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We present planar time-resolved particle image velocimetry (PIV) measurements
of flow in the streamwise surface-normal plane of a NACA 0012 airfoil at chord-
based Reynolds number Rec = 7 × 104. The angles of attack α = 13◦ and 15◦

correspond to transient stall and deep stall flow regimes, respectively. A Poisson
solver is utilized to reconstruct the instantaneous planar pressure fields from the
PIV with satisfactory comparison in the mean pressure compared with dynamically
matched Reynolds-Averaged Navier-Stokes (RANS) simulations. Using the proper
orthogonal decomposition (POD), a systematic reduced-order reconstruction of the
velocity fields and subsequent pressure fields is used to quantify the required num-
ber of velocity modes to achieve a desired accuracy in the instantaneous pressure.
Further, a Galerkin projection of the Poisson equation onto the POD subspace is
used as a framework to identify the relative contribution of each velocity mode
on the resulting pressure field via quadratic stochastic estimation (QSE). In both
cases, the zeroth mode (corresponding to the mean) is of leading-order importance.
In addition, a tendency of the zeroth mode to interact with vortex-shedding modes
is identified.
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I. INTRODUCTION

Enabled by the ever evolving capabilities of image sensors and experimental method-
ologies, pressure reconstructions from experimental particle image velocimetry (PIV) fields
have experienced increasing popularity over the past decade.1,2 This despite the challenges
of such reconstructions, such as the stringent requirements on resolution in space, time, and
domain size.3 These reconstructions offer promising insight on a multitude of engineering
problems ranging from fundamental dynamics4–6 to imparted forces7–9 to the estimation of
far-field noise.10–12

In parallel to these advances, the fluid mechanics community has also witnessed a rapid
adoption of data-driven techniques for both numerical and experimental data.13,14 In ad-
dition to their use for error mitigation and data refinement,15–18 these powerful techniques
offer a framework to gain a multitude of insights on the flow physics as well.19 In par-
ticular, the proper orthogonal decomposition20 (POD) is a popular data-driven basis due
its inherent property of being energy-optimal and thus retaining as much flow information
as possible with a low-rank truncation.21 Details on the meaning of “low-rank” or “low
order” are outlined in section III. Further, the POD itself may be used as a basis to re-
cast the Navier-Stokes equations via a Galerkin projection. This framework is useful for
a number of interests, such as stability analysis22,23 or decreasing computational costs of
simulations.24,25 Recently, Raiola (2022)26 demonstrated the use of the Galerkin projection
to probe the relationship between velocity structures from PIV and the reconstructed pres-
sure fields of a flapping wing on an interaction-by-interaction basis. This framework has
the potential to elucidate the role of velocity structures on the resulting pressure fields for
a variety of flows of interest.
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In the present study, we invoke both advances in pressure-reconstructions and data-
driven techniques to understand the relationship between pressure fields and velocity field
structures in the flow of a statically stalled airfoil. In particular, we focus on the case of a
NACA 0012 in transitional and deep stall at chord-based Reynolds number Rec = 7× 104.
At this Reynolds number the flow is turbulent. As a result, pressure reconstructions are
challenging and, due to the multiscale nature of turbulence, the POD is slow to converge.
More details on this flow, the data processing, and the POD may be found in a previous
publication by the authors.6

A large body of work has been dedicated to understanding the nature of static stall
for a variety of airfoils. In most cases, these studies focus on pressure measurements to
determine the nature of the stall (i.e. thin airfoil stall, leading edge or trailing edge stall27)
or the influence of external conditions on stall.28 More recently, PIV has been used for
pressure reconstructions to gain insight on the imparted forces. For example, to evaluate
the influence of the unsteady pressure on the rotating airfoils of turbine blades9 or the forces
over 2D bodies in incompressible and compressible flows.8 In these studies, the integral form
of the momentum equation is invoked to calculate the lift and drag on the body of interest.
The Galerkin framework26 differs in that the interaction of velocity structures and their
contribution to the pressure field (and therefore to the imparted forces) can be evaluated
directly: lending valuable insight for the flow of interest.

The goal of the present work is to directly relate the underlying structures of the PIV
fields in the stalled airfoil, captured via POD, to the pressure fields reconstructed using
a Poisson-solver with appropriate boundary conditions. To achieve this, we will utilize
the aforementioned Galerkin framework. Given the widespread adoption of POD in the
experimental fluid mechanics community to mitigate noise, a secondary low-hanging fruit
is to explore the impact of a simple POD truncation in the velocity fields on the resulting
pressure reconstruction. This is because the source term of the pressure reconstruction
via the Poisson equation is non-linear in the velocity fields. The POD truncation, which
is linear, will therefore have a non-trivial impact on the source term (see equation 1 and
discussion in section II). This will be explored as a secondary goal in this work. Details
of the data collection and pressure reconstruction methodology are presented in section II.
The POD framework used for low-order reconstructions is introduced in section III. The
use of a Galerkin projection to gain insight on the underlying mode interactions is presented
in IV. Finally, conclusions and directions for future work will be discussed in section V.

II. PIV MEASUREMENTS AND PLANAR PRESSURE RECONSTRUCTION

Data was collected via experiment using stitched time-resolved particle image velocimetry
(PIV) in the water flume facility at the University of Southampton. The experiments
are discussed in detail in Carter & Ganapathisubramani (2023a,b)6,12, therefore a brief
summary is given here. A vertically oriented NACA 0012 airfoil of chord length c = 0.15
m and submerged span s = 0.43 m was placed in the mid-span of the flume following the
contraction into the test section. For the illumination, a high-speed Nd:YLF laser (Litron
527 nm) operating at 1 kHz was optically directed inwards from either side of the facility
and expanded into two overlapping sheets to illuminate the stream-wise surface-normal
plane without creating a shadow. Caution was exercised to ensure close overlap between
the laser sheets, with a nominal thickness at the flume mid-span of 2 mm. The laser was
synchronized to three high-speed Phantom Veo 640-S cameras mounting 105 mm Nikon
lenses directed upwards from beneath the facility with overlapping fields of view (FoV). A
total of three cameras were used to strike a balance between a large spatial domain but
with velocity-gradient-resolving spatial resolution. Both of these features are desirable for
quality pressure reconstructions1,2 that will be explored in this study.

Two cases are presented at fixed angles of attack α = 13◦ and α = 15◦. For both cases,
the free stream velocity of the facility was set to U∞ = 0.5 m/s corresponding to a chord-
based Reynolds number Rec = U∞c

ν = 7 × 104 where ν is the kinematic viscosity. At this
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FIG. 1. Instantaneous velocity fields at α = 13◦ (a) and α = 15◦ (b) with the airfoil cross section
indicated (dashed white). The solid red, dashed blue, and dash-dot green rectangles illustrate the
overlapping fields of view from the individual cameras. The dotted rectangle corresponds to the
domain used for analysis from each data set. One in every eight PIV vectors are shown.

Reynolds number transitional and deep stall flow regimes were observed for the α = 13◦

and α = 15◦ cases, respectively6. Two arbitrary snapshots for each case are presented in
figure 1. In the figure, a dotted rectangle is used to demarcate the region of the spatial
domain that is extracted for each case from the slightly larger stitched PIV fields. These
domains are selected by inspection to avoid some edges of the FoVs that are susceptible
to weaker signal-to-noise ratio in the PIV29. Because the airfoil in the experiment extends
downwards towards the upward facing cameras, a small visual occlusion was produced on
the pressure side of the airfoil, preventing data collection very close to the surface. This
can be seen in figures 1 and 2. The pressure data reported along the surface (figure 2c) is
taken from the nearest available grid points.
The instantaneous planar pressure reconstructions were obtained using a Poisson solver

approach1,3. It begins applying the divergence operation to the Navier-Stokes (NS) mo-
mentum equations

∇2p = ∇ ·
[
− ρ

(∂u
∂t

+ u ·∇u− ν∇2u
)]

(1)

where in this study u(x, t) is the planar instantaneous velocity at positions x and time t,
p(x, t) the planar pseudopressure, and ρ the constant fluid density. Note that for incom-
pressible flow (divergence free) the first and last terms on the RHS are identically zero.
As a complete reconstruction requires three dimensional information, hereafter the planar
pseudopressure is referred to simply as the “pressure”. To reconstruct it, two integrations
of equation 1 are necessary. The first integration utilizes Neumann boundary conditions
on the inlet, outlet, and suction (upper) boundaries of the domain (figure 1). The Neu-
mann boundary conditions are obtained solving for the pressure gradient terms in the NS
momentum equations, with gradients calculated via second order differences in space and
time. The second integration uses Dirichlet boundary conditions on the pressure (lower)
boundary of the domain, where the flow is approximately irrotational and Bernoulli’s equa-
tion is expected to hold.
The normalized mean pressure fields for both cases are shown in figure 2, where the

pressure coefficient is defined as Cp = P/ 1
2ρU

2
∞ where P is the ensemble-averaged pressure.

To provide comparison for the pressure reconstructions, a dynamically matched Reynolds-
averaged Navier-Stokes simulation was conducted using OpenFOAM software. A standard
C-type mesh grid was used for the simulation domain and a k-ω SST model for the eddy
viscosity. The resulting surface pressure coefficient is shown in figure 2c for both cases with
the PIV distributions for comparison. The planar pressure reconstructions yield good agree-
ment in the pressure beyond x/c ≈ 0.25, but deviate heavily near the leading edge (LE). In
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FIG. 2. Pressure coefficient fields for the α = 13◦ (a) and α = 15◦ (b) cases. The pressure
coefficients at the airfoil surface from the PIV (solid) and dynamically matched RANS simulations
(dotted) are plotted for comparison in (c).
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FIG. 3. Singular value spectra for both cases normalized by σ1, with the cumulative energy
distribution inset and a dotted line corresponding to 95% accumulated energy. For reference, the
zeroth singular values are σ0/σ1 = 10.1 and σ0/σ1 = 12.4 for α = 13◦ and α = 15◦ respectively.

particular, the LE peak on the suction side is difficult to capture from PIV reconstruction
due to the thin boundary layer and confined gradients near the surface. Upon comparison,
the pressure reconstructions appear satisfactory for the exploratory purposes of the present
study where we desire to probe the effect of a linear decomposition (outlined in the next
section) on the resulting non-linear reconstruction via equation 1.

III. LOW-ORDER PRESSURE RECONSTRUCTION VIA PROPER ORTHOGONAL
DECOMPOSITION

A low-order representation of the velocity fields is obtained using the proper orthogonal
decomposition (POD).20 POD is commonly employed for data reduction due to its inherent
energy optimality.13 This arises from an eigendecomposition of the velocity autocorrelation
used to calculate the POD modes. Using POD, the velocity fields u(x, t) are expressed
exactly as

u(x, t) =

N∑
k=0

ψk(t)σkϕk(x) (2)

where k is the mode number, ψk, and ϕk are the k-th orthogonal temporal and spatial
modes, and σk the k-th singular value characterizing the relative contribution of each mode
ranked conventionally from highest to lowest. Note here the summation begins at k = 0
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FIG. 4. Three streamwise (a-c,h-j) and cross-stream (d-f,k-m) spatial modes ϕk and corresponding
pre-multiplied spectra of the first 8 temporal modes (g,n) for α = 13◦ (a-g) and α = 15◦ (h-n). The
borders of the spatial spectra correspond to the solid lines and colors of panels (g,n). The modes
are selected based on their leading contributions to partial pressures discussed in section IV.

and the velocity u(x, t) is the total velocity such that the zeroth mode corresponds to the
mean. The total number of snapshots N used to calculate the modes was selected to be
N = 1075, with snapshots sampled randomly across all runs for both cases. When all
possible modes are retained the instantaneous velocity fields via equation 2 are recovered
exactly. A low order representation of the velocity ũ(x, t) can instead be produced by
truncating the summation at a selected truncation mode K such that

ũ(x, t) =

K∑
k=0

ψk(t)σkϕk(x). (3)

When the singular values decreases rapidly, such as for laminar flows, most of the energy
of the velocity fields can be captured in only several modes14 and truncated at low K. For
turbulent flows on the other hand, the singular values decrease gradually due to the inherent
multiscale nature of turbulence. This is reflected by the singular values for both cases in
figure 3, and necessitated using a large number of snapshots (N = 1075) to converge the
POD. The inset panel reveals that for both cases approximately 20 modes are required to
capture 95% of the fluctuating energy (on the other hand, hundreds of modes are required
to capture 99%).
The structures underlying the flow from the spatial modes are plotted in figure 4 (left)

with their corresponding pre-multiplied spectra (right). The first two spatial modes (left-
most and second-from-left columns) and their corresponding spectra highlight the distinct
difference between the two cases. For the case at α = 13◦, the first spatial mode is uniform
in the separated region with a low-frequency peak at f⋆α = f c

U∞
sinα (where f is the

frequency in Hz) of O(10−2), corresponding to a low-frequency expansion and contraction
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FIG. 5. Spatially averaged reconstruction error e between the pressure reconstructed using reduced
order velocity modes and the pressure using all modes with increasing number of retained modes.
The spatial distributions are shown (inset) for k = 1, k = 8, and k = 128, with contours drawn at
e/ 1

2
ρU2

∞ = [0.05 0.1 0.15 0.2].

in a direction approximately normal to the suction side of the airfoil. This is the signature
of energetic separation and reattachment events in transitional stall30. In contrast, the case
at α = 15◦ shows alternation in the first spatial mode with a frequency peak f⋆α of O(10−1)
corresponding to bluff body vortex shedding31,32 in deep stall.
A natural curiosity that stems from the use of POD is the degree to which a certain

truncation impacts the resulting pressure reconstruction. This is because POD is a linear
decomposition whereas the source term on the RHS upon the integration of equation 1
is non-linear. This consideration is important for numerous experimental and numerical
tools that use POD to analyze flows. For example, POD is commonly used to truncate
experimental noise16,18 or to extend simulations at low computational cost.33 For the lat-
ter, it is necessary to model the pressure term.34 As a first step, the low-order pressure
reconstruction is obtained with increasing K such that

∇2p̃ = ∇ ·
[
− ρ

(∂ũ
∂t

+ ũ ·∇ũ− ν∇2ũ
)]
. (4)

The discrepancy between the low-order pressure reconstruction and the “full” order one is
quantified as

e(x) = ⟨|p(x)− p̃(x)|⟩ (5)
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where the angled brackets denote ensemble averaging across all runs. This is plotted for
both cases in figure 5, with similar trends between cases. Here the overbar e denotes
spatial averaging. A decrease in e with increasing retained modes is evident, however the
spatial average of the discrepancy is highly dependent on the domain size. The inset plots
reveal the average discrepancy in the separated region of the flow specifically is about 0.25
times the free-stream dynamic pressure (Pdyn = 1

2ρU
2
∞) with just one fluctuating mode and

decreases to 0.1 with 8 modes. As expected, the discrepancy decreases non-monotonically
with increasing number of retained modes. The difference between the cases is slight, with
larger average discrepancy in the deep stall cases compared to the transitional stall case.
As a first approach, the low-order pressure reconstructions quantify the required number

of velocity modes to achieve similarity to the full-order reconstruction. This analysis how-
ever does not reveal the role of the modes individually on the resulting pressure. This is
investigated in detail in the following section.

IV. MODE PAIR CONTRIBUTIONS VIA GALERKIN PROJECTION

To elucidate the underlying interactions within the velocity fields giving rise to the in-
stantaneous pressure, a Galerkin projection of the pressure Poisson equation is performed
onto the basis spanned by the POD:21,26

∇2p = −ρ
N∑
i=0

N∑
j=0

ψi(t)ψj(t)σiσjQi,j (6)

where Qi,j(x) = ∇ ·(ϕi(x) ·∇)ϕj(x) arises from the i-th and j-th interacting spatial modes.
The solution may be expressed in terms of the sum over the interactions as

p(x, t) =

N∑
i=0

N∑
j=0

ψi(t)ψj(t)p̂i,j(x) (7)

where p̂i,j(x) is known as the partial pressure.34 The partial pressure reveals the combi-
nations of velocity modes that give rise to a particular structure in the pressure field. To
quantify the contribution of each partial pressure we decompose them such that

p̂i,j(x, t) = σp
i,j p̌i,j(x) (8)

where σp
i,j is the magnitude of the partial pressure and p̌i,j(x) is the spatial distribution of

each partial pressure with unit norm.
With the Galerkin framework established, all that remains is to calculate the partial

pressures by solving equation 6 for each velocity mode combination. This approach is
problematic for two reasons. Firstly, since in the present study N = 1075 modes, there
will be 1.16× 106 integrations required to include all mode combinations: a number that is
prohibitively large. It is clear that only a subset of mode combinations can be feasibly stud-
ied. The second problem is that each integration requires restating the non-homogeneous
boundary conditions.34 Though methods have been developed for numerical simulations to
overcome this difficulty,33,35 the influence of experimental noise adds additional complexity.
The alternative to integrating equation 6 is to instead leverage the fact that the pressure

fields and the temporal velocity modes are known quantities. It is therefore possible to use
a stochastic estimation technique to recover the partial pressures36. In particular, following
Raoila (2022), due to the quadratic non-linearity of the convective terms we utilize quadratic
stochastic estimation (QSE) to estimate the partial pressures.26,37 The method consists of
constructing two matrices W and V such that
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FIG. 6. Relative contribution of the partial pressures for velocity mode combinations for α = 13◦

(a) and α = 15◦ (b). The combinations are symmetric about the diagonal, and only the upper
triangle is plotted. A zoom of the first four interactions is also shown (inset).

FIG. 7. Partial pressure fields of the leading four interactions for α = 13◦ (a-d) and α = 15◦ (e-f).
Colorbars are normalized by plus or minus three standards deviations from the spatial mean of
each partial pressure.

 ⟨ψ1ψ1, ψ1ψ1⟩ . . . ⟨ψKψK , ψ1ψ1⟩
...

. . .
...

⟨ψ1ψ1, ψKψK⟩ . . . ⟨ψKψK , ψKψK⟩


︸ ︷︷ ︸

W

 p̂1,1
...

p̂K,K


︸ ︷︷ ︸

P̃

=

 ⟨p, ψ1ψ1⟩
...

⟨p, ψKψK⟩


︸ ︷︷ ︸

V

(9)

where here the angled brackets with a comma ⟨·, ·⟩ denote the inner product, P̃ is the
matrix of partial pressures and K is again the truncated number of modes leading to
I = K2 interactions. The solution is given simply as P̃ = W−1V , however the matrix
W is poorly conditioned and therefore a pseudoinverse is necessary to prevent the solution
from diverging i.e. P̃ = W †V . In addition, we select K = 16 modes (I = 256) for the QSE
analysis. More details regarding the treatment of the matrix W and the sensitivity to the
number of interactions can be found in appendix A.
The relative contribution of each partial pressure captured by the magnitude σp

i,j is shown
in figure 6 normalized by the sum across all interactions. In expected fashion, the dom-
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inant contribution to the pressure (noting the logarithmic scale) originates from the p̌0,0
interactions corresponding to the mean velocity modes and resulting mean pressure. In
addition, the sub-leading interactions are consistent across cases in that interactions of
low-order modes with the zeroth mode are seen to be sub-leading. The reader is referred
to figure 4 to visualize the spatial shape and temporal characteristics of the sub-leading
interacting modes. These leading-order linear interactions are consistent with a linear ap-
proximation for the unresolved Galerkin expansion coefficients in numerical simulations,
e.g. from Galetti et al. (2004)38 in a wake flow model.

The spatial contribution of each partial pressure is visualized in figure 7 for the leading
four interactions in both cases. Note that the sign (positive or negative) of the partial
pressures is arbitrary due to the arbitrary sign of the temporal modes (equation 7). A
striking resemblance is seen in the first three interactions across cases, both in terms of

their relative contribution (where σp
rel = σp

i,j/
∑K

i=0

∑K
j=0 σ

p
i,j) as well as their structure.

Examination of the velocity modes and their spectra in figure 4 reveals in both cases the sub-
leading modes correspond to bluff body vortex shedding. Note, these modes are interacting
with the (time constant) zero-th mode corresponding to the mean velocity.

Beyond the first three leading interactions, the partial pressures are seen to differ between
cases. In transitional stall, the fourth leading interaction is non-linear between the first and
third velocity modes. Recalling that the first velocity mode at α = 13◦ peaks at low
frequencies related to separation and reattachment, such an interaction is not expected
to be seen in the deep stall case as the flow never reattaches. Indeed, the fourth leading
interaction in the deep stall case is a linear interaction between the zero-th and eighth
modes, corresponding to a shear layer flapping frequency and structure.

V. CONCLUSIONS

We have presented an analysis of low-order pressure reconstructions in the flow of static
stalled NACA 0012 airfoils at angles of attack corresponding to transitional and deep stall
turbulent flow regimes. The focus of this study is two fold. First, to quantify the impact
of a low-dimensional representation of the velocity field via POD on the resulting planar
pressure reconstructions. Second, to understand the influence of interacting velocity modes
on the dynamics of airfoils in transitional and deep stall, with implications for the forces
experienced by the body. Such considerations are important as POD is often used as a
tool to remove experimental noise.16–18 To this end, a mode-by-mode framework using a
Galerkin projection onto the basis spanned by the POD was utilized. Importantly, this is
demonstrated without the need to integrate for each mode interaction, but instead using
the data-driven QSE approach.26

We find that despite the differences in the transitional and deep-stall cases, namely the
low-frequency separation and reattachment in the transitional case, the leading and sub-
leading interactions between the two cases are strikingly similar. The former is attributed
to the mean velocity modes themselves. The latter are between the mean and fluctuating
structures with peak frequencies in the bluff-body vortex shedding regime. The linear nature
of the leading sub-interactions is consistent with Galerkin models in the computational fluid
dynamics literature.34,38

This present work has demonstrated the utility of a Galerkin framework applied to exper-
imental data to elucidate the nature of the underlying interactions in the velocity fields and
their contribution to the instantaneous pressure. Following Raoila (2022), this was achieved
via the QSE26 in a fully turbulent flow obtained via experiment. Provided that the POD is
satisfactorily converged, our work indicates that, for the present advective turbulent flow,
the primary contributions to the pressure are captured by interactions in the first eight
modes. These interactions account for 89% and 92% of the instantaneous pressure fields
(in terms of the relative magnitude of the partial pressures) for the transitional and deep
stalled cases, respectively.
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FIG. 8. Singular values of the matrix W central to the QSE implementation (section IV) for the
case at α = 15◦ plotted against the total number of interactions (a) (similar results for α = 13◦

omitted for brevity). The dashed lines correspond to singular values using synthetic Gaussian
random temporal modes. The reconstruction discrepancy (b) is shown for both cases using all
interactions (solid) and using only the leading four interactions (dashed).

ACKNOWLEDGMENTS

The authors are grateful for financial support from the Engineering and Physical Sciences
Research Council (Ref No: EP/R010900/1) and H2020 Future and Emerging Technologies
Project HOMER 769237.

DATA AVAILABILITY

All data presented in this study has been used in previous work and is openly available
from the University of Southampton repository at http://dx.doi.org/10.5258/SOTON/
D2466

Appendix A: Treatment of the matrix W

In order to recover the partial pressures, it is necessary to invert the matrix W as defined
in equation 9. In the present framework, every temporal mode (except the zero-th) is a fluc-
tuating quantity with zero-mean. As a result, uncorrelated inner products are vanishingly
small and inevitably leads to a poorly conditioned W , i.e. the ratio of the maximum and
minimum singular values σW,max/σW,min → ∞. This is demonstrated in figure 8a for both
data in the deep stall case and for a synthetic matrix constructed from Gaussian randomly
distributed temporal modes (dashed). The random distributions are provided to demon-
strate that the poor conditioning is inherent to the construction of W and not caused by
experimental noise.
An important choice for constructingW is the number of modesK (and therefore number

of interactions I) to consider. As can be inferred from figure 8a, asK increasesW is increas-
ingly poorly conditioned. A secondary consideration is that increasing K corresponds to a
quadratic increase in computational expense. Finally, with increasing interactions the role
of bias error in the PIV (due to sub-pixel limitations) is increasingly prevalent within each
inner product of equation 9, and this self-correlating noise pollutes the singular values. This
can be seen in figure 8b, which plots the reconstruction discrepancy between the pressure
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and the QSE reconstruction via equation 7. The leading four interactions (dashed lines),
which are expected to plateau beyond several considered interactions, suddenly experience
massive reconstruction discrepancy beyond a certain number of interactions. This is the
signature of these self-correlating noise corrupting the singular values of W .
For the present study, we opt to consider K = 16 modes to strike a balance between a

large number of interactions (I = 256), low computational cost, and avoiding self-correlating
noise artifacts. A pseudo-inverse is employed to treat the poorly conditioned W . We note
that for the present data sets the results were similar in the range 4 < K < 32, with
differences (e.g. relative contribution and structure of the partial pressures) on the order of
a few percent.
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