigate scalar field theories within the Local Potential Approx-

imation (LPA). We show that in the large field limit the eigenoperator equation can

be treated as a Sturm-Liouville (SL) problem, which in turn allows us to recast it as

a Schrödinger type equation, and compute the scaling dimension of the corresponding

eigenoperators using Wentzel-Kramers-Brillouin (WKB) analysis. We find that the scal-

ing dimension for the O(N) case is twice that for a single scalar field, and moreover that

both results are universal and independent of the details of the regularisation used. Fi-

nally, we consider off-shell perturbative renormalisation of pure quantum gravity. We

show that at each new loop order the divergences that do not vanish on-shell are con-

structed from only the total metric, whilst those that vanish on-shell are renormalised

by canonical transformations involving the quantum fields. Purely background metric

divergences do not separately appear and the background metric does not get renor-

malised. We verify these assertions by computing leading off-shell divergences to two

loops, exploiting off-shell BRST invariance and the renormalisation group equations.

Furthermore, although some divergences can be absorbed by field redefinitions, we ex-

plain why this does not lead to finite beta functions for the corresponding field.
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Chapter 1

Introduction

Physics underwent a profound transformation in the twentieth century which resulted

in the birth of General Relativity (GR) and the Standard Model (SM) of particles. This

was possible through a series of revisions of old scientific beliefs (i.e. paradigm shifts).

Thus, special relativity (SR), and GR afterwards, emerged after abandoning the view

that space and time are independent from one another. Similarly, leaving behind a

classical deterministic world, physicists uncovered the quantum probabilistic nature of

the universe, which in turn enabled them to construct the SM.

One can truly term the physics of the twentieth century as revolutionary. In some sense,

much of the modern developments in fundamental physics can be regarded as footnotes

to what has been achieved in the last century, and this thesis makes no exception. This

is not to say that modern theoretical physics is irrelevant or unworthy of attention. It is

just a way of highlighting that we still live in the aftermath of the paradigm shifts that

relativity and quantum theory brought about.

The SM of particles is a quantum field theory (QFT) which describes three of the four

known fundamental forces (i.e. strong, weak and electromagnetic) present in nature. It

is a very successful theory which, despite physicists’ efforts, still defies to this date all

the experimental attempts to prove it wrong. However, it is not the end of the story.

There are still phenomena which the Standard Model fails to account for: dark matter

and dark energy, neutrino masses etc. . In addition to these, there exist unresolved

anomalies which await more refined research, e.g. the anomalous magnetic moment of the

muon [4,5]. Furthermore, the SM does not take into account gravity, which is nonetheless

accurately described by GR on large scales. The latter has been thoroughly tested

(gravitational waves [6], perihelion of Mercury etc. ) and explored [7]. However, similar

to the SM, it is not perfect. It comes short of being a truly fundamental theory. For

example, the Penrose-Hawking theorems show that spacetime singularities are present

both inside black holes [8], and at the beginning of time (i.e. Big Bang) [9]. Their

presence highlights one of the limitations of classical GR.
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This suggests the need to go beyond and search for a more comprehensive framework.

One of the possible paths, which motivates most of the work undergone in this thesis, is

to unify the principles which lie at the core of GR and the SM into a quantum theory of

gravity, which one would expect to succeed where the previous two failed. In addition

to this, there are other approaches currently pursued, such as String Theory [10] or

Loop Quantum Gravity (LQG) [11]. Although very interesting, their aim is to construct

a different and more fundamental framework. However, this lies beyond the scope of

this thesis, in which we take a more conservative stance and explore the possibility of

quantising gravity. In other words, we treat on equal footing gauge theories and gravity,

and hence consider gravity as a field theory. This shares many similarities with the

Asymptotic Safety (AS) approach to gravity [12–16].

If we naively proceed about treating gravity as a simple gauge theory, we soon realise

that it is more complicated than that [17]. We inevitably encounter infinities which

cannot be cast away (i.e. renormalised) in the usual way. It is well established by now

that the Einstein-Hilbert action is not (perturbatively) renormalisable on its own at

two loops [18–20], or even at the one-loop level if one takes into account a cosmological

constant [21], adds matter fields [22,23], or introduces gauge fields [24]. However, it does

not follow from this that gravity cannot be quantised in the usual way. It just proves

to be more subtle in some sense, and that diffeomorphism invariance is somewhat more

stubborn than the usual gauge invariance one encounters in the SM.

The difficulty arises from the requirement to bridge the gap between the large scale

structure of the universe, as successfully accounted for in GR, and the small scale, where

particle physics emerges. The way out, we believe, is provided by the Renormalisation

Group (RG), a framework based on the simple observation that the same physics can

look different at different physical scales. And for this reason, this thesis is dedicated to

the study of various implementations of the RG group ideas, whilst always keeping in

the back of our heads the original goal that we ultimately want to find a consistent way

of making gravity quantum.

In the following sections we give the necessary background for the subsequent chapters.

We begin with a review of the RG ideas in section 1.1. In the following section we

introduce the theory space on which all possible effective actions lie and highlight the

connection between fixed points and renormalisability. In section 1.3 we present the

effective average action, the IR regulated generator of one-particle irreducible (1PI) dia-

grams, and its corresponding flow equation. Finally, we conclude this chapter outlining

the structure for the rest of this thesis.
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1.1 The Renormalisation Group

The scale at which we observe a physical phenomenon will ultimately determine how we

describe it. Physics stays the same, but some variables prove to be more appropriate

than others for describing a physical system at a particular viewing scale. And this very

fact, as mentioned before, is encoded within the RG framework.

For example, to understand ocean waves or the flow of water through pipes, one does not

have to understand how water molecules interact with one another or how hydrogen and

oxygen atoms behave within them. A suitable description of water related phenomena

at the macroscopic level can be constructed using the language of fluid mechanics (i.e.

classical) without ever referring to any quantum effects at all. Similar examples can be

given in the context of field theories, and gauge theories in particular, which represent

one of the main interests of this thesis. To name just one, quantum chromodynamics

(QCD) in the ultraviolet (UV) or, equivalently, high energy/short distance regime, is

best described in terms of quarks and gluons which are weakly coupled as a consequence

of asymptotic freedom [25,26]. In contrast to this, in the infrared (IR) or, equivalently,

low energy/large distance regime, QCD is best understood in terms of bound states (i.e.

hadrons) and their corresponding interactions, the reason behind this being that quarks

and gluons become strongly coupled, and thus undergo confinement [27].

In other words, the RG approach can be viewed as a procedure for systematically deal-

ing with problems happening on many length scales. In general, from a microscopic

description of a physical system one should be able to track how its macroscopic be-

haviour unfolds using the RG framework. However, this is not as simple a task, and

one often requires to make approximations to obtain a feasible result, or any result at

all. But before delving into the mathematical details, it is instructive to build a more

intuitive understanding of the renormalisation group. One particularly useful analogy

is that with a microscope of varying magnification [28, 29]. This proceeds as follows. If

we consider a physical system in position space, in which fields are labelled in terms of

their spacetime indices (i.e. ϕ = ϕ(x)), then, the RG procedure amounts to replacing

the degrees of freedom (d.o.f) within a small part of the system by an effective one such

that physics remains unchanged. Equivalently, we can think of this as ’zooming out’

using a microscope, but in a rather abstract way and at the level of the d.o.f. This is as

far as we can take this analogy however. If we stretch it too far, it will snap, and it will

lose its usefulness.

Central to the RG approach is the effective action SΛ, a scale dependent functional

which encodes the relevant degrees of freedom of a physical system and the strength

of the corresponding interactions at some viewing scale Λ. We can develop a better

understanding of this concept if we shift to momentum space, where fields are labelled

in terms of their corresponding momenta (i.e. ϕ = ϕ(p)). In this language, the above

philosophy of averaging over local patches translates to integrating out high energy
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modes between some original scale Λ0, which is called the bare scale, and some effective

scale Λ. Carrying out this procedure, the original action describing our physical system,

SΛ0 , will generally get modified, and hence one obtains an effective action SΛ. This

procedure can in turn be iterated, and thus one ends up with a series of effective actions:

SΛ0 → SΛ1 → SΛ2 → · · · , (1.1.1)

where Λ0 > Λ1 > Λ2 > · · · . If each of the above steps are performed over infinitesimal

momentum shells (i.e. Λi − Λi+1 = δΛ for all i ∈ N), then (1.1.1) becomes a partial

differential equation,

Λ∂ΛSΛ = · · · , (1.1.2)

where we have used the shorthand ∂Λ ≡ ∂
∂Λ . The above equation is called the RG flow

equation and it is the mathematical formulation of the continuous RG. This means that,

whenever the RG approach is used to study continuous systems, one can write that down

as a flow equation, whose basic structure is given by (1.1.2) above.

Up to this point, we have outlined the philosophy behind the renormalisation group,

and, in the process, we have also presented its qualitative features such that one could

develop an intuitive understanding without having to bring into play technical details.

We will cover these in the subsequent sections of this chapter. However, there is still a

crucial question left unanswered: When is the RG approach useful? (or, shorter, why

bother?) To answer this, we will follow the excellent discussion of ref. [28], which in

turn builds on the one in ref. [30]. We first give a more general explanation, and then

further expand on how this applies to quantum field theories, which lie at the heart of

this thesis.

In short, the deciding factor is the correlation length ξ of the system or, more precisely,

the number of degrees of freedom within a correlation length. Now, for any physical

system, ξ represents the typical size of the regions in which the degrees of freedom act

collectively as a single unit (i.e. are correlated). Thus, one expects a small subsystem of

characteristic size ξ to exhibit similar properties to the whole system. In other words,

the d.o.f within a correlation length will dictate the behaviour and properties of the bulk

(e.g. for the analysis of crystalline solids it is sufficient to consider only the Brillouin

zone for most physical purposes). If, for a certain physical system, this number is small,

and thus only a few d.o.f are relevant within a correlation length, then RG methods can

not be used to further simplify the problem.

On the other hand, if the opposite holds, and one has to deal with a large density

of d.o.f per correlation length, then the renormalisation group proves to be crucial for

understanding and uncovering the underlying physics. The reason behind this boils

down to two key ideas: interactions are assumed to be local of range O(L0) with L0 ≪ ξ,

and the coarse graining procedure can be iterated. We can understand this as follows.

Let us assume that we have a small subsystem of size O(ξ). As before, understanding
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what happens within a correlation length will ultimately translate to understanding the

properties of the whole (larger) system. Now, we can break the subsystem into smaller

local patches of characteristic size L0, which will contain a finite, ideally small, number

of relevant d.o.f. The strategy of sampling the subsystem in this way is similar to what

we have done before, but, in the current case, given that L0 ≪ ξ, there is no hope of

deducing the properties of the bulk directly. Nonetheless, one can still follow the coarse

graining recipe. If we now average over patches slightly larger than the original one, say

of characteristic size 2L0, then we end up with an effective action in which the range of

the interactions increased (it is now O(2L0)), and there are fewer d.o.f present (since we

averaged over). This is an improvement, but still not enough for our purposes. However,

the crucial observation is that this can be repeated as many times as required until the

range of the interactions within the effective action equals the correlation length. And,

in this way, provided that we figure out how to coarse grain over neighbouring patches,

which in general is not easy, we will be able to deduce the properties of the whole system.

Extending this analysis to quantum field theories is not straightforward because they

present difficulties of their own. Any patch, regardless of its size, will exhibit an infinite

number of degrees of freedom, which at first seems to be at odds with the arguments

outlined above. The way out of this conundrum is provided by the point-like nature

of QFT interactions (i.e. L0 → 0). Although an infinite number of d.o.f can certainly

not be reconciled with a finite range of interaction, sensible answers can in principle be

obtained if this holds no more. In momentum space, this translates to integrating out

the high energy modes within an infinitesimal momentum shell, and then iterating this

process (i.e. integrating shell by shell), rather than considering all the modes in one go.

In the remainder of this section, as mentioned above, we will focus on the more technical

aspects of the renormalisation group. Historically, one can trace the origin of the RG

methods back to the seminal work of Kadanoff [31], where the idea of coarse graining

over d.o.f was first used to study the properties of the Ising model. We first recall

in the next subsection how this works. Many of the key ideas, although formulated

in the discrete case, will continue to hold for continuous systems as well. Then, in

subsection 1.1.2, we move on to explore the RG approach to field theories as envisaged

by Wilson. In the process, we explain how to construct flow equations, and as a first

example derive Polchinski’s flow equation. We end this section with a brief discussion

on renormalisability in subsection 1.1.3.

1.1.1 Kadanoff blocking

To be able to make concrete statements regarding the renormalisation group we consider

the two-dimensional Ising model. This is a lattice of spins which can be oriented either

up or down, and exhibit only nearest-neighbour interactions, see Fig. 1.1.1 below. The

characteristic length, and implicitly the cutoff scale, is set by the lattice spacing (i.e.
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Figure 1.1.1: 2D Ising model

the distance between neighbouring spins). As outlined above, the regime in which the

RG proves to be indispensable is when the density of d.o.f per correlation length is

large. Given the periodicity of the lattice, this simply translates to a large, potentially

divergent, correlation length. In other words, we want to apply the RG transformations

when the system is brought near criticality, where it undergoes a continuous, second

order phase transition. We proceed as follows.

We first divide the system into blocks of adjacent spins. Then, for each of the individual

blocks, we average over the spins within and replace them by a single blocked spin. In

this way, we end up with a system described in terms of fewer d.o.f (i.e. the blocked

spins), which now lie further apart from one another. In this context, the coarse graining

bears the name of Kadanoff blocking or, simply, blocking.

Now, the power of the RG procedure, as emphasised in the previous section, lies in the

fact that this procedure can be iterated. This, however, poses another problem. We

have two descriptions of the same physical system, i.e. the original one and the one

in terms of the blocked variables, and we want to compare the two. Unfortunately,

as emphasised above, the blocking procedure modifies the lattice spacing, and hence

there is no common ground left for us to draw any conclusions. Nonetheless, this can

be solved by performing a second complementary step, which amounts to rescaling the

lattice spacing back to its original size after coarse graining.

The two steps outlined above make up the celebrated block-spin renormalisation origi-

nally introduced by Kadanoff [31]. And, in fact, any RG transformation has a similar

structure: a coarse graining followed by a rescaling.
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At this stage it is natural to ask ourselves what have we achieved by doing this. First of

all, the original set of spins has been replaced by a smaller set of blocked spins. Since the

latter have been obtained by averaging over the former, we inevitably end up modifying

the strength of the corresponding spin-spin interactions. Moreover, despite the fact the

the original spins interact with their adjacent neighbours only, the blocked spins can in

principle exhibit all possible interactions (i.e. nearest neighbour interactions, next-to-

nearest neighbour interactions and so on). At first sight, this seems at odds with the

assumed locality which makes the RG procedure possible to begin with. However, the

long range interactions generated are suppressed provided that the blocking procedure is

performed in a sensible way, and thus locality survives. For the ease of exposure, we defer

a discussion of the various notions of locality and their corresponding implementation

to Chapter 2, where we present them in the context of gauge theories.

Furthermore, from the discussion above, one can easily see that the system described

in terms of blocked spins looks rather different than the original one. However, despite

all these rather technical differences, physics remains the same, or more precisely all

macroscopic observables (i.e. measured at length scales much larger than the cutoff scale

Λ) are left invariant under a RG transformation. And, in fact, this still holds regardless of

how the RG transformation is performed, as long as it is performed in a sensible manner.

This property that IR physics does not depend on the exact microscopic details bears

the name of universality. What is more, this property can be used to classify physical

systems, and thus those systems whose microscopic description differs, but exhibit a

similar behaviour in the IR, fall into the same universality class.

1.1.2 The Functional Renormalisation group

The modern understanding of the renormalisation group is due to the pioneering work of

Kenneth Wilson [32]. As emphasised before, in contrast with the RG picture developed

by Kadanoff, where the cutoff is modified in discrete steps, the framework envisaged by

Wilson can successfully account for continuous (infinitesimal) changes in the cutoff, and

thus proves to be suitable for investigating field theories. Consequently, it comes as no

surprise that the renormalisation group is commonly referred as the Continuous Renor-

malisation Group (continuous RG) or the Wilsonian Renormalisation Group (WRG).

Furthermore, for reasons which will become evident throughout this subsection, it also

bears the name of Exact Renormalisation Group (ERG) or Functional Renormalisation

Group (FRG) [33]. We use all these terms interchangeably in this chapter and in the

remainder of the thesis.

Before proceeding further with the explicit construction of the ERG procedure, for

clarity, it is worth fixing the notation and outlining the different conventions that we

use here and in the rest of the thesis. Thus, for position and momentum space integrals
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we introduce the shorthand∫︂
ddx ≡

∫︂
x
,

∫︂
ddp

(2π)d
≡
∫︂
p
, (1.1.3)

respectively, where d is the number of dimensions we are working in. We will frequently

switch between position and momentum space representations and this will help us keep

everything clean and concise. For similar reasons we will adopt the following convention:

δ(p) ≡ (2π)dδ(d)(p) , (1.1.4)

where δ(d)(p) is the standard d-dimensional Dirac delta function. Our convention for

Fourier transforms is then

ϕ(p) =

∫︂
x
ϕ(x) e−ipx . (1.1.5)

We use the compact DeWitt notation in which repeated indices stand for both a summa-

tion over discrete indices and an integration over spacetime. For expressions involving a

single component field ϕ(x), we adopt the following shorthand together with its explicit

representations in both position and momentum space, respectively:

J · ϕ ≡
∫︂
x
J(x)ϕ(x) =

∫︂
p
J(−p)ϕ(p) . (1.1.6)

In addition to this, for two functions f(x) and g(y), and a momentum kernel K(p2/Λ2),

we introduce the shorthand:

f ·K · g ≡
∫︂
x,y
f(x)K(x, y)g(y) =

∫︂
x
f(x)K

(︁
−∂2/Λ2

)︁
g(x) , (1.1.7)

where K(x, y) is given by:

K(x, y) = K
(︁
−∂2/Λ2

)︁
δ(x− y) =

∫︂
p
K
(︁
p2/Λ2

)︁
eip(x−y) . (1.1.8)

Note again that Λ is the effective cutoff scale. Last, but not least, one more requirement

that we impose is Euclidean signature. This allows us to construct a well-defined blocking

procedure. More precisely, it ensures that patches which are light-like separated can not

be blocked together, and hence that we do not average over arbitrary spatial separation.

All this being said, we can now return to our original task of applying the RG ideas

to study continuous systems. The central element of the Wilsonian framework is the

distinction between high and low energy modes. For this reason, we choose to work

mostly in momentum space, and not in position space as we did in the previous section.

In addition to this, for simplicity, we consider single component scalar field theory. All

the arguments presented here are general and can be translated straightforwardly to

more complicated systems. We will explicitly see how this happens for gauge theories
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(and gravity) in chapter 2, multi-component scalar field theory in Chapter 3 and gravity

in Chapter 4.

The discussion in the remaining of this and the next section is based on ref. [34]. We

start with what is generally regarded as the main object of interest in a quantum field

theory, the partition function Z[J ]. For a single scalar field ϕ(x), it takes the following

form:

Z[J ] =

∫︂
Dϕ e−Stot

Λ0
[ϕ]+J ·ϕ

, (1.1.9)

where we also include a source term for the scalar field in the usual way. Note that the

above equation holds up to some constant prefactor, which ensures proper normalisation.

Here and in general we drop these prefactors since their presence or absence does not

interfere with physics (i.e. all Green functions remain unchanged). Equivalently, we can

just set Z[J = 0] = 1. Also note that the integrand above is defined at some original

scale Λ0, which we call the bare scale.

Now, as emphasised at the start of this section, the strength of the ERG lies in the

fact that the coarse graining procedure can be iterated. Thus, we first integrate over all

the modes between the starting bare scale Λ0 and a lower effective scale Λ, and then

repeat this process until we integrate over all the d.o.f. The net effect of any RG step

is to replace the original bare action Stot
Λ0

by an effective action Stot
Λ . The latter is in

general more complicated as a consequence of the fact that coarse graining, similarly to

the blocking procedure described in the previous subsection, modifies the strength of the

original interactions, and alongside gives rise to new ones. However, the crucial point is

that all the underlying physics stays the same. This, together with the fact that both

Λ0 and Λ are put in by hand, and hence carry no physics, implies that the partition

function has to be scale invariant:

Λ∂ΛZ[J ] = 0 . (1.1.10)

We can make more concrete statements about this if we first split ϕ into high and low

energy modes, respectively, i.e.

ϕ = ϕH + ϕL , (1.1.11)

with ϕH carrying momenta |p| > Λ, and ϕL momenta |p| ≤ Λ. We can then use this to

recast the partition function (1.1.9) as follows:

Z[J ] =

∫︂
DϕHDϕL e−Stot

Λ0
[ϕH+ϕL]+J ·(ϕH+ϕL) (1.1.12)

=

∫︂
DϕL eJ ·ϕL

∫︂
DϕHe−Stot

Λ0
[ϕH+ϕL]+J ·ϕH . (1.1.13)
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Performing the second integral above over the high energy modes, and taking into ac-

count (1.1.10), we arrive at the following identity:

Z[J ] =

∫︂
DϕL e−Stot

Λ [ϕL]+J ·ϕL , (1.1.14)

where the effective action Stot
Λ [ϕL] is given by:

Stot
Λ [ϕL] = − ln

∫︂
DϕH e

−Stot
Λ0

[ϕH+ϕL]+J ·ϕH . (1.1.15)

This means that the information pertaining to the high energy modes is encoded within

the effective action Stot
Λ . Once all the modes have been integrated out, we can make

physical predictions. Or, in other words, observables are to be computed from the

effective action Stot
Λ in the limit Λ→ 0. Figure 1.1.2 below summarises these ideas.

Physics

⇐
IR

U
V
⇒

|p|

Stot
Λ0

Stot
ΛΛ

Λ0

ϕL

ϕH

Figure 1.1.2: The effective action Stot
Λ encodes the effects of integrating out the high

energy modes ϕH with momenta between the original bare scale Λ0 and Λ.

Kadanoff’s approach reviewed in the previous subsection involved a coarse graining

procedure followed by a rescaling. For the continuous RG case, we have seen how the

former can be implemented, but we have swept under the rug the latter. In direct analogy

to block-spin renormalisation, we should restore the effective scale Λ to its original

value Λ0. The easy way to do this is by simply rendering all the fields and couplings

dimensionless using Λ. In other words, one just needs to divide all the quantities by Λ

raised to the appropriate power (i.e. the scaling dimension). We assume this to be the

case everywhere in this chapter.

Up to this point, we have established that the effective action is arguably the most

important object within ERG. Understanding its behaviour and properties, ultimately
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translates to understanding the physical properties of the system it describes. As high-

lighted above, we want to be able to track how it evolves when the effective scale Λ

changes since, eventually, we will need to do this all the way down into deep IR (i.e.

Λ→ 0) to compute the complete set of Green functions. To achieve this, we will recast

the partition function (1.1.9) as a flow equation for the effective action. We proceed as

follows.

We first rewrite the bare action Stot
Λ0

as a sum between a kinetic term and an interaction

term, respectively, i.e.

Stot
Λ0

=
1

2
ϕ · p2 · ϕ+ SΛ0 [ϕ] . (1.1.16)

With this modification, the partition function (1.1.9) becomes:

Z[J ] =

∫︂
Dϕ e−

1
2
ϕ·p2·ϕ−SΛ0

[ϕ]+J ·ϕ . (1.1.17)

We now introduce the effective cutoff scale using two smooth cutoff profiles CUV (p,Λ)

and CIR(p,Λ), respectively, which add up to unity, i.e.

CUV (p,Λ) + CIR(p,Λ) = 1 . (1.1.18)

Furthermore, we impose CUV (p,Λ) to act as an UV cutoff, i.e.

CUV (0,Λ) = 1 , CUV (p,Λ)→ 0 (sufficiently fast) as |p| → ∞ . (1.1.19)

This, together with the relation (1.1.18), constrains CIR(p,Λ) to behave as follows:

CIR(0,Λ) = 0 , CUV (p,Λ)→ 1 as |p| → ∞ . (1.1.20)

Using these two profiles we can define regularised propagators:

∆UV ≡
CUV (p,Λ)

p2
, ∆IR ≡

CIR(p,Λ)

p2
, (1.1.21)

which are related with the original propagators ∆ in the following way:

∆ ≡ 1

p2
= ∆UV +∆IR . (1.1.22)

Using the regularised propagators in (1.1.21) together with the split (1.1.11), we can

recast (1.1.17) in the following way:

Z[J ] =

∫︂
DϕLDϕH exp

{︃
− 1

2
ϕL ·∆−1

UV · ϕL −
1

2
ϕH ·∆−1

IR · ϕH

− SΛ0 [ϕH + ϕL] + J · (ϕH + ϕL)

}︃
. (1.1.23)
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This can be easily checked. We first write ϕH = ϕ − ϕL in the above expression, then

perform the shift ϕL → ϕL + (∆UV /∆) · ϕ, compute the integral over ϕL, which at this

stage is just a gaussian integral, and finally discard the resulting constant term to arrive

back at (1.1.17). On a side note, in the light of the structure of the expression above,

we can still interpret ϕH and ϕL as high energy and low energy modes, respectively.

However, given that the effective scale is introduced using the smooth cutoff profiles

(1.1.19) and (1.1.20), and not as a sharp cutoff as before, the boundary between the two

sets of modes can not be drawn exactly at the scale Λ anymore. Thus, one needs to take

this interpretation with a pinch of salt.

The next step is to integrate out the high energy modes to get the effective action. For

this reason, we rewrite the identity (1.1.23) as follows:

Z[J ] =

∫︂
DϕL exp

{︃
−1

2
ϕL ·∆−1

UV · ϕL
}︃
ZΛ[J, ϕL] , (1.1.24)

where ZΛ[J, ϕL] is given by:

ZΛ[J, ϕL] =

∫︂
DϕH exp

{︃
−1

2
ϕH ·∆−1

IR · ϕH − SΛ0 [ϕH + ϕL] + J · (ϕH + ϕL)

}︃
.

(1.1.25)

If we now write ϕH = ϕ− ϕL, the above identity becomes:

ZΛ[J, ϕL] = exp

{︃
−1

2
ϕL ·∆−1

IR · ϕL
}︃

×
∫︂
Dϕ exp

{︃
− 1

2
ϕ ·∆−1

IR · ϕ+ ϕ ·
(︁
J +∆−1

IR · ϕL
)︁
− SΛ0 [ϕ]

}︃
. (1.1.26)

We can perform the gaussian integral over ϕ provided that we pull the bare action term

in front of the integral beforehand, and hence we obtain [35]:

ZΛ[J, ϕL] = exp

{︃
1

2
J ·∆−1

IR · J + J · ϕL
}︃

× exp

{︃
−1

2

(︁
J +∆−1

IR · ϕL
)︁
·∆IR ·

(︁
J +∆−1

IR · ϕL
)︁}︃

× exp

{︃
−SΛ0

[︃
δ

δJ

]︃}︃
exp

{︃
−1

2

(︁
J +∆−1

IR · ϕL
)︁
·∆IR ·

(︁
J +∆−1

IR · ϕL
)︁}︃

,

(1.1.27)

where the first two lines are just the first line of (1.1.26) rewritten in a more convenient

way. Also, note that in the last line above the functional derivative will pull from the

rightmost exponential either ϕL+J ·∆IR, or ∆IR, after differentiation. This means that

there exists some functional SΛ [ϕL + J ·∆IR], such that the following identity holds:

ZΛ[J, ϕL] = exp

{︃
1

2
J ·∆IR · J + J · ϕL − SΛ [ϕL + J ·∆IR]

}︃
. (1.1.28)
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At this point it is difficult to tell precisely what the meaning of SΛ really is. However,

we can still make progress if we slightly alter our computations. In the equation (1.1.23)

we have the freedom to source the low energy modes only. Doing so, and following the

same path as above, instead of (1.1.28) we arrive at the following:

ZΛ[J, ϕL] = exp {−SΛ[ϕL] + J · ϕL} , (1.1.29)

which is the same as setting J ·∆IR = 0 in (1.1.28). From this and (1.1.24) it follows

that the full partition function Z[J ] is given by:

Z[J ] =

∫︂
DϕL exp

{︃
−1

2
ϕL ·∆−1

UV · ϕL − SΛ[ϕL] + J · ϕL
}︃
. (1.1.30)

Here we see that the restriction we previously imposed on J pays off. The above equation

allows us to identify SΛ as the interaction part of the full effective action Stot
Λ , provided

that we choose to write the latter similarly to (1.1.16), i.e.

Stot
Λ [ϕL] =

1

2
ϕL ·∆−1

UV · ϕL + SΛ[ϕL] . (1.1.31)

It is worth emphasising that, although we write the effective action as a sum between

a (regularised) kinetic term and an interaction term, the truth is slightly fuzzier. The

effective action is in general more complicated than the original bare action it originates

from. The coarse graining procedure generates new interactions which can in fact spoil

the bilinear kinetic term. However, if we do not exclude the possibility that the effective

action might exhibit interactions at the bilinear level already, then we can always write

down a relation similar to (1.1.31) above.

The FRG flow equation can be obtained by first differentiating (1.1.25) with respect to

Λ:

∂

∂Λ
ZΛ[J, ϕL] = −

1

2

(︃
δ

δJ
− ϕL

)︃
·
(︃
∂

∂Λ
∆−1

IR

)︃
·
(︃
δ

δJ
− ϕL

)︃
ZΛ[J, ϕL] , (1.1.32)

and, then, substituting in (1.1.28) to obtain:

∂

∂Λ
SΛ[ϕ] =

1

2

δSΛ
δϕ
· ∂∆UV

∂Λ
· δSΛ
δϕ
− 1

2

δ

δϕ
· ∂∆UV

∂Λ
· δSΛ
δϕ

. (1.1.33)

This is the ERG flow equation for the effective action, known as Polchinski’s equation

[36]. To understand its structure better we can write the effective action in terms of its

vertices and represent it graphically as in Fig. 1.1.3 below. We can depict the two terms

as the tree level and one-loop contributions, respectively, and one could be tempted

to interpret them as the classical and quantum parts, respectively. However, this is

misleading since it is the effective action SΛ present in both terms which encompasses

all the quantum corrections.
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∂

∂Λ SΛ

n

=
∑︂
i,j

i+j=n

SΛ SΛ•

i j

− 1

2 • SΛ n

Figure 1.1.3: Diagrammatic representation of Polchniski’s flow equation

An important feature of the flow equation above is that it is an exact reformulation of

the partition function (hence the term ERG) as the flow equation of some functional,

which turns out to be the effective action which lies at the heart of the renormalisation

group (hence the term FRG) [37]. Although exact, in practice one can not solve it ex-

actly and has to rely on approximations in the hope of gaining some insight. One such

class of approximations are truncations, which amount to enforcing that the effective

action contains only a finite number of operators. One such truncation is the Local

Potential Approximation (LPA), which we use in Chapter 3 to investigate scalar field

theories. Another widely employed method for solving FRG flow equations is perturba-

tion theory, which generally requires the existence of a small parameter which one can

potentially expand into. We follow this path to investigate the quantum structure of

gravity in Chapter 4. One disadvantage of this approach is that it is computationally

very expensive, and thus very difficult to track higher order contributions. Moreover,

there are non-perturbative aspects which cannot be accounted for in perturbation the-

ory, and hence one cannot rely exclusively on the latter.

1.1.3 Renormalisability

One other crucial insight due to the pioneering work of Wilson outlined above is related

to renormalisability. Prior to the development of Wilsonian RG, the idea of renormalis-

ability was intimately linked with perturbation theory and relied on the existence of a

small parameter, which one could use as a starting point for a loop expansion of the ac-

tion. However, as is well known, if we attempt to compute loop integrals, we eventually

encounter infinities. To handle them, we need to introduce in one way or another a cutoff

Λ0. This is just a mathematical trick commonly used to deal with improper integrals,

which enables one to isolate infinities (i.e. regularise) and rewrite them in terms of the

cutoff. In doing so, all the quantities of interest pick a unphysical Λ0 dependence, which

ultimately has to be removed since the cutoff carries no physical meaning.

Perturbative renormalisation amounts to the possibility of safely removing the cutoff

without altering the physics. Additionally, one needs to make sure that all physical

obervables remain finite and carry no Λ0 dependence anymore. This is equivalent to

saying that all physical quantities are renormalised. The most common way to achieve
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this is by introducing a finite number of counterterms to cancel divergences at all orders

in the loop expansion (i.e. renormalised perturbation theory). Another way to proceed

about this, more demanding computationally and less intuitive, is by rewriting bare

quantities in terms of renormalised ones (i.e. bare perturbation theory).

Wilson’s approach offers a more comprehensive perspective. It allows us to define renor-

malisability without referring to perturbation theory or to any small coupling whatso-

ever. The essential ingredient for this to be possible amounts to a shift in paradigm.

Contrary to the view employed before that the cutoff scale Λ0 is not physically mean-

ingful, in Wilsonian RG the cutoff carries some physical meaning. All theories are to be

viewed as effective theories, hence, not valid at all scales, but valid up to some scale set

by the cutoff Λ0. In other words, the latter comes into game to humble us and show the

limitation of our knowledge. However, as emphasised before, even if our understanding

fails at the cutoff, physics does not, and thus one has to venture past the boundary

set by Λ0. And it is for this reason that we seek QFTs in which we are able to take

the continuum limit (i.e. Λ0 → ∞) safely, without encountering any divergences. The

possibility to do so is one of the many incarnations of non-perturbative renormalisability.

We will see in the next section how this is realised at the technical level, when discussing

the fixed point (FP) structure of the theory space.

One of the advantages of the framework envisaged by Wilson is that it enables us to

treat both perturbative and non-perturbative renormalisation on equal footing. From

the definition of the latter given above, one can easily see that the former is just a re-

alisation of the latter under some specific conditions. We mentioned before that these

two approaches can reach different conclusions for the same physical system, and thus

relying solely on perturbative RG can be misleading. One such example is given by

quantum electrodyanmics (QED). This theory is perturbatively renormalisable in the

sense that we can get rid of divergences using a finite number of counterterms order

by order in a loop expansion. This is valid only at low energies when the coupling is

small, and thus we can treat it perturbatively. However, at high energies, QED becomes

strongly coupled, and the perturbative series developed in the low energy regime de-

velop a Landau pole [38–40]. This means that QED is not truly renormalisable since its

continuum limit, from the point of view of perturbation theory, it is not well-defined.

More generally, this shows that the action of taking the continuum limit Λ→∞ in per-

turbation theory can be misleading. For this reason, from here onward, unless otherwise

stated, we will only refer to non-perturbative renormalisation in the Wilsonian sense as

renormalisation since this is equivalent to a well-defined continuum limit.
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1.2 Theory space and Fixed Points

We have outlined in the previous section the ideas which represent the backbone of the

RG approach to physical systems. It all boils down to understanding the behaviour of

the effective action SΛ. This means that we need to understand the solution space of

the FRG flow equation (1.1.33) (or of any other equivalent FRG flow equation).

Any effective action can be parameterised as follows:

SΛ[ϕ] =
∞∑︂
i=1

gi(Λ)Oi[ϕ] , (1.2.1)

where the scale dependence is carried by the dimensionless couplings gi, whilst their

conjugate operators Oi carry the dependence on the dimensionless field ϕ. Note that

the sum above is infinite. The reason behind this is that, no matter how simple we

choose the bare action to be, the effective action will exhibit all possible interactions

allowed by symmetry constraints and field content. Of course, not all the couplings will

be independent of one another, but we still have to account for all of them. Since the

above identity holds for any effective action SΛ, we can interpret the operators Oi as

the basis of an infinite dimensional space, which we will call the theory space, and the

couplings gi as the corresponding coordinates in this basis. Thus, any action can be

represented as a point within theory space.

From this it follows straightforwardly that a RG transformation corresponds to a tra-

jectory within theory space, which starts at the point where the original bare action

lies, and ends at the point corresponding to the coarse grained action. This means that

any QFT should be identified with a full RG trajectory. We should emphasise that it is

the full (infinite) collection of effective actions at various degrees of coarse graining that

defines a physical theory, and not just one particular action. Also, note that RG tra-

jectories are conventionally regarded as flowing from UV to IR since this is the natural

direction dictated by coarse graining.

All RG trajectories are generated by the corresponding RG flow equations. In geometric

terms, they are the integral curves generated by the vector field induced within theory

space by the flow equation. Generally, we can schematically write the latter as follows:

Λ
∂

∂Λ
SΛ = F

[︃
SΛ,

δSΛ
δϕ

,
δ2SΛ
δϕδϕ

, · · ·
]︃
, (1.2.2)

where F stands for some functional dependence on the effective action and its functional

derivatives [37,41]. One such example is Polchinski’s equation (1.1.33) derived above.

We ultimately want to study renormalisability, which, as outlined in the previous sub-

section, amounts to scale invariance. This motivates us to first look at the fixed point

structure of the RG flow. Fixed points (FPs) are stationary points of (1.2.2), which
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means that the following identity holds:

Λ
∂

∂Λ
S∗ = 0 , (1.2.3)

where S∗ is the FP action. All theories defined at a FP are trivially renormalisable. This

is true because all the couplings and fields in the effective action being dimensionless, the

above equation implies full scale independence, and hence renormalisability. Moreover,

it represents a massless continuum limit. The presence of any dimensionful parameter

(i.e. like Λ0 or the mass) would break scale independence, and thus would be at odds

with (1.2.3). One such fixed point is the Gaussian fixed point (GFP), which exists in

any QFT. Also, it is achieved in the limit that all couplings vanish, and for this reason,

although almost never explicitly stated, renormalisability with respect to the GFP is

equivalent to perturbative renormalisability. Moreover, any theory defined at the GFP

is trivial (i.e. non-interacting).

All bare actions which flow towards the same FP under an RG flow lie on the critical

manifold. We can get more precise about this. In the vicinity of a FP we can write the

effective action SΛ as follows:

SΛ[ϕ] = S∗[ϕ] +
∑︂
i

αi

(︃
µ

Λ

)︃λi

Oi[ϕ] . (1.2.4)

Here µ is the usual arbitrary mass scale, αi are positive dimensionless constants and

λi are the RG eigenvalues of the eigenoperators Oi. Depending on the sign of the

eigenvalues, the operators can be classified into relevant (λi > 0), marginal (λi = 0)

or irrelevant (λi < 0). A direct consequence of this is that perturbations in any of

the irrelevant directions will inevitably sink back into the FP. Moreover, it follows that

the irrelevant and marginally irrelevant eigenoperators form the basis of the critical

manifold.

To see how this unfolds, we can rewrite (1.2.4) as follows:

SΛ[ϕ] = S∗[ϕ] +
∑︂
λi≤0

αi

(︃
µ

Λ

)︃λi

Oirr
i [ϕ] +

∑︂
λi≥0

αi

(︃
µ

Λ

)︃λi

Orel
i [ϕ] . (1.2.5)

The second term on the right-hand side contains all the irrelevant and marginally irrel-

evant operators, whilst the third one all the relevant and marginally relevant operators.

As outlined above, the former describes perturbations within the critical manifold. The

remaining set of operators quantify perturbations off the critical manifold. And such

a trajectory which corresponds to perturbing along one of the relevant directions (or

marginally relevant) is called renormalised trajectory (RT).

All effective actions which lie on the renormalised trajectory are called perfect actions.

One can easily see that any theory, whose effective actions are of this kind, must be
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renormalisable since their UV behaviour is controlled by the FP the RT emanates from.

Moreover, such theories are interacting. Or, better said, given that the fixed point sup-

ports renormalised trajectories, from a free theory in the UV we uncover an interacting

theory as we flow into the IR.

At this point it is worth pausing to look at the big picture so far. Renormalisability

is intimately linked with the existence of fixed points. All theories defined at a fixed

point are trivially renormalisable and represent massless non-interacting theories. Any

fixed point has a critical manifold spanned by the irrelevant (and marginally irrelevant)

eigenperturbations, and thus the FP acts as a sink for all the actions which lie on

this manifold. If the FP supports relevant directions, then we can use these so-called

renormalised trajectories to construct renormalisable interacting theories. The only

question left unanswered is what happens when we start with a bare action which neither

lies on the critical manifold, nor on a renormalised trajectory.

Let us suppose that we start with such an (bare) action which sits slightly off the critical

manifold. Also, for the ease of exposure, we shall assume that there exists only one

relevant direction. The flow will first head towards the fixed point since the irrelevant

operators (and marginally irrelevant ones) dominate in the early stages of the flow. At

some point, the relevant direction becomes the dominant one, and correspondingly the

flow will head in the same direction as the renormalised trajectory. However, this does

not have a well-defined continuum limit since there is no FP to control the UV behaviour.

This problem can be solved if we now tune the original action back onto the critical

manifold. In this limit, the flow splits, and we end up with an initial path which sinks

back into the FP and a second one which goes out of the FP along the RT. To be able

to do so, we have to account for the diverging couplings. This can be done if, parallel

to bringing the bare action back onto the critical manifold, we express all the quantities

of interest in terms of renormalised couplings gi(Λ) as follows:

gi(Λ) ∼ αi

(︃
µ

Λ

)︃λi

as Λ→∞ . (1.2.6)

This ensures that the RT is properly parameterised (i.e. in terms of renormalised quan-

tities) and that the deep IR limit of the flow corresponds to the effective action of a

non-trivial renormalisable QFT.

There are a few things worth highlighting before proceeding further. First of all, note

that the FRG framework allows us to search for interacting renormalisable theories

without specifying a bare action or a bare scale. As presented above, for any flow the

important part is the one which coincides with a renormalised trajectory. The existence

of the latter is equivalent to the existence of a non-trivial continuum limit. Furthermore,

since the RT can be fully described using renormalised quantities, one can directly work
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in the continuum (i.e. in terms of renormalised quantities). This represents one of the

big advantages of the continuous RG framework.

Another important conclusion that can be drawn is that the effective action SΛ can be

recast in self-similar form, i.e.

SΛ[ϕ] = S[ϕ]
(︂
g1(Λ), g2(Λ), · · · , gn(Λ)

)︂
. (1.2.7)

This means that all the scale dependence is carried by the (renormalised) couplings,

and that the form of the action itself does not change. Moreover, one can show starting

from the discussion above that self-similarity is simply another incarnation of (non-

perturbative) renormalisability [34].

1.3 The effective average action

We turn our attention now to a reformulation of the RG ideas, in particular, to the

flow equation of the effective average action ΓΛ, one of the most commonly used flow

equations in practical computations. In the rest of this subsection we will outline how

one can derive it, and in the process we will point out its main advantages. Prior to that,

note that ΓΛ is the IR regulated generator of one-particle irreducible (1PI) diagrams.

This may come as a surprise given that we have emphasised in the previous sections the

need for UV finiteness. Nonetheless, one can get an intuition for this as follows. We

start by integrating out high-energy modes between two scales, Λ0 and Λ, respectively,

with Λ0 > Λ. This means that Λ acts as an IR cutoff for the integrated (high-energy)

modes, or equivalently as an UV cutoff for the remaining (low-energy) modes [34]. The

latter perspective is the one used in Wilsonian RG and discussed at large in the previous

sections. However, adopting the former stance (i.e. Λ as an IR cutoff), will allow us to

construct a flow equation for ΓΛ which successfully interpolates between UV and IR,

and is free of divergences.

For the ease of exposure, we continue to work within single component scalar field theory.

The starting point in deriving the flow equation for the effective average action ΓΛ[φ]

is the usual partition function (1.1.9) supplemented by a source term. However, for the

present purpose, we choose to write it as follows:

Z[J ] =

∫︂ Λ0

Dϕ e−S[ϕ]+J ·ϕ , (1.3.1)

where S[ϕ] is the action. Also, similarly to (1.1.9) before, note that the above integral

is subjected to some overall UV cutoff Λ0, which is kept here as a superscript. Our

aim is to introduce a scale dependence into (1.3.1), and, at the same time, some IR
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regularisation for the high-energy modes. Hence, we choose to modify (1.3.1) as follows:

ZΛ[J ] =

∫︂ Λ0

Dϕ e−S[ϕ]−∆SΛ[ϕ]+J ·ϕ , (1.3.2)

where the extra regulator term introduced, ∆SΛ[ϕ], takes the following form:

∆SΛ[ϕ] ≡
1

2
ϕ ·RΛ · ϕ (1.3.3)

=
1

2

∫︂
p
ϕ(−p)RΛ

(︁
p2
)︁
ϕ(p) . (1.3.4)

This has the structure of a momentum-dependent mass-like term. The reason behind

this choice is quite simple. We want to selectively modify the propagators such that

only high-energy degrees of freedom are integrated over, whilst low-energy modes are

suppressed in (1.3.2). This can be achieved if we impose on the IR cutoff operator RΛ,

which is a function of the laplacian (e.g. RΛ = RΛ

(︁
−∂2

)︁
for scalar field theory), the

following requirements:

1. IR regularisation (i.e. screen modes with p2 ≪ Λ2):

lim
p2/Λ2→0

RΛ(p
2) > 0 . (1.3.5)

2. Regulator does not modify UV modes (i.e. modes with p2 ≫ Λ2 are integrated

over in (1.3.2) in the usual way):

lim
p2/Λ2→∞

RΛ(p
2) = 0 . (1.3.6)

Also, note that the second property above ensures that the regulator term vanishes in

the limit Λ→ 0, and thus the original partition function is recovered:

lim
Λ→0

ZΛ[J ] = Z[J ] . (1.3.7)

Two frequently used regulators are the optimised cutoff [42–44]:

RΛ(p
2) = (Λ2 − p2)Θ(Λ2 − p2) , (1.3.8)

where Θ is the Heaviside step function, and the exponential cutoff:

RΛ(p
2) =

p2

Λ2

e
p2

Λ2 − 1
, (1.3.9)

respectively. The former is often used for analytical computations, whereas the latter is

more commonly used for numerical computations.
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Prior to introducing any IR regularisation, the Wilsonian effective actionW [J ], the gen-

erator of connected Green functions, is related to the partition function in the following

way:

Z[J ] = eW [J ] . (1.3.10)

This, in turn, can be used to construct the (quantum) effective action Γ[φ], the generator

of 1PI diagrams, via a Legendre transform, i.e.

Γ[φ] =W [J ]− J · φ , (1.3.11)

where the classical field φ(x) is given by:

φ(x) ≡ ϕc(x) = ⟨ϕ(x)⟩ = δW [J ]

J(x)
. (1.3.12)

Now, with the IR regularisation in place, the equation (1.3.10) remains virtually the

same, i.e.

WΛ0
Λ [J ] ≡ lnZΛ[J ] , (1.3.13)

where WΛ0
Λ [J ] is the IR regulated generator of connected Green functions. However, the

original definition of the quantum effective action has to be modified to account for the

presence of the IR regulator ∆SΛ. Thus, (1.3.11) above takes the form of a modified

Legendre transformation:

ΓΛ0
Λ [φ] ≡ J · ϕ−WΛ0

Λ [J ]−∆SΛ[ϕ] , (1.3.14)

where the classical field φ(x) is again the expectation value of the original field ϕ(x),

i.e.

φ(x) ≡ ⟨ϕ(x)⟩J =
δWΛ0

Λ [J ]

δJ(x)
. (1.3.15)

If we now take the derivative of (1.3.14) with respect to Λ and use (1.3.2), together with

(1.3.13) and (1.3.15), we arrive at the following flow equation:

∂ΛΓ
Λ0
Λ [φ] =

1

2
TrΛ0

⎡⎣(︄δ2ΓΛ0
Λ [φ]

δφδφ
+RΛ

)︄−1

∂ΛRΛ

⎤⎦ , (1.3.16)

where the functional trace runs over momenta, and is subject to the same overall UV

cutoff Λ0 as the path integral (1.3.2) it was derived from. However, the true advantage of

the above differential equation lies in its structure. The presence of the cutoff operator

RΛ in the first term on the RHS ensures that the full (quantum) propagator, i.e.

1(︂
ΓΛ0
Λ

)︂(2)
+RΛ

, (1.3.17)
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where the Hessian take the following form:

(︂
ΓΛ0
Λ

)︂(2)
≡
δ2ΓΛ0

Λ

δφδφ
, (1.3.18)

is well-behaved in the IR. After all, this is the original motivation for introducing the

regulator term ∆SΛ[ϕ] in (1.3.2) to begin with. However, as it turns out, there is more

to this than that. Due to (1.3.5) and (1.3.6), the second term on the RHS of (1.3.16)

(i.e. the Λ derivative of RΛ) will be sharply peaked around p2 ≈ Λ2, and hence only

these momenta will be integrated over in the flow equation above. This means that one

can safely remove the original (bare) scale in (1.3.16) by taking the limit Λ0 →∞. This

yields the following:

∂ΛΓΛ[φ] =
1

2
Tr

[︄(︃
δ2ΓΛ[φ]

δφδφ
+RΛ

)︃−1

∂ΛRΛ

]︄
. (1.3.19)

The above equation is the so-called effective average action flow equation [35, 45, 46].

The regulator ensures that it is both UV and IR finite, and thus one can search for

solutions directly in the continuum. Another property of this flow equation is that, by

construction, it interpolates between UV (i.e. ΓΛ=Λ0 = S) and IR (i.e. ΓΛ→0 = Γ).

Similarly to the Polchinski equation (1.1.33), to recover physics, one has to integrate

over all the modes (i.e. Λ→ 0) to recover the standard quantum effective action.

One last idea worth highlighting is that both Polchinski’s equation (1.1.33) and the

effective average action flow equation (1.3.19) are equivalent. With the following change

of variables [34]:

SΛ[ϕ] = ΓΛ[φ] +
1

2
(φ− ϕ) ·∆−1

IR · (φ− ϕ) , (1.3.20)

one can recover (1.3.19) from (1.1.33). Both these equations are quite versatile, and

picking one over the other is usually motivated by the precise details of the system

being analysed.

1.4 Thesis outline

Each of the following three chapters investigates different aspects of the renormalisation

group.

Chapter 2 is based on the work done in [1]. Here, we consider the possibility to formulate

a manifestly gauge invariant flow equation. This has the advantage that it avoids gauge-

fixing and the problems thereof, which makes it a suitable candidate for non-perturbative

studies of gauge theories. In the process, we develop the machinery needed to study the

proposal of ref. [47] rigorously, and show that the regularisation is at odds with gauge

invariance.
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In chapter 3 we present the work done in [2], in which we investigate asymptotically the

scaling dimensions of operators in the LPA. We show that, within this approximation,

it is possible to compute them analytically for scalar field theory and O(N) invariant

scalar field theory. Moreover, we show that the results are universal (i.e. independent

of the choice of cutoff functions), subject only to some general weak constraints.

Chapter 4 presents the work done in [3], in which we use off-shell BRST methods together

within the background field method [48–50] to study the perturbative renormalisability

of pure gravity. We show that at each new loop order, the divergences that do not vanish

on-shell are constructed from only the total metric, whilst those that vanish on-shell are

renormalised by canonical transformations involving the quantum fields.

Finally, in the last chapter we summarise the results of each individual chapter and draw

some concluding remarks regarding their significance in the context of the renormalisa-

tion group approach to gravity and gauge theories.
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Chapter 2

Manifestly gauge invariant ERGs

2.1 Introduction

As emphasised above, understanding the Wilsonian renormalization group (RG) struc-

ture of quantum gravity is surely of importance, see e.g. [14, 51–59], and central to

this is the role of diffeomorphism invariance. In this chapter we explore the possibil-

ity to generalise the exact RG [30, 60] to gravity, in such a way that it is manifestly

diffeomorphism invariant. This would allow computations to be done whilst keeping

exact diffeomorphism invariance at every stage (i.e. without gauge fixing), and, more-

over, these computations would be background independent (i.e. performed without first

choosing the spacetime manifold and background metric).

At the classical level this can be done [61]. However, in order to compute quantum

corrections, extra ultraviolet regularisation has to be incorporated into the exact RG

so that the integration is properly cut off in some diffeomorphism invariant way at the

effective cutoff scale Λ. For the simpler case of gauge invariance in SU(N) Yang-Mills

theory this problem was solved by incorporating gauge invariant PV (Pauli-Villars) fields

arising from a spontaneously broken SU(N |N) gauge theory [28, 62–83]. It is not clear

whether one can generalise such a scheme to gravity however, in particular, it is not

clear what should play the role of SU(N |N), although a kind of supergravity has been

suggested in [84].

Recently a different approach to the problem of regularisation has been pursued in

ref. [47]. Explicit PV fields are avoided and instead replaced by functional determinants

which, if constructed as squares of simpler determinants, can be shown to work in the

framework of standard perturbation theory [85–87]. Furthermore a geometric approach

is followed where the determinants can be regarded as defining a regularised volume

element on the orbit space of the gauge theory [87]. The flow equation is then formulated

in a way that is manifestly invariant under field redefinitions, and applies equally well

to both gravity and gauge theory [47].
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Although this new proposal has elegant features, it is not immediately evident that

the regularisation is successfully implemented in the flow equation once we delve into

the details of the relevant Feynman diagrams, first at one loop and then also at higher

loops. In the rest of this chapter we put the proposal to the test by constructing explicit

expressions for the relevant vertices, and then carefully analyse their UV behaviour, as

a function of loop momentum, in the form that they appear in quantum corrections. We

focus on massless Yang-Mills since, if the regularisation fails in this case, then it most

certainly fails for quantum gravity (given the latter’s poor UV behaviour). Working

with Yang-Mills also means we can take over methods used for these investigations in

the earlier successful construction [28, 62–83]. As we will see, the proposal of ref. [47]

unfortunately fails to fully regularise already at one loop, but in a rather subtle way,

which in particular invalidates powerful techniques previously used to extract universal

information [71,88].

This chapter is organised as follows. In sec. 2.2 we review the proposal. In sec. 2.3 we

sketch why the regularisation can fail, and in sec. 2.4 we build the machinery needed

to rigorously test the structure of the renormalisation scheme at the perturbative level.

Following that, in sec. 2.5 we confirm that the higher point classical vertices incorporate

the assumed regularisation. Then, in sec. 2.6, we apply the techniques extensively to an

analysis of the simplest one-loop correction, namely that for the effective action two-point

vertex. We show that the regularisation is sufficient for the momentum independent part,

giving a vanishing result as it should by gauge invariance, only if the Λ derivative of

quadratically divergent constant part is discarded. The part that is second order in

momentum ought to give the one-loop beta function, if properly regulated. However we

show that the result cannot both be completely regularised and transverse. It can be

taken to be transverse only if the Λ derivative of a linearly divergent part is discarded.

Since this holds for all choices of covariantisation and cutoff profiles, it points to some

inherent limitations in the structure of the proposed flow equation. In sec. 2.7 we

summarise and draw our conclusions.

2.2 A proposal for a background independent exact RG

2.2.1 Basic ingredients for regularisation

The flow equation proposed in ref. [47] incorporates a geometric approach to the quan-

tisation of gauge theories [89, 90]. As we will see, a detailed understanding of the UV

properties can only be reached by working with explicit expressions for the vertices. In

the case of Yang-Mills theories, the flow equations then take their simplest form if we

regard the gauge fields as valued in the Lie algebra, i.e. contracted into the genera-

tors [62, 63]. Also, since we work in Euclidean signature, we will keep all gauge group
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indices as superscripts and Lorentz indices as subscripts for convenience. Thus, the De-

Witt compact notation and its explicit representation take here the following form:

ϕaJa ≡
∑︂
a

∫︂
x
Aa

µ(x)J
a
µ(x) . (2.2.1)

We work with the gauge group SU(N). We use DeWitt Latin indices from the start of

the alphabet to label gauge fields, thus ϕa. As already mentioned, when we need more

explicit expressions it will be convenient to regard the gauge fields Aµ(x) as contracted

into the generators:

ϕa ≡ Aµ(x) = Aa
µ(x)T

a . (2.2.2)

With appropriate definitions for the vertex functions in either language, the expressions

will of course be equal, and the two representations are, thus, equivalent. The generators

T a are taken to be hermitian, in the fundamental representation, and orthonormalised

as

tr(T aT b) =
1

2
δab . (2.2.3)

A second set of DeWitt Greek indices from the start of the alphabet is used to label

gauge parameters; the map from the two languages is thus:

ϵα ≡ ω(x) = ωa(x)T a . (2.2.4)

If we adopt the geometric approach of [89,90] to the quantisation of gauge theories, we

regard the fields ϕa as coordinates on an infinite dimensional ‘manifold’ Φ, the space of

all possible field configurations. This has the structure of a fibre bundle, and the fibres

are the gauge orbits G. However, all the physics happens on the quotient space Φ/G,
where each point belongs to a unique equivalence class {ϕ}, which encompasses all the

possible field configurations related by gauge transformations. The generators of the

gauge transformation are of the following form:

Ka
α[ϕ] ≡ Dµδ(x− y) , (2.2.5)

where the covariant derivative is given by Dµ := ∂µ − iAµ(x), and Aµ is understood to

act by commutation. This means that gauge transformations can be written equivalently

as

δϕa = Ka
α[ϕ] ϵ

α , (2.2.6)

δAµ(x) = Dµ · ω := [Dµ, ω] . (2.2.7)
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The field strength is given by Fµν := i[Dµ, Dν ]. We write the SU(N) Yang-Mills action

in the following way:

I[ϕ] ≡ 1

4g2

∫︂
x

(︁
F a
µν

)︁2
=

1

2g2
tr

∫︂
x
F 2
µν . (2.2.8)

In momentum space this becomes:

I[ϕ] ≡ 1

2g2

∫︂
p
Iµ1µ2(p) tr

(︂
Aµ1(p)Aµ2(−p)

)︂
+

+
1

3g2

∫︂
p1...p3

Iµ1...µ3(p1 . . . p3) tr
(︂
Aµ1(p1) . . . Aµ3(p3)

)︂
δ(p1 + p2 + p3) +

+
1

4g2

∫︂
p1...p4

Iµ1...µ4(p1 . . . p4) tr
(︂
Aµ1(p1) . . . Aµ4(p4)

)︂
δ(p1 + · · ·+ p4) , (2.2.9)

where the vertex functions I(2), I(3) and I(4), are given by:

Iµ1µ2(p) = 2□µ1µ2(p) := 2(p2δµ1µ2 − pµ1pµ2) , (2.2.10)

Iµ1...µ3(p1 . . . p3) = 2(p3µ2
δµ1µ3 − p3µ1

δµ2µ3) + cycles , (2.2.11)

Iµ1...µ4(p1 . . . p4) = (δµ1µ4δµ2µ3 − δµ1µ3δµ2µ4) + cycles . (2.2.12)

We note that ‘cycles’ stands for all cyclic permutations of momenta p1µ1
→ p2µ2

→ . . .→
p1µ1

. The exact preservation of gauge invariance at all stages during the flow, together

with the choice to rescale the coupling in front of the integral in (2.2.8), ensures that Aµ

cannot run. The reason behind this is that any wavefunction renormalisation by Z ̸= 1,

AR
µ = Z−1/2Aµ, would break gauge invariance: δAR

µ = Z−1/2∂µω − i[AR
µ , ω] [49, 62, 63].

Therefore the coupling g = g(Λ) is the only quantity that runs.

We write functional derivatives as follows:

S,a=
δS

δϕa
≡ δS

δAµ(x)
, (2.2.13)

where
δ

δAµ(x)
:= 2 T a δ

δAµ(x)a
. (2.2.14)

The properties of the latter can be understood as follows [63, 64]. For convenience

here we temporarily write the gauge fields Aµ(x) simply as A, suppressing spacetime

dependence and Lorentz indices. Given a well-behaved gauge invariant function f(A)

such that δf(A) = tr(δAX) for someX, we can exploit the SU(N) completeness relation

to see that:
δf

δA
= X − 1

N
trX , (2.2.15)
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effectively isolatingX. This property will be crucial in our endeavour later on. Following

the same reasoning, we have two more useful relations:

trY
δf

δA
= trY X − 1

N
trY trX , (2.2.16)

and,

tr
δ

δA
W = trY trZ − 1

N
trY Z , (2.2.17)

for some W = T aW a such that δW = Y δAZ. Thus, the functional derivatives of I[ϕ]

are (in position space):

Ea = I,a ≡
1

g2
DαFµα , (2.2.18)

I,ab ≡
1

g2

(︂
iFµν +DνDµ − δµνD2

)︂
δ(x− y) . (2.2.19)

Ultra-local metrics (i.e. strictly local) are introduced on Φ and G, respectively, such that

their corresponding line element (e.g. δϕaγabδϕ
b) is made dimensionless by using the

appropriate power of the effective scale Λ [47]. They allow us to raise or lower DeWitt

indices, e.g. ϕa = γabϕb. At this abstract level the formulation can be developed in a

way that applies equally well to gravity, and indeed ref. [47] treats gravity as a special

case. For gravity however, γab and ηαβ necessarily depend on ϕ (which in this case is

the spacetime metric). Then, to keep equations covariant on Φ, requires the use of a

connection Γc
ab in function space and covariant derivatives, e.g. replacing I,ab above with

I;ab = I,ab−Γc
abI,c. Since we will treat only Yang-Mills theory in this chapter, where one

can take the metrics to be ϕ independent:

γab =
Λ2

g2
δµνδ(x− y) , γab =

g2

Λ2
δµνδ(x− y) , (2.2.20)

ηαβ =
Λ4

g2
δ(x− y) , ηαβ =

g2

Λ4
δ(x− y) , (2.2.21)

we do not need this extra complication, and thus we work only in the flat function space

limit.

Again, following [47], we will introduce higher covariant derivatives into the effective

action S via functions of Laplace-like differential operators, which we list below:

∆a
b = γacI,cb+K

a
αη

αβKc
βγcb ≡ ∆µν = Λ−2

(︁
2iFµν − δµνD2

)︁
δ(x− y) , (2.2.22)(︁

∆∥
)︁α

β
= ηαδKa

δ γabK
b
β ≡ ∆∥ = −Λ−2D2δ(x− y) . (2.2.23)

Gauge invariant quantities have all DeWitt indices contracted (i.e. behave as scalars on

Φ and G). One gauge invariant object that plays a fundamental role in the regularisation
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is the action A :

A = I +
1

2
I,a
[︁
X(∆)

]︁ab
I,b . (2.2.24)

It is quasi-local (i.e. has an all orders expansion in momenta) [63, 64]. Here, the kernel

X(z) is given by:

X(z) =
1− c(z)
zc(z)

, (2.2.25)

where c(z) is a smooth UV cutoff profile such that c(0) = 1, and c(p2/Λ2) → 0 as

p2/Λ2 →∞.

The anomalous dimension η is given by:

η := −g2Λ∂Λ
(︃

1

g2

)︃
=

2

g
Λ∂Λg . (2.2.26)

Given that η ∝ ℏ (i.e. actually ℏg2), we can write down a loop expansion for it:

η = η1g
2 + η2g

4 + · · · , (2.2.27)

and thus for β := Λ∂Λg as well (ηi = 2βi):

β = β1g
3 + β2g

5 + · · · . (2.2.28)

It will prove useful to analyse expressions using the following projection operators:

ΠT
a
b := δab −ΠL

a
b ≡ ΠT

µν := δµν −ΠL
µν , (2.2.29)

ΠL
a
b := Ka

α

(︂
∆−1

∥

)︂αβ
Kc

βγbc ≡ ΠL
µν := Dµ

(︂
D2
)︂−1

Dν , (2.2.30)

although they are not directly involved in the regularisation scheme because of their

non-local nature.

2.2.2 The main idea

Before delving into details, it is instructive to outline the main steps undertaken in

ref. [47] to construct a flow equation for the effective action S. Essentially this is a three

step procedure, where the first two steps represent a geometric reformulation of Slavnov’s

higher derivative regularisation scheme [85, 86], while in the last step the freedom one

has to design an exact RG [62, 91–93] is exploited to avoid fixing the gauge, and to

manifestly preserve gauge invariance at all stages during the flow.
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First of all we need to incorporate higher covariant derivatives, SUV , into the effective

action S, to improve the UV behaviour by modifying the propagators:1

S = I + SUV + S , (2.2.31)

where S stands for all the other interactions in the effective action that are generated by

the flow. However higher covariant derivatives do not regularise all one-loop divergences,

and therefore further regularisation is required [85,86].

The second step addresses this issue by introducing PV regularisation, which however

is introduced directly through functional determinants in such a way that these act as

quasi-local metrics for Φ, and G; they are called Gab[ϕ] and Hαβ[ϕ] respectively. Now,

for gauge theories, the partition function Z (cf. (1.1.9)) takes in general the following

form:

Z =

∫︂
Φ/G

d{ϕ}M [{ϕ}] e−S[{ϕ}] , (2.2.32)

where M [{ϕ}] is the volume element on the quotient space Φ/G. Factoring the integra-

tion measure using the functionals mentioned above,

dϕ
√︁
det G[ϕ] = d{ϕ}M [{ϕ}] dξ

√︁
det H[ϕ] , (2.2.33)

we thus rewrite the partition function:

Z ∝
∫︂
Φ
dϕ

√︁
det G[ϕ]√︁
det H[ϕ]

e−S[ϕ] =

∫︂
Φ
dϕ e−S[ϕ]+ 1

2
Tr lnGab[ϕ]− 1

2
Tr lnHαβ [ϕ] (2.2.34)

(up to some actually-infinite constant that, as mentioned before, we are free to discard

without altering the physics).

The idea then is that G is chosen to cancel one-loop UV divergences arising from S. In

the IR, G and H are both order Λ2, corresponding to PV masses of order the cutoff.

G thus has a longitudinal part which will contribute divergences, but H can be used

to cancel them. Finally, by choosing G and H each such that they factor into other

operators that are less divergent, we can avoid so-called ‘overlapping’ divergences, ones

that correspond at one loop to having external PV legs [86, 94,95]. Thus, at this stage,

PV regularisation will require the following:

(PV1) At high momentum the Hessian for fluctuations matches that of G in the transverse

space:

ΠT
c
aGcdΠT

d
b ∼ S,ab . (2.2.35)

1As it stands, this equation is almost devoid of meaning since S could modify or even cancel terms
in SUV . At the classical level, we give it meaning by insisting that S0 contains only three-point and
higher vertices: S0(n<3) = 0, which, in turn, fixes the on-shell two-point classical effective action. This
choice will allow us to compute classical vertices in terms of quantities already known [71].
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(PV2) Similarly, H matches the longitudinal part of G:

Ka
αGabK

b
β ∼ Hαβ . (2.2.36)

(PV3) Gab[ϕ] and Hαβ[ϕ] must be chosen so that they factor into operators that are less

divergent.

Slavnov’s original scheme does not avoid fixing the gauge [85, 86]. In ref. [47] gauge

fixing is completely avoided by exploiting the freedom [62, 63, 88, 91–93, 96] one has to

design an exact RG [30, 60] flow for the effective action S. This leads to the final flow

equation:

ΛDΛS =
1

2
Tr
[︁
G−1ΛDΛG−H−1ΛDΛH

]︁
, (2.2.37)

where ΛDΛ := Λ∂Λ + LΨ is the total RG derivative, LΨ being a Lie derivative on Φ

associated to the change of variables ϕa ↦→ ϕa − δΛΨa. The total RG derivative acts in

the following way:

ΛDΛS = Λ∂ΛS +ΨaS,a , (2.2.38)

ΛDΛHαβ = Λ∂ΛHαβ +ΨaHαβ,a , (2.2.39)

ΛDΛGab = Λ∂ΛGab +ΨcGab,c +Ψc
,aGbc +Ψc

,bGac . (2.2.40)

The strategy is that, altogether, the higher covariant derivatives and PV field determi-

nants should provide a regularised ‘kinetic’ I + SUV ∈ S part, while a careful choice of

Ψa is meant to ensure that the exact RG then generates only an S ∈ S part that is free

of divergences.

2.2.3 Regularisation structure

The method proposed in ref. [47] to construct the regularisation scheme, i.e. PV op-

erators and higher covariant derivatives, proceeds as follows. First of all, we need to

construct Gab[ϕ] and Hαβ[ϕ] by taking into account the requirements outlined in section

2.2.2. To satisfy (PV3) they are set to

Gab =
(︁
C−1

)︁c
a
γcd
(︁
C−1

)︁d
b
, (2.2.41)

Hαβ = Bγ
α bγδ B

δ
β , (2.2.42)

where we require Bα
β, b

α
β, and

(︁
C−1

)︁a
b to be constructed such that Gab → γab and

Hαβ → ηαβ as Λ → ∞. This latter requirement ensures that in the continuum limit

the quasi-local and ultra-local metrics coincide, and hence encode the same physics [82].

Furthermore, the condition (PV1) implies that C2S(2) ∼ 1, which essentially means

that all divergences coming from C−1 vertices should be regulated by contributions in
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the effective action involving the effective propagator. The remaining condition (PV2)

together with (2.2.41), and (2.2.42) relates the PV operators to one another in the high

momentum limit:

(︁
C−1

)︁a
bK

b
α ∼ Ka

βB
β
α , (2.2.43)

bαβ ∼
(︁
∆∥
)︁
αβ

= Ka
αγabK

b
β . (2.2.44)

The second part of the regularisation scheme amounts to introducing higher covariant

derivatives into the effective action S. Given that G is bi-linear in C−1 we will keep the

same structure for SUV [86],

SUV =
1

2
A,aγ

abA,b , (2.2.45)

and thus write the effective action S as

S = I + S +
1

2
A,aγ

abA,b . (2.2.46)

Here it is instructive to pause and make some comments on the choice of using A and

on the strategy for analysis of the regularisation and flow equation. If we functionally

differentiate (2.2.24) twice we get:

A,ab =
(︂
∆ · c−1

(︁
∆
)︁)︂

ad
ΠT

d
b +O

(︁
E
)︁
. (2.2.47)

Following ref. [47], it is useful to write equations such as this, where the equality is

given up to terms that vanish on the equations of motion E , cf. (2.2.18). Since E
vanishes if we set Aµ = 0, we can read off from the above that the first term provides

the effective inverse propagator that would arise from using A as the action. We see

that it is transverse and that it would lead to an effective propagator ∼ cq/q
2 which

is regularised by a cutoff function in the usual way. The first term above is also solely

responsible for the one-loop contribution that A would provide (through the functional

determinant of A,ab) when the result is evaluated on shell. From (2.2.47) we can also

infer the large momentum behaviour of the vertices A(n). Clearly A(2) ∼ q2c−1
q . In

fact, for any integer n, A(n) ∼ c−1
q up to some multiplicative power of momentum which

can be ignored in comparison if the cutoff is chosen to be strong enough, for example

c(x) = e−x or c(x) = (1+x)−m for some large m. To write this we will use the following

shorthand A(n) ≈ c−1
q . These properties will be more precisely defined and confirmed

in sec. 2.4.2.6. Until then, in the spirit of ref. [47], we count only powers of cutoffs

to analyse the behaviour of different expressions in the large momentum limit. For

example, looking at (2.2.46) we see that

S,ab ∼ A(2)A(2) ≈ c−2
q , (2.2.48)
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which means that the (PV1) condition can now be recast as:

C−1 ≈ c−1
q . (2.2.49)

To properly implement regularisation, (PV1), (PV2) and (PV3) ought to be fulfilled or,

equivalently, (2.2.43), (2.2.44) and (2.2.49). A particular choice which satisfies this is

the following :

(︁
C−1

)︁a
b
= δab + γacA,cb+K

a
αY

αβKc
βγcb , (2.2.50)

Bα
β = δαβ + Y αγ

(︁
∆∥
)︁
γβ
, (2.2.51)

bαβ = tαβ +
(︁
∆∥
)︁α

β
, (2.2.52)

where Y = Y
(︁
∆∥
)︁
is a quasi-local function such that Y (z)→∞ as z →∞ at the same

rate as 1/c(z) and Y (0) is finite, while t = t
(︁
∆∥
)︁
is a quasi-local function such that

t(z)→ 0 as z →∞ and t(0) = 1.

2.2.4 Flow equation

For the flow equation to have fixed points it has to be non-linear, which implies that

the blocking functional Ψ[ϕ] must itself depend on S. Generalising [28, 62–83, 88, 96,

97], which are themselves generalisations of the Polchinski equation [36], the blocking

functional is written in the following way:

Ψa = −1

2
KabΣ,b + ψa , (2.2.53)

where

Σ := S − Ŝ = S − 1

2
I,aX

abI,b , (2.2.54)

and the “seed” action Ŝ is given by:

Ŝ := A+ SUV = A+
1

2
A,aγ

abA,b . (2.2.55)

We will call the quasi-local functionals Kab and ψa the exact RG kernels. We will try

to fine-tune them to remove the unwanted divergences still present in the flow equation.

In addition to this, it will prove useful to fix the classical two-point function [63,64,71].

As such, we require

S0 = I +
1

2
A,aγ

abA,b + S0 , (2.2.56)

where S0 = O
(︁
E3
)︁
, to be a solution of the classical flow equation

ΛDΛS0 = 0 . (2.2.57)
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This fixes the classical two-point function to be

S0,ab = I,ab +A,maγ
mnA,nb +O

(︁
E
)︁
. (2.2.58)

The only thing left now is to fix the exact RG kernels. The main constraint comes from

the left-hand side of (2.2.37), i.e. the classical flow equation. One needs to carefully

choose the kernels such that the effective interactions generated during the flow (i.e. S)
do not destroy the regularisation. In other words we need to ensure that S diverges

more weakly than SUV ≈ c−2
q . Since we are unable to write a closed form expression for

S (we can only determine a finite number of higher order contributions to it by repeated

iterations), following ref. [47], we suppose that its maximum divergence rate is given by:

S(n) ∼ A(n) ≈ c−1
q , (2.2.59)

or, equivalently, using the definition (2.2.54) of Σ, that

Σ(n) ≈ c−1
q . (2.2.60)

The strategy now is to fine-tune the exact RG kernels such that they cancel all the terms

which diverge faster than c−1
q in the flow equation of S(n), and hence prove a posteriori

that the assumption (2.2.59) is consistent. If we unwrap the left-hand side of (2.2.37)

we get:

ΛDΛS = Ȧ,aγ
abA,b +

1

2
A,aγ̇

abA,b +A,a

(︁
C−1

)︁a
bψ

b − 1

2
A,c

(︁
C−1

)︁c
aKabΣ,b

+ Ȧ+ Σ̇− 1

2
Σ,aKabΣ,b +Σ,aψ

a , (2.2.61)

where, for any functional F , we write Ḟ = Λ∂ΛF . To arrive at this expression we have

used the identity:

Ŝ,b = A,a

(︁
C−1

)︁a
b , (2.2.62)

which follows from (2.2.50) and the gauge invariance of A (i.e. Ka
αA,a = 0). The first

two terms of (2.2.61) are bi-linear in A,a and hence diverge as ≈ c−2
q . To eliminate them

we use the third term, setting

ψa = −Ca
b

(︂
γbcȦ,c +

1

2
γ̇bcA,c

)︂
. (2.2.63)

Now, looking at the remaining terms, we see that the potentially dangerous ones are the

fourth term, which, ignoring Kab for the moment, diverges as ≈ c−3
q , and similarly the

next-to-last term, which diverges as ≈ c−2
q . Cancelling the C−1 factor in the former by

writing

Kab = Ca
c[κ(∆)]cb , (2.2.64)
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the kernel κab is, then, fixed uniquely by substituting S0 from (2.2.56) into (2.2.61), and

requiring cancellation, i.e. requiring the classical flow (2.2.57) at O
(︁
E2
)︁
. The result is:

κab =

(︃
2
c(∆)− 2∆c′(∆)

c2(∆) + ∆

)︃a

b (2.2.65)

(see sec. IIIB and app. A of ref. [47]). This means that κab ≈ cq and hence ref. [47]

concluded that all the potentially offending terms in (2.2.61) are now brought under

control. This part of the flow equation (the classical part) now simplifies to:

ΛDΛS = −1

2

(︁
Σ,a + Ŝ,a

)︁
Ca

cκ
cbΣ,b + Ȧ+ Σ̇ + Σ,aψ

a , (2.2.66)

and indeed a direct substitution of the above estimates suggests that now no terms

diverge faster than c−1
q . Moreover, although more involved, one can similarly check that

the exact RG kernels (2.2.63), (2.2.64) and (2.2.65) ensure that the RHS of (2.2.37) is

also apparently properly regularised [47].

2.3 Regularisation failure: a sketch

The problem with the analysis reviewed in the previous section is more easily grasped

if we convert the analysis into the language of Feynman graphs. The reason this is

helpful, is because we can then derive closed formulae for all the component vertices and

propagator-like terms of these graphs, and then rigorously characterise their asymptotic

behaviour in the limit that certain momenta diverge. In particular, UV divergences arise

in quantum corrections from the limit in which loop momenta q → ∞ while external

momenta are held fixed. The components in the flow equation (2.2.66) do not necessarily

behave in this limit with the assumed powers of cq because their UV behaviour depends

on the details of how q is routed through the vertices.

By focusing in sec. 2.6 on the part of the one-loop action that should provide the beta

function, we show that regularisation fails here in a somewhat subtle way. There are

parts that are UV divergent, but can be set to zero once treated as Λ independent.

However, gauge transformations still map the one-loop beta function contribution into

those improperly regularised parts. In fact, we show that the contribution cannot then

both be gauge invariant and properly regularised. Actually, this latter conclusion holds

for all choices of cutoff functions and some generalisations of the construction. Although

the flow equation is constructed to be covariant by using functions of the differential

operators ∆ and ∆∥, other choices of covariantisation are possible that still reduce to

the same functions when the gauge field Aµ is set to zero (for example by allowing the

functions to depend separately on Fµν). Our derivation is independent of these details.
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In fact the first hint of regularisation failure seems to come from how the regularisation

is constructed in the first place. Ref. [47] argues that in the high momentum limit

the leading divergent part of the propagator is its transverse part. The argument goes

as follows. Starting from the gauge invariance of S (under a gauge transformation

ϕa → ϕa + δϕa),

Ka
αS,a = 0 , (2.3.1)

and differentiating it once, we obtain:

Ka
αS,ab = −Ka

α,bS,a . (2.3.2)

Regarding this expression as a differential operator one can think of the large momentum

as going from α to b. Then, this equation tells us that the behaviour at large momentum

is given by Ka
α,b, and since Ka

α is a first order differential operator, the divergence is only

with one power of momentum. However, as an expression about vertices, more generally

we see that we cannot exclude the possibility that the loop momentum threads instead

through S,a whose high momentum behaviour can behave as badly as does S,ab.

2.4 Perturbative expansion

In summary, the robustness of the regularisation scheme outlined in sec. 2.2 needs

to be thoroughly tested by analysing carefully the high momentum behaviour of n-

point vertices at each order in the loop expansion. In what follows we will lay out the

machinery needed to do this properly, before returning to these issues in sec. 2.6.

2.4.1 Loop expansion

The effective action S, and in fact any gauge invariant action appearing in this analysis,

has a weak coupling expansion (i.e. loop expansion) in g2 (actually in ℏg2):

S =
1

g2
S0 + S1 + g2S2 + · · · . (2.4.1)

This means that purely classical actions such as S0, but also e.g. A, SUV and Ŝ, carry

only a single 1/g2 prefactor.

The form of the ultralocal metrics γab and ηαβ ensure that the factors of g embedded

in the kernels combine with actions to preserve this property. Therefore we simplify

matters from now on by ignoring the factors of g entirely and trusting that they can

be put back in the form (2.4.1) above. (Actually, one can also simplify matters by

recognising that the powers of Λ appearing through these metrics are as required to make

the equations dimensionally correct, and thus essentially ignore these metrics.) Note that
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in the ensuing we will also place the loop index as a superscript when convenient (so

write S0 ≡ S0 etc. ).

Similarly to (2.4.1) we can write down a loop expansion for the blocking functional Ψa:

Ψa = Ψa
0 + g2Ψa

1 + · · · (2.4.2)

=
[︂
− 1

2
KabΣ0

,b + ψa
0

]︂
+ g2

[︂
− 1

2
KabΣ1

,b + ψa
1

]︂
+ · · · . (2.4.3)

This can be further refined. If we explicitly compute the RG time derivatives in (2.2.63)

and use the commutativity of RG time and functional derivatives, we can recast ψa in

the following way:

ψa = Cabθ,b , (2.4.4)

where we have introduced the gauge invariant action θ, given by

θ :=
η

2
A+ I + I,m[W (∆)]mnI,n , (2.4.5)

with W (z) := 3
2X(z) + zX ′(z), which thus has a loop expansion:

θ0 = I + I,mW
mnI,n , (2.4.6)

θn =
ηn
2
A . (2.4.7)

This enables us to rewrite (2.4.3) as

Ψa =
[︂
− 1

2
KabΣ0

,b + Cabθ0,b

]︂
+ g2

[︂
− 1

2
KabΣ1

,b + Cabθ1,b

]︂
+ · · · . (2.4.8)

If we substitute (2.4.1) and (2.4.8) into the flow equation (2.2.37), we will obtain its

loopwise expansion. Thus we find that the flow of the effective action at the classical

level is given by:

Λ∂ΛS
0 =

1

2
S0

,aKabΣ0
,b − S0

,aC
abθ0,b , (2.4.9)

at the one-loop level by:

Λ∂ΛS
1 = η1S

0 +
1

2
S1

,aKabΣ0
,b +

1

2
S0

,aKabΣ1
,b − S1

,aC
abθ0,b − S0

,aC
abθ1,b

+Tr

[︄
Ca

c

[︂
Λ∂Λ(C

−1)cb

]︂
+ Ca

c(C
−1)cb,d Ψ

d
0 +

δΨa
0

δϕb
+ δab − (B−1)αγ

[︁
Λ∂ΛB

γ
β

]︁
−(B−1)αγB

γ
β,aΨ

a
0 −

1

2
(b−1)αγ

[︁
Λ∂Λb

γ
β

]︁
− 1

2
(b−1)αγb

γ
β,aΨ

a
0 − 2 δαβ

]︄
,

(2.4.10)
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at the two-loop level by:

Λ∂ΛS
2 = η2S

0 +
1

2
S2

,aKabΣ0
,b +

1

2
S1

,aKabΣ1
,b +

1

2
S0

,aKabΣ2
,b − S2

,aC
abθ0,b

− S1
,aC

abθ1,b − S0
,aC

abθ2,b +Tr

[︄
Ca

c (C
−1)cb,dΨ

d
1 +

δΨa
1

δϕb
− η1

2
δab +

η1
2
δαβ

−(B−1)αγB
γ
β,aΨ

a
1 −

1

2
(b−1)αγb

γ
β,aΨ

a
1

]︄
,

(2.4.11)

etc. It will prove useful in the subsequent analysis to rewrite (2.4.10) in a different way:

Λ∂ΛS
1 = η1S

0 +
1

2
S1

,aKabΣ0
,b +

1

2
S0

,aKabΣ1
,b − S1

,aC
abθ0,b − S0

,aC
abθ1,b

+Tr

[︄
Λ∂Λ

[︁
ln
(︁
C−1

)︁]︁a
b +Ψd

0

δ

δϕd
[︁
ln
(︁
C−1

)︁]︁a
b +

δΨa
0

δϕb
− Λ∂Λ

[︁
lnBα

β

]︁
−Ψa

0

δ

δψa

[︁
lnBα

β

]︁
− 1

2
Λ∂Λ

[︁
ln bαβ

]︁
− 1

2
Ψa

0

δ

δψa

[︁
ln bαβ

]︁]︄
.

(2.4.12)

Here note that we have also discarded the two vacuum contributions δab and δ
α
β.

2.4.2 Vertex expansion

In the above equations we have actions (Si,Σi, θi) and kernels (e.g. Kab, Cab, Bγ
β etc.

). To analyse their behaviour precisely we break them down into vertices. The above

equations then tell us how these vertices fit together to determine effective action vertices

at each loop order. In this subsection we sketch the form of these vertices and their

properties [63,64].

2.4.2.1 Action vertex properties

Any gauge invariant action has an expansion in traces and products of traces [63, 64],

which, in position space, takes the following form:

S =
∞∑︂
n=2

1

n

∫︂
x1...xn

Sµ1...µn(x1 . . . xn)tr
(︂
Aµ1(x1) . . . Aµn(xn)

)︂
+

1

2!

∞∑︂
n,m=2

1

nm

∫︂
x1...xn

∫︂
y1...ym

Sµ1...µn,ν1...νm(x1 . . . xn; y1 . . . ym)

tr
(︂
Aµ1(x1) . . . Aµn(xn)

)︂
tr
(︂
Aν1(y1) . . . Aνm(ym)

)︂
+ · · · . (2.4.13)
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From this we can see that single trace vertices are defined as cyclically symmetric in all

indices,

Sµ1...µn(x1 . . . xn) = Sµnµ1...µn−1(xn, x1 . . . xn−1) , (2.4.14)

whereas the remaining vertices are separately cyclically symmetric for each string. How-

ever, the latter have been included for completeness only and are of no interest to us in

the present chapter. Therefore, from now on, we will consider only the single trace ver-

tices. The fact that the action S is real, together with the hermiticity of the generators

T a, implies that S∗
µ1...µn

(x1 . . . xn) = Sµn...µ1(xn . . . x1). This is an expression of charge

conjugation invariance. To exploit translation invariance we work in momentum space

where it implies momentum conservation:

Sµ1...µn(p1 . . . pn) δ
(︂∑︂

i

pi

)︂
=

∫︂
x1...xn

Sµ1...µn(x1 . . . xn) e
−i

∑︁
i pi·xi . (2.4.15)

By convention, we take all momenta pointing in towards the vertex. Note that the

Sµ1...µn(p1 . . . pn) are well-defined only when momentum is conserved. For the two-point

vertex we write more simply Sµν(p) = Sµν(p,−p). Lorentz invariance implies that:

Sµ1...µn(p1, . . . , pn) = (−1)nSµ1...µn(−p1, . . . ,−pn) . (2.4.16)

In other words, vertices with an even/odd number of legs are even/odd under a change

of sign in all its momentum arguments. Combined with charge conjugation invariance

we thus also have that they are even/odd under reversal of their arguments

Sµn...µ1(pn, . . . , p1) = (−1)nSµ1...µn(p1, . . . , pn) . (2.4.17)

As an example we note that these symmetries tell us that a three-point action vertex is

totally antisymmetric in its arguments (p1µ1
, p2µ2

, p3µ3
).

The flow equation (2.2.37) manifestly preserves gauge invariance, namely (2.2.7), and

this allows us to write a set of ‘trivial’ Ward identities for the effective action S that

relates the longitudinal part of n-point vertices to differences of (n− 1)-point vertices:

p1µ1
Sµ1...µn(p1 . . . pn) = Sµ2...µn(p1+p2, p3 . . . pn)−Sµ2...µn(p2 . . . pn−1, p1+pn) . (2.4.18)

Since there are no (n < 2)-point vertices, the two-point vertex is transverse:

pµSµν(p) = 0 . (2.4.19)

In the limit of small contracted momentum p1, (2.4.18) yields differential Ward identities

e.g.

Sµνλ(0, p,−p) = ∂pµSνλ(p) . (2.4.20)
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where we have introduced the shorthand ∂pµ = ∂
∂pµ

. This follows straightforwardly

starting from (2.4.18) after Taylor expanding its right-hand side:

ϵµSµνλ(ϵ, p,−p− ϵ) = Sνλ(p+ ϵ)− Sνλ(p) (2.4.21)

= ϵµ∂
p
µSνλ(p) +O(ϵ2) , (2.4.22)

recovering (2.4.20) from O(ϵ). We can proceed similarly about the four-point vertex to

get:

Sµνλσ(0, 0, p,−p) + Sνµλσ(0, 0, p,−p) = ∂pµ∂
p
νSλσ(p) . (2.4.23)

The I(n) vertices already introduced in eqs. (2.2.10)–(2.2.12) satisfy the above properties.

2.4.2.2 Kernel vertex properties

The regularisation and the flow equation are built up from constructs where actions are

joined together by kernels to form new compound actions. Generically for two actions,

say R[A] and S[A], the construct takes the form R,aK
abS,b and involves some kernel

Kab[A]. Since everything is constructed gauge covariantly, these kernels are themselves

necessarily functionals of Aµ. Although the kernels we need are constructed in a specific

way, as reviewed in sec. 2.2.3, they are special cases of a more general form of kernel

namely any such that provides a covariantisation of some momentum kernel Kab[A =

0] ≡ Kµν(p), via gauge fields Aµ that act by commutation. (The latter property is

assured here to the 2-point level that we will require them, in essence by constructing

the kernels using covariant derivatives Dµ, see sec. 2.4.2.5 and app. 2.A.) Such kernels

have vertices whose properties generalise those for an action and ensure that the vertices

of the compound action continue to satisfy the correct properties.

Expressions involving such a covariantised kernel Kµν can be equivalently written in the

following way:

R,aK
abS,b ≡

1

Λ2

δR

δAµ
·Kµν ·

δS

δAν
(2.4.24)

≡ 1

2Λ2
tr

∫︂
x

∫︂
y

δR

δAµ(x)
Kµν(x, y) ·

δS

δAν(y)
, (2.4.25)

where we suppress the functional dependence on the gauge field. Taylor expanding with

respect to the gauge field in Kab[A] gives a series expansion in nested commutators

[63,64,71]:

R,aK
abS,b ≡

1

2Λ2

∑︂
n=0

∫︂
x

∫︂
y

∫︂
x1···xn

Kµ1...µn;µν(x1 . . . xn;x, y)

tr
[︂ δR

δAµ(x)
Aµ1(x1) · · ·Aµn(xn) ·

δS

δAν(y)

]︂
. (2.4.26)
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Now, expanding the commutators, we obtain:

R,aK
abS,b ≡

1

2Λ2

∑︂
m,n=0

∫︂
x

∫︂
y

∫︂
x1···xn,y1···ym

Kµ1...µn,ν1...νm;µν(x1 . . . xn; y1 . . . ym;x, y)

tr

[︄
δR

δAµ(x)
Aµ1(x1) · · ·Aµn(xn)

δS

δAν(y)
Aν1(y1) · · ·Aνm(ym)

]︄
. (2.4.27)

In momentum space, kernel vertices take the following form:

Kµ1...µn,ν1...νm;µν(p1 . . . pn; q1 . . . qm; p, q) δ
(︂∑︂

pi +
∑︂

qi + p+ q
)︂
=

=

∫︂
x

∫︂
y

∫︂
x1···xn,y1···ym

Kµ1...µn,ν1...νm;µν(x1 . . . xn; y1 . . . ym;x, y)

× exp

⎡⎣−i
⎛⎝p · x+ q · y +

∑︂
i

pi · xi +
∑︂
j

qj · yj

⎞⎠⎤⎦ . (2.4.28)

The two sets of vertices in (2.4.26) and (2.4.27) are related through ‘interleave’ identities

(also called ‘coincident line’ identities [63, 64, 71]) which here just express the fact that

covariantisation is via commutation:

Kµ1...µn,ν1...νm;µν(p1 . . . pn; q1 . . . qm; p, q) =

= (−1)m
∑︂

interleaves

Kα1...αn+m;µν(k1 . . . km+n; p, q) . (2.4.29)

In the above the sum runs over all the possible arrangements of the combined se-

quence of pµ1
1 . . . pµn

n and qν11 . . . qνmm , in which the p momenta remain ordered with one

another, whereas the q momenta order is reversed (via the so-called shuffle product∑︁
kα1
1 . . . k

αm+n
m+n = pµ1

1 . . . pµn
n � qνmm . . . qν11 ).

The case where m = n = 0 (thus leaving a double semi-colon) is of course just the

momentum kernel again:

K,;µν(; ; p,−p) = Kµν(p) . (2.4.30)

We write the m = 0 case more simply as:

Kµ1...µn,;µν(p1 . . . pn; ; p, q) = Kµ1...µn;µν(p1 . . . pn; p, q) , (2.4.31)

then from (2.4.29) the n = 0 case is given by

K,ν1...νm;µν(; q1 . . . qm; p, q) = (−1)mKνm...ν1;µν(qm . . . q1; p, q) . (2.4.32)

A useful special case of (2.4.29) is:

Kµ,ν;αβ(p; q; r, s) = −Kµν;αβ(p, q; r, s)−Kνµ;αβ(q, p; r, s) . (2.4.33)
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Kernel vertices obey Ward identities closely similar to (2.4.18) [63,64]. Furthermore the

contracted momentum can reach the end of the string of momenta, where it attaches to

the outer momentum:

p1µ1
Kµ1...µn,ν1...νm;µν(p1 . . . pn; q1 . . . qm; p, q) =

= Kµ2...µn,ν1...νm;µν(p1 + p2, p3 . . . pn; q1 . . . qm; p, q)

−Kµ2...µn,ν1...νm;µν(p2 . . . pn; q1 . . . qm; p1 + p, q) . (2.4.34)

Again one can derive differential Ward identities (cf. (2.4.20), (2.4.23)). We list below

some of the more useful ones:

Kλ;µν(0;−p, p) = ∂pλKµν(p) , (2.4.35)

Kλσ;µν(−p, 0; 0, p) = ∂pσKλ;µν(−p; 0, p) . (2.4.36)

2.4.2.3 Two-point action vertices

Combining these definitions with those of sec. 2.2 one can derive the expressions for

the vertices that are needed and work through the classical and quantum corrections

systematically. Thus for example, from the definition (2.2.24) of the quasi-local action

A, combined with that of X, (2.2.25), and the fundamental two-point vertex I(2) in

(2.2.10), or alternatively directly from (2.2.47), one gets its two-point vertex:

Aµ1µ2(p) = 2□µ1µ2(p)FA(p) , FA(p) :=
1

cp
. (2.4.37)

Armed with this one finds from (2.2.55) the two-point vertex for the seed action:

Ŝµ1µ2(p) = 2□µ1µ2(p)FŜ(p) , FŜ(p) :=
p̃2 + cp
c2p

, (2.4.38)

and from (2.2.56) the classical effective action S0 two-point vertex:

S0
µ1µ2

(p) = 2□µ1µ2(p)F (p) , F (p) := 1 +
p̃2

c2p
. (2.4.39)

From the definition (2.2.54) of Σ and X one gets immediately its classical two-point

vertex:

Σ0
µ1µ2

(p) = 2□µ1µ2(p)FΣ(p) , FΣ(p) := 1− 1

cp
. (2.4.40)

Finally from its definition (2.4.5) we get the classical two-point vertex for the action θ:

θ0µ1µ2
(p) = 2□µ1µ2(p)Fθ(p) , Fθ(p) :=

cp − 2p̃2c′p
c2p

. (2.4.41)
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2.4.2.4 Zero-point kernel functions

The zero-point vertices for the simple (i.e. non-compound) kernels X, Y , B, b, t, κ and

W , follow straightforwardly from their definitions in (2.2.25), (2.2.51), (2.2.52), (2.2.65)

and (2.4.5), by replacing their argument (∆ or ∆∥ as appropriate) by p̃2, for example:

κ(p) = 2
cp − 2p̃2c′p

c2p + p̃2
. (2.4.42)

(The zero-pointX kernel was in effect already used to derive the two-point action vertices

above.) Those for the compound kernels follow almost as straightforwardly. Thus the

zero point vertex for
(︁
C−1

)︁a
b follows from its definition (2.2.50) since the generator of

gauge transformations (2.2.5) collapses to a partial derivative in this case. Writing

C−1
µν (p) =

1

CT (p)

□µν(p)

p2
+

1

CL(p)

pµpν
p2

, (2.4.43)

we have that its longitudinal and transverse functions are given by:

CT (p) :=
cp

cp + p̃2
, CL(p) :=

1

1 + p̃2Yp
. (2.4.44)

Note that despite appearances in (2.4.43), the kernel has a Taylor expansion in pµ (is

quasilocal) because Y is quasilocal and cp is normalised to c(0) = 1 (cf. below (2.2.25)).

Inverting gives us the zero-point vertex for Ca
b:

Cµν(p) = CT (p)
□µν(p)

p2
+ CL(p)

pµpν
p2

, (2.4.45)

which is also quasi-local for the same reasons. Then that for K follows from (2.2.64):

Kµν(p) = KT (p)
□µν(p)

p2
+KL(p)

pµpν
p2

, KI(p) := κ(p)CI(p) (I = T, L) . (2.4.46)

2.4.2.5 Higher-point vertices

The n-point vertices for the simple kernels can be computed by Taylor expanding in ∆

or ∆∥ as appropriate. Keeping only n instances of Aµi as in (2.4.26), the momentum

dependence can then be resummed to give the explicit formula. The vertices for those

that are simply functions of ∆∥ = −D2/Λ2 – namely Y , B, b and t – have vertices that
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have already been computed this way in sec. 5 of ref. [64]. We just quote the results:

Yµ(p; r, s) = (r − s)µ
Yr − Ys
p·(r − s)

, (2.4.47)

Yµν(p, q; r, s) = δµν
Ys − Yr
s2 − r2

− (p+ 2r)µ(q + 2s)ν ΞY (p, q; r, s) , (2.4.48)

ΞY (p, q; r, s) =
Ys+q

q ·(q + 2s) p·(p+ 2r)
+

1

s2 − r2

[︃
Yr

p·(p+ 2r)
− Ys
q ·(q + 2s)

]︃
, (2.4.49)

where we have introduced the shorthand ΞY , and where for the others one simply replaces

Y by B, b or t as appropriate. We note that these equations need care at special momenta

where denominators vanish. For example the correct equation for Yµν(p,−p; r,−r) fol-
lows from limϵ→0 Yµν(p,−p− ϵ; r+ ϵ,−r). Again we refer to sec. 5 of ref. [64] for details.

The vertices for the other simple kernels X, κ and W follow from using a similar strat-

egy. We only have to take into account the presence of Fµν when expanding in a series

of powers of ∆µν , cf. (2.2.22). Thus we find:

Xλ;µν(p; r, s) =
{︁
(r − s)λδµν + 4δλ[µpν]

}︁ Xr −Xs

p·(r − s)
, (2.4.50)

Xλσ;µν(p, q; r, s) =
(︁
δµνδλσ + 4δλ[µδν]σ

)︁ Xs −Xr

s2 − r2

+

(︄
16δλ[µpϵ]δσ[ϵqν] − 4δλ[µpν](q + 2s)σ + 4(p+ 2r)λδσ[µqν]

− δµν(p+ 2r)λ(q + 2s)σ

)︄
ΞX(p, q; r, s) . (2.4.51)

Here T[µν] :=
1
2(Tµν − Tνµ). As above, those for κ and W follow simply by replacing the

name.

With the above building blocks and techniques it is a tedious but straightforward exercise

to arrive at explicit expressions for compound kernel and action n-point vertices. For

example from (2.2.24), one finds

Aµνλ(p, q,−p− q) = Iµνλ(p, q,−p− q)

+
1

2Λ2

[︄
Iαµν(−p− q, p, q)Xp+qIαλ(p+ q)

+ Iανλ(p, q,−p− q)XpIαµ(p)

+ Iαλµ(q,−p− q, p)XqIαν(q)

+ Iαµ(p)Xν;αβ(q; p,−p− q)Iβλ(p+ q)

+ Iαν(q)Xλ;αβ(−p− q; q, p)Iβµ(p)

+ Iαλ(p+ q)Xµ;αβ(p;−p− q, q)Iβν(q)

]︄
. (2.4.52)
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Using (2.2.50), this is sufficient to construct the one-point vertex for the compound

kernel
(︁
C−1

)︁a
b:

C−1
µ;αβ(p; r, s) =

1

2Λ2
Aµβα(p, s, r) +

1

Λ2
{δµαsβYs − rαδµβYr − rαsβYµ(p; r, s)} , (2.4.53)

and from this we also have the C one-point vertex:

Cµ;αβ(p; r, s) = −Cαγ(r)C
−1
µ;γδ(p; r, s)Cδβ(s) . (2.4.54)

We give further details on the construction of the compound kernels in app. 2.A where

we also prove that up to the two-point level the compound kernels obey the interleave

identities (2.4.29). Note that, as a consequence of their symmetric definition as oper-

ators, and the interleave identities, all the kernel one-point vertices so far treated are

antisymmetric under rα ↔ sβ, for example:

C−1
µ;αβ(p; r, s) = C−1

,µ;βα(; p; s, r) = −C
−1
µ;βα(p; s, r) . (2.4.55)

The definition (2.2.64), Kab = Ca
cκ

cb, is not symmetric, and thus its one-point vertex

does not obey this identity. However, using (2.4.54), and (2.4.50) with X ↦→ κ, we get

an explicit expression for it also:

Kµ;αβ(p; r, s) = Cµ;αβ(p; r, s)κ(s) + Cαγ(r)κµ;γβ(p; r, s) . (2.4.56)

We should distinguish this from the vertex made from the hermitian conjugate κacCc
b:

←−
Kµ;αβ(p; r, s) = κ(r)Cµ;αβ(p; r, s) + κµ;αγ(p; r, s)Cγβ(s) , (2.4.57)

and the symmetrised combination

←→
Kµ;αβ(p; r, s) =

1

2

[︂
Kµ;αβ(p; r, s) +

←−
Kµ;αβ(p; r, s)

]︂
, (2.4.58)

coming from 1
2(C

a
cκ

cb+κacCc
b), since these versions can also appear. As a consequence

of the interleave identities,
←→
K µ;αβ(p; r, s) obeys (2.4.55), whilst the directed versions

satisfy

Kµ;αβ(p; r, s) = −
←−
Kµ;βα(p; s, r) . (2.4.59)

2.4.2.6 Large momentum behaviour

As we will see in sec. 2.6, these vertices play a closely similar role to those of Feynman

rules. In particular in one-loop diagrams, three-point vertices will carry a loop momen-

tum q and external momentum p and thus have arguments p, q, and −p− q. Therefore
the large momentum behaviour that actually determines whether the flow equation is

properly regularised is one where q →∞ while keeping p fixed. As before, it is sufficient



2.4. Perturbative expansion 47

to characterise the large momentum behaviour in terms of the power of cq, since the

proposed regularisation structure works only if the quantum corrections are regularised

overall by some negative power of cq.

In fact the three-point action vertices2 Sµνλ(p, q,−p − q) diverge at least as rapidly in

terms of cq, as their corresponding two-point action vertices Sµλ(q). This follows from

the Ward identity:

qνSµνλ(p, q,−p− q) = Sµλ(p)− Sµλ(p+ q) . (2.4.60)

Similarly the degree of divergence of a one-point kernel is set by the zero-point kernel.

If q goes from end to end, the one-point kernel behaves with at least the same power of

cq as Kq:

pλKλ;µν(p; q,−p− q) = Kµν(q)−Kµν(q + p) . (2.4.61)

But if q passes through the side, the large q behaviour depends on whether Kq diverges

or decays:

qλKλ;µν(q; p,−p− q) = Kµν(p)−Kµν(q + p) . (2.4.62)

If Kq diverges, then the one-point kernel diverges at least as rapidly, whilst if Kq decays

then Kλ;µν(q; p,−p− q) cannot decay, because the right hand side of the Ward identity

has Kµν(p) which is independent of q.

However, Ward identities only set a lower bound on the power of cq, because there

remains the possibility that vertices have a worse behaving transverse part. We now

pin down the precise behaviour as a power of cq, i.e. both longitudinal and transverse

parts.3

We start by analysing A(3). This is displayed in (2.4.52). The fundamental vertices

I(n) in (2.4.52) only provide some power of q at worst, cf. (2.2.10) – (2.2.12), so A(3)s

large q behaviour is set by its kernels. From (2.2.25) we have Xq ≈ Xp+q ≈ c−1
q , and

from (2.4.50) we see that all the X one-point vertices in (2.4.52) also diverge in this

way. Two terms in A(3) do not diverge with the cutoff, namely the pure I term (i.e. the

first term) and the term containing Xp on the second line, but the others dominate, so

overall A(3) ≈ c−1
q , as previously assumed, and matching its two-point vertex (2.2.47) as

per the minimum required by the Ward identity.

Since from (2.4.6) the classical action θ0 has the same formula as (2.4.52), only with the

replacement X ↦→W , we see immediately that its three-point vertex also ≈ c−1
q . In fact,

given that the quantum correction is ∝ A, this holds for the full θ(3).

2Recall that three-point action vertices are totally antisymmetric so the order of the arguments is
irrelevant.

3For a detailed analysis of the large momentum behaviour of arbitrary n higher-point (simple) kernel
vertices see sec. 5 of ref. [64].
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We can borrow the same formula also for the seed action Ŝ. From (2.2.55) we replace I ↦→
A and X ↦→ 1 on the right hand side of (2.4.52) (and so delete the three terms involving

theX one-point vertex). Since we have already established that Aµνλ(p, q,−p−q) ≈ c−1
q ,

we see that indeed Ŝµνλ(p, q,−p − q) ≈ c−2
q again as previously assumed and enforced

by the Ward identity.

It is not hard to see that these estimates hold also for the higher point A(n), θ(n) and

Ŝ
(n)

action vertices, where again two of their momentum arguments diverge as ∼ ±q
with the others held fixed. For the four-point example, their explicit formulae can be

read off from the right hand side of (2.6.11). The same is true for higher point kernel

vertices where the zero-point kernel diverges at large momentum. However we will only

use the estimates for the three-point vertices throughout this chapter.

At one loop we need also the classical effective action three-point vertex and this in turn

depends on the kernels K and C and their one-point vertices (see eqn. (2.6.10)). From

(2.4.45) we clearly have Cαβ(q) ≈ cq (recall Yq ≈ c−1
q ). Clearly from (2.4.53), the C−1

one-point vertex ≈ c−1
q whatever the arrangement of the arguments p, q, and −p−q, this

being the minimum imposed by the Ward identity. But from (2.4.54) the arrangement

of the arguments matters for C:

Cµ;αβ(p; q,−p− q) ≈ Cq ≈ cq , (2.4.63)

Cν;αβ(q; p,−p− q) ≈ 1 , (2.4.64)

again precisely as predicted by the Ward identities. One can check using the explicit

formulae from the previous section that the behaviour predicted by the Ward identities,

holds for all the kernel vertices whose zero-point kernels decay at large momentum,

namely t, κ, C and K. In particular we have also

Kµ;αβ(p; q,−p− q) ≈ Kq ≈ c2q , (2.4.65)

Kν;αβ(q; p,−p− q) ≈ 1 . (2.4.66)

2.5 Regularisation of higher point classical vertices

As we saw in sec. 2.2, the space-time trace terms are designed to implement PV regu-

larisation of the SUV ≈ c−2
q part. We will see in sec. 2.6.4 that there are subtleties with

this however. The remaining regularisation works provided S(n≥3)
0 corrections diverge

slower than c−2
q . This was the key property set out in eqns. (2.2.56) and (2.2.59), where

it was assumed that in fact S(n)0 ≈ c−1
q , or equivalently Σ

(n)
0 ≈ c−1

q . For the three-point

we can now state this more precisely as:

Σ0
βνα(q + p,−p,−q) ≈ c−1

q . (2.5.1)
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In this section we confirm in detail that this estimate holds true. It is then clear that

the estimates are correct for all the higher point Σ
(n)
0 vertices also.

In order to compute Σ
(3)
0 we need the classical action three-point vertex. The latter

follows from the flow equation ΛDΛS
0 = 0. The analysis is simpler if instead we recast

it directly as a flow for Σ0. Taking the classical limit (i.e. O(1/g2) in the loop expansion)

of (2.2.66), and using the identity (2.2.62), we have

Σ̇
0
= −Ȧ+

1

2
Σ0
,aKabΣ0

,b +
1

2
A,aκ

abΣ0
,b − Σ0

,aC
abθ0,b . (2.5.2)

Expanding to the three-point level:

Σ̇
0
µνλ(p, q,−p− q) =− Ȧ

0
µνλ(p, q,−p− q)

+
1

2Λ2
Σ0
µα(p)KT (p)Σ

0
ανλ(p, q,−p− q)

+
1

2Λ2
Σ0
µα(p)

←→
Kν;αβ(q; p,−p− q)Σ0

βλ(p+ q)

+
1

4Λ2
Σ0
αµ(p)κ(p)Aανλ(p, q,−p− q)

+
1

4Λ2
Σ0
µνα(p, q,−p− q)κ(p+ q)Aαλ(p+ q)

+
1

4Λ2
Σ0
µα(p)κν;αβ(q; p,−p− q)Aβλ(p+ q)

− 1

4Λ2
Σ0
µα(p)κλ;αβ(−p− q; p, q)Aβν(q)

− 1

2Λ2
Σ0
αµ(p)CT (p)θ

0
ανλ(p, q,−p− q)

− 1

2Λ2
Σ0
µνα(p, q,−p− q)CT (p+ q)θ0βλ(p+ q)

− 1

2Λ2
Σ0
µα(p)Cν;αβ(q; p,−p− q)θ0βλ(p+ q)

+
1

2Λ2
Σ0
µα(p)Cλ;αβ(−p− q; p, q)θ0βν(q)

+ cycles .

(2.5.3)

Here we have used properties of the kernels. First of all, if we contract a zero-point kernel

into a two-point vertex, e.g. as on second line, then only its transverse part contributes

because of the transversality of the two-point function. In addition to this, we used that

Ka
b, C

a
b and κ

a
b, kernel one-point vertices obey interleave identities (2.4.29).

Those terms that depend on Σ
(3)
0 in (2.5.3) we take to the left of the equation. Their

multiplying factors collect into

Zµν(pi) = KT (pi) Σ
0
µν(pi) (2.5.4)

for each external momentum pi, as follows from the identity

CT (p) θ
0
µν(p) =

1

2
KT (p)S

0
µν(p) (2.5.5)
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(this can be shown from their explicit form given in secs. 2.4.2.3, 2.4.2.4) and κ(p)Aµν(p) =

KT (p)Ŝµν(p), which is the identity (2.2.62) at two-point level. Using the results of the

previous section it is straightforward to verify explicitly that the remaining terms, which

we call Tµνλ(p, q,−p−q), diverge as Tµνλ(p, q,−p−q) ≈ c−1
q . Indeed, given that in (2.5.2)

the action vertices diverge as c−1
q , the only way to produce a contribution that diverges

faster than this would be to have the high momentum flow, q, go through both action

factors. But this requires q to flow through the kernel from end to end, thus reducing

the divergence by at least a factor of cq again (cq for κ and C, while K would provide

c2q). In this way we verify Σ
(n)
0 ≈ c−1

q for all n, i.e. (2.2.60) at the classical level.

The flow at the three-point level can be written now as

Λ∂ΛΣ
0
µνλ(p, q,−p− q)

− 1

4Λ2

[︂
Zµα(p)Σ

0
ανλ(p, q,−p−q)+Zνα(q)Σ

0
αλµ(q,−p−q, p)+Zλα(p+q)Σ

0
αµν(−p−q, p, q)

]︂
= Tµνλ(p, q,−p− q) . (2.5.6)

This is in a form where it can also be integrated with respect to Λ. Tµνλ(p, q,−p− q) is
a known function which can be constructed explicitly from the vertices discussed in the

previous sections. The terms in square brackets on the left hand side of (2.5.6) provide

the integrating factor for the differential equation. Regarding Zµν(p) as a matrix Z(p),

we define

ζµν(p) =

[︃
exp

∫︂ ∞

Λ

dΛ1

4Λ3
1

Z(p)

]︃
µν

= δµν +
□µν(p)

p2

(︃
−1 + exp

∫︂ ∞

Λ

dΛ1

2Λ1
p̃2KT (p)FΣ(p)

)︃
,

(2.5.7)

where for the second equality we use (2.5.4) and (2.4.40). The integrated Σ
(3)
0 is then

given by

Σ0
µνλ(p, q,−p− q) = −ζ−1

µα (p) ζ
−1
νβ (q) ζ

−1
λγ (−p− q)

×
∫︂ ∞

Λ

dΛ1

Λ1
ζαα′(p) ζββ′(q) ζγγ′(−p− q)Tα′β′γ′(p, q,−p− q) , (2.5.8)

where ζ−1
µν (p) is of course given by the same expression as (2.5.7) except for a minus

sign in the exponential, and it is understood that all terms under a Λ1-integral are

evaluated at cutoff scale Λ1. Note that the integration constant vanishes because, by

gauge invariance and dimensions, Σ0 vanishes in the limit Λ → ∞.4 Expanding the

exponential in (2.5.7) we see that all the corrections that arise from these integrating

factors are also transverse. In this sense the full vertex involves in fact an exponentiation

of the equations of motion. It does not affect the divergence with cq however, since Z(q)

vanishes in the large q limit. The integrated version of the n ≥ 4-point vertices can be

explicitly written down in a similar way.

4As can be seen by Taylor expanding (2.4.40) for example, Σ0 has a minimum of four space-time
derivatives and thus has an overall 1/Λ2 factor.
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2.6 One loop beta function

To see why it is the large q behaviour of the above vertices that is important, and

to provide a test of the formalism, we focus on the simplest quantum correction: the

one-loop contribution to the effective action two-point vertex. Since gauge invariance is

exactly preserved this computation should, if the flow equation is regularised correctly,

also yield the one-loop beta function (i.e. β1 = η1/2). To extract it, we need to define

the coupling constant g(Λ) beyond classical level. We do this by imposing a convenient

renormalization condition:

S =
1

2g2(Λ)
tr

∫︂
x
F 2
µν +O(∂3) , (2.6.1)

which means that the full two-point function of S at O(p2) is given by:

Sµ1µ2(p)
⃓⃓
O(p2)

= 2□µ1µ2(p) . (2.6.2)

Extracting the O(p2) part of (2.4.39) we have that:

S0
µ1µ2

(p)
⃓⃓
O(p2)

= 2□µ1µ2(p) = Sµ1µ2(p)
⃓⃓
O(p2)

. (2.6.3)

This means that the renormalization condition at O(p2) is already saturated at tree

level, and, thus, all higher order loop contributions must vanish,

Sn
µ1µ2

(p)
⃓⃓
O(p2)

= 0 ,∀n ≥ 1 . (2.6.4)

Since Σ0 = S0 − Ŝ and Σn = Sn, we also obtain that:

Σn
µ1µ2

(p)
⃓⃓
O(p2)

= 0 , ∀n ≥ 1 . (2.6.5)

The remaining action θ behaves differently with respect to S and Σ. Its loopwise ex-

pansion was already given in (2.4.7) and from there we see that at O(p2) we have a

non-vanishing higher loop contribution from its two-point vertex:

θnµ1µ2
(p)
⃓⃓
O(p2)

= ηn□µ1µ2(p). (2.6.6)

We computed explicitly all the relevant classical action two-point vertex functions in

sec. 2.4.2.3.
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At this point we are able to recast (2.4.12) as an algebraic equation for β1. If we look

at the flow equation of S1
µν(p) and restrict it to O(p2), we obtain:

− 4β1□µν(p) = Tr

{︄
Λ∂Λ

[︂
ln
(︁
C−1

)︁a
b

]︂
− Λ∂Λ

[︁
lnBα

β

]︁
− 1

2
Λ∂Λ

[︁
ln bαβ

]︁
+Ψd

0

δ

δϕd

[︂
ln
(︁
C−1

)︁a
b

]︂
−Ψa

0

δ

δϕa
[︁
lnBα

β

]︁
− 1

2
Ψa

0

δ

δϕa
[︁
ln bαβ

]︁
+
δΨa

0

δϕb

}︄
2-pt.function
at O(p2)

.

(2.6.7)

Here we have used the requirement imposed on us by the renormalization condition

(2.6.1) and the fact that Σ0
µν(p) is O(p4), whereas θ0µν(p) and S0

µν(p) are O(p2). The

only task we are left with is to evaluate the right-hand side of (2.6.7), and then β1 can

be extracted from its coefficient.

2.6.1 Classical flow equations

The classical flow equation (2.4.9) can equivalently be written as follows:

Λ∂ΛS
0 =

1

2Λ2

δS0

δAα
· Kαβ ·

δΣ0

δAβ
− 1

Λ2

δS0

δAα
· Cαβ ·

δθ0

δAβ
. (2.6.8)

The right-hand side of the above expression has two terms with similar structure, and

thus, to write the flow equation for some n-point vertex, one just needs to compute the

contributions coming from one term as the contributions coming from the second one

follow from the former by a mere relabelling. We write below the flow equations for

those vertices that are relevant for the computation of β1.

The flow equation for S0
µ1µ2

(p) takes the following form:

Λ∂ΛS
0
µ1µ2

(p) =
1

4Λ2
S0
αµ1

(p)KT (p)Σ
0
αµ2

(p)− 1

2Λ2
S0
αµ1

(p)CT (p)θ
0
αµ2

(p) + (µ1 ↔ µ2) .

(2.6.9)

By gauge invariance and dimensions, S0
µν(p) (and in fact any two-point function) must

have a structure similar to (2.4.39). If we substitute this into the above flow equation

and solve for some function F (p), we recover the same result as stated in (2.4.39). This

is an extra check that the flow equation (2.6.9) is derived in a consistent manner.
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The flow equation for S0
µ1µ2µ3

(p1, p2, p3) is given by:

Λ∂ΛS
0
µ1µ2µ3

(p1, p2, p3) =
1

4Λ2

[︂
S0
αµ1

(p1)Kµ2;αβ(p2; p1, p3)Σ
0
βµ3

(p3)

− S0
αµ1

(p1)Kµ3;αβ(p3; p1, p2)Σ
0
βµ2

(p2)

+ S0
αµ1µ2

(p3, p1, p2)KT (p3)Σ
0
αµ3

(p3)

+ S0
αµ1

(p1)KT (p1)Σ
0
αµ2µ3

(p1, p2, p3)
]︂

− 1

2Λ2

[︂
K ↦→ C ; Σ ↦→ θ

]︂
+ cycles ,

(2.6.10)

where the terms inside brackets from the last line follow from those written explicitly

inside brackets above them after the relabelling indicated. One can proceed similarly to

derive the flow equation for S0
µ1µ2µ3µ4

(p1, p2, p3, p4):

Λ∂ΛS
0
µ1µ2µ3µ4

(p1, p2, p3, p4) =

=
1

4Λ2

[︂
S0
αµ1µ2µ3

(p4, p1, p2, p3)KT (p4)Σ
0
αµ4

(p4)

+ S0
αµ1µ2

(−p1 − p2, p1, p2)Kαβ(p1 + p2)Σ
0
βµ3µ4

(−p3 − p4, p3, p4)

+ S0
αµ1

(p1)KT (p1)Σ
0
αµ2µ3µ4

(p1, p2, p3, p4)

+ S0
αµ1

(p1)Kµ2;αβ(p2; p1, p3 + p4)Σ
0
βµ3µ4

(−p3 − p4, p3, p4)

− S0
αµ1

(p1)Kµ4;αβ(p4; p1, p2 + p3)Σ
0
βµ2µ3

(−p2 − p3, p2, p3)

+ S0
αµ1µ2

(−p1 − p2, p1, p2)Kµ3;αβ(p3; p1 + p2, p4)Σ
0
βµ4

(p4)

− S0
αµ1µ2

(−p1 − p2, p1, p2)Kµ4;αβ(p4; p1 + p2, p3)Σ
0
βµ3

(p3)

+ S0
αµ1

(p1)Kµ2µ3;αβ(p2, p3; p1, p4)Σ
0
βµ4

(p4)

− S0
αµ1

(p1)Kµ2µ4;αβ(p2, p4; p1, p3)Σ
0
βµ3

(p3)

− S0
αµ1

(p1)Kµ4µ2;αβ(p4, p2; p1, p3)Σ
0
βµ3

(p3)

+ S0
αµ1

(p1)Kµ4µ3;αβ(p4, p3; p1, p2)Σ
0
βµ2

(p2)
]︂

− 1

2Λ2

[︂
K ↦→ C ; Σ ↦→ θ

]︂
+ cycles . (2.6.11)

In deriving these, we again exploit the interleave identities (2.4.29) up to and including

the two-point level, as proven in appendix 2.A.

Although we will not need them here, let us note that these equations can be integrated

to give explicit formulae for the (integrated) classical effective action vertices. Taking all

the S
(3)
0 terms to the left hand side in (2.6.10), including the S

(3)
0 part of Σ

(3)
0 , we find the

same integrating factors Zµiα(pi) as in (2.5.4). Thus the flow for S
(3)
0 can be similarly

integrated. This results in an explicit formula for S
(3)
0 of the same form as (2.5.8) –

except that in this case there is also an integration constant, namely Iµ1µ2µ3(p1, p2, p3).

The latter follows because the Λ → ∞ limit of S
(3)
0 is I(3), as e.g. can be seen from

(2.6.1) and (2.2.8). Similarly, taking all S
(4)
0 terms to the left hand side in (2.6.11) gives

the same integrating factors and allows its flow to be integrated up to an explicit formula
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for S
(4)
0 . This time on the right hand side we have instances of the just computed S

(3)
0

vertex, and now the integration constant is I(4) as in (2.2.12).

2.6.2 Trace terms

To evaluate the trace terms in (2.6.7) above one needs to expand the log terms. The

vertex expansion for the Bα
β terms, for example, can be done in the following way:

Tr lnBα
β ≡

≡ Tr ln
[︁
Br⏞⏟⏟⏞

O(A0
µ)

+Bµ(p; r, s)⏞ ⏟⏟ ⏞
O(A1

µ)

+Bµν(p, q; r, s)⏞ ⏟⏟ ⏞
O(A2

µ)

+ . . .
]︁

(2.6.12)

=

∫︂
r
lnBr +Tr ln

[︁
1 +B−1

r Bµ(p; r, s) +B−1
r Bµν(p, q; r, s) + . . .

]︁
(2.6.13)

= 2N

∫︂
q

O(A2
µ)⏟ ⏞⏞ ⏟

B−1
q Bµν(p,−p; q,−q)−

1

2
B−1

q Bµ(p; q,−q − p)B−1
p+qBν(−p; p+ q,−q)+ . . . ,

(2.6.14)

where N accounts for group combinatorics and the extra factor of two for the pµ ↔ −pν
symmetry (or, equivalently, for the definition of the two-point function). Here note that

in going from the third to the fourth line we have discarded the log term because it is

just a vacuum contribution to the flow equation (or it is differentiated away), and we

have also Taylor expanded the remaining log term using

ln(1 + x) = x− x2

2
+ · · · . (2.6.15)

Similar expressions can be written for
(︁
C−1

)︁a
b and b

α
β terms, respectively.

To evaluate the remaining trace term δΨa
0/δϕ

a it is useful to use its covariant represen-

tation:

δΨa
0

δϕa
=

δ

δϕa

(︃
− 1

2
KabΣ0

,b + Cabθ0,b

)︃
(2.6.16)

≡ − 1

2Λ2

δ

δAα
· Kαβ ·

δΣ0

δAβ
+

1

Λ2

δ

δAα
· Cαβ ·

δθ0

δAβ
. (2.6.17)
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This, in turn, allows us to compute it at the two-point level using (2.2.17), yielding:

δΨa
0

δϕa

⃓⃓⃓⃓
2-pt.function

=
1

2Λ2

∫︂
q

{︄
2

(︃
N − 1

N

)︃
Cαβ(q)θ

0
βαµν(q,−q, p,−p)

− 1

N
Cαβ(q)θ

0
βµαν(q, p,−q,−p)

+ 2NCµ;αβ(p; q,−p− q)θ0βνα(q + p,−p,−q)

+ 2NCµν;αβ(p,−p; q,−q)θ0βα(q)

− 2NCµα;αβ(p,−q; q,−p)θ0βν(p)

}︄
− 1

4Λ2

[︁
C ↦→ K ; θ ↦→ Σ

]︁
.

(2.6.18)

This can be further refined. If we split the kernels into their transverse and longitudinal

parts, respectively, then one can check explicitly that the O(1/N) longitudinal pieces

cancel each other after using Ward identities. One can also show that, under the q

integral and by using Lorentz invariance (q → −q, pµ ↔ −pν etc. ) together with

(2.4.6), (2.2.55), and (2.6.11), the following identities hold:

θ0αµαν(q, p,−q,−p) = −2 θ0ααµν(q,−q, p,−p) , (2.6.19)

Σ0
αµαν(q, p,−q,−p) = −2Σ0

ααµν(q,−q, p,−p) . (2.6.20)

This means that the O(1/N) transverse pieces vanish as well, and thus (2.6.18) becomes:

δΨa
0

δϕa

⃓⃓⃓⃓
2-pt.function

=
N

Λ2

∫︂
q

{︂
Cαβ(q)θ

0
βαµν(q,−q, p,−p)

+ Cµ;αβ(p; q,−p− q)θ0βνα(q + p,−p,−q)

+ Cµν;αβ(p,−p; q,−q)θ0βα(q)

− Cµα;αβ(p,−q; q,−p)θ0βν(p)
}︂

− N

2Λ2

[︁
C ↦→ K ; θ ↦→ Σ

]︁
.

(2.6.21)

2.6.3 Two-point vertex at zeroth order in momentum

If the one-loop two-point vertex is transverse and quasi-local, as it should be, it can have

no momentum independent part, i.e. at O(p0) it ought to vanish. However this property

is strictly only true if the flow equation is properly regulated since, as we will see, it

would then follow from the fact that this contribution can be cast as a momentum-

space surface integral at large q, which vanishes if properly regularised. Actually with

sufficient care the construction proposed in ref. [47] does ensure this, up to a divergent

term that can be discarded since it is Λ independent but differentiated by Λ, because it

in fact depends only on two-point action vertices or zero-point kernels, as we will see.
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Thus we turn to computing the two-point O(p0) part of the one-loop flow equation

(2.4.12), or equivalently (2.4.10). As we have just noted, it ought to vanish. The first

line on the right-hand side is clearly of O(p2) and above and can therefore be discarded.

This means that the only contribution comes from the functional trace terms, and hence,

at O(p0), the right hand side of (2.4.12) becomes:

Tr

{︄
Λ∂Λ

[︂
ln
(︁
C−1

)︁a
b

]︂
− Λ∂Λ

[︁
lnBα

β

]︁
− 1

2
Λ∂Λ

[︁
ln bαβ

]︁
+
δΨa

0

δϕb

+Ψm
0

δ

δϕm

[︂
ln
(︁
C−1

)︁a
b

]︂
−Ψm

0

δ

δϕm
[︁
lnBα

β

]︁
− 1

2
Ψm

0

δ

δϕm
[︁
ln bαβ

]︁}︄
2-pt.function
at O(p0)

.

(2.6.22)

Moreover, one can easily see that the second line above does not contribute at O(p0)

because the blocking functional part (i.e. Ψm
0 ) has either a two-point function residue

which is at least of O(p2), or a three-point function residue which is at least O(p)

(furthermore it is multiplied by a term that is antisymmetric in q, and hence vanishes

under the q integral). The first three terms can be computed using trace expansions as

described in section 2.6.2 above. For example, using (2.6.14) we will obtain the following:

Tr

{︃
Λ∂Λ

[︁
lnBα

β

]︁}︃
2-pt.function
at O(p0)

≡

≡ 2NΛ∂Λ

∫︂
q
B−1

q Bµν(0, 0; q,−q)−
1

2
B−1

q Bµ(0; q,−q)B−1
q Bν(0; q,−q) . (2.6.23)

Here note that quasi-locality ensures that the p→ 0 limit is straightforward. The above

expression can be simplified by using differential Ward identities:

Tr

{︃
Λ∂Λ

[︁
lnBα

β

]︁}︃
2-pt.function
at O(p0)

≡ 2NΛ∂Λ

∫︂
q
B−1

q

1

2
∂qµ∂

q
νBq −

1

2
B−1

q ∂qµBq B
−1
q ∂qνBq

= NΛ∂Λ

∫︂
q
∂qµ∂

q
ν

[︁
lnBq

]︁
. (2.6.24)

Similar expressions can be computed for C and b terms, respectively. The remaining

term can be computed starting from (2.6.21) and following a similar strategy, yields:

δΨa
0

δϕa

⃓⃓⃓⃓
⃓2-pt.function

at O(p0)

=
N

Λ2

∫︂
q

{︂
Cαβ(q)

1

2
∂qµ∂

q
νθ

0
βα(q)

+ ∂qµCαβ(q) ∂
q
νθ

0
βα(q)

+
1

2
∂qµ∂

q
νCαβ(q) θ

0
βα(q)

}︂
− N

2Λ2

[︁
C ↦→ K ; θ ↦→ Σ

]︁
,

(2.6.25)
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which can be recast as:

δΨa
0

δϕa

⃓⃓⃓⃓
⃓2-pt.function

at O(p0)

=
N

4Λ2

∫︂
q
∂qµ∂

q
ν

[︁
2CT (q)θ

0
αα(q)−KT (q)Σ

0
αα(q)

]︁
(2.6.26)

=
N

2
(D − 1)

∫︂
q
∂qµ∂

q
ν

[︂
q̃2KT (q)FŜ(q)

]︂
(2.6.27)

=
N

2
(D − 1)

∫︂
q
Λ∂Λ∂

q
µ∂

q
ν

[︁
ln P̃

⊥
q

]︁
, (2.6.28)

where to get the second line we used (2.5.5). The result can be cast as a total Λ-

derivative which we do in the final line, where

P̃
⊥
q := Λ2P⊥(q) , P⊥(q) :=

1

2q2F (q)
. (2.6.29)

As we will see in sec. 2.6.4 this object plays the rôle of an effective action propagator

(in the transverse space). Indeed from (2.4.39):

P⊥(q)S0
αβ(q) = δαβ −

qαqβ
q2

. (2.6.30)

In (2.6.28) one can see that the Λ∂Λ sits inside the integral, whereas in (2.6.24) it sits

outside the momentum integral. In general, changing the integration and differentiation

order is not trivial and to ensure consistency one must show that the undifferentiated

expression is sufficiently well-behaved in both UV and IR. However as stressed in ref. [47],

the flow equation is consistent only if we consider all trace terms together. Therefore,

we should interpret this as having the Λ∂Λ outside the integral in (2.6.28), as long as

we add to it all the remaining terms similar to and including (2.6.24). This means that

(2.6.22) becomes:

Λ∂Λ

∫︂
q
∂qµ∂

q
ν

{︂[︁
lnC

]︁
αα

(q) + lnBq +
1

2
ln bq −

D − 1

2
ln P̃

⊥
q

}︂
, (2.6.31)

where
[︁
lnC

]︁
αα

(q) = (D − 1) lnCT (q) + lnCL(q). Given that the above integral is an

integral of a total derivative, it amounts to a surface integral at large q, as advertised

at the beginning of this section. This surface integral can be discarded, and thus the

integral vanishes, if the term in braces above is UV finite. Using the definitions (2.2.50),

(2.2.51) and (2.2.52), we can write it as follows:

(D − 1) ln
cq

cq + q̃2
+ ln

1

1 + q̃2Yq
+ ln

(︂
1 + q̃2Yq

)︂
+

1

2
ln
(︂
tq + q̃2

)︂
+
D − 1

2
ln

2q̃2
(︂
c2q + q̃2

)︂
c2q

= −(D − 1) ln

(︃
cq

q̃2
+ 1

)︃
+
D − 1

2
ln

(︃
c2q

q̃2
+ 1

)︃
+

1

2
ln

(︃
tq

q̃2
+ 1

)︃
+

1

2
ln q̃2 .

(2.6.32)

All but the last term vanish rapidly for large momentum (from (2.6.15) and because
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cq and tq do). In this calculation, the last term can be formally discarded because it

vanishes under the combined action of q and Λ derivatives. In this sense we are justified

in dropping all the O(p0) terms, confirming the arguments outlined in ref. [47] work to

O(p0).

However it is unclear whether the part that leads to this unregulated ln q̃2 term can

always be safely discarded. In particular it is unclear whether such a part could cause

an unrecoverable failure of UV regularisation at higher loops. If we first compute the

q derivatives, the resulting momentum integral is quadratically UV divergent. By di-

mensions one might expect to find an analogous logarithmic UV divergence in the O(p2)

part. In the next section we confirm this expectation.

2.6.4 Two-point vertex at second order in momentum

The next step is to compute the one-loop beta function by analysing the flow equation

(2.6.7). The coefficient of the beta function at one loop is a universal quantity and

thus it should be independent of all artefacts of the regularisation scheme [71]. In the

earlier successful construction [28, 62–83] this could be understood as follows. Since

the beta function is dimensionless, the momentum integrals that compute it are also

dimensionless. By trading the higher-point regularisation vertices in these integrals for

Λ-derivatives of effective action vertices, using the classical flow equations, one finds

that the results combine into terms that either vanish, because they are Λ-derivatives of

regularised dimensionless integrals (which thus do not actually depend on Λ), or terms

that survive but only because when cast in this way a finite result is obtained from a

logarithmic IR divergence, where the effective action is universal – as determined by the

renormalization condition (2.6.1) [71,88]. Here we will follow this route by manipulating

the δΨa
0/δϕ

a term. However, before delving into the details of this, it is better for the

ease of presenting to focus on the other trace terms first.

The remaining trace terms can be partitioned into two groups, namely Λ∂Λ lnK and

Ψm
0

δ
δϕm lnK, where K = C−1, B, b. This means that in order to compute them it will be

sufficient to do this for one value of K chosen for convenience, all the other contributions

following from this one by substitution. It is straightforward to write down the first B

trace terms using (2.6.14) as follows:

Tr

{︃
Λ∂Λ

[︁
lnBα

β

]︁}︃
2-pt.function
at O(p2)

≡

≡ 2NΛ∂Λ

∫︂
q

{︃
B−1

q Bµν(p,−p; q,−q)

− 1

2
B−1

q Bµ(p; q,−q − p)B−1
p+qBν(−p; p+ q,−q)

}︃
O(p2)

. (2.6.33)
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The second B trace term can be written using Tr Ψm
0

δ
δϕm lnB = Tr Ψm

0 B,mB
−1, yield-

ing:

Tr

{︃
Ψm

0

δ

δϕm
[︁
lnBα

β

]︁}︃
2-pt.function
at O(p2)

≡

≡ 2N

∫︂
q

{︃
2CT (p)θ

0
µα(p)Bαν(p,−p; q,−q)B−1

q

+ CT (p)θ
0
µα(p)Bα(p;−p− q, q)B−1

ν (−p; p+ q,−q)

+ Cαβ(0)θ
0
µνα(p,−p, 0)Bβ(0; q,−q)B−1

q

− 1

2

[︁
C ↦→ K ; θ ↦→ Σ

]︁}︃
O(p2)

. (2.6.34)

The third line is odd in p and thus has no O(p2) part. Furthermore the one-point kernel

is antisymmetric in q, whereas Bq is symmetric, and so the entire row vanishes under the

q integral. A similar argument holds for the K sector as well. From (2.4.6) we get that

θ0µα(p)
⃓⃓
O(p2)

= 2□µα(p), and, given that all the other functions appearing in (2.6.34) are

quasi-local, we are free to set p = 0 anywhere else in the C sector. In the K sector on

the other hand, Σ0
µα(p) is O(p4), which means that it does not contribute to (2.6.34) at

all. Collecting everything together we have

Tr

{︃
Ψm

0

δ

δϕm
[︁
lnBα

β

]︁}︃
2-pt.function
at O(p2)

≡

≡ 2N

∫︂
q

{︃
2CT (0)2□µα(p)Bαν(0, 0; q,−q)B−1

q

+ CT (0)2□µα(p)Bα(0;−q, q)B−1
ν (0; q,−q)

}︃
O(p2)

, (2.6.35)

which we can recast if we use differential Ward identities for the kernel vertices:

Tr

{︃
Ψm

0

δ

δϕm
[︁
lnBα

β

]︁}︃
2-pt.function
at O(p2)

≡ 4N□µα(p)

∫︂
q
∂qα∂

q
ν lnBq . (2.6.36)

The flow equation (2.6.7) shows that if we add up all trace term contributions we ought

to end up with a transverse expression, i.e. ∝ □µν(p). Terms like (2.6.36) are transverse

on the ν index if we use Lorentz invariance of the q integral. But such arguments make

sense strictly speaking only if the integral is properly regularised. As already noted

in sec. 2.6.3, trace terms should be considered together, not individually. However for

more involved computations, this is not enough because the sum would still be ambiguous

due to the so-called momentum routing problem (see app. 2.B). We need in general to

make statements about individual terms, and to do so we need to apply some auxiliary

regularisation for each momentum integral to give them a well defined meaning. In the

end one can put all the parts back together again at which point, provided that the trace

terms do actually fully regularise, the result is finite and the “pre-regularisation” can be
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safely removed. From now on we will use dimensional regularisation for this purpose, i.e.

compute in d = 4− ε dimensions. This means that terms similar to (2.6.36) are indeed

transverse on both indices. If we contract pµ into (2.6.33) and use Ward identities we

will get (ignore the O(p2) requirement for now):

2NΛ∂Λ

∫︂
q

{︃
B−1

q

(︂
Bµ(0; q,−q)−Bµ(−p; p+ q,−q)

)︂
− 1

2
B−1

q

(︁
Bq −Bp+q

)︁
B−1

p+qBν(−p; p+ q,−q)
}︃
. (2.6.37)

The first term in the bracket on the first line is odd in q, and thus vanishes when

integrated. In the second line we can relabel q → −q − p for the first term inside the

bracket and use the antisymmetry of the one-point kernel vertex, Bν(−p; p + q,−q) =
−Bν(−p;−q, p+ q), to arrive at

2NΛ∂Λ

∫︂
q

{︃
−B−1

q Bµ(−p; p+ q,−q) +B−1
q Bν(−p; p+ q,−q)

}︃
(2.6.38)

=2NΛ∂Λ

∫︂
q

{︁
0
}︁
. (2.6.39)

Lorentz invariance implies that a similar result would have been obtained if pν had been

used. Therefore, all terms with a similar structure to (2.6.33), when properly regularised,

are individually transverse.

The last step is to compute δΨa
0/δϕ

a. At this point we note that (2.6.21) is formally

transverse prior to any substitution being done. One can easily check this by contracting

it with pµ (or equivalently pν), and then show that the expression vanishes at all orders,

not only at O(p2). This means that formally all trace terms in (2.6.7) are individually

transverse. This is gratifying but unsurprising: it is a consistency check on the formal

preservation of gauge invariance by the flow equation. As we have just emphasised, for

these manipulations to be meaningful we need to verify this with a gauge invariant pre-

regularisation in place. If the expressions are in fact properly regularised through the

PV trace terms, we should then be able to combine the results into a finite transverse,

and in fact universal, answer.

Thus the real test is to see whether (2.6.21) remains transverse in dimensional regu-

larisation after we trade four and three-point Σ0 and θ0 vertices for (Λ derivatives of)

effective action vertices. If we substitute first (2.6.11) into (2.6.21) to trade four-point Σ0

and θ0 vertices, and then use (2.6.10) to trade away the Σ0 and θ0 three-point vertices,
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we obtain eventually the following:

δΨa
0

δϕa

⃓⃓⃓⃓
2-pt.function
at O(p2)

=

= N

∫︂
q

{︄
− Λ∂Λ

[︂
P⊥(q)S0

ααµν(q,−q, p,−p)
]︂
O(p2)

+
1

2
Λ∂Λ

[︂
P⊥(q)P⊥(p− q)S0

αβµ(p− q, q,−p)S0
αβν(p− q, q,−p)

]︂
O(p2)

+
□αν(p)

Λ2q2Fq

[︄(︁
1−KT (q)

)︁
Σ0
αµ(q)−

(︁
1− 2CT (q)

)︁
θ0αµ(q)

q2

− 1

2
∂qµ∂

q
α

(︁
S0
ββ(q)− Σ0

ββ(q) + θ0ββ(q)
)︁

+ 2
qαqµ
q2
(︁
KT (q)FΣ(q)− 2CT (q)Fθ(q)− Fq

)︁
+

1

2Λ2q2Fq
∂qµ
(︁
□βγ(q)Fq

)︁
∂qα
(︁
S0
βγ(q)− Σ0

βγ(q) + θ0βγ(q)
)︁]︄}︄

,

(2.6.40)

where P⊥(q) is an effective propagator and was defined already in (2.6.29). To arrive at

this expression we use the symmetries including differential Ward identities in a similar

way to the trace terms above. As there, we do not need the explicit formulae except for

the zero-point kernels and two-point action vertices.

All the terms appearing in the above expression are manifestly transverse except the

Λ-derivative ones. We can evaluate the contribution of the latter in dimensional regu-

larisation and check whether they are transverse or not. Again, we are free to move the Λ

derivative outside the integral if the resulting momentum integrals are regularised. The

first term (containing the four-point vertex) would then vanish if the UV regularisation

(as also provided by the trace terms) is correctly in place, because the integral is di-

mensionless in four dimensions and thus actually independent of Λ. This is so because,

although P⊥ ∼ 1/q2 for small q, this IR divergence is integrable in four dimensions.

Similarly the second term (containing the three-point effective action vertices) has no

surviving UV contribution if it is properly regulated there, but this time there is a loga-

rithmic IR divergence which when differentiated with respect to Λ gives a finite universal

answer dependent only on the renormalization condition (2.6.1).

Now we contract the first two terms in (2.6.40) with pµ and use Ward identities to further

simplify it, following essentially the same steps that took us from (2.6.37) to (2.6.38).

This time we get:

NΛ∂Λ

∫︂
q
P⊥(q)

{︄
S0
ααν(q, p− q,−p)−P⊥(p− q)S0

αβ(p− q)S0
αβν(q, p− q,−p)

}︄
. (2.6.41)
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Now using the propagator identity (2.6.30) and Ward identities recursively this simplifies

to

Λ∂Λ

∫︂
q

(p+ q)β
(p+ q)2

(︃
δβν −

qβqν
q2

)︃
. (2.6.42)

The δβν part is odd in q (one can easily see that this is the case after expanding the

bracket and relabelling q → q− p), and hence vanishes, whereas the second term can be

recast using q ·(p+ q) = 1
2 [(p+ q)2 + q2 − p2], yielding:

−Λ

2

∂

∂Λ

∫︂
q

qν
q2

+
qν

(p+ q)2
− p2qν

(p+ q)2q2
. (2.6.43)

Again, the first term is odd in q. The second term is quadratically divergent but in

dimensional regularisation it vanishes, whereas the third term is linearly divergent and

gives a finite contribution in dimensionsal regularisation (due to a logarithmic subdiver-

gence):

Λ∂Λ

(︃
− 1

2

p2pν
(4π)2

ln Λ

)︃
= −1

2

p2pν
(4π)2

, (2.6.44)

where we recognise that the regularisation scale is set by Λ. This means that the

original Λ derivative terms from (2.6.40) give a non-vanishing longitudinal contribution

in dimensional regularisation, which amounts to

−1

2

pµpν
(4π)2

, (2.6.45)

and thus they cannot be transverse on their own. In fact, apart from an overall factor

of 1
2 , the effective action terms in (2.6.40) have precisely the same structure as found in

ref. [71] as part of the one-loop beta function computation using the manifestly gauge

invariant flow equation developed there. Moreover, the computed longitudinal part

(2.6.45) is precisely half the one found in ref. [71]. The same arguments in that paper

can be used to extract the full IR contribution from the first two lines of (2.6.40):

19

6
p2δµν −

11

3
pµpν , (2.6.46)

and this has the same longitudinal part.

Thus we see that if we assume that (2.6.7) is sufficiently regularised in the UV we get a

non-transverse answer. As we noted, the above result is arrived at independently of the

detailed form of the regularisation structure, apart from the expressions for two-point

action vertices and zero-point kernels. This means that the problem cannot be cured by

a more careful choice of cutoff functions or an alternative covariantization, but lies at a

deeper structural level.

Since formally the integrals start out transverse, it follows that there are unregulated

UV divergences which provide a cancelling longitudinal contribution. In fact if the third
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term in (2.6.43) has no UV regularisation we can (cavalierly) regard it as an infinite

constant, independent of Λ, which is then annihilated by the Λ derivative.

The problem then is that we cannot extract universal information from the S0 terms in

(2.6.40). We can see this explicitly by substituting S0 = Σ0 + Ŝ. Since P⊥(q) ≈ c2q , cf.

(2.6.29) and (2.4.39), the resulting terms with a Σ0 three-point or four-point vertex are

UV regularised because Σ
(3)
0 and Σ

(4)
0 diverge only as c−1

q , as we confirmed explicitly in

sec. 2.5. As explained above this means that the Σ
(4)
0 contribution actually vanishes,

because the integral is then well defined and dimensionless, and thus annihilated by

Λ∂Λ. The contributions with a Σ
(3)
0 vertex vanish for the same reason. To see this we

only need to show that there is no longer a logarithmic divergence at small q. Since Σ
(2)
0

is O(p4), cf. (2.4.40), we know by gauge invariance (or equivalently the Ward identities)

that Σ0
αβµ(p − q, q,−p) starts cubic in momenta in a small momentum expansion. In

other words, retaining powers of p up to a maximum of O(p2), as q → 0 it vanishes with

at least one power of q, and thus indeed there is no longer an IR logarithmic divergence

from the second line of (2.6.40).

This means that, on substituting S0 = Σ0 + Ŝ, the top two lines of (2.6.40) become

precisely the same expression but with S
(3)
0 and S

(4)
0 replaced by Ŝ

(3)
0 and Ŝ

(4)
0 respec-

tively. However Ŝ is freely designed by us as part of the regularisation scheme so cannot

of itself contain the requisite universal information. Indeed we can go one step further

and introduce a transverse space effective propagator for Ŝαβ(q):

P̂ (q) :=
1

2q2FŜ(q)
, (2.6.47)

which satisfies the obvious transverse projector relation, cf. (2.4.38) and (2.6.30). Sub-

stituting

P⊥(q) = P̂ (q) +
[︂
P⊥(q)− P̂ (q)

]︂
= P̂ (q) +

c3q
2q2

1− cq
(c2q + q̃2)(cq + q̃2)

, (2.6.48)

for all propagators in the same top two lines, it is apparent that any part containing

the last expression above is again both UV and IR finite (in the latter case because

c(0) = 1) and therefore vanishes under the Λ derivative. Thus the top two lines only

contain information determined by our choice of seed action.

We have shown that if we assume that (2.6.7) is sufficiently regularised in the UV we

get a universal non-transverse answer from a certain IR contribution. Since formally the

integrals start out transverse, it follows that there are actually unregulated UV diver-

gences which can formally be viewed as providing a cancelling longitudinal contribution.

Although one can indeed proceed in this way, it is then no longer possible to prove the

result is universal. Indeed we show that this contribution can be expressed solely in

terms of the seed action, a quantity that we are free to choose.
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2.7 Summary and Conclusions

We conclude this chapter with a brief summary and discussion of our main findings. In

sec. 2.6.3, we showed that all but one term in the O(p0) part of the two-point function

at one-loop level is correctly regularised. Key to this, was the finding that the O(p0)

actually only depends on zero-point kernels and two-point action vertices. If properly

regularised, it has to vanish by gauge invariance. We show that it does vanish. For

the properly regularised terms, this is so because they can be written as a vanishing

UV surface term in momentum space. The one term that is not properly regularised

can however be formally set to zero because it is the Λ derivative of a Λ independent

quadratically divergent term.

The O(p2) part should give us the one-loop beta function, if properly regularised, and

thus be universal (independent of regularisation artefacts). In sec. 2.6.4 we recast the

result in a way that has previously allowed a universal answer to be extracted, if prop-

erly regularised [71, 88]. We saw that although the O(p2) part is formally transverse, if

computed assuming complete UV regularisation there is actually a non-vanishing longi-

tudinal part. The problem is caused by unregulated UV divergences, which appears to

be associated to the one found at O(p0), and is independent of choice of cutoff functions

or covariantization.

Similarly to the O(p0) case, if the incompletely regularised longitudinal part is regarded

formally as an infinite constant, it can then be set to zero, since it is differentiated by

Λ. The problem then is that the earlier techniques can no longer be used to extract a

universal answer because it is no longer clear which IR divergent terms should provide

a universal answer and which should be formally set to zero. Indeed we saw explicitly

that in the current case these terms can then be made independent of the classical

effective action. Instead they can be seen to depend only on the seed action, part of the

regularisation structure which we are free to choose (and which is thus non-universal).

Note that these results are not at variance with ref. [47] where the one-loop beta function

coefficient is successfully computed. It is there extracted from determinants of zero-point

kernels and two-point vertices (the result obtained in 2.6.3), using a heat kernel approach.

It is thus insensitive to the problems with UV regularisation that we are highlighting.

Indeed the heat-kernel expression formally depends only on the value of these kernels at

vanishing momentum.

Our results show that the one-loop off-shell contribution is not fully regularised. At one

loop it appears to be possible to proceed formally and obtain valid answers, but it is

unclear whether that would still be possible at higher loops. Also, the powerful tech-

niques [71, 88] that previously allowed universal results to be extracted, unfortunately

fail in this formulation. As we have already noted, a repair of this problem (if there is

one which does not introduce explicit PV fields as done previously [28, 62–83]) would
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seem to require structural changes. Hints lie in the insufficient regularisation at O(p0)

seen in 2.6.3, and in the longitudinal sector as seen in sec. 2.6.4 and discussed in more

general terms in sec. 2.3. Hopefully, following these hints, a way can be found to imple-

ment a more complete regularisation.

2.A Interleave identities for compound kernels

Interleave identites (2.4.29) hold for those kernels whose covariantisation is carried by

gauge fields acting by commutation. This means, for example, that any well-behaved

(or quasi-local) function of ∆a
b or ∆∥ fulfills this condition. We exploit these identities

for example in the one-loop beta function calculation where it allows the cancellation

of certain terms. However, the two kernels Ka
b and Ca

b, are not solely constructed in

this way, and it is not a priori evident that they still obey interleave identities. It may

be that they do not at some higher point level. Fortunately for us they do obey the

interleave identities up to the two-point level, and this is all that we need.

In this appendix we prove that the identities do hold up to this level using the other

already established symmetries. At the same time we give more details on how to

construct them. Given the definition of Ka
b in (2.2.64), it is sufficient to check the

vertices of Ca
b. Then, since κab is a function of ∆a

b, it is guaranteed that a similar

behaviour is inherited by the Ka
b vertices. From (2.2.50) we can write

(︁
C−1

)︁a
b in the

following way: (︁
C−1

)︁a
b = δab +Ra

b + zab , (2.A.1)

where Rab := γamA,mnγ
nb and zab := Ka

αY
αβKb

β. It is easy to see that zab is made out of

gauge fields which act by commutation, and hence its vertices obey interleave identities.

However, checking whether R vertices satisfy these identities or not is non-trivial. From

sec. 2.4.2.2 we see that for two (matrix valued) functions Jµ(x) and Jν(y) the following

equivalent statements can be written:

JaR
abJb ≡

∫︂
x

∫︂
y
Ja
µ(x)R

ab
µν(x, y)J

b
ν(y) (2.A.2)

=
2

Λ2
tr

∫︂
x

∫︂
y
Jµ(x)Rµν(x, y)Jν(y) (2.A.3)

=
2

Λ2

∞∑︂
k=0

k∑︂
m=0

∫︂
x

∫︂
y

∫︂
x1···xk

Rµ1...µk−m,µk−m+1...µk;µν(x1 . . . xk−m;xk−m+1 . . . xk;x, y)

× tr
[︂
Jµ(x)Aµ1(x1) · · ·Aµk−m

(xk−m)Jν(y)Aµk−m+1
(xk−m+1) · · ·Aµk

(xk)
]︂
,

(2.A.4)

where we note that the sum is half that in (2.4.27) and we used the definition of func-

tional derivatives below (2.2.13) and normalisation of the generators. We also note that
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Rab
µν(x, y) is given by5

Rab
µν(x, y) =

1

Λ4

δ2A

δAb
ν(y)δA

a
µ(x)

, (2.A.5)

We can look at the functional derivatives of A in more detail if we use the trace expansion

(2.4.13). The first functional derivative takes the following form:

δA

δAa
µ(x)

=
∞∑︂
k=2

∫︂
x1...xk−1

Aµµ1...µk−1
(x, x1 . . . xk−1)tr

[︂
T aAµ1(x1) . . . Aµk−1

(xk−1)
]︂
, (2.A.6)

where we consider only the single-trace terms which are the only ones of interest to us.

If we differentiate it a second time, we will obtain:

δ2A

δAb
ν(y)δA

a
µ(x)

=

=
∞∑︂
k=2

k−2∑︂
m=0

∫︂
x1...xk−2

Aµµ1...µk−2−mνµk−1−m...µk−2
(x, x1 . . . xk−2−m, y, xk−1−m . . . xk−2)

tr
[︂
T aAµ1(x1) . . . Aµk−2−m

(xk−2−m)T bAµk−1−m
(xk−1−m) . . . Aµk−2

(xk−2)
]︂
. (2.A.7)

If we now relabel k ↦→ k+2 and substitute the result into (2.A.2) using (2.A.5), we will

obtain the following identity:

JaR
abJb ≡

≡ 1

Λ4

∞∑︂
k=0

k∑︂
m=0

∫︂
x

∫︂
y

∫︂
x1...xk

Aµµ1...µk−mνµk−m+1...µk
(x, x1 . . . xk−m, y, xk−m+1 . . . xk)

tr
[︂
Jµ(x)Aµ1(x1) . . . Aµk−2−m

(xk−m)Jν(y)Aµk−m+1
(xk−m+1) . . . Aµk

(xk)
]︂
. (2.A.8)

This means that (2.A.2) and (2.A.4) remain equivalent provided that we make the

following identification:

Rµ1...µk−m,µk−m+1...µk;µν(x1 . . . xk−m;xk−m+1 . . . xk;x, y) =

=
1

2Λ2
Aµµ1...µk−mνµk−m+1...µk

(x, x1 . . . xk−m, y, xk−m+1 . . . xk) , (2.A.9)

which take the exact same form in momentum space.

If we now look at the one-point R part of (2.A.1), we will obtain:

Rµ;αβ(p; r, s) =
1

2Λ2
Aµβα(p, s, r) , (2.A.10)

R,µ;αβ(; p; r, s) =
1

2Λ2
Aµαβ(p, r, s) . (2.A.11)

5Recall that we factor out the powers of g, cf. sec. 2.4.1.
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Three-point action vertices are totally anti-symmetric in all their arguments, and thus

the above expressions can be recast as

Rµ;αβ(p; r, s) +R,µ;αβ(; p; r, s) = 0 , (2.A.12)

which is exactly (2.4.29) at the one-point level.

At the two-point level the R part of (2.A.1) becomes:

Rµν;αβ(p, q; r, s) =
1

2Λ2
Aµνβα(p, q, s, r) , (2.A.13)

Rµ,ν;αβ(p; q; r, s) =
1

2Λ2
Aµβνα(p, s, q, r) , (2.A.14)

R,µν;αβ(; p, q; r, s) =
1

2Λ2
Aµναβ(p, q, r, s) . (2.A.15)

From (2.A.13) and (2.A.15) we can write the following:

R,µν;αβ(; p, q; r, s)−Rνµ;αβ(q, p; r, s) =
1

2Λ2
Aµναβ(p, q, r, s)−

1

2Λ2
Aνµβα(q, p, s, r)

=
1

2Λ2
Aµναβ(p, q, r, s)−

1

2Λ2
Aµναβ(p, q, r, s) = 0 ,

(2.A.16)

where in going from the first to the second line we have used charge conjugation invari-

ance. Similarly, working out the explicit form of the four-point A vertices, one can show

that the following expression also holds:

Rµ,ν;αβ(p; q; r, s) +Rµν;αβ(p, q; r, s) +Rνµ;αβ(q, p; r, s) = 0 . (2.A.17)

These last two identities are exactly the interleave identities (2.4.29) at the two-point

level for the R part of C−1. This means that the full one-point and two-point vertices

of C−1 also obey interleave identities.

We are now at the stage where we can inspect the vertices of Ca
b using C

a
m

(︁
C−1

)︁m
b =

δab. At O(Aµ), this can be expressed schematically in the following way:

one-point C = −
(︂
zero-point C

)︂
×
(︃
one-point C−1

)︃
×
(︂
zero-point C

)︂
, (2.A.18)

or explicitly as a set of two identities:

Cµ;αβ(p; r, s) = −Cαγ(r)C
−1
µ;γδ(p; r, s)Cδβ(s) , (2.A.19)

C,µ;αβ(p; r, s) = −Cαγ(r)C
−1
,µ;γδ(p; r, s)Cδβ(s) . (2.A.20)

If we use (2.A.12) for the full one-point C−1 vertices, we can recast the expressions above

as:

Cµ;αβ(p; r, s) + C,µ;αβ(; p; r, s) = 0 , (2.A.21)
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which is exactly the interleave identity (2.4.29) for one-point C vertices.

Similarly, at O(A2
µ) one can write schematically:

two-point C =−
(︂
zero-point C

)︂
×
(︃
two-point C−1

)︃
×
(︂
zero-point C

)︂
+
(︂
zero-point C

)︂
×
(︃
one-point C−1

)︃
×
(︂
zero-point C

)︂
×
(︃
one-point C−1

)︃
×
(︂
zero-point C

)︂
. (2.A.22)

From the above expression we can infer the explicit expression for the two-point C

vertices:

Cµ,ν;αβ(p; q; r, s) =− Cαα1(r)C
−1
µ,ν;α1β1

(p; q; r, s)Cβ1β(s)

+ Cαα1(r)C
−1
µ;α1γ(p; r, s+ q)Cγδ(s+ q)C−1

,ν;δβ1
(; q; p+ r, s)Cβ1β(s)

+ Cαα1(r)C
−1
,ν;α1γ(; q; r, s+ p)Cγδ(r + q)C−1

µ;δβ1
(p; q + r, s)Cβ1β(s) ,

(2.A.23)

Cµν;αβ(p, q; r, s) =− Cαα1(r)C
−1
µν;α1β1

(p, q; r, s)Cβ1β(s)

+ Cαα1(r)C
−1
µ;α1γ(p; r, s+ q)Cγδ(p+ r)C−1

ν;δβ1
(q; p+ r, s)Cβ1β(s) ,

(2.A.24)

C,µν;αβ(; p, q; r, s) =− Cαα1(r)C
−1
,µν;α1β1

(; p, q; r, s)Cβ1β(s)

+ Cαα1(r)C
−1
,µ;α1γ(; p; r, s+ q)Cγδ(p+ r)C−1

,ν;δβ1
(; q; p+ r, s)Cβ1β(s) .

(2.A.25)

The interleave identities C,µν;αβ(; p, q; r, s)−Cνµ;αβ(q, p; r, s) = 0 and Cµ,ν;αβ(p; q; r, s)+

Cµν;αβ(p, q; r, s) + Cνµ;αβ(q, p; r, s) = 0 follow trivially from (2.A.23), (2.A.24), and

(2.A.25) if we use (2.A.12), (2.A.16) for the full C−1 vertices. This concludes the proof

that the one and two-point functions of Ca
b and Ka

b, respectively, obey interleave iden-

tities.

2.B Why preregularisation is necessary

Consider the momentum integral [62]∫︂
q

{︃
1

q2 + Λ2
− 1

(q + p)2 + Λ2

}︃
. (2.B.1)

Evidently this is zero, since in the second term we can change variables to q ↦→ −q−p to
make it equal and opposite to the first. These sort of cancelling terms are generic and

unavoidable in a system of regularisation that uses gauge invariant PV regularisation.

For example, just such a relabelling is used in (2.6.37) to cancel terms against each other.
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Depending on how terms are unpacked and combined, they can then give contributions

that appear in a similar way to above. Expanding the second term in (2.B.1) to O(p2),

we obtain ∫︂
q

{︃
p2

(q2 + Λ2)2
− 4

(p·q)2

(q2 + Λ2)3

}︃
. (2.B.2)

In four dimensions by Lorentz invariance (actually rotational invariance since we are in

Euclidean signature) we can replace (p·q)2 by q2p2/4, so the above result simplifies to

Λ2p2
∫︂
q

1

(q2 + Λ2)3
, (2.B.3)

a manifestly positive convergent answer from a vanishing integral! The problem is that

(2.B.1) is finite but ambiguous; the result (2.B.3) can be cast as a total derivative but

with a finite surface term. Generally in situations where PV regularisation is used, we

must first pre-regularise (in a way that is compatible with gauge invariance) to avoid

this so-called momentum routing problem. This is done, not to subtract divergences

with respect to the pre-regulator, but in order to ensure that the integrals are defined

sufficiently carefully [86,95,98]. In the current chapter we use dimensional regularisation,

working in d = 4− ε dimensions when necessary. Then in (2.B.2), we effectively replace

(p·q)2 by q2p2/4 + ε q2p2/16. Using dimensional regularisation it is straightforward to

evaluate the new contribution and verify that it cancels (2.B.3), restoring agreement

with (2.B.1).
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Chapter 3

Universal scaling dimensions for

highly irrelevant operators in the

Local Potential Approximation

3.1 Introduction

In this chapter we investigate the properties of higher scaling dimension operators using

the effective average action flow equation (1.3.19), which we have discussed at large

in sec. 1.3. As mentioned before, one cannot solve exactly the flow equation, and

hence, in practical applications, some form of approximation becomes necessary. Here

we use the Local Potential Approximation [99–108]. This amounts to simplifying the

flow equations by disregarding the momentum dependence of the effective action, except

for a local potential term, VΛ. Thus, for a single-component scalar field φ, the effective

action ΓΛ takes the form:

ΓΛ[φ] =

∫︂
x

(︃
1

2
(∂µφ)

2 + VΛ(φ)

)︃
. (3.1.1)

While an exact analytical solution to this truncated FRG formulation is still not possible

in general, the LPA enables numerical treatments that provide valuable insights into the

system’s behaviour. It allows for numerical estimates of various physical quantities,

including critical exponents and the scaling equation of state [28, 29, 34, 103, 109–114].

Moreover, the LPA serves as the initial step in a systematic derivative expansion [34,103,

109–111], which facilitates a more comprehensive exploration of the system’s properties

[28,29,34,110,112–114].

Nevertheless it is important to acknowledge the limitations of the LPA and, more gener-

ally, the derivative expansion. Since such truncations do not correspond to a controlled

expansion in some small parameter, the errors incurred can be expected to be of the
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same order in general as the quantities being computed. Furthermore, quantities that

should be universal, and, thus, independent of the specific form of the cutoff, are not.

It has long been understood that an exception to this is the general form of a non-trivial

fixed point potential V (φ) in the large field regime [34,103,109,111], which follows from

asymptotic analysis:

V (φ) = A|φ|d/dφ + · · · as φ→ ±∞ , (3.1.2)

where the ellipses stand for subleading terms (see later). The leading term coincides

with the scaling equation of state precisely at the fixed point. It is a simple consequence

of dimensional analysis on using the scaling dimension dφ = 1
2(d− 2 + η) for the field φ

at the fixed point, η being its anomalous dimension. However asymptotic analysis does

not fix the amplitude A or the anomalous dimension η, which have to be found by other

means, for example by numerical solution of truncated fixed point equations.

In this chapter, we will show that within LPA, asymptotic analysis combined with

Sturm-Liouville (SL) and Wentzel–Kramers–Brillouin (WKB) analysis,1 also allows one

to determine asymptotically the scaling dimension dn of the highly irrelevant (dn ≫ 1)

eigenoperators On = On(φ) of potential-type (those containing no spacetime deriva-

tives). Ordering them by increasing scaling dimension, we will show that dn = n(d−dφ)
to leading order in n. In the case of O(N) invariant scalar field theory with fixed N ≥ 0

the dimension dn is doubled to dn = 2n(d−dφ). The scaling dimension is thus indepen-

dent of N . It agrees with the result for the single scalar field since these eigenoperators

are functions of φ2 = φaφa, and thus pick out only the even eigenoperators (those sym-

metric under φ ↔ −φ) in the N = 1 case. We also show that the scaling dimension is

dn = 2n(d− dφ) whenever N = −2k, where k is a non-negative integer.

Once again these results are independent of the choice of cutoff and thus universal.

Indeed in this chapter, we will keep the cutoff function completely general throughout,

subject only to some weak technical constraints that we derive later. Note that, like

the fixed point equation of state (3.1.2), the dn take the same form, independent of the

choice of fixed point, provided only that dφ > 0 and that the fixed point potential is

non-vanishing. We also show that the next to leading correction to dn behaves as a

power of n. The power is universal although the coefficient of the subleading correction

is not.

Actually this approach was first employed to determine the scaling dimension of highly

irrelevant eigenoperators in an f(R) approximation [117–120] to the asymptotic safety

scenario [55–57] in quantum gravity. The f(R) approximation serves as a close analogue

to the LPA in this context [121–123]. However, while the resulting scaling dimensions dn

exhibit a simple nearly-universal form for large values of n, they nevertheless retained

1See e.g. ref. [115] for textbook discussion of SL methods and ref. [116] for WKB methods.
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strong dependence on the choice of cutoff. This issue can be traced back [118] to the so-

called single-metric (or background field) approximation [55], where the identification of

the quantum metric with the background metric is made in order to close the equations.

The work done in the present chapter will thus complete the circle by demonstrating that,

indeed, without such an approximation, the results become truly universal. Additionally,

it showcases the power of these methods in a simpler context.

The chapter is organised as follows. We first analyse the functional renormalisation

group equations for a single scalar field in the LPA. From the eigenoperator equation

we write the resulting SL equation in Schrödinger form and thus, by taking the large

field limit, deduce the asymptotic form of the renormalisation group eigenvalues in the

WKB limit. Sec. 3.3 extends the analysis to O(N) scalar field theory using the same

approach. Finally in sec. 3.4 we conclude and discuss the results, placing them in a

wider context.

3.2 Flow equations in LPA

The LPA approximation amounts to setting the field φ in the Hessian to a spacetime

constant, thus dropping from a derivative expansion all terms that do not take the form

of a correction to the potential. The flow equation for VΛ(φ) then takes the form:(︃
∂t + dφφ

∂

∂φ
− d
)︃
VΛ(φ) = −

1

2

∫︂
q

∆̇

∆

1

1 +∆V ′′
Λ (φ)

, (3.2.1)

where ∂t = −Λ∂Λ, t being the renormalisation group ‘time’ which, following [30], we

have chosen to flow towards the IR. Here the momentum, potential and field are already

scaled by the appropriate power of Λ to make them dimensionless. Then ∆ = C(q2)/q2

no longer depends on Λ. The same is true of ∂t∆Λ, which after scaling we write as ∆̇,

where

∆̇ = 2C ′(q2) . (3.2.2)

Since C(q2) is monotonically increasing, we have that ∆̇ > 0.

The scaling dimension of the field is dφ = 1
2(d − 2 + η), where η is the anomalous

dimension. Since η arises from the renormalisation group running of the field, and is

typically inferred from corrections to the kinetic term, one would naturally conclude

that it vanishes in LPA [30, 99–106, 112]. Nevertheless, as noticed in refs. [107, 108],

this assumption is not necessary. The flow equation (3.2.1) is still a mathematically

consistent equation with η ̸= 0. However, since we cannot determine η directly from

(3.2.1), its value needs to be input from elsewhere (either from experiment or other

theoretical studies). We will follow this strategy, in the expectation that it improves the

accuracy of our final estimates for dn.
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At a fixed point, VΛ(φ) = V (φ) and η have no renormalisation group time dependence.

The eigenoperator equation follows from linearising about a FP:

VΛ(φ) = V (φ) + ε v(φ) eλt , (3.2.3)

ε being infinitesimal. Here λ is the RG eigenvalue. It is the scaling dimension of the

corresponding coupling, and is positive (negative) for relevant (irrelevant) operators.

The scaling dimension of the operator v(φ) itself is then d−λ. We write the eigenoperator

equation in the same form as refs. [117,118,123]:

−a2(φ)v′′(φ) + a1(φ)v
′(φ) + a0(φ)v(φ) = (d− λ)v(φ) , (3.2.4)

where the φ-dependent coefficients multiplying the eigenoperators are given by:

a0(φ) = 0 , (3.2.5)

a1(φ) = dφφ , (3.2.6)

a2(φ) =
1

2

∫︂
q

∆̇

(1 + ∆V ′′)2
> 0 , (3.2.7)

and we have noted that a2 is positive. We can now repeat the analysis carried out

in [117,118,123] to solve for λ in the case of high dimension eigenoperators.

3.2.1 Asymptotic solutions

For large φ, the RHS of (3.2.1) can be neglected. Thus, at a fixed point, the equation

reduces to a first order ODE (ordinary differential equation) which is easily solved. It

gives the first term (3.1.2) in an asymptotic series solution [109]:

V (φ) = A|φ|m +O
(︁
|φ|2−m

)︁
as φ→ ±∞ , (3.2.8)

where for convenience we introduce

m = d/dφ , (3.2.9)

and A is a real constant (that is determined by solving for the full FP solution). The

subleading terms arise from iterating the leading order contribution to next order.

Of course there is always the trivial V (φ) ≡ 0 fixed point solution, corresponding to the

Gaussian fixed point. We will not be interested in that (the scaling dimensions in that

case are exactly known and reviewed in the discussion in sec. 3.4). Instead we focus on

non-trivial FP solutions for which A ̸= 0. In principle, A could be different in the two

limits φ→ ±∞, although, in practice, the fixed point potentials (3.2.8) are symmetric.

Anyway, we will see that A drops out of the analysis in a few further steps.
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It is helpful for the following to note that m > 3. Neglecting η (typically η ≪ 1, see

e.g. [124]), we see that m is a decreasing function of d for all d > 2. In practice, non-

trivial FP solutions only exist for d < 4 (see e.g. [103]). In the limit d → 4−, η → 0

(by the ϵ expansion [124]) and thus m → 4. In d = 2 dimensions, the asymptotic

solution (3.2.8) corresponds to that of a unitary minimal model [125,126]. The one with

the largest anomalous dimension is that of the Ising model universality class which has

η = 1/4, thus in d = 2 dimensions we have m ≥ 8 for all the unitary minimal models.

Note that the solution (3.2.8) has a single free parameter even though the FP equation is

a (non-linear) second order ODE. The second parameter, if it exists, can be deduced by

linearising around (3.2.8), writing V (φ) ↦→ V (φ)+ δV (φ), and solving the flow equation

(3.2.1) at the FP this time for δV . Since δV satisfies a linear second order ODE and

one solution is already known, namely δV = ∂AV (φ), it is easy to find the solution that

corresponds at the linearised level to the missing parameter [103, 109]. However, one

then discovers that these ‘missing’ linearised solutions are rapidly growing exponentials.

Such a linearised perturbation is not valid asymptotically since for diverging φ it is

much larger than the solution (3.2.8) we perturbed around. Hence, the FP asymptotic

solutions only have the one free parameter, A.

Substituting (3.2.8) into (3.2.7), we see that asymptotically a2(φ) scales as follows:

a2(φ) = F |φ|2(2−m) +O
(︂
|φ|3(2−m)

)︂
as φ→ ±∞ , (3.2.10)

where F is positive and cutoff dependent:

F =
1

2 (m(m− 1)A)2

∫︂
q

∆̇

∆2
= − 1

(m(m− 1)A)2

∫︂
q
q4

∂

∂q2
C−1(q2) . (3.2.11)

We will assume that the integral converges. This imposes some weak constraints on the

cutoff profile. From (3.2.11), we see that we require C(q2) to vanish slower than qd+2 as

q → 0, and C → 1 faster than 1/qd+2 as q →∞. This is true for example for the popular

form of additive (i.e. mass-type) cutoff [45] (which was the one used in the analogous

f(R) analyses in refs. [117,118]):

r(q2) =
q2

exp(aq2b)− 1
, a > 0, b ≥ 1 , (3.2.12)

provided also we set b < 1
2(d+ 2), the relation to C(q2) being q2C−1(q2) = q2 + r(q2).

Given that a2(φ) vanishes asymptotically, it is tempting to neglect the a2 term in (3.2.4).

We will shortly justify this. By neglecting the a2 term, the ODE becomes linear first

order giving a unique solution up to normalization. Thus we deduce that the eigenop-

erators asymptotically scale as a power of the field:

v(φ) ∝ |φ|
d−λ
dφ + · · · , (3.2.13)
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where the ellipses stands for subleading corrections. The neglect of the a2 is justified as

follows. The missing solution is one that grows exponentially (again, so that a2(φ)v
′′(φ)

cannot be neglected). Since the ODE is linear, these are allowed solutions to (3.2.4),

but they are ruled out because they do not evolve multiplicatively in the RG [34, 110,

117,118,127,128].

Now, the asymptotic solution (3.2.13) imposes two boundary conditions (one for each

limit φ → ±∞) on the second order ODE (3.2.4), but since the ODE is linear this

overconstrains the equation2 which thus leads to quantisation of the RG eigenvalue λ.

We index the solutions as vn(φ), ordering them so that λn decreases as n increases. We

can now perform an SL transformation and deduce the asymptotic dependence of the

eigenvalues λn on n, as n→∞.

3.2.2 SL analysis

We can rewrite the eigenvalue equation (3.2.4) in a SL form by multiplying it with the

SL weight function

w(φ) =
1

a2(φ)
exp

{︃
−
∫︂ φ

0
dφ′a1(φ

′)

a2(φ′)
dφ′
}︃
, (3.2.14)

which is always positive due to the positivity of a2. Then the eigenvalue equation

becomes

−
(︁
a2(φ)w(φ)v

′(φ)
)︁′
= (d− λ)w(φ)v(φ) . (3.2.15)

The SL operator on the left, L = − d
dφ

(︂
a2w

d
dφ ·
)︂
, is self adjoint when acting on the

space spanned by the eigenoperators, i.e. it satisfies∫︂ ∞

−∞
dφu1(φ)Lu2(φ) =

∫︂ ∞

−∞
dφu2(φ)Lu1(φ) , (3.2.16)

when the ui are linear combinations of the eigenoperators. This is so because the bound-

ary terms at infinity, generated by integration by parts, vanish in this case. This follows

because, from (3.2.13), the ui diverge at worst as a power of φ, whilst w(φ)→ 0 expo-

nentially fast as φ→ ±∞.

Thus from SL analysis [115], we know that the eigenvalues λn are real, discrete, with

a most positive (relevant) eigenvalue and an infinite tower of ever more negative (more

irrelevant) eigenvalues, λn → −∞ as n→∞ [110]. Let us define a ‘coordinate’ x:

x =

∫︂ φ

0

1√︁
a2(φ′)

dφ′ (3.2.17)

2We can see this for example by imposing a normalization condition on v.
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(always taking the positive root in fractional powers). Defining the wave-function as

ψ(x) = a
1/4
2 (φ)w1/2(φ)v(φ) , (3.2.18)

enables us to recast (3.2.15) in the following way:

−d
2ψ(x)

dx2
+ U(x)ψ(x) = (d− λ)ψ(x) . (3.2.19)

This is a one-dimensional time-independent Schrödinger equation for a particle of mass

m = 1/2, with energy E = d− λ i.e. just the eigenoperator scaling dimension, and with

potential [117,118,123]:

U(x) =
a21
4a2
− a′1

2
+ a′2

(︃
a1
2a2

+
3a′2
16a2

)︃
− a′′2

4
, (3.2.20)

where the terms on the right hand side are functions of φ.

From the limiting behaviour of a2(φ), (3.2.10), we see that asymptotically the coordinate

x scales as

x =

∫︂ φ

0

(︃
|φ′|m−2

√
F

+O(1)

)︃
dφ′ = ± |φ|m−1

(m− 1)
√
F

+O(|φ|) as φ→ ±∞ , (3.2.21)

so in particular when φ → ±∞ we have x → ±∞. On the right hand side of (3.2.20),

the first term dominates at leading order (LO) and next-to-leading order (NLO). Since

asymptotically,
a21(φ)

4a2(φ)
=
d2φ
4F
|φ|2m−2 +O(|φ|m) , (3.2.22)

we thus find that

U(x) =
1

4
(d− dφ)2x2 +O(|x|1+

1
m−1 ) as x→ ±∞ . (3.2.23)

To LO, this is the potential of a simple harmonic oscillator of the form 1
2mω

2x2, where

ω = d− dφ =
1

2
(d+ 2− η) . (3.2.24)

3.2.3 WKB analysis

We can now use WKB analysis to compute the asymptotic form of the energy levels,

a.k.a. operator scaling dimensions, En, at large n. This follows from solving the equality∫︂ xn

−xn

dx
√︁
En − U(x) =

(︃
n+

1

2

)︃
π , (3.2.25)

for the total phase of the wave oscillations described by ψ(x), in the limit of large

En [116]. Here xn are the classical turning points, i.e. such that En = U(±xn). Now,
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the above integral is dominated by the regions close to the turning points, where we

can substitute the asymptotic form (3.2.23). Including the subleading correction pro-

portional to some constant γ (that depends on the cutoff profile) the integral is

ω

2

∫︂ xn

−xn

dx

√︂
x2n + γx

1+ 1
m−1

n − x2 − γ|x|1+
1

m−1 =

=
ω

2
x2n

∫︂ 1

−1
dy

√︂
1− y2 + γx

1
m−1

−1
n (1− |y|1+

1
m−1 ) . (3.2.26)

Since the xn are also large we can now evaluate the right hand side and thus from

(3.2.25) we get the asymptotic relation between xn and n:

ωπ

4
x2n +O

(︃
x
1+ 1

m−1
n

)︃
= nπ . (3.2.27)

Hence, using (3.2.23), (3.2.24) and (3.2.27), the scaling dimension of the eigenoperators

takes the form

dn = En = d− λn = U(xn)

= nω +O
(︂
n

m
2(m−1)

)︂
= n(d− dφ) +O

(︂
n

m
2(m−1)

)︂
as n→∞ . (3.2.28)

The subleading correction to the critical exponents contain information about the cutoff

via the constant γ introduced in (3.2.26). However, at leading order, the result is

independent of the cutoff, and hence universal.

3.3 O(N) scalar field theory

Now let us apply the same treatment to N scalar fields φa (a = 1, . . . , N) with an

O(N) invariant potential VΛ(φ
2) = VΛ(ρ) [129–132], in the LPA. We use the shorthand

ρ = φaφa = φ2. The flow equation (3.2.1) becomes [111,133]:(︃
∂t − d+ 2dφρ

∂

∂ρ

)︃
VΛ(ρ) = −

1

2

∫︂
q

∆̇

∆

(︁
M−1

)︁aa
, (3.3.1)

where the matrix M is given by:

Mab = δab +∆
∂2VΛ(ρ)

∂φa∂φb
= δab + 2∆

[︂
δabV ′

Λ(ρ) + 2φaφbV ′′
Λ (ρ)

]︂
. (3.3.2)

Inverting and tracing, yields:

(︁
M−1

)︁aa
=

N − 1

1 + 2∆V ′
Λ(ρ)

+
1

1 + 2∆V ′
Λ(ρ) + 4∆ρV ′′

Λ (ρ)
. (3.3.3)
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In the limit of large ρ, the right hand side of the flow equation (3.3.1) can be neglected

at leading order. This implies that a FP solution VΛ(ρ) = V (ρ) takes the following

asymptotic form:

V (ρ) = Aρ
m
2 +O

(︂
ρ1−

m
2

)︂
as ρ→∞ , (3.3.4)

where as before the subleading term has been calculated by iterating the leading contri-

bution to next order.

The RG eigenvalue equation follows by linearising (3.3.1) around the fixed point solution,

VΛ(ρ) = V (ρ) + ε v(ρ) eλt , (3.3.5)

giving an equation for v(ρ) with the same structure as (3.2.4), i.e.

−a2(ρ)v′′ + a1(ρ)v
′ + a0(ρ)v = (d− λ)v , (3.3.6)

the same value for a0(ρ) = 0, but different expressions for a1(ρ),

a1(ρ) = 2dφρ−
∫︂
q
∆̇

[︃
1

(1 + 2∆V ′ + 4∆ρV ′′)2
+

N − 1

(1 + 2∆V ′)2

]︃
, (3.3.7)

and a2(ρ), which however is again always positive:

a2(ρ) =

∫︂
q

2∆̇ρ

(1 + 2∆V ′ + 4∆ρV ′′)2
. (3.3.8)

Using the asymptotic fixed point solution (3.3.4) (and assuming A ̸= 0) we get that

asymptotically a2 scales as follows:

a2(ρ) = 4Fρ3−m +O
(︂
ρ4−

3m
2

)︂
as ρ→∞ , (3.3.9)

where F was already defined in (3.2.11). By similar arguments to before, we see that

m > 3 in practice, so this implies a2(ρ)→ 0. We also find that a1 scales as follows:

a1(ρ) = 2 dφρ+O
(︁
ρ2−m

)︁
as ρ→∞ . (3.3.10)

If we substitute ρ = φ2 into the above asymptotic expansions, they differ from the large

φ behaviour (3.2.6) of a1(φ) and (3.2.10) of a2(φ). However they reproduce the previous

results once we transform the ODE (3.3.6) by changing variables ρ = φ2. Thus by the

same arguments as before, cf. (3.2.13), we also know that for ρ→∞, we must have

v(ρ) ∝ ρ
d−λ
2dφ + · · · . (3.3.11)

However, this now imposes only one boundary condition on the linear ODE (3.3.6) since

ρ is restricted to be non-negative. On the other hand we see from (3.3.8) that a2(0) = 0,

so the ODE has a so-called fixed singularity at ρ = 0. In order to ensure that v(ρ)
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remains non-singular at this point, an additional boundary condition is then required:

a1(0)v
′(0) = (d− λ)v(0) . (3.3.12)

Now we again have two boundary conditions, overconstraining the equation, and leading

to quantisation of the RG eigenvalue λ.

3.3.1 SL analysis

The last step is to perform the SL analysis, which also differs because of the ρ = 0

boundary. For small ρ we have

a2(ρ) = 2Gρ+O(ρ2) and a1(ρ) = −GN +O(ρ) , (3.3.13)

where we have set

G =

∫︂
ddq

(2π)d
∆̇

[1 + 2∆V ′(0)]2
. (3.3.14)

Note that G is of course positive. (By Taylor expanding (3.3.1) one sees that its conver-

gence is guaranteed for any such solution to the flow equation.) The SL weight function

now takes the form

w(ρ) =
1

a2(ρ)
exp

{︃
−
∫︂ ρ

ρ0

dρ′
a1(ρ

′)

a2(ρ′)

}︃
, (3.3.15)

where by (3.3.13) a non-zero lower limit, ρ0 > 0, is required to avoid the integral

diverging (when N ̸= 0).

Using w(ρ) we can now cast (3.3.6) in SL form (3.2.15). However, for the SL operator

to be self-adjoint, we need the boundary contributions that appear on integration by

parts, to vanish. This is still true for large field since as ρ → ∞, the eigenoperators

diverge at worst as a power, whilst from (3.3.9) we have a2(ρ)→ 0, and thus w(ρ)→ 0

exponentially fast. At the ρ = 0 boundary we require:3

lim
ρ→0

a2(ρ)w(ρ)
(︁
vi(ρ)v

′
j(ρ)− vj(ρ)v′i(ρ)

)︁
= 0 , (3.3.16)

for any two eigenfunctions vi(ρ) and vj(ρ). This is true for all N > 0 since by (3.3.13)

and (3.3.15) we see that for small ρ,

a2(ρ)w(ρ) ∝ ρN/2 [1 +O(ρ)] . (3.3.17)

We have thus determined that the SL operator is self-adjoint for all N > 0.

Actually, N = 0 is also interesting since it corresponds to the universality class of

fluctuating long polymers [124]. In this case, the above analysis shows that a2(0)w(0) >

3Using (3.3.12) and (3.3.13), this can be reduced to limρ→0 a2(ρ)w(ρ)(λi − λj) vi(ρ)vj(ρ) = 0 (when
N ̸= 0).
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0, which would appear to imply that (3.3.16) is no longer satisfied. However from (3.3.13)

we see that a1(0) = 0 now and thus, from (3.3.12), either λi = d or vi(0) = 0 [111].

The first possibility corresponds to the uninteresting solution v(ρ) ≡ 1, i.e. the unit

operator, which we discard. All the other eigenoperators must thus satisfy vi(0) = 0,

and so (3.3.16) is satisfied in this reduced space. Therefore, with this one proviso, the

SL operator is actually self-adjoint for all N ≥ 0.

For general N < 0, the SL operator fails to be self-adjoint, and thus SL analysis is no

longer applicable. However for N = −2k, k a non-negative integer, something special

happens. The first k+1 eigenoperators with the lowest scaling dimension turn out to have

exactly soluble scaling dimensions, in fact coinciding with the Gaussian ones [134–136].

(The case N = 0 above is the first example, the lowest dimension operator being the

unit operator with scaling dimension zero.) Again, the SL operator is self-adjoint in

the remainder of the space. For example for N = −2, one knows from ref. [111] that

the remaining eigenoperators satisfy vi(0) = v′i(0) = 0, and thus vi(ρ) ∝ ρ2 for small

ρ, whilst for N = −4 boundary conditions force the remaining eigenoperators to satisfy

vi(ρ) ∝ ρ3 for small ρ. From that analysis it is clear that in general at N = −2k, we
have that the remaining operators satisfy

vi(ρ) ∝ ρk+1 as ρ→ 0 . (3.3.18)

Combining these observations with (3.3.16) and (3.3.17), we see that the SL operator is

indeed self-adjoint in the reduced space defined by excluding the first k + 1 operators.

The SL equation can now be recast in the same way as before, using (3.2.17) for x

and (3.2.18) for ψ(x) (except for the obvious replacement of φ by ρ). The resulting

Schrödinger equation is then precisely as before, viz. (3.2.19), and the potential U(x)

also takes precisely the same form in terms of the ai, viz. (3.2.20). However the ρ = 0

boundary turns into an x = 0 boundary since, by (3.3.13) and (3.2.17), we have

x =
√︁
2ρ/G+O

(︂
ρ

3
2

)︂
as ρ→ 0 . (3.3.19)

Thus, using a2 from (3.3.13) and a2w from (3.3.17), we see that

ψ(x) ∝ x
N−1

2 v(x) (3.3.20)

for small x. Hence for all N > 1, ψ(x) vanishes as x → 0. On taking into account the

behaviour (3.3.18) we see that in the reduced space, ψ(x) also vanishes for the special

cases N = −2k. In this limit the leading contributions to the potential come from the

first, third and fourth terms in (3.2.20), and thus we find:

U(x) =
(N − 1)(N − 3)

4x2
+O(1) as x→ 0 . (3.3.21)
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The cases N = 1, 3 are exceptional since this leading behaviour then vanishes, whilst the

range 1 < N < 3 will need a separate treatment because the potential is then unbounded

from below.

At the other end of x’s range, we find that

x =

∫︂ ρ

0
dρ′

{︄
(ρ′)

1
2
(m−3)

2
√
F

+O
(︂
ρ′−

1
2

)︂}︄
=

ρ
1
2
(m−1)

(m− 1)
√
F

+O
(︂
ρ

1
2

)︂
as ρ→∞ . (3.3.22)

Identifying ρ = φ2, this is the same formula (3.2.21) as before. The potential U(x)

is again dominated by the first term in (3.2.20), both at LO and NLO. Substituting

the asymptotic expressions (3.3.10) and (3.3.9) for a1 and a2, we find exactly the same

formula (3.2.23) for the large x behaviour of U(x). In particular the leading term is

again that of a simple harmonic oscillator with angular frequency ω = d− dφ.

3.3.2 WKB analysis

For the cases N > 3, 0 < N < 1 and N = −2m, we can now proceed with the WKB

analysis in the usual way. In this case we have for the total phase of the wave function:

∫︂ x+
n

x−
n

dx
√︁
En − U(x) =

(︃
n+

1

2

)︃
π , (3.3.23)

where x−n and x+n are the classical turning points, i.e. En = d − λn = U(x−n ) = U(x+n ).

In contrast to the previous case, the potential is not symmetric and there is no simple

relation between x−n and x+n .

In the large n limit, the contribution from the right hand boundary gives half of what we

obtained before. To see this in detail, let x+0 be some fixed finite value but sufficiently

large to trust the asymptotic form (3.2.23) of the potential, then the contribution from

the right hand boundary is

∫︂ x+
n

x+
0

dx
√︁
En − U(x) =

ω

2
(x+n )

2

∫︂ 1

x+
0 /x+

n

dy

√︂
1− y2 + γ(x+n )

1
m−1

−1(1− |y|1+
1

m−1 ) .

(3.3.24)

Taking into account the multiplying factor of (x+n )
2 we see that the lower limit x+0 /x

+
n

of the integral can be set to zero, since the correction is of order O(x+n ) which is smaller

than that given by the γ correction. Thus we get half the integral in (3.2.26) (with xn

replaced by x+n ) giving half the left hand side of (3.2.27):

∫︂ x+
n

x+
0

dx
√︁
En − U(x) =

ωπ

8
(x+n )

2 +O
(︂
(x+n )

1+ 1
m−1

)︂
. (3.3.25)

Using the asymptotic form of the potential, we see that the leading term can be written

as πEn/(2ω). In the large n limit, the left hand boundary makes a contribution that can



3.3. O(N) scalar field theory 83

be neglected in comparison. To see this let x−0 be some fixed finite value but sufficiently

small to use (3.3.21). Then the contribution from the left hand boundary is

∫︂ x−
0

x−
n

dx
√︁
En − U(x) =

1

2

√︁
(N − 1)(N − 3)

∫︂ x−
0 /x−

n

1
dy

(︄√︁
y2 − 1

y
+O(x−n )

)︄
. (3.3.26)

Since x−n is vanishing for large En, we see that this integral is O(1/x−n ) or, using again

the relation (3.3.21), O(E
1/2
n ). That only leaves the portion of the integral that goes

from x−0 to x+0 , but since these boundaries are fixed and finite, we see that this part also

grows as
√
En and thus it too can be neglected in comparison to (3.3.25).

Therefore asymptotically the integral in (3.3.23) is given by (3.3.25). Inverting the

relation to find (x+n )
2 asymptotically in terms of n, we thus find

dn = En = d− λn = U(x+n )

= 2nω +O
(︂
n

m
2(m−1)

)︂
= 2n(d− dφ) +O

(︂
n

m
2(m−1)

)︂
as n→∞ , (3.3.27)

i.e. precisely double the value we found for a single component field in (3.2.28) and

independent of N .

We see that technically this arises because the WKB integral is precisely half as large

in the O(N) case, the leading contribution coming from the x+n boundary only. Recall

that at N = 1, 3, the leading behaviour (3.3.21) of U(x) is no longer applicable. Since

the potential is now finite as x → 0, it is clear from the above analysis that the left

hand boundary continues to contribute at most O(E
1/2
n ) ∼

√
n and so can be neglected.

Thus we see that (3.3.27) applies also to these exceptional cases. Thus also for N = 1

we find twice the previous scaling dimension as a function of large index n. This is

in agreement with that single field result however, because these eigenoperators are a

function of φ2 only. Hence for a single component field, the current n indexes only the

even eigenoperators (those symmetric under φ↔ −φ).

Finally, let us show that our result (3.3.27) is also applicable to the range 1 < N < 3.

Although in this case, from (3.3.21), the potential U(x) → −∞ as x → 0, we know

from (3.3.20) that the solutions we need, have ψ(x) vanishing there. These solutions

are consistent with the Schrödinger equation (3.2.19) because for small x we have, by

(3.3.20), a diverging second derivative:

−d
2ψ(x)

dx2
∝ −(N − 1)(N − 3)

4x2
ψ(x) , (3.3.28)

which is precisely the right behaviour to cancel the divergence in the Schrödinger equa-

tion coming from the U(x)ψ(x) term. Meanwhile the v(x) term in (3.3.20) is well be-

haved in terms of oscillations at small x, behaving similarly to the above cases. Therefore

we are only neglecting a subleading contribution to the total phase, if we work instead

with a modified WKB integral where we replace the lower limit in (3.3.23) with some
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finite value x−0 . By the above analysis we then recover (3.3.27) again. In this way we

have shown that the result (3.3.27) is actually applicable for all N ≥ 0 and to the special

cases N = −2k (where k is a non-negative integer).

3.4 Summary and discussion

We have used SL theory and WKB methods to derive the scaling dimension dn of highly

irrelevant operators On around a non-trivial fixed point for scalar field theory in LPA.

The scaling dimensions dn are ordered so that they increase with increasing index n.

The dn are derived following the methods developed in [117]. They are given to leading

order in n, together with the power-law dependence on n of the next-to-leading order.

The results apply to all the non-trivial (multi)critical fixed points in 2 < d < 4, for single

component scalar field theory and for O(N) invariant scalar field theory, and also to the

unitary minimal models in d = 2 dimensions. The dn are universal, independent of the

choice of fixed point (except through the anomalous dimension η) and independent of

the cutoff choice which we have left general throughout, apart from the weak technical

constraints discussed below eqn. (3.2.11). In particular these constraints allow for

the popular smooth cutoff choice (3.2.12). The crucial property leading to universality

is that the results depend only on asymptotic solutions at large field, which can be

derived analytically, and are also universal in the same sense. Although non-universal

cutoff-dependent terms, in particular (3.2.11) and (3.3.14), enter into the calculation at

intermediate stages, they drop out in the final stages. For a single component real scalar

field, dn is given in (3.2.28). For O(N) scalar field theory, the dn are just twice this,

cf. (3.3.27), independent of N . This is in agreement with the single field result because

here n indexes the eigenoperators that are a function of φ2 only.

The first steps in deriving these results is to recast the eigenoperator equation in SL

form, and then establish that the SL operator is self-adjoint in the space spanned by

the eigenoperators. For a single component scalar field this follows after demonstrating

that the SL weight decays exponentially for large field, since the eigenoperators grow

at most as a power of the field. For the O(N) case the analysis is more subtle because

the relevant space is now the positive real line (parametrised by ρ = φ2 ≥ 0) and

thus the SL operator is self-adjoint only if the boundary terms at ρ = 0 also vanish.

By analytically determining the small ρ dependence of the relevant quantities we see

that the SL operator is self-adjoint when N > 0. For N ≤ 0, the SL operator is not

self-adjoint and the analysis does not apply. Presumably in these cases one would find

that the scaling dimensions dn are no longer real. However for a sequence of special

cases N = −2k, k a non-negative integer, the SL operator is self-adjoint on a reduced

space spanned by all eigenoperators apart from the first k + 1. The analysis can then

proceed on this reduced space. As we already noted, while most of these special cases are
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presumably only of theoretical interest, the N = 0 case describes the statistical physics

of long polymers.

The next step is to cast the SL equation in the form of a one-dimensional time-independent

Schrödinger equation with energy levels En = dn and potential U(x). For the single com-

ponent field this potential is symmetric, and in order to determine the energy levels En

asymptotically at large n, using the WKB approximation, we need only the behaviour of

U(x) at large x. The latter follows from our asymptotic analysis. For O(N) scalar field

theory, the space is the positive real line x ≥ 0, and thus for WKB analysis we need also

the behaviour of the potential U(x) at small x. Here we find that the range 1 ≤ N ≤ 3

requires a separate treatment because the leading term in U(x) turns negative leading

to a potential unbounded from below. Nevertheless we are able to treat this case and

the end result for dn, (3.3.27), is the same, thus applying universally to all N ≥ 0 and

the N = −2k special cases.

Although these results are universal, they are still derived within LPA, which is an

uncontrolled model approximation. One might reasonably hope however that the fact

that these results are universal in the sense of being independent of the detailed choice

of cutoff, is an indication that they are nevertheless close to the truth. On the other

hand the LPA [102] of the Polchinski flow equation [36] is in fact completely cutoff

independent, although this property arises rather trivially. It is actually equivalent

under a Legendre transformation [137] to the flow equation (3.2.1) for the Legendre

effective action in LPA, as we study here, but only for a special (but actually popular)

choice of additive cutoff known as the optimised cutoff [44]. However the optimised

cutoff does not satisfy our technical constraints given below (3.2.11) so our analysis is

invalid for this case. Nor in fact does a sharp cutoff [35, 100, 103, 138] or power-law

cutoff [109] satisfy the technical constraints. What this means is that these particular

cutoffs fail to regularise completely the region of large fields, in the sense that a2, defined

by (3.2.7) or (3.3.8), no longer has an asymptotic expansion given simply by integrating

over the asymptotic expansion of its integrand. For these three particular cutoffs, regions

of momenta far from Λ alter the asymptotic expansion of a2 so that it is no longer of

the form (3.2.10) or (3.3.9), and for this reason these cutoffs are less satisfactory.

Nevertheless, following our methods, it would be straightforward to derive the asymp-

totic scaling dimensions dn in LPA for any or all of these three special choices of cutoff,

by using the particular form of the LPA flow equation in these cases (which are known

in closed form, since the momentum integrals can be calculated analytically in these

cases). The results will differ from the dn derived here and amongst themselves, but

their investigation would improve insight into the accuracy of the LPA in this regime.

Furthermore it would seem possible to generalise any of these special choices of cutoff

to their own class of cutoffs with similar properties, and thus understand the extent to

which the results could still be cutoff independent, up to some appropriate constraints,

in these cases, and gain a more detailed understanding of why the dn differ.
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Potential Approximation

Unfortunately our dn do not seem to match in a useful way to existing results in the

literature. The LPA restricts us to eigenoperators that contain no spacetime derivatives,

and thus our index n counts only over these. In reality all eigenoperators (apart from

the unit operator) contain spacetime derivatives, so in particular it is not clear how our

index n would map into the exact sequence.

However in some special limits the LPA is effectively exact. This is true for the Gaussian

fixed point for example, where dn = ndφ (with η = 0). Our scaling dimensions dn differ

from this, but the Gaussian fixed point is specifically excluded from our analysis since

our results apply only to non-trivial fixed points, such that the asymptotic expansion of

the fixed point potential takes the form (3.1.2) or (3.3.4) with A ̸= 0.

The LPA also becomes effectively exact in the large N limit [133], and there the scaling

dimensions are dn = 2n (with η = 0) which again differs from our result (as well as

differing from the Gaussian fixed point result). Furthermore they continue to disagree

even if we now take a second limit such that both n and N are sent to infinity. However

in this case we have an example where the order of the limits matters. The N → ∞
result is derived for dn whilst first holding n fixed, while our result applies first for fixed

N while n→∞.

The difference can be seen at the technical level. The first term on the right hand

side of the flow equation (3.3.1) is proportional to N . In our analysis however it is

the denominators that dominate. On the other hand in the large N analysis, only the

first term survives, resulting in a first order ODE with no SL properties (or Schrödinger

equation representation). The universal results fall out on the one hand in our analysis

from the asymptotic behaviour at large field, but on the other hand in large N they

fall out from a Taylor expansion around the minimum of the fixed point potential [133].

There seems unfortunately to be no way to bridge the gap between these two limiting

regimes.

An even clearer example where the exchange of limits do not commute, is provided

by the special cases N = −2k. As we recalled in sec. 3.3, in these cases the first

k + 1 eigenoperators become degenerate, gaining Gaussian scaling dimensions. But our

dn apply to the highly irrelevant eigenoperators that are found in the reduced space,

which excludes these first k+1 operators, and hence have non-trivial scaling dimensions.

However if instead we fix on the nth eigenoperator and let N → −∞ by sending k →∞,

we see that this nth eigenoperator will fall into the excluded space and, thus, end up

with Gaussian scaling dimensions. The disagreement between the two results will then

remain even if we choose next to send n→∞.



87

Chapter 4

Off-shell divergences in quantum

gravity

4.1 Introduction

In this chapter we investigate the four dimensional perturbative quantum gravity, con-

structed by quantising the Einstein-Hilbert action. As previously emphasised in section

1.1.3, its perturbative non-renormalisability implies that, at each new loop order ℓ, coun-

terterms have to be added to the bare action to cancel UV divergences, and associated

with these counterterms are new operators and renormalised couplings that did not exist

in the bare action at lower loop order. Nevertheless, perturbative quantum gravity can

be consistently treated as an effective theory in this way [139], see also [54,140], in much

the same way as the (similarly non-renormalisable) chiral perturbation theory of low

energy pions [141–146].

In light of this, it might seem odd at first that we turn our attention towards investigating

gravity perturbatively. However, there are good reasons for such a choice [147–149]. Our

original motivation was to explore the possibility that the renormalisation group in this

context might provide a route to learning something useful about the non-perturbative

behaviour of quantum gravity. In particular, even in a perturbatively non-renormalisable

theory, the RG relates the leading UV divergence at each new loop order ℓ to one-loop

(ℓ = 1) divergences [146]. More physically, it allows us to compute in this way the

leading log power (lnµ)ℓ, of the standard arbitrary RG energy scale µ, at each loop

order ℓ. (These are called chiral logs in pionic perturbation theory [141–146].) If it

were possible to use the RG relations to compute these leading terms to arbitrarily high

loop order, and resum them, we would get a powerful insight into the UV behaviour of

quantum gravity at the non-perturbative level.



88 Chapter 4. Off-shell divergences in quantum gravity

In perturbative quantum gravity the leading divergences actually vanish on-shell. They

are therefore field reparametrisations, and have no effect on the S-matrix. However, if we

keep in mind that the UV behaviour of the full two-point correlator is characterised by its

off-shell dependence, we see that these leading divergences and associated powers of lnµ

could nevertheless be important. For example, after resumming them, one might find

that the non-perturbative UV behaviour of the two-point correlator, and potentially,

thus, that of quantum gravity more generally, is very different from what one would

naively conclude order by order in perturbation theory.

In a non-renormalisable gauge theory, divergences that vanish on the equations of motion

(of the quantum fields), are related to modifications of the BRST algebra [139] (see

also [150–154]).1 At each loop order the corresponding counterterms modify the BRST

algebra in a way that remains consistent with the Zinn-Justin identities [124,155]. They

do this by generating canonical reparametrisations of the antifields (sources for BRST

transformations) [156–159] and quantum fields.

On the other hand, as we already mentioned, in a generic non-renormalisable theory the

RG tells us that the leading divergences can be expressed recursively in terms of diver-

gences in one-loop diagrams, namely one-loop counterterm diagrams, being those that

contain at least one counterterm vertex [146]. As we demonstrate in sec. 4.2.5, these

recurrence relations are actually crucial for consistency of the above canonical trans-

formations. Unfortunately, for a non-renormalisable theory, the one-loop counterterm

diagrams are themselves new and non-trivial at each new loop order, and thus provide

a practical obstruction to deriving the leading divergence at arbitrary order.

Viewed in this light, the proposal of ref. [160] would appear to potentially provide a

breakthrough. The key idea is to exploit the pole equations that follow from assuming

finite generalised β-functions for the field reparametrisations. As we will see in sec.

4.4, they imply that the leading divergences at higher loops (ℓ > 1) should actually

be computable by recursive differentiation, in particular without computing any more

Feynman diagrams. Unfortunately, the proposal is not correct as will become clear

throughout this chapter. We spell this out in detail in sec. 4.4.

One problem with exploring these ideas is that there are effectively no explicit higher-

loop off-shell leading divergences in the literature that one can test against. Some purely

background field off-shell two-loop 1/ε2 divergences appear in the famous paper ref. [18],

but unfortunately they contain an error, as pointed out in ref. [160].

All of the above considerations motivated us to compute explicitly (in Feynman – De

Donder gauge and dimensional regularisation) the leading off-shell divergences for the

two-point vertex up to two loops, and in particular to draw out their intimate relation to

the one-loop counterterm diagrams [146] and to canonical transformations in the BRST

1Actually this was established only for vanishing background field. We treat the non-vanishing case
in sec. 4.2.9.
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algebra [139]. Since this necessitates computing, as an intermediate step, of the off-shell

divergences in one-loop diagrams with three external legs, two of which are quantum,

we widened our investigation so as to provide explicit results for all off-shell one-loop

divergences with up to three fields.

In fact even for just the graviton one-loop two-point divergence, the complete results do

not appear in the literature. Famously, the pure background part appears in ref. [161].

The pure quantum part appears in ref. [162], cf. also app. 4.A, and ref. [163]. But

to our knowledge the divergence in the mixed quantum background vertex has not

appeared before in the literature. These three divergences can be expressed in terms of

appropriately defined linearised curvatures. (For the quantum field, this is an accident

of Feynman – De Donder gauge, cf. sec. 4.3.1.2.) However, the three expressions are all

different (thus not as assumed in ref. [164]). Although they are all different, they are not

independent. Their relation is precisely such that all three are removed by a canonical

transformation of the quantum fields (and antifields).

This may come as a surprise since a priori one might expect that a separate reparametri-

sation of the background metric should also be performed (in fact this is what is assumed

and employed in ref. [160]). However in sec. 4.2.9 we show in general that this does not

happen. New divergences at each loop order which involve background and quantum

fluctuations, and do not vanish on the equations of motion, are purely a function of the

total metric (that combines background and fluctuation), whilst all other divergences

are renormalised by a canonical transformation of the quantum fields and antifields.

We show explicitly that this scenario continues to hold at the three-point level, where

now thousands of vertices are divergent. We verify that the divergence in the Gauss-

Bonnet topological term [18, 165] is indeed a function only of the total metric, whilst

all other divergences are removed by a canonical transformation on the antifields and

quantum fields.

Then in sec. 4.3.3 we use the one-loop counterterm diagrams to derive the leading

divergence at two loops in the pure background, pure quantum, and mixed, two-point

vertices. At this stage the dependence on the quantum field can no longer be written

in terms of linearised curvatures, reflecting the fact that BRST transformations are now

modified to the extent that they do not reduce to diffeomorphisms. Nevertheless, taking

proper account of non-linearities in the Zinn-Justin equations, we verify again that all

these divergences can be removed by a canonical transformation on the antifields and

quantum fields.

The chapter is structured as follows. In sec. 4.2 we define the BRST transformations

for the quantum fluctuation field and ghosts in the presence of a background metric.

We develop the formalism that is needed to cope with the fact that BRST invariance

is significantly altered in the process of renormalisation. Consistency is maintained
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by preserving the Zinn-Justin equation [124, 155] a.k.a. CME (Classical Master Equa-

tion) [156–158]. We work with so-called off-shell BRST and display results in so-called

minimal basis, since it provides the most elegant and powerful realisation, but in sec.

4.2.3 we explain why the calculations themselves are essentially the usual ones. Both the

bare action and the Legendre effective action satisfy the Zinn-Justin equation [124,155]

as we review in secs. 4.2.1 and 4.2.4 respectively, but beyond one loop this leads to a

tension and this tension is resolved by the RG relations for counterterm diagrams, as

we explain in secs. 4.2.5 and 4.2.6.

New divergences are invariant under the total classical BRST charge s0 which incor-

porates not only the BRST transformations but also the action of the Koszul-Tate

operator. Taking into account the presence of the background metric, their properties

are developed in sec. 4.2.7. Since s0 is nilpotent, solutions are classified according to

its cohomology. As we recall in sec. 4.2.8, those solutions that are s0-exact are first

order canonical transformations of the CME. At two loops we need also the canonical

transformations to second order and their relation to the perturbatively expanded CME.

This is derived in sec. 4.2.8. Then in sec. 4.2.9 we derive the general solution for s0-

closed divergences. We show that cohomologically non-trivial solutions can be taken to

be functions of only the total metric, with the rest being s0-exact, in particular there

are no separate purely background metric divergences.

As already mentioned, in sec. 4.3 we compute for the first time many off-shell countert-

erms that appear up to two loops, and use them to verify all these properties. In this

way also we provide a concrete example of how the BRST transformations get apprecia-

bly modified by loop corrections. In sec. 4.4 we investigate the proposal for generalised

beta-functions for field reparametrisations. We start by assuming as in the original pro-

posal that it is the background metric that should be reparametrised and then, given

the results of this chapter, put forward a more natural scenario where the beta functions

are built on the canonical transformations. Unfortunately neither of these ideas lead to

finite beta functions, and we explain why they cannot. Finally in sec. 4.5 we draw our

conclusions.

4.2 BRST in perturbative quantum gravity and its renor-

malisation

In this section we first set up the BRST framework that we will use, and then develop

its properties. Along the way we make a number of new observations. In particular we

will see in sec. 4.2.5 that RG invariance is actually essential to ensure that the BRST

symmetry can be renormalised successfully, whilst in sec. 4.2.9 we prove the absence of

a separate background field divergence in new divergences at each loop order.
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4.2.1 The CME for the bare action

In a perturbative setting we work with a quantum, a.k.a. fluctuation, field hµν . This

field is defined by our choice of expansion of the (total) metric gµν around a background

metric ḡµν [166]. Here we simply set

gµν = ḡµν + κhµν , (4.2.1)

where κ =
√
32πG is the natural expansion parameter, G being Newton’s gravitational

constant. We are interested in off-shell divergences, and their value depends on the

choice of expansion. Using the above allows us to compare with previous results in the

literature [18,161–163].

We will work with so-called off-shell BRST [167–170]. In this way we can fully exploit

BRST invariance at every step, and keep track of how it changes under quantum cor-

rections. Although we only actually need the Zinn-Justin equation [124, 155] for this,

it is convenient to phrase the calculation in terms of the Batalin-Vilkovisky formal-

ism [156–158], employing known identities for the antibracket [156–159]:

(X,Y ) =
∂rX

∂ϕA
∂lY

∂ϕ∗A
− ∂rX

∂ϕ∗A

∂lY

∂ϕA
, (4.2.2)

where X and Y are two functionals, ϕA are the quantum fields (including ghosts cµ)

and ϕ∗A are the antifields (opposite statistics sources for the BRST transformations QϕA

of the corresponding fields). As we will see, the resulting framework allows calculations

that are no more onerous than standard ones employing only on-shell BRST invariance

[163, 171, 172]. Furthermore, we can then display the results more compactly by using

the so-called minimal basis [156,163,171,172].

We choose the bare action S[ϕ, ϕ∗] to include these sources. It will be made up of the

classical action S0 plus a series of local counterterms Sℓ chosen to cancel the divergences

that appear at each loop order ℓ, whilst introducing the new renormalised couplings (cf.

sec. 4.2.6 [146]), which, because they run with µ, must also be introduced at that order:

S = S0 + ℏS1 + ℏ2S2 + · · · . (4.2.3)

By including the sources ϕ∗ we will additionally incorporate the counterterms necessary

to render finite the BRST transformations [124,155].

At the classical level the bare action is thus given by

S0 = −
∫︂
x

{︃
2

κ2
√
gR+ (Qhµν)h

∗µν + (Qcµ) c∗µ

}︃
. (4.2.4)

The first term is the Einstein-Hilbert action in Euclidean signature. In this chapter

we consider the pure gravity case only, and thus we take the cosmological constant to
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vanish. At the perturbative level, divergences do not force its introduction, so working

in this simplified setting is consistent. The integral is over

d = 4− 2ε (4.2.5)

dimensional spacetime (we will be using dimensional regularisation). Our conventions

for curvatures are Rµν = Rα
µαν , and [∇µ,∇ν ]v

λ = R λ
µν σv

σ.

For convenience, we choose to define the antifields to have indices in the position shown

and to transform as tensor densities of weight −1 so that no metric is required above

for these terms. Also for convenience, a minus sign is included so that none appears in

the identity:

QϕA = (S0, ϕ
A) . (4.2.6)

Note that this defines our charges to act from the left. Classically, the BRST charge Q

can be defined in terms of the Lie derivative along κcµ:

Qhµν =
1

κ
Qgµν = Lcgµν = 2∂(µc

αgν)α + cα∂αgµν , (4.2.7)

Qcµ =
κ

2
Lccµ = κcν∂νc

µ . (4.2.8)

Its nilpotence (Q2 = 0), and diffeomorphism invariance of the Einstein-Hilbert action,

implies

0 = QS0 = QϕA
∂lS0
∂ϕA

= −∂rS0
∂ϕ∗A

∂lS0
∂ϕA

=
1

2
(S0, S0) , (4.2.9)

and thus that the classical bare action S = S0 satisfies the so-called CME (Classical

Master Equation) [156–158], a.k.a. Zinn-Justin equation [124, 155]. Once we consider

quantum corrections, it is not the BRST transformations (4.2.7) and (4.2.8) that we can

preserve but only the CME, i.e. we will ensure that to any loop order ℓ the bare action

satisfies:

(S, S) = 0 . (4.2.10)

4.2.2 Canonical transformation to gauge fixed basis

To get the gauge fixed version, we need to work in the so-called extended basis, which

introduces a new field and antifield over and above what we already have (the so-called

minimal basis) [156–158]:

S(ext) = S +

∫︂
x

{︃
1

2α

√
ḡḡµνb

µbν + ibµc̄∗µ

}︃
, (4.2.11)

where α is the gauge parameter, bµ is a bosonic auxiliary field, and c̄∗µ sources the BRST

transformation for the antighost. From (4.2.6) we have Qc̄µ = −ibµ and Qbµ = 0.

Trivially, the CME and Q2 = 0 continue to hold. The next step is to introduce a
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suitable gauge fixing fermion Ψ[ϕ]. In the Batalin-Vilkovisky treatment this is used to

eliminate the antifields [156–159]. We keep them however, because of their crucial rôle

in renormalisation, and in particular in the Zinn-Justin identities, and instead get the

same effect by performing an exact canonical transformation [159]

ϕ̌
A
=

∂l

∂ϕ̌
∗
A

K[ϕ, ϕ̌∗] ,

ϕ∗A =
∂r
∂ϕA
K[ϕ, ϕ̌∗] ,

(4.2.12)

from the above gauge invariant (g.i.) basis {ϕ, ϕ∗}, to a gauge fixed (g.f.) basis {ϕ̌, ϕ̌∗},
setting [163,171,172]

K = ϕ̌
∗
Aϕ

A −Ψ[ϕ] . (4.2.13)

The advantage of employing a canonical transformation is that by definition it leaves

the antibracket invariant and thus in the new basis the CME continues to hold. We

choose

Ψ =

∫︂
x

√
ḡFµc̄

µ , (4.2.14)

and choose DeDonder gauge by setting Fµ to

Fµ = ∇̄νh
ν
µ − ∇̄µφ , (4.2.15)

φ =
1

2
hµµ =

1

2
ḡµνhµν . (4.2.16)

This breaks the diffeomorphism invariance as realised through the total metric gµν (as

required) but leaves it realised as “background diffeomorphism” invariance, using the

background metric ḡµν . From here on we raise and lower indices using the background

metric, unless explicitly mentioned otherwise, and employ the background covariant

derivative ∇̄µ (using the background metric Levi-Civita connection). As is well known,

we can put a connection in for free in Lie derivatives, so to make background diffeo-

morphism invariance manifest in (4.2.7) and (4.2.8) we can write the classical BRST

transformations (in minimal basis) instead as

Qhµν = 2∇̄(µc
αgν)α + cα∇̄αgµν

= 2∇̄(µcν) + 2κ∇̄(µc
αhν)α + κcα∇̄αhµν ,

Qcµ = κcν∇̄νc
µ .

(4.2.17)

Applying the canonical transformation we see that only the following antifields change:

h∗µν
⃓⃓
g.f.

= h∗µν
⃓⃓
g.i.
−
√
ḡ

(︃
∇̄(µ

c̄ν) − 1

2
∇̄αc̄

αḡµν
)︃
, (4.2.18)

c̄∗µ
⃓⃓
g.f.

= c̄∗µ
⃓⃓
g.i.

+
√
ḡFµ , (4.2.19)
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thus mapping the extended action (4.2.11) at the classical level to

S
(ext)
0

⃓⃓
g.f.

= S0 +

∫︂
x

{︃
1

2α

√
ḡḡµνb

µbν − i
√
ḡFµb

µ + ibµc̄∗µ

}︃
+

∫︂
x

√
ḡ

(︃
∇̄(µ

c̄ν) − 1

2
∇̄αc̄

αḡµν
)︃
Qhµν . (4.2.20)

The first term is (4.2.4), the classical action in minimal basis, and the last term is the

usual ghost action (in DeDonder gauge). The middle term is purely quadratic in bµ. We

could thus integrate it out. Dropping the c̄∗µ, the integrand is:

√
ḡ

2α
(bµ − iFµ)

2 +
α

2

√
ḡFµFµ . (4.2.21)

The bµ integral over the first term vanishes in dimensional regularisation, whilst the

second term is the standard gauge fixing term. In fact this is now the textbook on-shell

BRST treatment. The action S0 is still BRST invariant if we now set Qc̄µ = αFµ. But

this is not quite as powerful because Q2c̄µ = αQFµ, only vanishes on shell (QFµ = 0 is

the c̄ equation of motion). For this reason we keep bµ and stick with this off-shell BRST

treatment.

Since we will be working with a perturbative expansion over quantum fields and anti-

fields, we may as well treat the background metric perturbatively also. Following (4.2.1),

we write:

ḡµν = δµν + κh̄µν =⇒ gµν = δµν + κhµν + κh̄µν . (4.2.22)

At this stage we can invert the terms bilinear in the quantum fields to get the prop-

agators. For general α gauge see e.g. ref. [171]. We will use Feynman gauge, α = 2,

which gives the simplest propagators. Once again, the coefficients of off-shell divergences

depend on these choices. By using Feynman DeDonder gauge we make the same choices

as in older works [18,161–163], and can thus compare our results. Writing

ϕA(x) =

∫︂
ddp

(2π)d
e−ip·x ϕA(p) , (4.2.23)

we have:

⟨hµν(p)hαβ(−p)⟩ =
δµ(αδβ)ν

p2
− 1

d− 2

δµνδαβ
p2

, (4.2.24)

⟨bµ(p)hαβ(−p)⟩ = −⟨hαβ(p) bµ(−p)⟩ = 2 δµ(αpβ)/p
2 , (4.2.25)

⟨bµ(p) bν(−p)⟩ = 0 , (4.2.26)

⟨cµ(p) c̄ν(−p)⟩ = −⟨c̄µ(p) cν(−p)⟩ = δµν/p
2 . (4.2.27)
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4.2.3 Minimal basis and comparisons to on-shell BRST

We will be computing quantum corrections to the one-particle irreducible, a.k.a. Leg-

endre, effective action Γ. Since we have an auxiliary field bµ and the extra propagator

⟨bµhαβ⟩, at first sight this formalism complicates the computation and cannot be directly

compared to earlier results using on-shell BRST [18, 161, 162]. However, this is not the

case.

Figure 4.2.1: Examples that illustrate that one-particle irreducible Feynman diagrams
involving b interactions with an unspecified number of external background metric h̄
legs (fan of wavy lines), arise by starting with an internal h (solid line) propagating into
b (dashed line) and eventually back to h. These implement in diagrammatic language

the effect (4.2.21) of integrating out the b field.

First note that the h propagator (4.2.24) is the same as in the usual treatment. (This

is actually guaranteed in any gauge, but we omit the proof.) Setting h̄µν = 0 for the

moment, we note that the interaction terms (i.e. with three or more fields) in (4.2.20)

do not contain bµ or c̄∗µ. Feynman diagram contributions to Γ therefore have the same

property and coincide with those computed in the usual (on-shell BRST) treatment.

Switching back on the background metric, we do now have interactions involving the

background metric and either b2, or b and h. However it is not possible then to draw one-

particle irreducible diagrams with external b-field legs. The interactions only contribute

in diagrams by having h propagate to b and back again, see fig. 4.2.1, and the net effect

of including all these corrections is to incorporate in diagrammatic language the result

of integrating out b. Thus these Feynman diagrams simply reproduce the corrections

we get from the second term in (4.2.21), i.e. the standard gauge fixing term. So we see

that we can continue to ignore bµ and c̄∗µ provided we include the interactions from the

standard gauge fixing term. Furthermore, we get in this way the same results as the

standard treatment.

Next note that the corrections only depend on c̄µ through the combination on the right-

hand side of (4.2.18). This means that we can shift back to g.i. basis after computing

loop contributions to Γ, the only dependence on b and c̄∗ then being as in the extended

action (4.2.11). Furthermore, we can then display results in minimal basis by removing

the b and c̄∗ terms.

This all means that we can construct Γ order by order in the minimal basis, never needing

b or c̄∗. To do so we shift h∗µν
⃓⃓
g.i.

to h∗µν
⃓⃓
g.f.

in interactions and use the ⟨hαβhµν⟩ and
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⟨cµc̄ν⟩ propagators and include the interaction vertices from the standard gauge fixing

term (4.2.21) as appropriate, and afterwards shift back to g.i. basis [163,172]. Of course,

this does not mean that off-shell quantum corrections are independent of our choice of

gauge. However, the results are sometimes much simpler when cast back in (minimal)

g.i. basis in this way, which is why we use it.

4.2.4 The CME for the Legendre effective action

Since the BRST transformations (4.2.17), or (4.2.7) and (4.2.8), involve products of

fields at the same spacetime point, they are not preserved under renormalisation. Order

by order in the loop expansion not only must the action be modified, but also the BRST

transformations themselves, and since the theory is non-renormalisable, the changes

involve in fact an infinite series in powers of the fields and antifields. The Zinn-Justin

equation [124, 155–157] can keep track of all this. We start with the fact that the

partition function

Z ≡ Z[J, ϕ∗] =
∫︂
Dϕ e−S[ϕ,ϕ∗]+ϕAJA , (4.2.28)

satisfies the identity
∂rZ
∂ϕ∗A

JA = 0 . (4.2.29)

To prove this at the classical level it is sufficient to use the fact that QS0 = 0, assuming

invariance of the measure:

0 =

∫︂
DϕQ

(︂
e−S0+ϕAJA

)︂
=

∫︂
Dϕ e−S0+ϕAJA

(︁
QϕA

)︁
JA = −∂rZ

∂ϕ∗A
JA . (4.2.30)

But at the quantum level we need to derive it via preservation of the CME (4.2.10):

0 =

∫︂
Dϕ ∂l

∂ϕA
∂r
∂ϕ∗A

e−S[ϕ,ϕ∗]+ϕAJA

= −
∫︂
Dϕ

{︃
JA

∂rS

∂ϕ∗A
+

1

2
(S, S) +

∂l
∂ϕA

∂r
∂ϕ∗A

S

}︃
e−S[ϕ,ϕ∗]+ϕAJA .

(4.2.31)

Here the first equality follows because it is an integral of a total derivative. After

rearranging the result using the statistics of the (anti)fields, we get the three terms

inside the braces. The first term gives the required identity, the second term vanishes

by the CME, whilst the third term is the Batalin-Vilkovisky measure term [156–158].

In general we need to take this into account (giving the Quantum Master Equation)

[156–158, 163, 171, 172], however, since S is local, this term always contains δ(x)|x=0 or

its spacetime derivatives. These vanish in dimensional regularisation. Therefore, we can

discard the measure term.
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Introducing the generator W [J, ϕ∗] of connected diagrams, through Z = eW , we define

the Legendre effective action in the usual way:

Γ[Φ,Φ∗] = −W +ΦAJA , ΦA =
∂rW

∂JA
, JA =

∂lΓ

∂ΦA
, (4.2.32)

where ΦA is the so-called classical field, and we have renamed ϕ∗A ≡ Φ∗
A just because

it looks better. Then, by standard manipulations, (4.2.29) turns into the Zinn-Justin

equation:

(Γ,Γ) = 0 , (4.2.33)

i.e. again the CME (4.2.10), now applied to Γ[Φ,Φ∗], the antibracket taking the same

form as (4.2.2) but with {ϕ, ϕ∗} replaced with {Φ,Φ∗}.

The Legendre effective action

Γ = Γ0 + ℏΓ1 + ℏ2Γ2 + · · · , (4.2.34)

is built up recursively, where Γℓ is the ℓ-loop contribution, starting with Γ0 = S0, the

classical bare action. The logic now is to introduce at each new loop order ℓ, a local

counterterm action Sℓ to the bare action in order to cancel the divergences Γℓ|∞ that

arise in Γℓ, leaving behind an arbitrary finite part which is parametrised by the new

renormalised couplings that appear at this order. Provided we introduce Sℓ in such

a way as to preserve (S, S) = 0 we also have that (Γ,Γ) = 0 is satisfied. However,

although both the bare action S and the Legendre effective action Γ satisfy the CME,

the CME plays a different rôle in each case so that it is in fact not trivial that the two

are consistent beyond one loop. As we will see, what makes them nevertheless consistent

is the RG.

4.2.5 How the RG is needed for consistent solutions to both versions

of the CME

Expanding the CME (4.2.33) for Γ, we see that the one-loop contribution satisfies

(Γ0,Γ1) = 0. It is useful to define the total classical BRST charge s0 acting on any

functional X as

s0X = (S0, X) , (4.2.35)

which, thus, acts also on antifields (see sec. 4.2.7). Then, the one-loop BRST identity

is simply s0Γ1 = 0. Since dimensional regularisation is a gauge invariant regulator, the

infinite part, which at one loop is proportional to a single pole (i.e. ∝ 1/ε), also satisfies

this identity, i.e.

s0 Γ1/1[Φ,Φ
∗] = 0 . (4.2.36)

(We label terms proportional to divergences 1/εk, by appending /k to the subscript.)
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It is simplest for our purposes to now consider the identity satisfied by the two-loop

contribution, Γ2, before any renormalisation. From the CME (4.2.33) we see that it

satisfies

s0Γ2 = −
1

2
(Γ1,Γ1) . (4.2.37)

In particular this implies for the double-pole divergence:

s0 Γ2/2 = −
1

2

(︁
Γ1/1,Γ1/1

)︁
. (4.2.38)

Given that the right hand side does not vanish, this is a non-trivial relation between the

1/ε2 divergences at two loops and the 1/ε divergences at one loop.

Now we consider the process of renormalisation. At one loop, if we add a counterterm

action S1, then in order to preserve the CME (4.2.10) for S, we find in the same way

that S1 must be chosen so that it is also annihilated by the total classical BRST charge:

s0S1 = 0 . (4.2.39)

Since the one-loop divergence is local we can then render the one-loop result finite by

setting

S1 = −Γ1/1[ϕ, ϕ
∗] + Sc1 [ϕ, ϕ

∗] , (4.2.40)

where the finite remainder Sc1 contains the new renormalised couplings cj1(µ) that appear

at one loop, cf. sec. 4.2.6, in particular they are needed for the curvature-squared terms

but also for antifield vertices, see secs. 4.3.1 and 4.3.2. Clearly we must also have

s0Sc1 = 0.

Expanding the CME (4.2.10) to O(ℏ2), we find of course an algebraically identical for-

mula to (4.2.37) and (4.2.38), i.e.

s0S2 = −
1

2
(S1, S1) . (4.2.41)

This must be satisfied by the counterterm action S2. It relates the 1/ε2 divergence in

this two-loop counterterm to the 1/ε divergence in the one-loop counterterms. Then by

(4.2.40), we see that the 1/ε2 divergence on the right hand side is precisely the same as

in the Γ identity (4.2.38). But this is in apparent contradiction with the fact that S2

must cancel the divergence in Γ2. In particular, the latter implies that s0(S2+Γ2) must

be finite.

The resolution is that, once we add the one-loop counterterm from S1 to the bare action,

atO(ℏ2) we also have one-loop counterterm diagrams from one-loop diagrams Γ1[S1] with

one S1 vertex inserted (as illustrated in fig. 4.3.3 of sec. 4.3.3). The two-loop divergence

in (4.2.38) comes from diagrams containing only tree level vertices. It must be that the

1/ε2 contribution from the one-loop counterterm diagrams, is in fact precisely right to
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flip the sign so that, in full, the double-pole part satisfies

s0 (Γ2/2 + Γ1/2[S1]) = +
1

2

(︁
Γ1/1,Γ1/1

)︁
. (4.2.42)

As we will see in the next subsection, RG invariance tells us that we have the relation

Γ1/2[S1] = −2Γ2/2 , (4.2.43)

and thus for the full double-pole contribution, Γ2/2 + Γ1/2[S1] = −Γ2/2, we indeed have

the required change of sign (even before the application of s0). We see therefore that

the RG relations are responsible for restoring consistency between the two versions of

the CME.

Although the relations above constrain the form of the double-pole divergences, we

still have to compute some Feynman integrals to determine them. Nevertheless we can

simplify the process by exchanging the genuinely two-loop diagrams for one-loop coun-

terterm diagrams. The corresponding double-pole counterterm action will automatically

satisfy the constraint (4.2.41). This latter constraint does not uniquely determine S2

since it is invariant under adding a piece, S′
2, provided it is annihilated by the total

classical BRST charge: s0S
′
2 = 0. Since this constraint is linear homogeneous, S′

2 has

finite remainders parametrised by new two-loop couplings cj2(µ).

We finish this section with some comments about the two-loop single-pole divergences.

Firstly note that, before adding the one-loop counterterm diagrams, the two-loop single-

pole divergences are actually non-local. Indeed, this must be the case since the right

hand side of (4.2.37) has such non-local divergences in the antibracket contribution

(finite,Γ1/1), where we have written Γ1 = Γ1/1 + finite, and recognised that the finite

part is non-local. On adding the counterterm diagrams, the same RG invariance identity

that resolves the above putative puzzle is also responsible for eliminating the non-local

divergences (see the argument of Chase [164], which we review in the next subsection).

In a similar vein, the two-loop counterterm action S2 has single-pole divergences that

depend on the one-loop couplings cj1, as it must in order to renormalise the Γ1/1[S1]

contribution. The fact that S2 must have dependence on cj1 can also be seen through

(4.2.40) and the two-loop CME relation, (4.2.41). These two constraints must again be

related through similar RG identities.

Finally note that there are two-loop single-pole divergences that are not fixed by the RG

or by the CME. These will include the famous Goroff and Sagnotti term (4.4.11), but also

further terms that vanish on the equations of motion. Renormalising them requires new

counterterms whose finite remainder introduces further two-loop renormalised couplings

cj2(µ). As before, from (4.2.41) we see that this new part S′
2 must be chosen so that

it is annihilated by the total classical BRST charge: s0S
′
2 = 0. Thus, despite the fact

that BRST invariance is significantly altered by the quantum corrections, a central role
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is played, order by order in the loop expansion, by the total classical BRST charge s0.

We will develop the properties of s0 in sec. 4.2.7.

4.2.6 Relating counterterms via the RG

Adapting ref. [146] to quantum gravity, we prove the RG relation (4.2.43), which was

used in the previous subsection to demonstrate consistency at two loops of the two

rôles for the CME. This key equation relates the double-pole Γ1/2[S1] from the one-

loop counterterm diagrams, to the double-pole Γ2/2 generated by two-loop diagrams

using only tree-level vertices. In this subsection, we also review the alternative proof in

ref. [164] for this relation. Rearranging (4.2.43) we see that it implies that the 1/ε2 part

of the two-loop counterterm is −1/2 times the 1/ε2 pole in the one-loop counterterm

diagrams:

S2/2 = −
(︁
Γ2/2 + Γ1/2[S1]

)︁
= −1

2
Γ1/2[S1] . (4.2.44)

It is this form that falls out most naturally from the RG analysis, and it is also this

form that we use in sec. 4.3.3 to compute the 1/ε2 divergence in the two-loop graviton

self-energy.

To adapt [146], it proves convenient to absorb Newton’s constant into the operators so

that the O(ℏ0) (i.e. classical) bare action has pure fluctuation field vertices (n ≥ 2):

O0 i ∼ κn−2hnp2 . (4.2.45)

The numerical subscript on O refers to ℏ order [146], and here we are just counting the

number of instances of the fluctuation field hµν , κ and momentum p, where the latter

stands for any momentum (or spacetime derivative) in the vertex, in order to track their

dimensions and motivate the formulae below. Working with pure hµν vertices will be

sufficient to derive (4.2.44) in this case. Then we will justify why it is clear that (4.2.44)

continues to hold when the background, ghosts and antifields are included.

In d = 4 − 2ε dimensions, the mass dimensions are [h] = −[κ] = 1 − ε. A priori both

κ and the fluctuation field should be taken to be bare, in the expectation that they

will have a divergent expansion in renormalised quantities, but the divergences that are

generated involve ever greater powers of momentum, so the vertices in (4.2.45) are never

reproduced and, thus, neither κ nor h require renormalisation. The classical bare action

is therefore being written as

S0 = Γ0 =

∫︂
x
ci0O0 i . (4.2.46)

The ci0 are the classical couplings with κ factored out. They are fixed up to choice

of expansion of the metric, choice of gauge fixing, and the value of the cosmological

constant if there is one. As mentioned below (4.2.4), we set the cosmological constant

to zero throughout this chapter.
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The divergent one-loop quantum corrections then take the form (H is the vacuum ex-

pectation value of h):

Γ1/1 ∼
1

ε
κnHnp4−2ε , (4.2.47)

i.e. in terms of counting overall powers there is an extra factor of κ2p2−2ε. To renormalise

we thus have to add to the bare action the local action (4.2.40):

S1 = µ−2ε

∫︂
x

{︃
ci1O1 i +

1

ε
ai1/1O1 i

}︃
, (4.2.48)

where the second set are the counterterms −Γ1/1, and the first set is the expansion of

Sc1 and contains the new O(ℏ1) renormalised couplings. The new operators take the

form

O1 i ∼ κnhnp4 , (4.2.49)

i.e. with an extra κ2p2 compared to O(ℏ0) vertices. At this stage the arbitrary RG

scale µ is needed so that µ−2ε in (4.2.48) can restore dimensions. Since the bare action

(4.2.3) is independent of µ, the renormalised couplings ci1 run with µ. By differentiating

(4.2.48) we see that they satisfy:

βi1 = ċi1 − 2ε ci1 = 2 ai1/1 , (4.2.50)

where ċ := µ∂µc. The one-loop counterterm diagrams formed by using one ai1/1 vertex

(corresponding to one copy of S1 being inserted) give in particular double pole diver-

gences

Γ1/2[S1] ∼
1

ε2
a1/1 µ

−2εκn+2Hnp6−2ε , (4.2.51)

that must satisfy relation (4.2.43): Γ1/2[S1] = −2Γ2/2. As noted by Chase [164], the

easiest way to see why this is so, is to recognise that the latter take the form

Γ2/2 ∼ κn+2Hnp6−4ε

[︃
1

ε2
+O

(︃
1

ε

)︃]︃
, (4.2.52)

but divergences must be local and thus the (ln p)/ε terms must cancel between (4.2.51)

and (4.2.52).

We get the same conclusion another way by following Buchler and Colangelo [146] whilst

also deriving some more useful identities. At O(ℏ2) the divergences generate the opera-

tors

O2 i ∼ κn+2hnp6 , (4.2.53)

so we have to add to the bare action

S2 = µ−4ε

∫︂
x

{︃
ci2O2 i +

1

ε2
ai2/2O2 i +

1

ε

(︂
ai2/1 + ai1/1 jc

j
1

)︂
O2 i

}︃
, (4.2.54)

where we now have counterterms with both single and double ε-poles, and ci2 are the
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new O(ℏ2) renormalised couplings. The ai2/2 counterterms cancel the full set of 1/ε2

divergences at O(ℏ2), i.e. from the sum of two-loop diagrams and the one-loop countert-

erm diagrams. The single poles ai2/1/ε arise from two-loop diagrams using only vertices

from (4.2.45), whilst the ai1/1 jc
j
1/ε are generated by one-loop diagrams containing one

c1 vertex. Now µ-independence of the bare action implies

βi2 = ċi2 − 4εci2 =
4

ε
ai2/2 + 4

(︂
ai2/1 + ai1/1 jc

j
1

)︂
− 1

ε
ai1/1 j ċ

j
1 ,

=
4

ε
ai2/2 −

2

ε
ai1/1 ja

j
1/1 + 4ai2/1 + 2ai1/1 jc

j
1 , (4.2.55)

where in the second line we substituted the one-loop β function (4.2.50). Since this

equation is expressed in terms of renormalised quantities, it must be finite, and therefore

the single poles must cancel. Thus we see that

ai2/2 =
1

2
ai1/1 ja

j
1/1 . (4.2.56)

This is the same conclusion as before, but we are now proving it in the form given in

(4.2.44). The left hand side is the coefficient of the O2 i in S2/2 while on the right hand

side we have replaced the cj1 coupling in (4.2.54) by the counterterm coefficient aj1/1.

The right hand side is thus the coefficient of O2 i in −1
2Γ1/2[S1].

Finally, let us show that (4.2.44) will continue to hold when the background, ghosts

and antifields are included. Firstly, vertices can now include ghost antighost pairs, but

at this schematic level it is not necessary to track these separately from h: what really

matters in this analysis are the powers of pε and µε, and they are unchanged if c and c̄ are

included. Secondly, it is clear that any instance of h (or H) can trivially be exchanged

for the background h̄ in the above schematic formulae, though of course operators O1 j

with less than two quantum fields in gauge fixed basis, cannot contribute to the relation

(4.2.44) (their coefficients ai1/1 j vanish). Finally from the minimal classical action (4.2.4),

we see that whenever an antifield is involved in an action vertex there is one less power

of p (compensated dimensionally by the fact that they have [ϕ∗] = 2− ε, cf. table 4.1).

This observation is useful for finding the general form of the corrections, but again for

this analysis what actually matters is the tracking of non-integer powers.

4.2.7 Properties of the total classical BRST charge

We now develop the properties of the total classical BRST charge s0. Using the identity

[156–159]:

(X, (Y, Z)) = ((X,Y ), Z) + (−1)(X+1)(Y+1)(Y, (X,Z)) , (4.2.57)

where (−1)X = ±1 if X bosonic (fermionic), we have

s20X[ϕ, ϕ∗] = (S0, (S0, X)) = 1
2((S0, S0), X) = 0 , (4.2.58)
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where the last equality follows by the CME. Therefore s0 is nilpotent just like the BRST

charge Q. From (4.2.6), we see that on ϕA it reduces to the BRST charge Q. However

from (4.2.35), s0 also acts on antifields:

s0ϕ
∗
A =

(︁
S0, ϕ

∗
A

)︁
=
∂rS0
∂ϕA

. (4.2.59)

This is called the Koszul-Tate differential [163, 171, 173–176]. In minimal basis we get

explicitly that:

s0h
∗µν = −2√gGµν/κ+ 2κh∗α(µ∇̄αc

ν) + κ∇̄α

(︁
cαh∗µν

)︁
, (4.2.60)

s0c
∗
µ = κ∇̄µc

νc∗ν + κ∇̄ν

(︁
cνc∗µ

)︁
− 2∇̄νh

∗ν
µ − 2κ∇̄α

(︁
hµνh

∗αν)︁+ κ∇̄µhαβh
∗αβ . (4.2.61)

Here Gµν = −Rµν+
1
2gµνR is the Einstein tensor. (Note that it inherits an overall minus

sign from the Euclidean action compared to the usual definition.) Its indices are raised

in (4.2.60) using Gµν = gµαgνβGαβ. As we noted earlier we are raising and lowering

indices with the background metric unless explicitly stated otherwise. This case is the

one exception.

ϵ gh # ag # pure gh # dimension

hµν 0 0 0 0 (d− 2)/2

cµ 1 1 0 1 (d− 2)/2

c̄µ 1 -1 1 0 (d− 2)/2

bµ 0 0 1 1 d/2

h∗µν 1 -1 1 0 d/2

c∗µ 0 -2 2 0 d/2

c̄∗µ 0 0 0 0 d/2

Q 1 1 0 1 1

Q− 1 1 -1 0 1

Table 4.1: The various Abelian charges (a.k.a. gradings) carried by the fields and
operators. ϵ is the Grassmann grading, being 1(0) if the object is fermionic (bosonic).
gh # is the ghost number, ag # the antighost/antifield number, pure gh # = gh # +
ag #, and dimension is the engineering dimension. The first two rows are the minimal
set of fields, the next two make it up to the non-minimal set, then the ensuing two rows
are the minimal set of antifields, and c̄∗µ is needed for the non-minimal set. Finally, the
charges are determined in order to ensure that Q and Q− can also be assigned definite

charges.

It is useful to assign antighost/antifield number to each field and operator [171, 176,

177], see table 4.1. The reason this is useful is precisely because it is not preserved by

interactions, which then split into pieces according to their antighost level. For example

one sees from (4.2.4), that the three parts of the minimal classical action split into levels

0, 1, and 2, respectively. The Koszul-Tate differential also splits, in this case into two

pieces, one that preserves antighost number and one that lowers it by one. We call these
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pieces respectively, Q and Q−, and thus write:

s0ϕ
∗
A =

(︁
Q+Q−)︁ϕ∗A . (4.2.62)

From (4.2.60) and (4.2.61) we see that

Qh∗µν = 2κh∗α(µ∇̄αc
ν) + κ∇̄α

(︁
cαh∗µν

)︁
, (4.2.63)

Q−h∗µν = −2√gGµν/κ , (4.2.64)

Qc∗µ = κ∇̄µc
νc∗ν + κ∇̄ν

(︁
cνc∗µ

)︁
, (4.2.65)

Q−c∗µ = −2∇̄νh
∗ν

µ − 2κ∇̄α

(︁
hµνh

∗αν)︁+ κ∇̄µhαβh
∗αβ . (4.2.66)

Since Q here acts on antifields there is no reason to confuse it with the previously defined

BRST charge in (4.2.6) and (4.2.17). Its extension to antifields is natural since Qh∗µν

and Qc∗µ are in fact the correct Lie derivative expressions for these tensor densities. The

advantage of the antighost grading becomes clear when we consider the nilpotency of

s0:

0 = s20 = Q2 + {Q,Q−}+ (Q−)2 . (4.2.67)

These terms must vanish separately since they lower the antighost number by 0, 1 and

2 respectively. Therefore we know that our definitions of Q and Q− are such that they

are nilpotent and they anticommute.

4.2.8 Canonical transformations up to second order

We saw in sec. 4.2.5 that a central role is played by counterterms that are s0-closed,

for example at one loop we have exactly this relation (4.2.39): s0S1 = 0. We saw in

the previous subsection that s0 is nilpotent, so one solution to this is that S1 is exact:

S1 = s0K1, where K1 is a local functional of ghost number −1. In the next subsection we

derive the general solution for such s0-closed counterterms, but for that we will need the

relation between s0-exact solutions and canonical transformations. Taking the general

canonical transformation (4.2.12), and setting

K = ϕ̌
∗
Aϕ

A +K1[ϕ, ϕ̌
∗
] , (4.2.68)

and then treating K1 to first order, one gets the following field and source reparametri-

sations

δϕA =
∂lK1

∂ϕ∗A
, δϕ∗A = −∂lK1

∂ϕA
. (4.2.69)
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That these correspond to s0-exact solutions, can then be seen by writing out the change

in the classical action:

δS0 =
∂rS0
∂ϕA

δϕA +
∂rS0
∂ϕ∗A

δϕ∗A =
∂rS0
∂ϕA

∂lK1

∂ϕ∗A
− ∂rS0
∂ϕ∗A

∂lK1

∂ϕA
= s0K1 . (4.2.70)

This interpretation extends to higher orders [139], see also [150–154]. For sec. 4.4 we

will want their explicit form to second order. Given that S1 = s0K1, one solution to the

CME to second order (4.2.41), i.e. s0S2 = −1
2(S1, S1), is:

S2 =
1

2
(S1,K1) + s0K2 (4.2.71)

where K2 is a second-order local functional of ghost number -1. This follows from the

antibracket identity (4.2.57) because

s0(S1,K1) = (s0S1,K1)− (S1, s0K1) = −(S1, S1) . (4.2.72)

In fact the relation (4.2.71) is just the result of taking the K1 canonical transformation

to second order and adding the new part K2 which appears linearly at this order. To

see this we set

K = ϕ̌
∗
Aϕ

A +K1[ϕ, ϕ̌
∗
] +K2[ϕ, ϕ̌

∗
] , (4.2.73)

and solve the exact canonical transformation (4.2.12) perturbatively for δϕ(∗) = ϕ̌
(∗) −

ϕ(∗), starting with the first order expression (4.2.69). We get the following:

δϕA =
∂lK1

∂ϕ∗A
+

1

2

∂l
∂ϕ∗A

∂rK1

∂ϕB
∂lK1

∂ϕ∗B
− 1

2

∂l
∂ϕ∗A

∂rK1

∂ϕ∗B

∂lK1

∂ϕB
+
∂lK2

∂ϕ∗A
,

δϕ∗A = −∂lK1

∂ϕA
+

1

2

∂l
∂ϕA

∂rK1

∂ϕ∗B

∂lK1

∂ϕB
− 1

2

∂l
∂ϕA

∂rK1

∂ϕB
∂lK1

∂ϕ∗B
− ∂lK2

∂ϕA
. (4.2.74)

Taylor expanding the classical action to second order gives

δS0 =
∂rS0
∂ϕA

δϕA +
1

2

∂r
∂ϕB

(︃
∂rS0
∂ϕA

δϕA
)︃
δϕB +

1

2

∂r
∂ϕ∗B

(︃
∂rS0
∂ϕA

δϕA
)︃
δϕ∗B

+
∂rS0
∂ϕ∗A

δϕ∗A +
1

2

∂r
∂ϕB

(︃
∂rS0
∂ϕ∗A

δϕ∗A

)︃
δϕB +

1

2

∂r
∂ϕ∗B

(︃
∂rS0
∂ϕ∗A

δϕ∗A

)︃
δϕ∗B

− 1

2

∂rS0
∂ϕA

(︃
∂r
∂ϕB

δϕA
)︃
δϕB − 1

2

∂rS0
∂ϕA

(︃
∂r
∂ϕ∗B

δϕA
)︃
δϕ∗B

− 1

2

∂rS0
∂ϕ∗A

(︃
∂r
∂ϕB

δϕ∗A

)︃
δϕB − 1

2

∂rS0
∂ϕ∗A

(︃
∂r
∂ϕ∗B

δϕ∗A

)︃
δϕ∗B . (4.2.75)

Substituting (4.2.74), its non-linear terms cancel the final two lines, whilst the first two

lines organise into antibrackets, and thus we find that

δS0 = (S0,K1 +K2) +
1

2
((S0,K1),K1) = s0K1 +

1

2
(S1,K1) + s0K2 , (4.2.76)
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showing that the non-linear term in (4.2.71), is indeed the result (4.2.74) of carrying the

canonical transformation to second order.

4.2.9 General form of s0-closed divergences

On the other hand, at each new loop order the s0-closed counterterms are associated to

the ‘new’ part Γ∞ of the divergences. Their form can be classified by the cohomology of

s0 in the space of local functionals. As we have seen, one possibility is that it is a local

s0-exact solution: Γ∞ = s0K∞[Φ,Φ∗], where K∞ is a functional with ghost number

−1. However another possibility is that the divergence is a local functional Γ∞[gµν ] of

only the total metric,2 gµν = ḡµν + κHµν , and is diffeomorphism invariant. Ref. [178],

see also [139], proves from the cohomological properties of s0 that if the background

metric is flat, viz. ḡµν = δµν , then in fact the general local s0-closed solution is a linear

combination of these two possibilities, i.e.

s0Γ∞[Φ,Φ∗] = 0 =⇒ Γ∞[Φ,Φ∗] = Γ∞[gµν ] + s0K∞[Φ,Φ∗] . (4.2.77)

However in a non-flat background, as a statement on s0-cohomology, this result is no

longer true, since clearly one can now add to this a local functional Γ∞[ḡµν ] of only the

background field (such a functional being trivially annihilated by s0). Nevertheless it is

true as a statement about s0-closed divergences, as we show below.

Before doing so, we note that it is useful here to grade the solution (4.2.77) by antighost

number. The first part, Γ[g], has of course zero antighost number, but since K has ghost

number −1, we see from table 4.1 that it splits up as K = K1 +K2 + · · · , where the

superscript denotes antighost number. Thanks to the perturbative non-renormalisability

of quantum gravity, already at one loop one finds that all these infinitely many Kn

functionals are non-vanishing. In minimal basis, K1 is characterised by having one copy

of H∗, K2 by containing one copy of C∗ or two copies of H∗ whilst also being linear in

the ghost Cµ, and so on, with the higher level Kn containing ever greater numbers of

antifields and compensating powers of ghosts.

Now we show that (4.2.77) is indeed the general form of an s0-closed divergence, even in

a non-trivial background. Although this is effectively a small extension of the proof in

flat background, it has not, to our knowledge, been noticed before. Following [48], first

we observe that, up to a choice of gauge, the Legendre effective action can equivalently

be computed by shifting

hµν ↦→ hµν − h̄µν (4.2.78)

which, by (4.2.22), amounts to expanding around flat space. Indeed this shift makes

no difference to the minimal classical action (4.2.4), since it depends only on the total

2 We write the vacuum expectation value of the quantum fields in capitals, thus in minimal basis
ΦA = Hµν , C

ξ.
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metric gµν . Differences arise only because separate hµν and ḡµν dependence enters via

the canonical transformation induced by the gauge fixing fermion (4.2.14), which from

(4.2.12) and (4.2.13) takes the form

QϕA
∂Ψ

∂ϕA
= QΨ[ϕ] , (4.2.79)

and enters via the quadratic bµ term from the extension (4.2.11), which can however

also be written in Q-exact form:

1

2α

√
ḡḡµνb

µbν =
i

2α
Q
(︁√
ḡḡµν c̄

µbν
)︁
= QΨb[ϕ] . (4.2.80)

Thus, the entire ḡ (equivalently h̄) dependence can be seen as being just part of the

parametrisation of our choice of gauge, i.e. of Ψtot[ϕ] = Ψ[ϕ] + Ψb[ϕ].

Now in the shifted basis (4.2.78) we are expanding around flat space. If we also use

an h̄-independent gauge, then we can be sure that (4.2.77) holds. We cannot use this

result directly to rule out a separate Γ∞[ḡµν ] piece, because we have changed the gauge.

However we can proceed by comparing physical quantities since they are independent

of the choice of gauge. We do this by setting Φ∗
A = 0 and setting Hµν on shell. Note

that since we are dealing with new divergences appearing at some given loop order, it is

the classical equations of motion for gµν that one needs. Then Γ∞[gµν ] is independent

of the background, whilst s0K∞ vanishes. The latter follows because

s0K∞ =
∂rS0
∂ΦA

∂lK∞
∂Φ∗

A

− ∂rS0
∂Φ∗

A

∂lK∞
∂ΦA

. (4.2.81)

Given that Φ∗
A = 0, on the right hand side the first term vanishes (in minimal basis)

by the equations of motion of Hµν , and the second term because K∞ has non-vanishing

antighost number. Now comparing the results in flat background and non-flat back-

ground, we see that they must have the same total metric part Γ∞[gµν ], whilst for a

non-flat background the purely background part must vanish: Γ∞[ḡµν ] = 0.

We finish with some important remarks. Firstly, to avoid over-counting, the counterterm

Sℓ[g] for the pure metric part of the s0-closed solution (4.2.77) should be restricted to

terms that do not vanish on the classical equations of motion (or more generally to a

specific choice, as in (4.3.15), the Gauss-Bonnet term). To see this we note that if Sℓ[g]

does vanish on the classical equations of motion, it can be written as

Sℓ[gµν ] = −
2

κ

∫︂
x

√
g GµνTµν [gµν ] = Q−

∫︂
x
h∗µνTµν = s0

∫︂
x
h∗µνTµν (4.2.82)

for some tensor Tµν [gµν ]. In the last step we used the fact that both h∗µν and Tµν

transform properly as tensor densities under Q. Thus any part of Sℓ[g] that vanishes on

the classical equations of motion can be written instead as part of the s0-exact piece,

s0Kℓ, i.e. to a canonical transformation taken to first order.
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Secondly, notice that it is important for the above arguments that we are setting Hµν

on shell, but not the background metric ḡµν . This is what allows us to deduce that

there cannot be any purely background part. On the other hand in the background field

method one sets all the classical fields to zero and keeps only the background metric.

Although this technique is not the primary focus of the chapter (apart from in sec. 4.4),

the proof here tells us something important about it. Since on shell the background

field effective action gives the same results [48], we know that divergences that do not

vanish on the background equations of motion descend from functionals of the total

metric gµν , whilst those divergences that vanish on the background equations of motion

belong to canonical transformations and are, thus, removed by reparametrising hµν , not

the background field.

4.3 Explicit expressions for counterterms

We now verify these results in explicit loop computations, up to two loops. In particular,

we draw out the intimate relationship between the leading off-shell divergences for the

two-point vertex up to two loops and the one-loop counterterm diagrams [146] and, in

turn, to canonical transformations in the BRST algebra [139]. Since this necessitates

computing, as an intermediate step, of the off-shell divergences in one-loop diagrams with

three external legs, two of which are fluctuation fields, we widened our investigation so

as to compute explicitly all off-shell one-loop divergences with up to three (anti)fields.

Below we express these divergences in terms of the minimal-basis counterterms in Sℓ

(ℓ = 1, 2) that one needs to add to the bare action. In minimal subtraction, which we

follow, the counterterms are just minus the divergences. However, since the bare action

is a µ-independent local functional, the RG and CME relationships are most naturally

expressed in terms of the counterterms, as we have seen in secs. 4.2.5 and 4.2.6.

In fact it was in the process of computing these that we noticed that purely background

metric pieces were not generated, which motivated the general proof in sec. 4.2.9. It

was also whilst analysing these that we noticed that the RG relations for counterterms

are actually crucial for consistency of the BRST algebra as realised on the Legendre

effective action versus as realised on the counterterms. This is explained in sec. 4.2.5.

Finally these results allowed explicit verification that the generalised β function proposal

of ref. [160] cannot be correct, which led to us formulating the detailed analysis provided

in sec. 4.4. We similarly hope that these examples will prove useful in future studies of

perturbative quantum gravity.

Just like for K in sec. 4.2.9, it is useful to split the Legendre effective action and bare

action according to antighost number. All antighost levels Sn depend on the graviton

fields hµν and h̄µν , but their dependence on (anti)ghosts is restricted by the quantum

numbers, cf. table 4.1. Thus S0 depends only on the graviton fields, whilst Γ0[Hµν , H̄µν ]
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is the physical part that ultimately provides the S-matrix, S1 is linear in h∗µν and cµ

(in gauge fixed basis (4.2.18), S1 renormalises the ghost action), S2 is made of vertices

containing two cµ and either one c∗µ or two h∗αβ, and so on.

4.3.1 One-loop two-point counterterms

4.3.1.1 Level zero, i.e. graviton, counterterms

Recall from sec. 4.2.1 that we are using Feynman DeDonder gauge. As explained in

the next subsection, in this case it turns out that the result for the one-loop two-point

graviton counterterm can be expressed entirely in terms of curvatures linearised around

the flat metric. In particular let us introduce for the quantum fluctuation the linearised

‘quantum curvature’

Rµανβ = κRµανβ +O(κ2) , (4.3.1)

where we are expanding gµν = δµν + κhµν , and thus

R
(1)
µανβ = −2∂[µ| ∂[νhβ] |α] ,

R(1)
µν = −∂2µνφ+ ∂(µ∂

αhν)α − 1
2 □hµν ,

R(1) = ∂2αβhαβ − 2□φ

(4.3.2)

(defining 1
2(tµν ± tνµ) for symmetrisation t(µν), respectively antisymmetrisation t[µν]).

Here we are using φ = 1
2δ

µνhµν
3 and indices are raised and lowered with the flat met-

ric δµν . Following the definition below (4.2.61), the linearised Einstein tensor is then

G
(1)
µν = −Rµν +

1
2δµνR. Similarly we introduce the corresponding linearised background

curvatures R̄
(1)
µανβ etc. and linearised background Einstein tensor Ḡ

(1)
µν , by replacing hµν

with h̄µν .

hµν(p) hαβ(−p) h̄µν(p) h̄αβ(−p) h̄µν(p) hαβ(−p)

Figure 4.3.1: Two-point graviton diagrams at one loop. The wavy line represents
the background field and the external plain line represents the quantum graviton field.

The internal lines represent both a graviton loop and a ghost loop.

Computing the diagrams in fig. 4.3.1 we find

S0
1/1 =

κ2µ−2ε

(4π)2ε

∫︂
x

{︃
61

60

(︂
R(1)

µν

)︂2
− 19

120

(︂
R(1)

)︂2
+

7

20

(︂
R̄

(1)
µν

)︂2
+

1

120

(︂
R̄

(1)
)︂2

+
41

30
R(1)

µν R̄
(1)µν − 3

20
R(1)R̄

(1)
}︃
. (4.3.3)

3This definition is the previous one (4.2.16) after linearisation.
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The first diagram gives the first two terms, i.e. the pure quantum terms. The result

agrees with ref. [163]. It was calculated in a general two parameter gauge in ref. [162].

After correcting some typos and specialising to Feynman DeDonder gauge, it also agrees.

The next two terms, the purely background terms, agree with the famous result in [161]

and (up to a factor of 1/2) with [19]. For more details on these comparisons, see app.

4.A. To our knowledge the last two terms, i.e. the mixed terms, have not appeared in

the literature before.

By (4.2.39), the terms (4.3.3) must be part of an s0-closed counterterm action S1/1.

Furthermore according to the proof given in sec. 4.2.9, since the quantum curvature

pieces vanish on the equations of motion and since there cannot be a separate purely

background part, we must be able to express the entire result as s0-exact, and thus in

fact the terms must collect into

S0
1/1 = Q−K1

1/1 . (4.3.4)

Given that (4.3.3) is made solely of linearised curvatures, at the two-point level the only

possible terms in K1
1/1 that can contribute, are:

K1
1/1 ∋

κ2µ−2ε

(4π)2ε

∫︂
x

{︂
βh∗µνR(1)

µν + γφ∗R(1) + β̄h∗µνR̄
(1)
µν + γ̄φ∗R̄

(1)
}︂
, (4.3.5)

where β, γ, β̄ and γ̄ are parameters to be determined, and we have introduced

φ∗ = 1
2 ḡµνh

∗µν (4.3.6)

by analogy with (4.2.16) (although here ḡµν can be replaced by δµν). It is apparent that

we have six numbers in (4.3.3) to reproduce with only four parameters, and therefore

this relation is a non-trivial check on the formalism. From (4.2.64), the action of Q−

reduces in this case to

Q−h∗µν = −2
(︂
G(1)µν + Ḡ

(1)µν
)︂
, (4.3.7)

and thus from (4.3.4) and (4.3.5),

S0
1/1 =

κ2µ−2ε

(4π)2ε

∫︂
x

{︃
2β
(︂
R(1)

µν

)︂2
− [β + γ]

(︂
R(1)

)︂2
+ 2β̄

(︂
R̄

(1)
µν

)︂2
− [β̄ + γ̄]

(︂
R̄

(1)
)︂2

+ 2[β + β̄]R(1)
µν R̄

(1)µν − [β + β̄ + γ + γ̄]R(1)R̄
(1)
}︃
. (4.3.8)

We see that the mixed Ricci-squared terms must have a coefficient which is simply the

sum of the coefficients of the pure quantum and pure background Ricci-squared terms,

and likewise for the scalar-curvature-squared terms. One can easily verify from (4.3.3)

that these two constraints are indeed satisfied. Thereforem there are four independent
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constraints and we can find a consistent (and unique) solution. It is:

β =
61

120
, γ = − 7

20
, β̄ =

7

40
, γ̄ = −11

60
. (4.3.9)

4.3.1.2 Level one (a.k.a. ghost) counterterms

The level one two-point counterterm is computed by using the classical three-point

vertices involving h∗µν , and transferring to gauge fixed basis using (4.2.18). We display

the result in minimal basis where it takes its simplest form, since it then contains only

the divergent corrections to Qhµν (at the linearised level, compare (4.3.10) to (4.2.4) and

(4.2.17)), but in gauge fixed basis the generated c̄α terms are the counterterms necessary

to renormalise the ghost action (4.2.20). We find that:

S1
1/1 =

κ2µ−2ε

(4π)2ε

∫︂
x

{︃
1

2
h∗µν∂3µναc

α − 3

4
h∗µν□∂µcν

}︃
, (4.3.10)

in agreement with ref. [163], cf. app. 4.A. Again these must belong to s0K1/1 for a

suitable choice of K1/1, which means that we must add to what we have in (4.3.5). A

solution is to add

K1
1/1 ∋ −

1

2

κ2µ−2ε

(4π)2ε

∫︂
x
h∗µν∂2µνφ , K2

1/1 ∋ −
3

8

κ2µ−2ε

(4π)2ε

∫︂
x
c∗µ□c

µ . (4.3.11)

At the two-point level, it is straightforward to see that the level-two part gives the second

term in (4.3.10) via Q−K2
1/1, whilst the level-one part gives the first term via QK1

1/1,

(4.3.5) making no contribution because it is annihilated by Q. On the other hand, (4.3.5)

is still correct for reproducing S0
1/1 because the level-one part above is annihilated by

Q−, as follows by the Bianchi identity for the Einstein tensor or by recognising that the

above level-one part is proportional to Q−(∂αc∗αφ). Indeed at this stage one has to face

the issue that the solution for K is unique only in the cohomology. One can always add

an s0-exact piece to K, in particular one can add s0(∂
αc∗αφ). The above solution is one

choice, in fact the same as that made in ref. [163].

Now let us comment on the results of the previous subsection. The fact that they can

be written covariantly, in terms of curvatures of the background metric, is of course no

accident: this is guaranteed by background diffeomorphism invariance. The fact that one

can also do so in terms of gµν = δµν+κhµν , is however an accident of Feynman DeDonder

gauge. At the level of the action it is a consequence of the fact that Q−S1
1/1 = 0 in this

gauge, and thus the graviton counterterm action must be annihilated by Q:

0 = s0S1/1 = QS0
1/1 +Q−S1

1/1 = QS0
1/1 . (4.3.12)
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Up to cohomology and normalisation, there is a unique term φ∗□φ ∈ K1/1 that could

arise in the one-loop calculation which would break this ‘quantum diffeomorphism’ in-

variance. Equivalently in S0
1 we would find a term proportional to

Q−
∫︂
x
φ∗□φ = −

∫︂
x
(R+ R̄

(1)
)□φ . (4.3.13)

Indeed from [162], cf. app. 4.A, we know this term is present in a more general gauge.

Furthermore we will see in sec. 4.3.3 that at two loops an analogous term is generated

even in Feynman DeDonder gauge, while at one loop but beyond the two-point level

many terms ensure that QS0
1/1 ̸= 0.

This completes the calculation at the two-point level because it is not possible to generate

two-point higher level counterterms Sn>1
ℓ (since n is also the pure ghost number).

4.3.2 One-loop three-point counterterms

This involves computing one-loop diagrams with the topologies given in fig. 4.3.2. Al-

ready at this stage there are thousands of divergent vertices, and computer algebra

becomes essential. We proceed by comparing the results with the general structure

(4.2.77), i.e. we should find that the counterterm action takes the form:

S1/1[Φ,Φ
∗] = S0

1/1[gµν ] + s0K1/1[Φ,Φ
∗] . (4.3.14)

As explained in ref. [18], dimensional regularisation allows for the computation of the

Gauss-Bonnet topological term:

S0
1/1[gµν ] =

τµ−2ε

(4π)2ε

∫︂
x

√
g
(︁
RµνρσRµνρσ +R2 − 4RµνRµν

)︁
=
τµ−2ε

(8π)2ε

∫︂
x

√
g ϵαβγδϵµνρσR

µν
αβR

ρσ
γδ ,

(4.3.15)

which is the unique possibility for S0
1/1[gµν ] up to choice of coefficient τ and terms that

vanish on shell (cf. the discussion at the end of sec. 4.2.9).

Figure 4.3.2: Topologies of three-point Feynman diagrams at one loop.
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Up to the three-point level, K1/1 has no more than antighost number two. The two

antighost levels have the following general parametrisation:

K1
1/1 =

κµ−2ε

(4π)2ε

∫︂
x

(︁
β̄h∗µνR̄µν + γ̄φ∗R̄

)︁
+
κ2µ−2ε

(4π)2ε

∫︂
x

{︂
βh∗µν

(︁
∇̄µ∇̄α

hαν − 1
2□̄hµν

)︁
+ (c1 − β)h∗µν∇̄µ∇̄νφ+ γφ∗

(︂
∇̄α∇̄βh

αβ − 2□̄φ
)︂

+ α3h
∗µνR̄µ

αhαν + α4h
∗µνR̄αµνβh

αβ + α5h
∗µνR̄µνφ

+ α6φ
∗R̄

αβ
hαβ + α7R̄φ

∗φ
}︂

+
κ3µ−2ε

(4π)2ε

∫︂
x

27∑︂
i=1

bi
(︁
h∗h2∂2

)︁
i
, (4.3.16)

K2
1/1 =

κ2µ−2ε

(4π)2ε

∫︂
x

(︁
c2c

∗
µ□̄c

µ + α1c
∗
µc

µR̄+ α2c
∗
µc

νR̄
µ
ν

)︁
+
κ3µ−2ε

(4π)2ε

∫︂
x

1√
ḡ

(︂
α8φ

∗∇̄µφ
∗cµ + α9h

∗αβ∇̄µh
∗
αβc

µ + α10φ
∗h∗µν∇̄

µ
cν

+ α11h
∗
αµh

∗α
ν∇̄µ

cν
)︂

+
κ3µ−2ε

(4π)2ε

∫︂
x

21∑︂
i=1

di
(︁
c∗ch∂2

)︁
i
. (4.3.17)

Here we have used the symmetries and statistics of the (anti)fields. In particular, the

result must be background diffeomorphism invariant (which implies the factor of 1/
√
ḡ in

the terms with two antifields, because we defined them to transform as tensor densities

of weight −1). Furthermore, we know that the terms with one antifield have two space-

time derivatives whilst those with two antifields have one spacetime derivative. The

power of κ and µ then follow from [K] = −1.

The parametrisation must be consistent with the results at the two-point level, hence the

appearance of parameters β̄, γ̄, β and γ from (4.3.5). We similarly introduce parameters

c1 and c2 where, from (4.3.11), we know that

c1 = −
1

2
, and c2 = −

3

8
. (4.3.18)

Background diffeomorphism invariance tells us that the linearised curvatures accompa-

nying β̄ and γ̄ simply become full curvatures (by (4.3.1) they absorb one power of κ)

but, as discussed in sec. 4.3.1.2, the appearance of the linearised quantum curvatures

in (4.3.5) is accidental, so it is more appropriate for the β and γ pieces to appear with

their separate parts covariantised, following (4.3.2). Even though all these parameters

are known, and that includes τ [18, 165], we leave them general when we match to the

three-point one-loop results, as extra checks on the formalism.
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The remaining eleven αi, twenty-seven bi, and twenty-one di, are genuinely free param-

eters to be determined. The schematic representation for the di terms means that one

sums over the vertices with coefficients di, these vertices being the twenty-one linearly

independent combinations of two spacetime derivatives and one c∗α, c
β, and hγδ. We

ensure independence under integration by parts by taking as representatives those ver-

tices where c∗α is undifferentiated. Since the di terms are already three-point vertices,

as are the bi terms, background covariantisation is ignored there. For the same reason,

we actually do not need diffeomorphism invariant expressions for the α8, · · · , α11 terms,

whilst in the other αi terms we actually only need the linearised background curvature.

The sum over bi vertices is defined in the same way as for the di vertices, except that all

terms involving ∂αh
∗αβ are discarded, and likewise any two vertices should be considered

equal if they only differ by such terms on using integration by parts. (This can be

implemented straightforwardly by deriving the vertices in momentum space.) The reason

for this restriction is because at the three-point level, vertices containing ∂αh
∗αβ are

already accounted for in the di sum. As in the discussion in sec. 4.3.1.2, this is a

consequence of the fact that we can add an s0-exact part to K1/1 without altering S1/1,

cf. (4.3.14). At the three-point level we can add (Q + Q−)(c∗h2∂), but Q− generates

the ∂αh
∗αβ terms while Q maps onto combinations in the di sum that contain ∂(αcβ).

Finally, for the same reason we do not want a free parameter for the combination

− κ√
ḡ
s0 (φ

∗h∗µνhµν) = R̄h∗µνhµν + 2φ∗R̄
αβ
hαβ − 2R̄φ∗φ− 2

κ√
ḡ
φ∗h∗µν∇̄µcν . (4.3.19)

The last three terms on the right hand side appear in our parametrisation, but this is

why the first term is missing from it.

Although the resulting parametrisation is long, it is a dramatic reduction compared

to the thousands of vertices from the Feynman diagram calculation, and therefore in

fact the parameters are vastly overdetermined. That we nevertheless find a consistent

solution for all vertices is thus a highly non-trivial verification of the formalism.

Matching to just the (antighost level zero) pure background h̄
3
vertices, we reproduce

well-known results: we confirm that the pure background curvature-squared terms at

the two-point level, cf. (4.3.3), are covariantised to full background curvatures, as is

in fact clear here from our K1
1/1 (4.3.16), and confirm that the remaining part is the

Gauss-Bonnet term given in (4.3.15). In this way we reaffirm the β̄ and γ̄ values from

(4.3.9) and also find

τ =
53

90
, (4.3.20)

in agreement with previous calculations [18,165].

One can determine all the coefficients inK1
1/1 by matching to antighost level zero vertices,

up to several vertices parametrised by c1. In fact just using the h2h̄ and h3 vertices is

sufficient to determine all that can be found at this level, but we matched also to h̄
2
h
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vertices to verify the result and further confirm consistency. TheK2
1/1 parameters cannot

of course be determined by matching to antighost level zero vertices, because the lowest

antighost level it generates is level one, via Q−K2
1/1, while c1 and some vertices in the

bi sum also remain undetermined because in K1
1/1 at the three-point level they can be

collected into 1
2c1Q

−(c∗ν∇̄νφ).

Now all the parameters in K2
1/1, and c1, can be (over)determined by matching to the

full set of level-one three-point Feynman diagrams with topology of fig. 4.3.2, i.e. such

that one external leg is a ghost cµ, one external leg is h∗αβ and the remaining leg is h

or h̄. In this way we recover the previously stated values for c1, c2, β̄, γ̄, β and γ, and

determine that

α1 =−
1

8
, α2 = −

1

24
, α3 =

161

120
, α4 =

1

120
, α5 = −

3

4
, α6 = −

7

15
,

α7 =
19

60
, α8 = −

1

6
, α9 = −

1

12
, α10 = −

4

15
, α11 = −

1

6
, (4.3.21)

and also the bi and di parameters as given below:

27∑︂
i=1

bi
(︁
h∗h2∂2

)︁
i
=

5

12
h∗µνφ∂2µνφ−

13

160
h∗µν∂2µνh

β
αh

α
β +

1

4
h∗µα (∂νhαν∂µφ− ∂µ∂νhανφ)

+
61

240
h∗µα (∂µhαν∂

νφ− hαν∂ν∂µφ) +
7

80
h∗µα

(︂
∂µhβν∂

νhβα − hβν∂ν∂µhβα
)︂

− 61

240
h∗µα

(︂
∂νhβ

ν∂µh
β
α − ∂2µνhβνhβα

)︂
+

13

60
φ∗∂αhβν∂

νhβα +
43

60
φ∗hβν∂

ν∂αhβα

+
77

120
φ∗∂νhβν∂

αhβα −
53

60
φ∗hαν∂

ν∂αφ− 17

10
φ∗∂νhαν∂

αφ− 3

10
φ∗φ□φ

− 11

60
φ∗φ∂2ανh

αν +
9

40
φ∗hαβ□h

β
α +

14

15
φ∗∂νφ∂

νφ− 11

80
φ∗∂νh

α
β∂

νhβα

− 131

240
h∗µν∂αhµν∂αφ−

1

4
h∗µνhαµ∂

2
αβh

β
ν −

1

12
h∗µν∂αh

α
µ∂βh

β
ν −

27

80
h∗µν∂βh

α
µ∂αh

β
ν

+
17

80
h∗µν∂αhµβ∂

αhβν +
7

80
h∗µν∂2αβhµνh

αβ − 1

2
h∗µν□hµβh

β
ν +

37

80
h∗µν∂αhµν∂

βhαβ

− 1

3
h∗µνhµν□φ+

1

3
h∗µνhµν∂

2
αβh

αβ +
11

24
h∗µν□hµνφ . (4.3.22)

21∑︂
i=1

di
(︁
c∗ch∂2

)︁
i
=

1

12
c∗µ∂2µνc

νφ− 121

480
c∗µ∂

µcν∂νφ+
61

480
c∗µ∂

µcν∂αh
α
ν −

11

24
c∗µ∂2µαc

νhαν

− 1

3
c∗µcν∂2µνφ+

1

6
c∗µcν∂2αµh

α
ν −

1

24
c∗µ∂νc

ν∂µφ− 101

480
c∗µ∂αc

ν∂µhαν −
1

8
c∗α∂

2
µνc

νhαµ

− 119

480
c∗α∂

µcν∂νh
α
µ +

1

12
c∗αc

ν∂2µνh
αµ +

1

8
c∗α∂νc

ν∂µhαµ −
301

480
c∗α∂

νcα∂νφ+
1

4
c∗αc

α□φ

+
1

3
c∗α□c

αφ− 1

12
c∗αc

α∂2µνh
µν +

27

160
c∗α□c

µhαµ −
239

480
c∗α∂νc

µ∂νhαµ −
1

4
c∗αc

µ□hαµ

+
7

160
c∗α∂

2
µνc

αhµν +
241

480
c∗α∂

νcα∂µhµν . (4.3.23)

Since the above provides us with the full expression for K1/1 up to the three-point
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level, we get as a bonus the full expression up to three-point level for the antighost

level-two counterterm, without having to compute it from Feynman diagrams, since it is

given by S2
1/1 = QK2

1/1. This completes the explicit calculation of all off-shell one-loop

divergences with up to three (anti)fields.

4.3.3 Two-loop double-pole two-point graviton counterterms

Now as advertised we use the one-loop counterterm diagrams, illustrated in fig. 4.3.3,

to compute the two-loop 1/ε2 counterterm via the RG relation (4.2.44). We limit our-

selves to the two-point diagrams at antighost level zero, i.e. with either a quantum or

background graviton external leg. This is already enough for a non-trivial explicit test

of the second order canonical expansion relation (4.2.71).

Figure 4.3.3: RG relates the 1/ε2 pole in the two-loop two-point counterterm ver-
tices to one-loop counterterm vertices, represented by the crossed circles, via one-loop

counterterm diagrams with the above topologies.

For the first diagram in fig. 4.3.3, we need the one-loop two-point counterterm vertices

with purely quantum legs. They are given by (4.3.10) and the first two terms in (4.3.3)

for ghosts and graviton respectively. (In the former case we need to shift to gauge

fixed basis using relation (4.2.18) at the linearised level.) For the second diagram we

need the one-loop three-point counterterm vertices with two quantum legs and either an

external hαβ or h̄αβ. These can be ported directly from intermediate results created as

a side-product of the computation reported in the previous subsection. Alternatively,

they can be generated by evaluating s0K1/1 using the explicit expressions given there.

(As expected the topological counterterm (4.3.15) can be disregarded since it makes no

contribution to the Feynman integrals.)

The result we find is that for two-point vertices:

S0
2/2 = −

1

2

κ4µ4ε

(4π)4ε2

∫︂
x

{︃
11

36
R̄

(1)□R̄(1)
+

5

72
R̄

(1)µν□R̄(1)
µν −

469

3600
R(1)□R(1)

+
79

200
R(1)µν□R(1)

µν +
781

3600
R̄

(1)□R(1) +
53

150
R̄

(1)µν□R(1)
µν

− 31

720

(︂
R̄

(1)
+R(1)

)︂
□2φ

}︃
, (4.3.24)
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where the overall factor of −1
2 is the conversion (4.2.44) from the double-pole in fig. 4.3.3

to the two-loop counterterm S2/2. As we will see this result passes a highly non-trivial

consistency check in that it satisfies the second order canonical transformation relation

(4.2.71). As far as we know the above result has not appeared in the literature before,

except for the one term: R̄
µν□̄R̄µν [19]. However this was quoted there as part of some

partial results that unfortunately contain an error [160]. Nevertheless comparing the

coefficients for this one term, we find that they agree up to a factor of half, see app.

4.A.

Recall that the one-loop level-zero two-point result (4.3.3) can be written entirely in

terms of linearised curvatures (4.3.2) and is thus invariant under (linearised) diffeo-

morphisms, in particular also for the fluctuation field hµν . This latter invariance is a

consequence of invariance under the linearised BRST charge Qhµν = ∂(µcν). Recall also

from sec. 4.3.1.2 that this property is actually an accident of Feynman DeDonder gauge.

The presence of the □2φ term above shows that at two loops, one’s luck runs out and this

property is violated. As is evident from the form of this last term, it just corresponds to

inserting another □ into the unique one-loop Q-invariance-breaking possibility (4.3.13).

In the remainder of this subsection we will show that the double-pole (4.3.24) corresponds

to a canonical transformation taken to second order, i.e. can be expressed as in (4.2.71):

S2 =
1

2
(S1,K1) + s0K2 . (4.3.25)

Actually recall that this expression follows from the non-linear CME relation s0S2 =

−1
2(S1, S1), viz. (4.2.41), on assuming that S1 is given only by the exact piece s0K1,

whereas the one-loop solution (4.3.14) also contains the Gauss-Bonnet term (4.3.15).

However since the latter is topological it makes no contribution to the antibracket and

thus (4.3.25) is indeed the correct solution.

From sec. 4.3.2, it is clear that (S1, S1) cannot vanish at the three-point level, and

thus the non-linear CME relation itself is highly non-trivial. However for the two-point

vertices (S1, S1) in fact does vanish. This is straightforward to see by inspection since

for the two-point vertices we only have the pure curvature antighost level zero part,

S0
1/1, as given in (4.3.3), and the antighost level one part, S1

1/1, as given in (4.3.10).

But substituting these into (S1/1, S1/1) the net effect is to replace hµν in a ‘quantum

curvature’ by either ∂3µναc
α or □∂µcν (up to some coefficient of proportionality), causing

the result to vanish since both of these are pure gauge.

Thus the non-linear CME relation (4.2.41) only implies that the two-point vertex in S2

is s0-closed. The problem is that the two-point level is to a certain extent degenerate.

A related point is that if we take the action only to have an antighost level zero piece,

and take this to be any product of linearised curvatures, that is any one of the terms

in S0
1/1 of (4.3.3), then this action is s0-closed at the two-point level since the linearised

quantum curvatures are invariant under linearised diffeomorphisms. Nevertheless as we
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will see, this test is still non-trivial because although at the level of two-point vertices
1
2(S1,K1) in the general solution (4.3.25) is s0-closed, it is not s0-exact.

Specialising (4.3.25) to antighost level zero and divergences we have

S0
2/2 =

1

2
(S0

1/1,K
1
1/1) +Q−K1

2/2 . (4.3.26)

Substituting
∫︁
x h

∗µν∂2µνφ for K1
1/1 into the antibracket, we see that it vanishes for the

same reasons as above. Therefore the (4.3.11) part of K1/1 makes no contribution. Since

the remaining part of K1/1, viz. (4.3.5), is made of linearised curvatures, we see that the

antibracket contributes terms with linearised curvatures only. Explicitly, we find

1

2
(S0

1/1,K
1
1/1) =

κ4µ4ε

(4π)4ε2

∫︂
x

{︂
− 1

2
β̄(β + β̄)R̄

(1)
µν□R̄

(1)µν − β2Rµν□R
(1)µν

+
1

2
(3γ2 + 2βγ + β2)R□R+

1

4
(3γ̄2 + 3γ̄γ + 2β̄γ̄ + β̄γ + β̄

2
+ βγ̄ + ββ̄)R̄

(1)□R̄(1)

− 1

2
β(β + 3β̄)Rµν□R̄

(1)µν
+

1

4
(9γγ̄ + 3γ2 + 3β̄γ + 3βγ̄ + 2βγ + 3ββ̄ + β2)R□R̄(1)

}︂
,

(4.3.27)

where recall that the parameters were determined as in (4.3.9). Now this cannot come

from an s0-exact expression because if it did, we could write it as Q−K1 for some K1.

We can check if this is so by using the same rule discussed in sec. 4.3.1.1, i.e. from

(4.3.7) we know that this would imply that the coefficient of the mixed terms above

must be equal to the sum of the coefficients of the equivalent pure quantum and pure

background pieces. It is easy to see that this does not work. Similarly one can verify

that the curvature terms in (4.3.24) do not sum to something that is Q−-exact.

But according to (4.3.26), on subtracting (4.3.27) from (4.3.24) we should be left with

a Q−-exact piece. We have already seen that this is true of the non-covariant term, the

last term, in (4.3.24). The remaining parts are pure curvature terms and must thus have

the parametrisation (4.3.5) except with an extra □ inserted (and different coefficients),

up to some Q−-exact remainder, Q−R ∈ K1
2/2 (which does not contribute to (4.3.26)

because Q− is nilpotent). Matching to the above results, we find that this is indeed the

case and thus we derive K1
2/2 at the two-point level in the form

K1
2/2 =

κ4µ4ε

(4π)2ε2

∫︂
x

{︂ 877

28800
h∗µν□R(1)

µν +
71

1800
φ∗□R(1)

+
361

28800
h∗µν□R̄(1)

µν +
2719

14400
φ∗□R̄(1) − 31

1440
φ∗□2φ

}︂
+Q−R . (4.3.28)

Like in (4.3.5), the remainder term Q−R has ∂αh
∗αβ as a factor. It could also be derived

by matching to the two-loop double-pole level-one counterterm diagrams, and they can

be computed using the results we have already obtained. However the above form for

K2/2 is sufficient for our purposes.
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4.4 Generalised beta functions and why they are not finite

In this final section we comment on some ideas for generalised β-functions, where the

field is taken to play the rôle of a collection of couplings. The key idea is to exploit

relations that follow from assuming that these β-functions are finite. Unfortunately this

assumption is incorrect. We explain why natural generalisations that respect the BRST

symmetry also fail to work.

Inspired by ref. [179] and its many follow-ups e.g. [180,181], which themselves are inspired

by refs. [182–184], the main proposal of ref. [160] consists of two key steps. The first

key step is to allow for a non-linear renormalisation of the metric, replacing gµν in the

Einstein-Hilbert term of the classical action (4.2.4) with a bare metric g0µν which is then

expanded as

g0µν(x) = gµν(x) +
∑︂
k=1

1

εk
gkµν(x) . (4.4.1)

The gkµν are assumed to be local diffeomorphism covariant combinations constructed

from covariant derivatives and curvatures using the renormalised metric gµν . With this

assumption, the proposal only applies to non-linear renormalisation of the background

metric.

In ref. [160] the µ dependence in (4.4.1) is simplified to an overall multiplicative µ−2ε on

the right hand side, by taking the mass dimensions to be [g0µν ] = −2ε, while [gµν ] = 0

and [κ] = −1 (also in d dimensions). However the same physics can be arrived at by

including µ in the more conventional way, as we do. Thus, our metrics are taken to

be dimensionless, while [κ] = −1 + ε. Then by dimensions, the gkµν are forced to have

explicit dependence on µ, cf. sec. 4.2.6 and sec. 4.3. In fact the ℓ-loop contribution is

constructed from 2ℓ covariant derivatives, rendered dimensionless by the factor (κµ−ε)2ℓ.

A renormalisation of form (4.4.1) can provide all the covariant counterterms in the bare

action that vanish on the equations of motion. For example, the purely background

metric counterterms (in Feynman – De Donder gauge) are [161], cf. (4.3.3) and below

(4.3.18),

S1 =
µ−2ε

(4π)2ε

∫︂
x

√
ḡ

(︃
1

120
R̄

2
+

7

20
R̄

2
µν

)︃
. (4.4.2)

These counterterms can be generated by defining

ḡ0µν = ḡµν +
κ2µ−2ε

(4π)2ε
ḡ1µν , where ḡ1µν =

7

40
R̄µν +

11

120
ḡµνR̄ (4.4.3)

(where, from here on, we make explicit the κµ−ε/(4π) dependence in ḡkµν).

Now by insisting that the bare metric is independent of µ, and differentiating both sides

with respect to µ, one obtains a kind of generalised “beta function”, βαβ = µ∂µ gαβ

for the renormalised metric (non-linear wavefunction renormalisation might be a better
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term). For the above example, from (4.4.3), we have for the background metric to one

loop,

β̄µν = 2
κ2µ−2ε

(4π)2
ḡ1µν . (4.4.4)

The second key step is actually implicit in ref. [160]. It is the assumption that such

generalised beta functions are finite in the limit ε → 0. We have just seen that this is

trivially true at one loop, but at higher loops this is a powerful assumption. Just as

with the usual beta functions in a renormalisable theory, the one-loop result would then

be enough to determine the leading pole 1/εℓ at each loop order ℓ without computing

any more Feynman diagrams. To see this in our example, assume we already know the

leading two-loop purely background counterterm and have chosen ḡ2µν to generate it via

ḡ0µν = ḡµν +
κ2µ−2ε

(4π)2ε
ḡ1µν +

κ4µ−4ε

(4π)4ε2
ḡ2µν , (4.4.5)

where the prefactor follows because ḡ2µν will be formed from four background covariant

derivatives. Then cancellation of the 1/ε single-pole in β̄µν tells us that

ḡ2αβ =
4π2µ2ε

κ2
µ∂µḡ

1
αβ[ḡ] , (4.4.6)

Applying the Leibniz rule and using (4.4.4), we see that ḡ2αβ should in fact be computable

simply by applying a first order shift of the background metric on the one-loop result:

ḡ2αβ = δḡ1αβ[ḡ] , where δḡµν =
1

2
ḡ1µν . (4.4.7)

Unfortunately this does not work as can be verified explicitly at the two-point level

by using the pure background terms from (4.3.24) (for higher order see the discussion

below that equation). The reason is that the second key step, the assumption that these

generalised beta functions are finite, is incorrect. In the original incarnation as applied to

the target metric of the two-dimensional sigma model [182–184], it was correct, because

the target metric actually represents an infinite set of couplings. But applied to the

fields themselves, as in the proposal of ref. [160], it is not correct.

The obstruction to finiteness of β̄µν shows up most clearly in the gauge fixing. The

result (4.4.2) is derived using De Donder gauge (4.2.15). Clearly the transformation

(4.4.5) alters the gauge (4.2.15) (by a divergent amount). That is a problem because the

Legendre effective action is not the same in different gauges except on shell. But ḡ2µν in

(4.4.5) has been chosen to cancel a part that only exists off shell.

In fact let us now recall that counterterms are required that depend on all combinations

of the fields, in particular the quantum fields, as we have seen. In the background

field method it is possible to work exclusively with diagrams that have only external

background field legs (as in e.g. [18]). However even if we do not explicitly track the
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value of counterterms that cancel divergences in vertices involving quantum fields, they

must be there in practice because they cancel sub-divergences in higher loops, and

higher loop divergences are local, as required, only if all these sub-divergences have been

cancelled [164,185,186], as we recalled in sec. 4.2.6.

Then as we saw in sec. 4.2.9, the ‘new’ divergences at each loop order are s0-closed.

Those that vanish on the equations of motion, are s0-exact and correspond to infinites-

simal canonical transformations (4.2.69) between the antifields and quantum fields. As

we proved there, and also verified in sec. 4.3, there is no separate purely background

renormalisation. What happens instead is that purely background counterterms also get

absorbed by these canonical transformations. This extends to the non-linear terms that

appear beyond one loop order. For example we saw that the leading (i.e. double-pole)

counterterm at two loops, (4.3.26), also involves carrying the one-loop canonical trans-

formation to second order, as we saw in sec. 4.2.8.

Now it is clear that if the proposal of [160] is going to work, it should apply not to

the background metric, but to the antifields and quantum fields. Indeed the second-

order canonical transformation δϕ(∗) given in eqn. (4.2.74), is the correct non-linear

transformation between bare (anti)fields

ϕ
(∗)
0 = ϕ(∗) + δϕ(∗) (4.4.8)

and renormalised (anti)fields ϕ(∗), such that it will generate through Taylor expansion

(4.2.76) of the classical action, all the required counterterms that vanish on shell, up to

two loops.4

Independence of ϕ
(∗)
0 on µ, then implies the generalised beta functions

βA[ϕ, ϕ∗] = µ∂µϕ
A and β∗A[ϕ, ϕ

∗] = µ∂µϕ
∗
A . (4.4.9)

Following the previous argument, if we assume that these beta functions are finite, we

can derive K2 from K1 without computing Feynman diagrams. Once again we can check

this idea explicitly using the results for K1 from sec. 4.3.1. It turns out that it implies

that at the two-point level K2 must vanish. But from (4.3.28) this is incorrect. In fact,

irrespective of the details, this proposal cannot work because the K1 terms just furnish

linearised curvatures for K2, whereas K2 has the explicitly non-covariant piece – the

last term under the integral in (4.3.28). Again, the mistake in this reasoning is the

assumption that the generalised beta functions are finite.

To see why they cannot be finite, note that the partition function (4.2.28) now takes the

form

Z[J, ϕ∗] =
∫︂
Dϕ e−S[ϕ0,ϕ∗

0]+ϕAJA , (4.4.10)

4The Jacobian for this local transformation vanishes in dimensional regularisation, recall below
(4.2.31).
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Here the bare antifields are responsible for generating all the counterterms that vanish

on shell, via canonical transformations (4.2.74), whilst S itself contains the counterterms

for cohomologically non-trivial pieces which depend only on the total metric, such as

the topological term (4.3.15) at one loop, and the Goroff-Sagnotti term [19]

S2 ∋
209

5760

κ2µ−2ε

(4π)4ε

∫︂
x

√
g R γδ

αβ R ϵζ
γδ R αβ

ϵζ (4.4.11)

at two loops. All Green’s functions are then finite (in particular this is so for the Legen-

dre effective action, which is a functional of the classical fields ΦA and the renormalised

antifields Φ∗
A = ϕ∗A). However for the operators that vanish on shell, we are now at-

tributing µ dependence to the renormalised (anti)fields ϕ(∗) rather than renormalised

couplings ciℓ as before. Unfortunately µ-independence of the bare action S[ϕ0, ϕ
∗
0] then

implies that βA cannot be finite since:

µ∂µZ[J, ϕ∗] =
∫︂
Dϕ βA[ϕ, ϕ∗]JA e−S[ϕ0,ϕ∗

0]+ϕAJA . (4.4.12)

Indeed the left hand side is finite by construction, but the right hand side involves

the insertion of βA which is local and non-linear in renormalised quantum fields. The

insertion of such terms generates new divergences, and the only way they can be cancelled

is if in fact βA already contains precisely the right divergences to cancel them.

4.5 Discussion and Conclusions

Off-shell counterterms in quantum gravity, defined perturbatively as an effective theory

about a background metric ḡµν , are invariant under background diffeomorphisms, BRST,

and the RG. In this chapter we have drawn out some of the consequences of the way

these symmetries are interwoven with each other.

In particular we have shown in sec. 4.2.9 that at each new loop order the new divergences,

those that are annihilated by the total classical BRST charge s0, can be characterised

as being either diffeomorphism invariant functionals of the total metric gµν which do

not vanish on the classical equations of motion (i.e. do not vanish when Gµν = 0) or as

s0-exact functionals which are thus first order canonical transformations of the antifields

and quantum fields (cf. sec. 4.2.8). In particular we show that there are no separate

purely background field divergences. Then it follows that those background field terms

that do not vanish on the equations of motion Ḡµν = 0, are part of the diffeomorphism

invariant functionals of the total metric, whilst those that do vanish on the equations of

motion are renormalised by reparametrising the quantum fluctuation hµν as part of the

canonical transformations. The background metric itself is never renormalised.

By adding the antifield sources for BRST transformations, we keep track of the defor-

mations of the BRST algebra induced by renormalisation. These appear as part of the
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s0-exact counterterms. Whilst the Zinn-Justin/CME equation is preserved at each loop

order ℓ for both the bare action and the Legendre effective action, the BRST transfor-

mations are altered in a non-linear way beyond one loop. As we demonstrated in sec.

4.2.5 this brings the Legendre effective action and bare action realisations of the CME

equation into tension with each other. This tension is resolved by the RG identities for

a perturbatively non-renormalisable theory, which relate lower loop ℓ′ < ℓ counterterm

diagrams to higher order poles at ℓ-loop order [146].

In this chapter we only demonstrate how this works at two loops. A fully general

understanding of how the RG ensures consistency for BRST seems possible, following the

general understanding of the RG identities [146] and e.g. the proof of renormalisability

put forward in ref. [139] for effective theories with gauge invariance (the latter does not

address the above tension but proceeds assuming both realisations of the CME remain

consistent with each other).

Let us emphasise that the way the RG and BRST relations work together is quite

remarkable. On the one hand the RG relates the two-loop double-pole vertices to the one-

loop single pole vertices through a linear map which however involves computing further

one-loop Feynman diagrams (the counterterm diagrams). On the other hand BRST,

through the second-order CME relation (4.2.41), directly relates the two-loop double-

pole vertices to the square of the one-loop single-pole vertices, i.e. without involving

further loop calculations. In a sense then the BRST relations achieve what generalised

beta function proposals, cf. sec. 4.4, fail to do.

However the BRST relations do not determine the higher pole vertices completely but

only up to an s0-closed piece, for example this is evident in the two-loop relation (4.2.41):

s0S2/2 = −1
2(S1/1, S1/1). They are thus less powerful than the RG identities. In fact

in sec. 4.3.3, we saw in Feynman – De Donder gauge that the non-linear term on the

right hand side starts only at the three point level. As we explained, at the two-point

level the equations degenerate, although they still allow a unique determination of the

second order canonical transformations, and, thus, also the new s0-exact piece.

Let us note that the way the RG works to ensure consistency of BRST invariance, is not

unique to non-renormalisable gauge theories. However, in renormalisable theories, the

divergent vertices are those in the original action. The RG identities for counterterm

diagrams then play a less dramatic rôle in that they just ensure that these divergences

appear with the correct sign so that they can be renormalised multiplicatively.

For quantum gravity, we verified the assertions above in sec. 4.3 by computing coun-

terterms at one-loop up to the three-point level and up to two-loops for the graviton

two-point vertex. Exploiting the BRST properties we gave a general parametrisation of

the one-loop three-point counterterms and determined the parameters by matching to

the graviton and ghost one-loop integrals. The antighost level two counterterms (which
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renormalise the BRST transformation of the ghosts) then follow without further Feyn-

man diagram computations.

These results could be readily extended, for example the ghost two-loop double-pole

two-point counterterms can be computed using the vertices presented here and this

would allow the form of the two-point K2/2 to be fully determined, cf. eqn. (4.3.28).

An interesting but more challenging project would be to work out the form of the one-

loop counterterms to the next order in h̄µν since this would allow one to determine the

two-loop double-pole three-point background field vertices which would then allow a

complete comparison with the off-shell results reported in ref. [18]. The parametrisation

we give for K1/1 in (4.3.16) and (4.3.17) looks sufficient to compute the corresponding

one-loop counterterm diagrams, if the di and bi terms are covariantised, however this

introduces a number of new terms with undetermined coefficients, in particular we would

need to determine the h∗h2R̄
(1)

terms. The simplest way to do that would appear to be

by matching to one-loop h∗chh̄ divergences.

In our discussion of generalised beta functions in sec. 4.4, we explained why they cannot

be finite and verified this using our explicit results from sec. 4.3. In particular for gen-

eralised beta functions based on the canonical transformations we obtained the formula

(4.4.12) which shows why they cannot be finite. Nevertheless, this formula implies some

interesting relations between the divergent higher order coefficients and the divergences

generated by expectation values of the lower coefficients. It would be interesting to

verify these and explore further their consequences.

Finally let us return to our original motivation and note that the counterterms we have

derived give directly the leading log behaviour at large euclidean momentum. Indeed,

the one-loop divergence (4.2.47) and counterterm (4.2.48) taken together determine the

ln
(︁
p2/µ2

)︁
part. One can check explicitly that the two-loop double pole (4.2.52) from

diagrams using only tree level vertices, together with divergences (4.2.51) in one-loop

counterterm diagrams and the double-pole counterterm from (4.2.54), conspire to cancel

all but a remaining [ln
(︁
p2/µ2

)︁
]2 term. Thus from the explicit results (4.3.3) and (4.3.24)

we see that the leading log contribution of for example the two-point hµν vertex is given

to two loops, in Feynman – De Donder gauge, as:

hµνΓ
µναβ(p)hαβ = p2

(︃
φ2 − 1

2
h2µν

)︃
+

κ2

(4π)2
ln

(︃
p2

µ2

)︃(︃
61

60
(R(1)

µν )
2 − 19

120
(R(1))2

)︃
− κ4p2

(4π)4

[︃
ln

(︃
p2

µ2

)︃]︃2(︃
469

7200
(R(1))2 − 79

400
(R(1)

µν )
2 +

31

1440
p2R(1)φ

)︃
,

(4.5.1)
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where hµν and φ = 1
2h

µ
µ here just provide the polarisations, and the linearised curva-

tures (4.3.2) should be similarly understood and cast in momentum space, thus R
(1)
µανβ =

2p[µ| p[νhβ] |α] etc.

Of course as physical amplitudes these corrections vanish on shell, while for the moment

it remains just a dream that a way can be found to resum these leading contributions to

all orders, where one might get powerful insights into the non-perturbative UV behaviour

of quantum gravity. Nevertheless we hope that the detailed understanding we have

gained of some of the consequences of combining background diffeomorphism invariance,

RG invariance, and BRST invariance, bring that dream a step closer to reality.

4.A Comparisons with the literature

Here we outline the differences in convention and notation that need to be taken into

account in order to compare with other results in the literature.

The two-point purely quantum one-loop counterterm given in (4.3.3), corresponding

to the first diagram in fig. 4.3.1, was computed in a general two parameter gauge

(α̃∂µhµν + β̃∂νh
ρ
ρ)2 in ref. [162]. (We put a tilde over his parameters so as not to

confuse with the ones used in this chapter.) After taking into account the Minkowski

signature and that factors of 1/(2π)4 are accounted for differently, it should coincide

with the first two terms in (4.3.3) on specialising α̃ = 1 and β̃ = −1
2 to get Feynman

DeDonder gauge.

Initially the results did not coincide. Recomputing the two-point vertex in this gen-

eral gauge we found the following typos in ref. [162]: in the square brackets of his T3

there should be an extra term: +45
8 β̃

4
/α̃2, and in T4 the term −135(β̃2/α̃) should read

−135(β̃2/α̃2). Finally his parameter a should be defined as a = 1
2T2 − T3, rather than

1
2E4 as stated. Once these are fixed, we find complete agreement.

The result for the purely quantum pieces in (4.3.3) also agrees with the result quoted in

ref. [163] on recognising that there the divergence can be recovered by setting ln(1/µR) =

1/2ε. This mapping is also the one to use to compare the level one divergence with

(4.3.10).

The purely background terms in (4.3.3) agree with ref. [161] on recognising that their

ε = 8π2(d − 4), their definition of Ricci curvature is minus ours, cf. below (4.2.5), and

that their action is defined to be the opposite sign from the usually defined Euclidean

action, cf. (4.2.4). Their normalisation of the scalar curvature term is also non-standard

but this is repaired by mapping gµν ↦→
√
2κgµν and has no effect on the one-loop result,

since it is a curvature-squared action.
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In the famous paper [18], this result is reproduced but the value quoted is half that of

(4.3.3). To see this one should note that it is Minkowski signature and their ε = 4−d i.e.
is twice ours. (There is also an accidental extra factor of 1/ε in their quoted equation.)

They also quote a value for some two-loop double-pole divergences. The one point of

comparison is the result (4.3.24) for the R̄
µν□R̄µν counterterm. Using these translations

we see that their result is again half of what we find.
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Chapter 5

Summary and concluding remarks

The research presented in this thesis considers a broad range of applications of the

renormalisation group to the study of gauge theories and gravity. Let us summarise our

main findings.

In chapter 2 we explored the properties of the background independent ERG flow

equation constructed in ref. [47], which has some remarkable advantages: preserves

gauge invariance manifestly, avoids introducing unphysical fields and does not require

gauge-fixing. This would make it suitable for studying gauge theories or gravity non-

perturbatively. However, we showed that in the simple case of SU(N) Yang-Mills it

fails to completely regularise the one-loop off-shell longitudinal part of the two-point

vertex, thus invalidating powerful techniques previously used to uncover universal re-

sults [71,96]. In particular, we proved that the problem is two-fold. First, we argued in

section 2.6.3 that the convergence of the O(p0) part of the two-point vertex depends on

whether we perform the momentum integral before or after differentiating with respect

to Λ, and although we can formally set the divergent Λ independent piece to zero, it is

unclear if this could be consistently carried to higher orders. Second, we demonstrated

in section 2.6.4 that the O(p2) part of the two-point vertex cannot be simultaneously

transverse, as required by gauge invariance, fully regularised and universal, regardless

of the covariantisation or the cutoff profiles used.

In chapter 3 we investigated the spectrum of eigenoperators around a non-trivial fixed

point for O(N) and single component scalar field theory. We demonstrated that analytic

results can be obtained within LPA and in the large field limit. The key idea was to recast

the flow equation as a Schrödinger-type equation using SL theory, and then analyse it

using WKB methods. This in turn allowed us to compute in (3.3.27) and (3.2.28) the

leading order contribution and power-law growth of the subleading contribution to the

scaling dimension of highly irrelevant operators for O(N) and single component scalar

field, respectively. We also proved that the leading contribution for the O(N) case is
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twice that for a single scalar, and that both results are independent of N or the cutoff

profiles used, thus universal.

Finally, in chapter 4 we delved into the perturbative off-shell structure of pure gravity

using the background field formalism. We argued in section 4.2.3 that the use off-shell

BRST over the textbook on-shell BRST is more appropriate. In this way, we were able to

uncover a series of surprising and important results. First, we showed in section 4.2.5 that

RG is already at the perturbative level the crucial element that ensures the consistency

of the CME. And thus we were able argue and show that the BRST transformations

get drastically modified. Second, we showed that divergences that do not vanish on-

shell are constructed from only the total metric, whilst those that vanish on-shell are

renormalised by canonical transformations involving the quantum fields. We proved this

by computing in section 4.3 explicit expressions for the leading off-shell divergences up

to two-loop level. This, in turn, allowed us to invalidate in section 4.4 the generalised

beta functions proposal of ref. [160].

There is no doubt that more work needs to be done regarding the topics covered in

this thesis. As outlined above, understanding the interplay between different scales is

surely of importance and central to this is the renormalisation group, which featured

in its various incarnations throughout this thesis. This comes with its own challenges

and difficulties, a few of which we tried to address. As emphasised in the introduction,

what sparked our interest for it, to begin with, was the possibility to delve deeper

into the quantum structure of spacetime. It would be a triumph for the RG program,

as originally envisaged by Wilson, to achieve such a goal. Thus, we hope that the

perspective constructed in this thesis is broad and compelling enough to argue in a

convincing manner in its favour. This is not to say that it is the only way forward

or that other frameworks should be ignored. As mentioned before, many of these are

promising and have interesting features worth exploring. However, the versatility of

the renormalisation group that we have highlighted throughout this thesis makes it a

powerful tool capable of investigating quantum gravity, gauge theories or, more generally,

for exploring new physics.
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