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Abstract
Knowledge Graphs (KGs) have emerged as

fundamental platforms for powering intelligent
decision-making and a wide range of Artificial In-
telligence (AI) services across major corporations
such as Google, Walmart, and AirBnb. KGs
complement Machine Learning (ML) algorithms
by providing data context and semantics, thereby
enabling further inference and question-answering
capabilities. The integration of KGs with neuronal
learning (e.g., Large Language Models (LLMs))
is currently a topic of active research, commonly
named neuro-symbolic AI. Despite the numerous
benefits that can be accomplished with KG-based
AI, its growing ubiquity within online services may
result in the loss of self-determination for citizens
as a fundamental societal issue. The more we rely
on these technologies, which are often centralised,

the less citizens will be able to determine their own
destinies. To counter this threat, AI regulation,
such as the European Union (EU) AI Act, is be-
ing proposed in certain regions. The regulation sets
what technologists need to do, leading to questions
concerning: How can the output of AI systems be
trusted? What is needed to ensure that the data
fuelling and the inner workings of these artefacts
are transparent? How can AI be made accountable
for its decision-making? This paper conceptualises
the foundational topics and research pillars to sup-
port KG-based AI for self-determination. Drawing
upon this conceptual framework, challenges and
opportunities for citizen self-determination are il-
lustrated and analysed in a real-world scenario. As
a result, we propose a research agenda aimed at ac-
complishing the recommended objectives.

1 Introduction

Modern Artificial Intelligence (AI) can be traced back to a workshop held at Dartmouth College
in the summer of 1956 [67] and is most commonly defined as the use of computers to simulate
human intelligence, in particular human reasoning, learning, and problem-solving. Since 1956,
AI has lived through times of increased interest and funding, and also ‘AI Winters’, such as
after the 1974 Lighthill report [64], when overall funding was reduced. Over the last few years,
however, funding and interest in AI have been high and exploded in November 2022, when
ChatGPT, a type of Generative AI, was announced by OpenAI, exposing the power of Large
Language Models (LLMs) to the general public. Since its release, ChatGPT has become the
fastest-growing app in history, reaching 100M users in just two months, and is now estimated
to have 200M users. Generative AI will continue to grow following a significant investment by
Microsoft into OpenAI and announcements by Microsoft and Google on how Generative AI will be
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embedded in future products [37]. Data-centric AI [115] recognises the immense value of data as
crucial resources for training, optimising, and evaluating AI systems. Databricks, a prominent AI
company, has defined data-centric AI as the challenge of designing processes for data collection,
labelling, and quality monitoring in machine learning (ML) datasets [87] highlighting the need for
continuous re-running and re-training, actionable monitoring, and the difficulties of incorporating
data inaccessible to human annotators due to privacy concerns as primary research directions.
Knowledge Graphs have been used both as a resource and as a structure to support data-centric
AI processes. The term Knowledge Graph (KG) was first introduced by Google in 2012, and
is usually defined as a type of knowledge structure that uses a graph data model to integrate
data. KGs are strongly linked to the work of the Semantic Web community, which first began in
around 2001 and was introduced in a seminal paper by Tim Berners-Lee [14]. The Semantic Web
initiative produced a stack of web standards on which KGs are based. These include the Resource
Description Framework (RDF), where data is encoded as subject-predicate-object triples, and the
Web Ontology Language (OWL), a set of web-based languages mostly based on description logic.
The common theme of these semantic representations is that they facilitate the publishing, use,
and re-use of data at the web scale. In particular, they allow disparate heterogeneous data sources
to be integrated continuously at scale. Over the past decade, KGs have become a mainstay for a
number of key large-scale applications found online. For example, KGs underpin Google Search,
which saw 5,900,000 searches in just one minute in April 2022. Similarly, the same minute saw
1,700,000 pieces of content shared on Facebook, 1,000,000 hours streamed, and 347,200 tweets
shared on Twitter. All of this content and data are linked to a plethora of AI services that have
increasingly been based on KGs, as mentioned above, founded upon machine-readable data and
schema representations based on a web stack of standards. AI services cover a wide number of
areas, including content recommendation, user input prediction, as well as large-scale search and
discovery and form the basis for the business models of companies like Google, Netflix, Spotify,
and Facebook. Given the above we define KG-based AI as an AI system (replicating some aspect
of human intelligence) based on a KG possibly using the web standards produced by the Semantic
Web community.

In addition to privacy concerns, there has been a growing worry about how personal data
can be abused and, thus, how AI services impinge on citizen rights. For example, the over-
centralisation of data and its misuse led Sir Tim Berners-Lee to call the Web ‘anti-human’ in
an interview in 2018 [19]. Since 2016, hundreds of United States (US) Immigration and Cus-
toms Enforcement employees have faced investigations into abuse of confidential law enforcement
databases, including stalking and harassment, to passing data to criminals [70]. The subject of
much of the proposed legislation today is ensuring that digital platforms, including AI platforms,
provide real societal benefit. Within Europe, the proposed European Union (EU) AI Act1 aims
to support safe AI that respects fundamental human rights. The regulation sets what technolo-
gists need to do. The concept of data self-determination, which is often used in a legal context,
implies that individuals are not only aware of who knows what about them but can also influence
data processing that concerns them [61]. Given that nowadays, data processing is conducted by
opaque AI algorithms behind corporate firewalls, sometimes even without our knowledge, data
self-determination is harder than ever before. When it comes to trust in web data and services,
Berners-Lee and Fischetti [13] envisaged an “Oh yeah?” button embedded into Web browsers
that would provide justifications as to why a page or a service should be trusted. Alas, their
vision was never realised in popular web browsers2. Instead, we have dedicated websites, e.g.,

1 https://artificialintelligenceact.eu/
2 However, a linked browser prototype, the Tabulator, incorporated this feature in an Justification UI (http:

https://artificialintelligenceact.eu/
http://dig.csail.mit.edu/TAMI/2008/JustificationUI/howto.html#useTab
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Figure 1 KG-based AI for Self-determination Conceptualisation. KG-based AI for self-
determination is supported by the pillars of trust, accountability, and autonomy, built upon the found-
ational topics of machine-readable norms and policies; decentralised infrastructure; decentralised KG
management; and explainable neuro-symbolic AI.

the Ecommerce Europe Trustmark3 that are used to perform company reputation checks and
fact-checking websites, such as Snopes4, that can be used to check the validity of information
posted online. Although some automated fact-checking techniques have been proposed [89], they
are used solely for developing trust in information resources and cannot provide any guarantees
with respect to AI-based data processing. Moving beyond trust towards accountability, policies
have already been used to specify legal data processing requirements that serve as the basis for
automated compliance checking, for example, [83]. But what happens when service providers or
AI algorithms do not comply? How far can technology go in terms of helping us to determine
non-compliance and to make service providers accountable for their actions?

In this paper, we propose a research agenda for ensuring that KG-based AI approaches contrib-
ute to user self-determination instead of hindering it. Our vision, which is depicted in Figure 1,
is structured around three pillar research topics - trust, accountability, and autonomy - that
represent the desired goals for how AI can benefit society and facilitate self-determination. The
pillars combine fundamental principles of the proposed EU AI Act and self-determination the-
ory. Both trust and accountability are imperative for safeguarding against adverse impact caused
by AI systems, while autonomy is critical for ensuring individuals are able to determine their
own destiny. The pillars are supported via four foundational research topics - machine-readable

//dig.csail.mit.edu/TAMI/2008/JustificationUI/howto.html#useTab).
3 https://ecommercetrustmark.eu/
4 https://www.snopes.com/
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norms and policies are needed for humans to declare regulatory frameworks, privacy and usage
constraints that can be interpreted by the machines that process their data; explainable neuro-
symbolic AI to clearly communicate and prove the decisions AI systems make; and decentralised
KG management and decentralised infrastructure to provide alternatives to approaches where a
central entity controls a whole process, that are prone to abuse of power. We posit the following
research questions:

Q1 What are the key requirements for an AI system to produce trustable results?
Q2 How can AI be made accountable for its decision-making?
Q3 How can citizens maintain autonomy as users or subjects of KG-based AI systems?

In order to facilitate exposition, we ground our discussion in a healthcare scenario inspired by the
recently proposed regulation on European Health Data Space5 that aims to ensure that "natural
persons in the EU have increased control in practise over their electronic health data" and to
facilitate access to health data by various stakeholders in order to "promote better diagnosis,
treatment and well-being of natural persons, and lead to better and well-informed policies". The
proposed healthcare scenario, which is illustrated in Figure 2, is comprised of the following actors
and interactions:

Individuals manage their Personal Knowledge Graphs (PKGs) (aligned with the original Semantic
Web vision and modern interpretations [7, 48]). They collect knowledge about their medical
conditions, symptoms, treatments, reactions to treatments, etc. Individuals get services from
KG-based AI applications that utilise their PKGs, e.g., therapy bots or health assistants.

Experts in healthcare also have PKGs where they collect their knowledge about diseases, results
of the treatments they have suggested in the past, links to general medical knowledge graphs,
etc. Experts may also be assisted by KG-based AI models.

Knowledge sharing communities are spaces where individuals and healthcare experts may share
subsets of their PKGs in the context of specific knowledge, e.g., diseases. We call these
community-based perspectives. Perspectives from different contributors are aggregated into
community KGs (e.g., disease-based). AI applications use these KGs for community benefit,
e.g., assessing if a treatment that worked for an individual may work on a different one.

Public and private organisations may negotiate access to data and knowledge from communities
to train large KG-based AI models to either improve internal processes or power products sold
to communities, experts, or individuals, completing the cycle.

The remainder of the paper is structured as follows: Section 2 introduces the necessary back-
ground in terms of KG-based AI. Section 3 highlights the importance of trust, accountability, and
autonomy when it comes to ensuring that AI benefits society. Section 4 presents several KG based
tools and techniques that can be used to facilitate trust, accountability, and self-determination.
In Section 5, we propose a research roadmap that includes several challenges and opportunities
for KG-based AI that benefits individuals and society. Finally, we conclude and outline important
first steps in Section 6.

2 Knowledge Graph-based AI

5 https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex%3A52022PC0197
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Figure 2 Illustrative Scenario for KG-Based AIs in the healthcare domain. Individuals use
AI assistants to make sense of data collected in their PKGs. They may also share perspectives of their
PKGs with other individuals and healthcare experts in knowledge-sharing communities that aggregate
and curate data to power AI services for the benefit of all members. Public and private organisations
can negotiate access to data from communities and individuals to train KG-based AI models, which in
turn are used to build services for them.

In his seminal publication, "Thinking, Fast and Slow", Daniel Kahneman [50] presents a com-
prehensive theory of human intelligence, offering profound insights into the workings of the hu-
man mind. This groundbreaking work separates intuition from rationality when approaching
problem-solving tasks, defining them as two sets of abilities or systems. System 1 operates at
an unconscious level, generating responses effortlessly and swiftly. In contrast, System 2 requires
conscious attention and concentration, enabling the generation of responses needing complex com-
putations. Kahneman’s characterisation of mental cognition aligns with statistical and symbolic
learning models that seek to simulate human thinking processes [17]. These systems are known as
neuro-symbolic systems [18], and there is a growing interest in emerging hybrid approaches that
aim to integrate cognitive capabilities. Specifically, they strive to combine the power of neural
networks, such as LLMs, with the interpretability offered by symbolic processing, particularly
semantic reasoning over KGs.

2.1 Knowledge Graphs

Google first introduced KGs in 2012 when they enabled ‘Knowledge Panels’ containing descrip-
tions including pictures for search items. For example, if one types in ‘London’ to Google Search,
the Knowledge Panel displays pictures, the current weather, a map, directions, elevation and
related entities (e.g. Paris). The seed for the Google KG was Freebase - a community know-
ledge base initially launched in 2007 with an add-on RDF service launched at the International
Semantic Web Conference in 2008. In 2010, Google bought Metaweb, the company that owned
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Freebase and extended the knowledge base into the Google KG6.
In 2011, Bing, Google and Yahoo! launched Schema.org, a reference website for common

data schemas related to web search. The proposal was that website owners would use the pub-
lished schemas alongside Semantic Web standards such as RDFa and JSON-LD. A number of the
schemas, such as Organisation, influence the results returned by Google KG search. Schema.org
is an example of a shared vocabulary for semantic representation; the use of such vocabularies
or ontologies in KGs, along with the ability to map between equivalent schemas in them, enables
integration of heterogeneous data at scale.

Today, KGs are used in a wide range of areas and products outside of search. For example,
Netflix, Amazon, and Facebook all use KGs as the foundation for their recommendation engines
for television programmes and films, consumer products and posts7, whereas in the healthcare
sector, KGs are used to integrate medical knowledge and support drug discovery.8

2.2 Large Language Models
A Large Language Model (LLM) is a specialized machine learning model constructed using a

transformer architecture, a category of deep neural networks [121]. LLMs are primarily designed
for predicting the next word in a sequence, making them flexible tools for various text processing
tasks, such as text generation, summarization, translation, and text completion. Examples of
existing LLMs include OpenAI’s ChatGPT [95] and Google’s PALM [25]. These models have
demonstrated high performance in Natural Language Processing (NLP) tasks like code generation,
text generation, tool manipulation, and comprehension across diverse domains, often achieving
high-quality results in zero-shot and few-shot settings. This success has stimulated advancements
in LLM architectures, training techniques, prompt engineering, and question answering [73].

Despite their unquestionable capabilities in emulating human-like conversations, there is an
ongoing debate regarding the intelligence exhibited by LLMs, particularly, since their fluency
in language does not necessarily imply a cognitive understanding of real-world problems [73].
Additionally, LLMs can only learn knowledge when it appears in the training data and may
perform badly when answering questions involving long-tailed facts [32]. Moreover, they may
struggle to absorb new knowledge and are not easy to audit [74], suggesting potential risks of
discrimination and information hazards.

2.3 Neurosymbolic AI
LLMs– and machine learning models in general– are trained on extensive datasets, resulting

in high-quality outcomes whenever applied to specific prediction tasks. However, LLMs– like
OpenAI’s ChatGPT [95]– lack of causal understanding and may hallucinate in cases which are
not statistical in nature (e.g., memories or explanations) [41]. On the other hand, Symbolic AI
systems are capable of emulating human-like conscious processes required for causality, logic and
counterfactual reasoning, and maintaining long-term memory. As a result, symbolic systems can
empower LLMs by modelling human learning and combining knowledge extracted (e.g., from
KGs) to formulate prompts that allow for a more fluent communication with users.

Neuro-symbolic AI provides the basis for integrating the discrete approaches implemented by
Symbolic AI with high-dimensional vector spaces managed by LLMs. They must decide when
and how to combine both systems, e.g., following a principled integration (combining neural and

6 https://en.wikipedia.org/wiki/Schema.org
7 https://builtin.com/data-science/knowledge-graph
8 https://www.wisecube.ai/blog/20-real-world-industrial-applications-of-knowledge-graphs/

https://en.wikipedia.org/wiki/Schema.org
https://builtin.com/data-science/knowledge-graph
https://www.wisecube.ai/blog/20-real-world-industrial-applications-of-knowledge-graphs/
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symbolic while maintaining a clear separation between their roles and representations) or integ-
rated (e.g., a symbolic reasoner integrated into the tuning process of an LLM). Recently, van
Bekkum et al. [111] propose 17 fundamental design patterns to model neuro-symbolic systems.
These patterns encompass many scenarios where the symbiotic relationship between symbolic
reasoning and ML models becomes apparent. Since these combinations may enable symbolic
reasoning and enhance contextual knowledge, neuro-symbolic systems may empower explainab-
ility and, as a result, also improve transparency by showing how a system works based on the
symbolic explanations deduced by the hybrid system.

3 KG-based AI that Benefits Individuals and Society

Considering our vision that KG-based AI can facilitate self-determination, we start by discussing
the pertinent role played by trust, accountability, and autonomy when it comes to ensuring that
AI benefits society. In each case, we highlight existing challenges and present arguments in favour
of KG-based AI system.

3.1 Trust and KG-based AI
One of the primary objectives of the proposed EU AI Act is the "development of an ecosystem
of trust by proposing a legal framework for trustworthy AI". The Merriam-Webster dictionary
definition of trust includes a “firm belief in the reliability, truth, or ability of someone or some-
thing” [71]. Questions we address in this paper include understanding how KG-based AI systems
can demonstrate reliability, truth, and ability through mechanisms, which add transparency to all
elements involved in KG-reasoning. These include: comprehensive provenance tracking of data
sources and data elements used for any output; understanding repeatability for all KG-based AI
reasoning (e.g., if datasets are altered or disappear altogether, or if other reasoning methods,
such as LLMs, are involved); and alleviation mechanisms when KG-based AI system responses
are untruthful.

The proliferation of misinformation on the internet has risen significantly in recent years,
coinciding with the advancements in generative AI technologies. As AI becomes more sophist-
icated, it has inadvertently provided tools and techniques for the creation and dissemination of
false information, leading to widespread confusion and societal harm [26, 122]. For instance,
AI-generated deepfake videos have become a concerning source of misinformation. Deepfakes use
AI algorithms to manipulate and superimpose faces onto existing videos, making it difficult to
discern real from fabricated content [114]. This technology has been used to create fake videos
of public figures saying or doing things they never actually did, leading to potential defamation
and manipulation of public opinion. AI-powered chatbots and automated accounts on social me-
dia platforms have been employed to spread false information and manipulate public sentiment.
These bots can mimic human-like conversations and flood social media platforms with fake news,
propaganda, and divisive narratives, influencing public opinion and sowing discord, and have even
contributed to misinformation in medical literature [66]. AI-powered recommendation algorithms
used by platforms like social media and video-sharing websites can inadvertently contribute to
the spread of misinformation. These algorithms aim to maximise user engagement by suggesting
content based on user preferences and behaviour. They can create filter bubbles, reinforcing users’
existing beliefs and exposing them to a limited range of perspectives, potentially amplifying false
information and preventing users from accessing accurate and diverse sources of information [86].

Amidst these challenges, KG technologies have emerged as a potential solution to curb mis-
information and enhance trust. Leveraging the power of crowd-supplied and verified knowledge
sources, such as Wikidata [112], KGs enable comprehensive fact-checking capabilities. By integ-
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rating diverse and reliable information from various trusted sources, these graphs can potentially
identify and flag misleading or inaccurate content more effectively. By utilising the collective
intelligence of a crowd, KG technologies empower users to contribute to the verification pro-
cess, enhancing the accuracy and credibility of the information presented. Through collaborative
efforts and the utilisation of KG technologies, it is possible to combat the rising tide of misin-
formation, safeguarding the integrity of online information and fostering a more informed digital
society. Coupled with distributed ledgers, it has been proposed that KG-based AI can combat
misinformation on the web [97]. There is already a growing body of work in this space, which
shows some promise. For example, Mayank et al. [69] and Koloski et al. [58] describe systems
that leverage KGs to detect fake news; Kou et al. [60] and and Shang et al. [98] describe how
crowd-sourced KGs can be used to mitigate COVID-19 misinformation; Kazenoff et al. [51] use
semantic graph analysis to detect cryptocurrency scams propogating in social media.

3.2 Accountability and KG-based AI

According to the proposed EU AI Act, when it comes to high-risk AI, "accuracy, reliability and
transparency is particularly important to avoid adverse impacts, retain public trust and ensure
accountability and effective redress". Accountability in a KG-based AI context assumes that data
scientists, computer scientists, and software engineers will follow best practices and ensure com-
pliance with relevant legislation. In the purely symbolic world, such properties can be achieved
via consistency and compliance checking based on formal requirements specified in policy lan-
guages such as LegalRuleML [4] and ODRL [47]. When it comes to the sub-symbolic world, these
principles are particularly challenging, as ML algorithms are often opaque and could potentially
infer confidential information during the training process. In recent years, various Explainable
AI (XAI) techniques have been used to build or applied to the output of models such that they
can be interpreted and understood by various stakeholders [57]. In the context of KG-based AI
this will require the intersection between two strains of explainability: the explanation of why
a statement is in the KG that supports the AI, and the explanation of how the model used the
statements from the KG to reach a particular decision. KGs can also be used to support the
modelling, capturing, and auditing of records useful for accountability throughout the system life
cycle [76]

When it comes to AI and accountability technical research should go hand in hand with the
interdisciplinary research conducted in communities like FaccT9. A recent paper [27] revisited the
four barriers of accountability that were developed in the 1990s for accountability of computerised
systems in the light of the rise of AI, finding that they are even more important than before. The
main barrier is the problem of many hands - the large amount of actors involved in the construction
of an AI service creates difficulties in the assignment of responsibilities in case of harm. Advancing
efficient provenance collection, and verifiability will be the key technical intervention to overcome
this barrier. Fields such as data science require strong guarantees for provenance to build context-
aware KGs [96]. Similar to explainability, we consider two different approaches zhat need to be
combined: the provenance of statements in the KG and the provenance of the pipeline that was
followed to construct the ML model.

9 https://facctconference.org/index.html

https://facctconference.org/index.html
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3.3 Autonomy and KG-based AI
Alongside accountability and trust, the third pillar needed to support self-determination is
autonomy, defined from a self-determination theory10 perspective as "the belief that one can
choose their own behaviors and actions". In the current context, we take this to mean that indi-
viduals should be able to make their own decisions about their uses of KG-based AI and about
its uses of their data (and have their wishes respected). Assuming that AI systems can be made
to be trustable and accountable, how can we best support autonomy in this way? That is to say,
if we can know that an AI will behave in a desired and known way, and that its decisions and
processes are transparent and traceable, how can we express and enable control over what it does
in regard to an individual? A number of approaches have emerged in recent years which facilitate
individuals’ data sovereignty and how they represent and express their identity online.

The concept of a PKG– introduced in our illustrative scenario– is one means of facilitating
autonomy; Solid pods [93, 68] are secure decentralised data stores accessible through standard
semantic interfaces for applications that generate and consume linked data. Currently, the default
model on the Web is for service providers to host and control access to user data by means of a
user account. This denies autonomy to the individuals concerned since all access is mediated via
applications and interfaces designed and controlled by service providers. The PKG model is that
personal data is independent of any application; PKGs are the primary source of data under the
control of individuals, and they mediate service access via standard interfaces. On top of shifting
control away from service providers, this approach makes it technically simpler to implement data
usage policies, as they can be stored with the data and evaluated at the PKG level.

One prominent way of achieving the second goal is through the notion of Self-Sovereign Identity
(SSI) [29]. Traditional digital identity (e.g., as in OpenID Authentication [42]) has been modelled
in terms of Identity Providers (IdPs). An individual and an IdP establish a relationship, and
the IdP generates a digital identity for them. If the individual wants to authenticate with a
third party, the IdP confirms the relationship to them and then asserts that identity to the
relying party. Crucially, sovereignty over that identity and decisions about who can see it, the
data associated with it, or whether it continues to exist are taken by the IdP. With SSI, an
individual generates their own digital identity (e.g., a cryptographic key pair), makes their own
identity assertions, and therefore has full control over that identity, with correlations between two
identities (digital or physical) relying explicitly on attestation by others, and trust relationships
with them11. The autonomy enabled by SSI makes selective disclosure possible, meaning that
what identity information gets shared with whom can be made contextually and on a case-by-base
basis - much like presenting different aspects of ones personal identity in daily life (e.g., work and
home personas).

Considerations of identity pervade any technical considerations for safeguarding self-
determination. It seems uncontroversial that there will be scenarios in which an individual’s
identity is relevant to what they wish to do with a KG-based AI, whether in training, KG con-
tents, or inference, and indeed, even where anonymity is desired, identity must be considered in
order to avoid revealing it. Identity is also fundamental to the concept of trust; trust in a person,
organisation, system, AI model, KG, etc., is useful only in so far as it is possible to identify
relevant entities as needed, and accountability cannot be tracked or apportioned without it. We
consider autonomy in terms of the identity, data, and sovereignty afforded to an individual or or-
ganisation in terms of what they or others communicate to a KG-based AI ecosystem or elements

10 https://en.wikipedia.org/wiki/Self-determination_theory
11 As it ultimately does in traditional digital identity, where trust in a small number of well-known IdPs serves

as a simplified proxy for more detailed or fine-grained considerations of trust networks.

https://en.wikipedia.org/wiki/Self-determination_theory
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thereof, what they or others receive from those, and what happens to those (including respect of
choices) as data is processed in the ecosystem, with each of these evaluated through the lenses of
selective disclosure, relevant identities, and utility.

4 A KG Toolbox for Trust, Accountability, and Autonomy

In order to ground our pillars, we motivate and introduce relevant literature and highlight open re-
search challenges and opportunities concerning our foundational topics: machine-readable norms
and policies; decentralised infrastructure; decentralised KG management; and explainable neuro-
symbolic AI, each of which plays a pivotal role in facilitating trust, accountability, and autonomy
in KG-based AI.

4.1 Machine-readable Norms and Policies
When it comes to KG-based AI, norms and policies could potentially be used to inform data
processing based on legal requirements, social norms, privacy preferences, and licensing. Legal
documents are designed in natural language for human consumption, thus in order to enable
machines and automated agents to evaluate and enforce the agreements embodied in documents,
we need to translate them to formats they can read and process efficiently.

Norm and Policy Encoding. Languages to express policies, including but not limited to data
access, can be categorised as either general or specific. In the former, the syntax caters to a
diverse range of functional requirements (e.g., access control, query answering, service discovery,
negotiation), whereas the latter focuses on just one functional requirement. In the early days of
the Semantic Web, research into general policy languages that leverage semantic technologies (e.g.,
KAoS [110], Rei [49], AIR [52], and Protune [16]) was an active area of research. However, despite
the huge potential offered by these general purpose languages to date none of them achieved
mainstream adoption [56]. More recently, researchers have proposed ontologies that can be used to
represent licenses, privacy preferences, and regulatory obligations [54]. When it comes to the legal
domain specifically, Semantic Web researchers have proposed cross-domain ontologies that can
be used to encode legal text in a machine-readable format using LegalRuleML12 and adaptations
thereof (e.g., [3, 81]). Others focus on facilitating legal document indexing and search using the
European Law Identifier (ELI)13 and the European Case Law Identifier (ECLI)14 (e.g., [79, 23]), or
bridging the gap between the EU and member state legal terminology (e.g., [1, 15]). Besides these
cross-domain activities, there have also been various domain-specific initiatives. For instance, the
ELI ontology has to be extended to facilitate the encoding of the text of the General Data
Protection Regulation (GDPR)15 (e.g., [85]). While others have focused specifically on modelling
privacy policies (e.g., [80, 84]). The Open Digital Rights Language (ODRL)16, which is a W3C
recommendation, has gained a lot of traction in recent years in terms of intellectual property rights
management (e.g., [43, 75]). Additionally, the ODRL model and vocabularies have been extended
in order to model contracts [40], personal data processing consent [33], and data protection
regulatory requirements [28]. There has also been some work on automatically extracting rights

12 https://docs.oasis-open.org/legalruleml/legalruleml-core-spec/v1.0/os/legalruleml-core-
spec-v1.0-os.html

13 https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:52012XG1026(01)
14 https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:52011XG0429(01)
15 https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32016R0679&qid=1681238509224
16 https://www.w3.org/TR/odrl-model/

https://docs.oasis-open.org/legalruleml/legalruleml-core-spec/v1.0/os/legalruleml-core-spec-v1.0-os.html
https://docs.oasis-open.org/legalruleml/legalruleml-core-spec/v1.0/os/legalruleml-core-spec-v1.0-os.html
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:52012XG1026(01)
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:52011XG0429(01)
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32016R0679&qid=1681238509224
https://www.w3.org/TR/odrl-model/
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and conditions from textual documents (e.g., [22, 21]) or extracting important information from
legal cases (e.g., [117, 78]). Although many of the proposed approaches are based on existing
standards, there is a lot of overhead involved for systems that need to consider different types
of policies that are encoded using different languages. General-purpose policy languages are
particularly attractive in such scenarios as they lessen the administrative burden. However,
considering the potential complexity of such a language, there is a need for policy profiles with
well-defined semantics and complexity classes.

Policy Enforcement and Governance. From a policy governance perspective, LegalRuleML
researchers have proposed automated compliance approaches based on auditing (e.g., [30, 84]) and
business processes (e.g., [82, 10]). While [38] shows how LegalRuleML together with semantic
technologies, is used for business process regulatory compliance checking based on a rule-based
logic combining defeasible and deontic logic. One of the advantages of description logic-based
approaches, when it comes to consistency and compliance checking, is that they can leverage
generic reasoners, such as Pellet17 (e.g., [34]). Although there are presently no ODRL-specific
reasoning engines, researchers have demonstrated how ODRL can be translated into rules that
can be processed by Answer Set Programming (ASP) [9] solvers such as Clingo [36] (e.g., [43, 28]).
Additionally, there have been several custom applications that are designed to support ODRL en-
forcement or compliance checking, such as a license-based search engine [75]; generalised contract
schema and role-based access control enforcement [40]; and access request matching and author-
isation [33]. Despite existing efforts, challenges arise when it comes to ensuring that AI and
processing algorithms adhere to the policies. This could potentially be achieved either before or
during processing using trusted execution environments [11] or after execution by detecting data
misuse via automated compliance checking using system logs [55]. The combination of ex-ante
and ex-post compliance checking is particularly appealing for supporting risk-based conformance
checking such as that envisaged in the proposed EU AI Act. Nevertheless, the practicality, per-
formance and scalability or these proposals remain to be determined. In order to further support
self-determination, data owners and processors should be able to engage in on-demand negotiation
over policies, assisted by technology that ensures a safe and fair space and helps assessing the
compliance of negotiated terms with existing regulation. Negotiation between automated agents
has been a topic of interest since the early 2000s but in the context of self-determination we must
pay attention to the right balance between artificial representation and human involvement [5, 6].

Grounding based on our Illustrative Scenario. Figure 3 illustrates how machine-readable
policies and norms can be used to support self-determination. Considering our illustrated scenario
individuals may want to establish policies to precisely define the subset of their PKGs to be
shared with communities and what forwarding they allow. For example, share with the diabetes
community my blood in sugar values measured by my connected device and the output of my
AI healthcare assistant, or only share and forward anonymised aggregates to medical research
institutions, or contact me for negotiation if the pharma company is interested in using my data for
clinical studies. Communities may do the same, e.g, requiring specific data to be shared to join the
community, but also requiring agreements in order to ensure that participants will abide by social
and behavioural norms needed for self-regulation. Public and private organisations may need to
adhere not only to privacy preferences and licenses but also to various general regulations, e.g.,
the GDPR, the proposed AI Act in the EU or the Health Insurance Portability and Accountability
Act (HIPAA)18 in the US, as well as domain-specific regulations (e.g., advanced therapy medicinal

17 https://github.com/stardog-union/pellet
18 https://www.hhs.gov/hipaa/index.html

https://github.com/stardog-union/pellet
https://www.hhs.gov/hipaa/index.html
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Figure 3 Machine-readable norms and policies to support self-determination. A Policy Com-
poser/Translator assists individuals in writing data usage policies, communities in defining their rules, and
organisations in declaring their data processing purposes in both human- and machine-readable formats.
Policy Evaluation Engines assess the acceptability of perspectives in a community by evaluating policies
and rules. Engines assess organizations’ data usage compliance with regulations. If permitted, processing
can occur in a Trusted Execution Environment ensuring compliance. If not allowed, a Negotiation engine
may be utilised to seek agreement with data owners/stewards under relevant regulations.

products19 and rare diseases20).

4.2 Decentralised Infrastructure
Over the last 15-20 years, a number of communities have come to accept that centralised comput-
ing systems, despite many benefits, can lead to issues such as the over-centralisation of power, the
risk of single points of failure, potential abuse of personal data and creation of data silos which
can inhibit innovation. A boon from this realisation is that we now have a number of techno-
logies, standards, and approaches to decentralisation which offer benefits in terms of scalability,
diversity, and privacy, as well as individually-centred flexibility and control, and is an appealing
basis for maintaining and increasing trust, accountability, and autonomy with KG-based AI.

Personal Knowledge Graphs. The concept of a Personal Knowledge Graph (PKG), is that an
individual can keep their personal or private data in a space belonging to them, rather than with
siloed centralised service providers with limited access and control [8]. A Solid pod21 is an example
of a PKG platform, and the key to the vision of Solid is that there should be standard interfaces
and authorisation models to grant or deny access to the contents of a PKG at a granular level.
This is argued in particular22 to enable a highly decentralised architecture for Web applications.
Rather than a provider aggregating data from all users into a single location controlled by the
provider and application code accessing such data there, instead, an individual permits (or does
not permit) Web applications of their choice to access whatever subsets of their data they decide

19 https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex%3A32007R1394
20 https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex%3A32009H0703%2802%29
21 https://solidproject.org/
22 https://ruben.verborgh.org/blog/2017/12/20/paradigm-shifts-for-the-decentralized-web/

https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex%3A32007R1394
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex%3A32009H0703%2802%29
https://solidproject.org/
https://ruben.verborgh.org/blog/2017/12/20/paradigm-shifts-for-the-decentralized-web/
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from their PKG. As well as autonomy, this enables greater accountability since access to the
PKG can be filtered via personal machine-readable policies at source, and activities can be tracked
directly (e.g., [31]). Although PKGs offer great potential, they also come with challenges in terms
of performance and scalability as applications will need to interact with multiple distributed data
sources as opposed to a single backend server. These challenges, however, may also simultaneously
be opportunities for scalability trade-offs, querying over multiple low-powered data sources rather
than a high-powered central one.

Distributed Ledger Technology. Distributed Ledger Technology (DLT) [106] promotes trust
and empowerment through the replication of data across contributing nodes, which are geograph-
ically distributed across many sites, and the use of consensus algorithms which enable collective
fair decision-making with no central control. Blockchains are a type of distributed ledger where
an ever-growing list of records or blocks are tied together with cryptographic hashes, often, al-
though not necessarily, associated with a securely exchangeable token system, or ‘cryptocurrency’.
This technology rose to prominence following the release of Bitcoin [77] in 2008 - a blockchain-
based currency that has now been adopted by El Salvador as their legal tender. Ethereum [116],
a blockchain platform released in 2015, contains the notion of a ‘Smart Contract’ [20] (origin-
ally coined in the 1990s by Nick Szabo [107]), which is a collection of code that executes in a
fully decentralised way. Smart Contracts have been used to implement a range of decentralised
applications, including Decentralised Autonomous Organisations (DAOs) [65], which are organ-
isations where decisions are made through blockchain consensus mechanisms. The best-known
example of a DAO was ‘The DAO’ which at one point was worth more than $70M; they have
been applied to a number of different activities, including scholarly publishing [44]. Despite the
fact that immutability and transparency guarantees offered by DLT are very attractive, when
dealing with personal data both the ledgers and the smart contracts themselves will need to be
protected against unauthorised access and usage, and designed such that personal data itself is
neither stored in, or derivable from, immutable DLT records. Smart contracts may also intro-
duce scalability issues: the default Ethereum model involves every contributing node executing
every run of a smart contract, and thus has inherent scale limitations. Relaxing this model may,
however, affect trust.

Self Sovereign Identity. In the Web space, Self-Sovereign Identity (SSI) is being developed
through a combination of Decentralised Identifiers (DIDs) [103] and Verifiable Credentials (VCs)
[104], W3C standards for identity and verifiable attestation claims, respectively. DLT is one of
the ways in which DIDs can be grounded, although, by design, the DID standard is open in
terms of method. A DID is a URL (did:<method>:<...>) which can be resolved in a method-
specific manner (e.g., HTTP(S) dereferencing, reading from a smart contract, etc.) to obtain a
DID document, a Linked Data set containing information about digital identity in a standard
form - for example, how to verify it (e.g., a public key), methods for communicating with the
entity controlling it, and so on. DIDs enable SSI; the creation and use of DIDs are open and
decentralised, and by using different DIDs with different audiences, individuals can minimise how
easily their information can be tracked or correlated across services and can contextually and
selectively disclose personal information as desired. This grants individuals significantly greater
autonomy than current practices. There is a potential trade-off with trust and accountability of
an individual when it comes to information that others need to rely on, which is that effective
anonymity of a unique DID can be used to misrepresent oneself (e.g., fake a qualification or
entitlement) or pretend to be someone else. VCs are a proposed solution to this. The VC data
model is for sharing data alongside information that a recipient can use to verify its integrity or
origin, such as a digital signature or DLT record. If a DID is presented to a service that is restricted
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to legal adults, for example, the DID owner may also present a VC issued by a government body
confirming their adulthood; methods for selective disclosure supported by both DID and VC
standards allow this to be done verifiably without requiring disclosure of real-world identity.
These technologies are relatively new in comparison with standard digital identity models, and,
while intended and designed to address issues in those models, they may also introduce new
difficulties or enable different vulnerabilities to, e.g., identity fraud, than current standards.

Federated Learning. In the context of data-driven AI and decentralised infrastructure, there
are also techniques for decentralised machine learning. Federated Learning (FL) [119] is the
idea that, rather than aggregating training data in one location controlled by a model developer
(thereby compromising subject privacy), data holders can run learning algorithms to generate
model weights for their own data locally and privately, and then send only the weights to the
developer to be incorporated into the larger model. An example might be a smartphone text
prediction personalisation algorithm, where a user’s own writing is used to generate predictive
weights on device, and periodically selections of these can be aggregated to improve general text
prediction models. Refinements of FL approaches include sending not the actual learned model
weights, but a set of weights with statistically similar properties [113], to further reduce the risk
of privacy breaches without affecting model performance. A related approach takes this concept
even further, with the idea of embeddings in a larger model, e.g., ‘Textual Inversion’ [35] to
personalise large generative image diffusion models. The intuition here is that if someone wants
certain personalised specific types of output from a generative AI, then, if a model is sufficiently
large, there is a good chance that the desired concept already exists within it. More recently,
the idea of federating for preserving privacy has been applied specifically to deep learning, in
particular in the context of Internet of Things. [120] proposes an architecture with a control layer
including a distributed ledger, while [118] propose advanced cryptographic mechanisms to reduce
the risk of privacy leaks, following more general approaches that apply either differential privacy,
homomorphic encryption or secure multi-party computation. Federation also has the positive side
effect of potentially speeding up model training when the privacy constraints allow for a helpful
distribution of the process [12]. However, when opening the process to multiple parties, there
are a number of attack vectors that do not exist in a centralised approach for which we need
protection, and pay a communication and computation overhead [45].

Grounding based on our Illustrative Scenario. A decentralised infrastructure supporting
self-determination for our illustrative scenario is depicted in Figure 4. Health data is highly
sensitive and private, and individuals may want or need to interact with multiple services where
it is relevant, including KG-based AI systems. It thus makes sense to create a personal health
knowledge graph (PKG) to be a comprehensive and interconnected representation of an indi-
vidual’s health information, including their medical history, lifestyle choices, genetic data, and
real-time health monitoring data from IoT devices. Data from various sources, such as wear-
able devices, mobile applications, electronic health records, and even genomic sequencing, can
be linked together to form a holistic view of an individual’s health in such a personal health
knowledge graph. An early example of a PKG was in [108], where medical, lifestyle, and IoT
health monitoring data in a PKG was integrated into a (patient-focused) decision support system
built around a public medically-curated KG representing cardiovascular risk factors, giving indi-
viduals the autonomy to gain deeper insights into their own health patterns and risks, identify

23 The full picture would have knowledge exchange between multiple parties; to avoid an unreadable cluttered
figure, this is left implied by the background network.



Ibáñez et al. 00:15

Figure 4 Decentralised Infrastructure supporting self-determination, shown from the perspective of
one individual with a PKG23. According to individual wishes, portions of the PKG can be shared either
directly with a healthcare provider, with web applications for health, or indirectly with peer or research
communities. Identity is via DIDs (anonymous in the latter cases), with VCs used for trustable selective
disclosure. KG-based AI models can be trained and personalised in federated and private ways on
knowledge from diverse sources.

correlations, and make more informed decisions. More recently, BlockIoT [99, 100] aims to in-
tegrate health data seamlessly in a decentralised PKG using blockchain and KG technologies,
addressing this trust aspect and using PKG-driven smart contracts to trigger the personalised
recommendations for lifestyle modifications, medication adjustments, or even timely interventions
by the healthcare providers. Furthermore, the PKG can serve as a powerful tool for healthcare
beyond the individual. Communities of patients, providers, researchers, etc., or combinations
thereof, can share knowledge about various aspects of, e.g., particular conditions, whether that
is clinical evidence and best practice, peer advice and support on living with a condition, or
data on novel or rare symptoms and side effects, with this knowledge used for support, care, or
medical research across populations. De-identified and aggregated data from multiple individual
KGs can be collected in community KGs, with trust securely established using DIDs and VCs,
and accessed by community, practitioner, researcher, and service provider stakeholders, allowing
for decentralised large-scale analysis and identification of broader health trends from multiple
perspectives and intersecting factors. This can lead to advancements in disease prevention, treat-
ment protocols, and the development of personalised medicine in a collaborative manner [101].
KG-based AI systems can be both trained and used across this ecosystem, with FL being applied
to train larger models (e.g., the organisation models in Figure 2) and personalised embeddings
used by individuals to get the best experience from their therapy bots and healthcare assistants
while maintaining privacy and autonomy.
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4.3 Decentralised KG Management
As the amount of data and knowledge grows exponentially, managing and harnessing this vast
information becomes increasingly complex. Traditional centralised approaches to KG manage-
ment face challenges in terms of scalability, privacy, and control over data, and to address these
issues, decentralised KG management emerges as a promising solution. This section explores the
key aspects and open challenges in decentralised KG management to enable trust, accountability,
and self-determination for individuals in a rapidly evolving AI ecosystem.

Decentralised KG Access and Management. Efficient query processing infrastructures
are fundamental for traversing decentralised KGs. There has been notable efforts such as Fed-
bench [94] in the past. However, these infrastructures should be capable of executing queries
against the available KGs while respecting privacy and adhering to norms and policies. With
the increasing emphasis on privacy protection with regulations such as GDPR, it is crucial to
develop mechanisms that allow users to access and extract knowledge from KGs without com-
promising sensitive information or violating privacy regulations. Several research directions are
worth considering to address the open challenges in decentralised KG management. Firstly, devel-
oping the formalisms to describe KG management semantically can provide a common ground for
understanding and interoperability across different decentralised KG systems. Such formalisms
can enable standardised representations of KGs in the form of ontologies and facilitate seamless
integration and collaboration among diverse knowledge sources. Architectures supporting new
protocols and standards specific to decentralised KGs are essential for establishing interoper-
ability and seamless communication between knowledge sources and systems. By defining and
adopting common protocols and standards, decentralised KGs can collaborate more effectively,
share insights, and facilitate cross-domain knowledge discovery.

Note that if we add LLMs to the picture, their current training and execution processes are
currently centralised. Decentralised KG management is useful to provide transparency in data
used for their training. For approaches involving the interaction between LLM and KGs, the
transparency of the LLM itself still depends on the owner.

Provenance and Explanations. Furthermore, explainable methods for data integration and
curation, as well as KG validation and distribution, such as the Explanation Ontology for user-
centric AI, are necessary to ensure the reliability and accuracy of decentralised KGs [24]. By
providing transparent and interpretable approaches, users can have better insights into know-
ledge integration and validation, enhancing trust and accountability of the knowledge contained
in the KG and the insights derived. This is especially critical because, in decentralised KGs, data
may come from various sources and be represented in different ways. The standardised framework
provided in the Explanation Ontology for representing domain-specific explanations of KG entit-
ies and relationships helps users and applications understand the meaning and context of the data
in the KG. Provenance and traceability also play a vital role in decentralised KG management.
Establishing mechanisms to track and validate the origin, history, and lineage of knowledge within
KGs is crucial for accountability and the ability to trace back the sources and transformations that
contribute to the resulting knowledge. The W3C Provenance Data Management standards [72]
provides the basis for encoding provenance attributes in KGs, and subsequent nanopublications
specification [39] has gained a lot of traction in the biomedical domains. While these solutions
exist, there needs to be a cohesive framework that ties together explanation provenance data man-
agement in a decentralized KG context, ensures that users can trace the origins, transformations,
and sources of the data, which is crucial for trust, accountability, and data quality assurance. The
W3C provenance data management suite of recommendations provides normative interoperable
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guidance on recording information about data sources, contributors, and how data is collected
or transformed, making integrating heterogeneous data into a coherent KG easier. When data
quality issues arise, users can trace back to the source of the problem and take corrective actions,
ensuring the KG remains accurate and reliable. The W3C recommendations for decentralized
provenance management provide a mechanism for attributing data to its sources or contribut-
ors. This attribution is essential for accountability, especially when multiple parties contribute
to a KG.

Blockchain Technologies and Tokenomics. In recent years, the integration of blockchain
technologies and tokenomics has gained attention in the context of decentralised KG manage-
ment. Projects such as OriginTrail24 have contributed to the development of ownable DKGs,
which leverage blockchain’s inherent properties to enhance trust, provenance, and accountability.
By utilising blockchain, KG management systems can ensure the integrity and traceability of
data and metadata across various nodes in the network. The OriginTrail protocol aims to create
a trustless environment where data providers, consumers, and verifiers can interact and validate
the authenticity and reliability of data stored within the knowledge graph. Their protocol issues
tokens as incentives for data contributors, validators, and curators within the KG ecosystem.
The integration of blockchain technologies and tokenomics in decentralised KG management ad-
dresses several critical aspects. Firstly, blockchain’s immutability and transparency enable the
traceability and provenance of data and metadata, ensuring accountability throughout the KG
management pipeline. Secondly, the decentralised nature of blockchain mitigates single points
of failure and promotes the distribution of knowledge and decision-making power among parti-
cipants. This decentralised approach aligns with the principles of self-determination, empowering
individuals to have control over their data and knowledge. By rewarding contributors, validat-
ors, and curators with tokens, these systems encourage continuous improvement, data quality
assurance, and community engagement. Token-based economies can drive the development of
sustainable KG management pipelines, enabling the growth and evolution of DKGs over time.
However, the tokenomics have to be carefully designed and monitored to avoid the possibility
contributors have a motivation (possibly extrinsic) to misbehave. There is also the risk that a
sudden churn in blockchain participants impacts performance and availability. There is also the
question of the performance of the consensus algorithm of the Blockchain itself.

Grounding based on our Illustrative Scenario. An approach to decentralised knowledge
graph management in the context of healthcare, where users retain control over their personal
information while benefiting from enhanced privacy measures and seamless collaboration in a
community, is illustrated in Figure 5. At the heart of this framework lies the concept of PKGs,
such as Solid, which empower individuals to securely store and manage their personal health
data. Central to the architecture are specific components aimed at safeguarding user privacy and
ensuring data transparency. The process begins with knowledge sanitisation, which anonymises
sensitive information and filters the data according to the user’s preferences and data policies.
These policies encompass not only globally recognised regulations like GDPR and HIPAA but
also individual data policies, enabling users to set granular restrictions on how their data is used,
such as opting out of genetic data usage for medical research. To ensure interoperability and
standardisation, the creation of knowledge graphs leverages community-defined ontologies and
vocabularies. These shared frameworks facilitate seamless integration and alignment of personal
knowledge graphs within the broader ecosystem, promoting data exchange and collaboration.

24 https://origintrail.io

https://origintrail.io
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Figure 5 Decentralised KG Management Process in Healthcare. Emphasising user empower-
ment, privacy, and seamless collaboration, users maintain control over their personal health data through
personal data stores like Solid, and community and healthcare experts enhance different facets of the KGs
in the ecosystem. decentralised KG management involves anonymisation, filtering based on data policies
(including GDPR and HIPAA), and alignment with community-defined ontologies. Incentives, driven
by blockchain technology, encourage user participation in aggregating KGs and incentivize healthcare
professionals for verification, validation, and aggregation activities. SHACL shapes ensure KG validation
and federated querying mechanisms enable access to the KGs to stakeholders, e.g., insurers, pharma, and
medical research organisations. Integrated KGs are iteratively generated; they comprise a federation of
KGs that may be autonomous, distributed, and heterogeneous. A federation query engine enables the
traversal of these integrated and connected KGs to provide useful insights to the stakeholders involved.

Users are incentivised to aggregate their knowledge graphs, contributing to the construction of
community-based knowledge graphs focused on specific diseases. Through community-based veri-
fication, validation, and knowledge aggregation processes, these disease-based knowledge graphs
are created, providing valuable insights and fostering collaborative efforts among healthcare pro-
fessionals, researchers, and the wider community. Blockchain-based incentives drive user particip-
ation, rewarding both community users and healthcare experts for their verification, validation,
and aggregation activities. The utilisation of an immutable ledger and verifiable credentials
ensures the integrity and trustworthiness of the verification process. The validation process,
powered by RDF SHACL and Shape descriptions, further enhances data quality and consist-
ency, instilling confidence in the aggregated knowledge. The integrated knowledge graphs, en-
compassing personal, community-based, and healthcare expert knowledge, can be queried using
federated querying mechanisms powered by SPARQL. This allows various institutions, including
insurers, pharmaceutical companies, and medical research organisations, to access and leverage
the rich insights stored within the knowledge graphs, enabling evidence-based decision-making
and advancing medical research and healthcare practices. By combining decentralised knowledge
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graph management, user-centric privacy controls, and collaborative data sharing, this innovative
framework represents a significant step forward in transforming decentralised KG management,
fostering a secure, privacy-enhanced environment that empowers users, facilitates collaboration,
and drives advancements in domains such as medical knowledge and patient care.

4.4 Explainable neuro-symbolic AI
Neuro-symbolic systems go beyond generating explanations solely based on the trained model
or the individual results derived from applying the model to specific data. They can produce
symbolic explanations capturing the essence of an AI model itself. These explanations can be
classified as either instance-level explanations generated for each specific result of the model,
or model-level explanations of the structure of a learned model. Previous work on the role of
KGs in AI has focused on explainability. [62] frames explainability as a dimension of trustable
AI and presents challenges, existing approaches, limitations and opportunities for KGs to bring
explainable AI to the right level of semantics and interpretability. [109] and [90] conducted
independent systematic reviews of existing explainable AI systems to characterise KGs’ impact.
These results put into perspective the role of KGs in providing symbolic reasoning and learning
capabilities with the potential to be precise– as shown by Akrami et al. [2]– in addition to being
explainable.

Reasoning and AI. Despite the unquestionable reasoning features of symbolic systems and
the studies reporting limitations of LLMs in human-like tasks (e.g., explanations, memories, and
reasoning over factual statements) [41], and there is an ongoing debate about LLM’s reasoning
their causal inference capabilities [53]. Although LLMs excel at certain reasoning tasks, they
do poorly in others, raising the question if they genuinely engage in causal reasoning or merely
function as unreliable mimics, generating memorized responses (e.g., [46]). Methods to reason can
be roughly divided into methods using only the LLM itself (e.g. with prompt-engineering), and
methods combining the LLM with an external reasoner and/or external source of knowledge (e.g.
a Knowledge Graph) [88]. Our vision posits that external help will always be needed, especially
for concrete use cases. There are discussions about the need for knowledge graphs in the era of
LLMs. Sun et al. [105] and Dong [32] report on an empirical assessment of ChatGPT [95] with
respect to DBpedia, illustrating the need of symbolic systems that over-fit for the truth whenever
factual statements are collected from KGs. In addition, symbolic approaches can support sanity
checking and be easily auditable and traceable. These features position the combination of both
approaches in neuro-symbolic AI as a feasible option to provide KG-based AI. The neuro-symbolic
AI delivers the basis to integrate the discrete methods implemented by symbolic AI with high-
dimensional vector spaces managed by LLMs. They must decide when and how to combine both
systems, e.g., following a principled integration (combining neural and symbolic while maintaining
a clear separation between their roles and representations) or integrated (e.g., a symbolic reasoner
integrated into the tuning process of an LLM).

Trust and AI. Trust in AI systems stems from various factors, including transparency, reprodu-
cibility, predictability, and explainability. Neuro-symbolic systems play a vital role in enhancing
trustworthiness by enabling communication between modules and facilitating tracing. Modular-
ity enables the specification, verification, and validation of each component and its interactions.
As a result, a system’s behaviour can be traced and validated. Specifically, within the domain
of KG-based AI for self-determination, the seamless integration of KGs and symbolic semantic
reasoning offers a comprehensive and unified perspective on curated knowledge. This integration
holds immense value in addressing critical tasks such as validating, refuting, and explaining incor-
rect, biased, or misleading information that may potentially be generated by LLMs. By combining
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Figure 6 Design Patterns for Hybrid AI. Extension of patterns by van Bekkum et al. [111] for
running example in Figure 2. The patterns represent an explainable system with prior knowledge created
by the alignments of data from health-related data sources (e.g., insurance, pharma, and medical data).

symbolic reasoning over KGs with LLMs, the propagation of misinformation can be mitigated
while simultaneously enhancing the transparency and trustworthiness of AI-generated outputs.
Consequently, KG-based AI systems can effectively emulate human behaviour by subjecting mis-
takes arising from false or incomplete information to a process of validation and enrichment using
curated and potentially peer-reviewed sources of knowledge [111].

Quality and AI. A notable application of KGs in neuro-symbolic AI is as a source of informative
prior knowledge to increase the quality of machine learning models. An example is the work by
Rivas et al. [91], where a deductive database, expressed in Datalog, establishes an axiomatic
system of the pharmacokinetic behaviour of a treatment’s drugs and enables the deduction of
new drug-drug interactions in cancer treatments. This prior knowledge plays a crucial role in
elucidating the characteristics of a therapy and justifying its efficacy by considering all the in-
teractions and the dynamic movement of drugs within the body. It encompasses factors such as
the absorption, bioavailability, metabolism, and excretion of drugs over time. A KG embedding
model improves its prediction of the effectiveness of a treatment, based on the prior knowledge
which encodes statements about a treatment’s characteristics; these statements are inferred by a
deductive system which comprises the symbolic component of the hybrid approach. An approach
for explaining link prediction (e.g., [92]) allows the justification of why this added prior knowledge
affects the model’s decisions, potentially improving trust on the model’s results.

Grounding based on our Illustrative Scenario. Grounding on the example presented in
Figure 2, when individuals and professionals engage in communities with bots and assistants
powered by AI models, it is critical to ensure the transparency of their decision-making process.
However, despite the increasing focus on LLMs in healthcare and their continual improvement in
terms of precision and accuracy [102], their outcomes can still be susceptible to hidden biases and
a lack of traceability [63]. To tackle these challenges, the utilisation of a neuro-symbolic system
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can enhance LLMs by incorporating reasoning capabilities. This system operates as a deductive
system on a user’s Knowledge Graph (KG). These hybrid AI systems can be effectively modelled
using patterns proposed by [111]. Figure 6 depicts a pattern describing a hybrid AI system that
enhances the explainability of the LLMs described in our running example. At the community
level, symbolic reasoning applied to the ontology of shared PKGs can generate prior knowledge,
enabling precise and concrete questioning of an LLM and providing additional contextual inform-
ation. Moreover, a symbolic system facilitates the linking of shared PKGs with corresponding
entities in KGs related to insurance, pharmaceuticals, and medical research. By incorporating
this prior knowledge, the LLM’s answers are improved and validated with the assistance of the
symbolic system. The systems operating at the community level and involving heterogeneous
sources can be described using the explainable system with prior knowledge pattern; data align-
ments comprising prior knowledge enhance contextual knowledge provided to the therapy bot,
facilitating thoughtful health recommendations.

5 Proposed KG-based AI for Self-determination Research Agenda

In this section, we derive a set of requirements concerning KG-based AI for self-determination
and map them to the concrete research goals introduced at the start of this vision paper.

5.1 Trust, Accountability, and Autonomy Foundational Goals
In the following, we highlight five open research challenges and opportunities in each of our
proposed foundational topics (machine-readable norms and policies; decentralised infrastructure;
decentralised KG management; and explainable neuro-symbolic AI). Considering the complex
nature of each of these requirements, an assessment of the maturity of existing technologies with
respect to the various requirements is beyond the scope of a vision paper.

Machine-readable Norms and Policies.
MRP1: Seamless policy translation. There is a need for humans to express policies in machine-

readable format and for machines to express them in natural language or via appropriate
visualisations. A major challenge involves checking that machine readable policies faithfully
represent their human readable counterpart.

MRP2: Multi-level policy evaluation. Several policy languages exist, however many of them do
not have corresponding enforcement mechanisms. Given that usage constraints, community
rules, and regulations operate at different, yet interconnected levels, there is a need to devise
effective and efficient enforcement and/or compliance checking strategies.

MRP3: Negotiation. Facilitate autonomy via fair and safe negotiation between individuals, com-
munities, and organisations. Here there is a need to study the benefits and tradeoffs between
merely assisting humans in taking decisions and developing automated approaches that alle-
viate individuals from constant affirmations (e.g., the cookie problem).

MRP4: Compliance verification. Provide support for both ex-ante and ex-post compliance
checking mechanisms. Despite their potential, it remains to be seen which machine-readable
agreements can actually be enforced by trusted execution environments. Additionally, in scen-
arios where it does not pay data processors to cheat, game theoretic approaches could be used
to underpin honours based compliance checking.

MRP5: Data misuse detection. Instil trust and to ensure accountability in KG-based AI, by
developing mechanisms that can detect if any party violated policies and norms. In this
context, causal reasoning and explanations could potentially be used to both detect misuse
and to better understand the root cause.
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Decentralised Infrastructure.
DI1: Comprehensive recording. A DLT can provide an immutable ledger but work remains on

how best to connect KG-based AI activities, e.g., to a possible federated query engine.
DI2: Personalised tracing. Providing individual and community owners of PKGs with person-

alised traces of how acquired data was processed and used, will involve dis-aggregating KG-
processing and inferencing according to different user data and ensuring that privacy is not
violated when individual results are returned.

DI3: ‘Decency’ check. There is a need for easy-to-use services which allow users and communit-
ies to check if an organisation has behaved in a ‘decent’ way when it processed acquired data.
Research here will examine how ‘decency’ can be defined and validated by comparing PKG
declarations of use (e.g., policies) with generated traces of use.

DI4: Interoperability. Develop mechanisms that facilitate comprehensive interoperable identific-
ation of human and machine participants in KG-based AI processes. For example, users and
communities will wish to know, and be able to validate, claims that a data request comes
from a particular organisation, unit and even individual KG processor. This will provide a
foundation for accountability at all levels of granularity.

DI5: Self-sovereignty. True self-sovereign KG-based AI needs to be: (i) based upon easy-to-use
self-sovereign identities and data management; and (ii) capable of supporting the continuous
monitoring of organisational behaviours in a transparent fashion.

Decentralised KG Management.
DKG1: Knowledge Sanitisation. Develop robust techniques for knowledge sanitisation that en-

sure user privacy by anonymising and filtering sensitive information based on data policies.
These policies can be regulations such as GDPR and HIPAA, as well as individual-level data
policies enforced at their personal data store, empowering users to specify their sharing pref-
erences and control the aspects of data they disclose.

DKG2: Knowledge Graph Aggregation. Design and implement mechanisms to encourage users
to contribute their PKGs towards aggregated knowledge graphs, such as a concerted effort
towards developing specific disease KGs. Blockchain-based incentive models that reward users
for contributing to constructing such knowledge graphs, fostering collaborative efforts, and
enriching the overall quality of shared knowledge are components of this goal.

DKG3: Knowledge Verification. Develop community-based and expert processes to verify the
knowledge available in the global KGs. On the community front, it is critical to ensure that
a knowledge item that was previously contributed through an individual has not been altered
(either through error or with malicious intent), for instance via blockchain primitives, as
explained in the previous section.

DKG4: Knowledge Validation. Validation of knowledge is paramount to ensure KG interoper-
ability and the consumption of knowledge in target applications. By employing RDF and
SHACL technologies, we ensure that the DKGs across different data stores conform to a
specific template, thus, enabling their integration with community-supported KGs.

DKG5: Federated Querying. Explore and implement federated querying mechanisms, specific-
ally utilising SPARQL, to enable efficient querying across integrated KGs. This process in-
cludes developing techniques to support various institutions, such as insurers, pharmaceutical
companies, and medical research organisations, accessing and extracting insights from the
knowledge graphs to enhance decision-making and advance their respective domains.
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Explainable Neuro-Symbolic AI.

XNS1: User-dependent Recommendations. Neuro-symbolic systems need to be empowered to
transparently present results to the users according to their interests. For example, in our
illustrative scenario, an individual may not expect the same level of detail in a health recom-
mendation as a medical doctor or a community representative.

XNS2: Adaptive Hybrid AI. Define models that can adaptively combine predictive models with
logical reasoning, encompassing abilities such as generalisation and causal inference. For
accountability, the neuro-symbolic system should explain when the combination of logical
reasoning with a therapy bot or healthcare assistant will be beneficial. For autonomy, the
neuro-symbolic system should include the user in the loop and consider their opinion in this
decision. Finally, trust requires verifying and validating these decisions.

XNS3: Contextual-based Hybrid AI. Equip neuro-symbolic systems with contextual knowledge,
reasoning capabilities, and causal inference to effectively evaluate the strengths and limita-
tions of machine learning components. This goal empowers the system to identify optimal
combinations of statistical and symbolic AI methods, requiring the definition of causal models
on top of KGs capable of combining reasoning over KGs with causal inference.

XNS4: Symbolic Reasoning. Employ inference processes, both inductive and deductive, on
knowledge graphs to enable ML models, and LLMs in particular, to adjust hyper-parameters
and a model’s configuration, to new environments (i.e., Personal, community-based, and in-
tegrated healthcare KGs) and provide explanations for their decisions. Despite the advances
of Automated Machine Learning (AutoML) systems (e.g., AutoML25 and AutoWeka [59], to
best of our knowledge, there are no developments for AutoML over KGs or for neuro-symbolic
systems, which will enhance accountability, autonomy, and trust.

XNS5: Learning Transparency. Investigate if existing XAI mechanisms can be tailored for learn-
ing transparency, such that it is possible to explain what action was take; how the decision
making was performed; and why this was perceived as the outcome offering the greatest
expected satisfaction.

5.2 AI for Self-determination

The identified foundational research topic challenges and opportunities can be used to better
contextualise concrete goals in relation to trust, accountability, and autonomy from a KG-based
AI for self-determination perspective. An overview of this mapping, which is depicted in Table 1,
is provided by attempting to answer the overarching questions that guide our vision paper.

(Q1) What are the key requirements for an AI system to produce trustable results? From a
trust perspective, it is important that machine-readable policies faithfully represent the hu-
man policies (MRP1) in a manner that can be verified automatically (MRP2). Regardless of
whether systems are automated or semi-automated, we need to be able to verify that processes
behave as expected (MRP4) and any misuse can be detected and rectified (MRP5). Trust
could potentially be facilitated via auditing (DI1) and tracing (DI2), as well as certification
mechanisms that support decency checks (DI3) and (semi-)automated knowledge verification
(DKG3) and validation (DKG4) techniques. While human involvement is paramount to es-
tablishing trust in adaptive (XNS2) and contextualised (XNS3) hybrid AI.

25 https://www.automl.org/

https://www.automl.org/
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Table 1 Mapping of foundational requirements to pillars. A checkmark signifies that
the corresponding requirement is necessary for answering a research question related to a
pillar.

Machine-readable norms and policies
Trust Accountability Autonomy

MRP1 ✓ ✓
MRP1 ✓ ✓
MRP3 ✓
MRP4 ✓ ✓
MRP5 ✓ ✓ ✓

Decentralised Infrastructur
Trust Accountability Autonomy

DI1 ✓ ✓
DI2 ✓ ✓
DI3 ✓ ✓
DI4 ✓
DI5 ✓

Decentralised KG Management.
Trust Accountability Autonomy

DKG1 ✓
DKG2 ✓ ✓
DKG3 ✓
DKG4 ✓
DKG5 ✓

Explainable Neuro-Symbolic AI
Trust Accountability Autonomy

XNS1 ✓
XNS2 ✓ ✓
XNS3 ✓ ✓
XNS4 ✓
XNS5 ✓

(Q2) How can AI be made accountable for its decision-making? The first step to achieving
accountability is to ensure it is possible to detect if any party violated policies and norms
(MRP5) and that the recommendations given and decisions taken using both induction and
deduction (XNS4) are comprehensible from a users perspective, for instance via user focuses re-
commendations (XNS1), providing explanations for recommendations and decisions (XNS2),
facilitating learning transparency (XNS5), and contextualisation based on causal inference
(XNS3). Considering that machines can only work with the knowledge that it has at hand, it
is important that systems are able to integrate knowledge from disparate sources (DI4), and
are capable of querying (DKG5) and aggregating (DKG2) relevant sources.

(Q3) How can citizens maintain autonomy as users or subjects of KG-based AI systems?
Citizens’ autonomy in a KG-based AI context is necessary to ensure that humans are able to
control not only who has access to their personal data, but also that its usage is in line with
existing regulatory requirements. The could be achieved with automated compliance checking
(MRP4) and misuse detection (MRP5) built on top of machine-readable policies (MRP1) and
evaluation mechanisms (MRP2). Negotiation could potentially enable organisations to gain
access to better quality data (MRP3) or to foster collaboration via aggregation (DKG2) and
strong privacy guarantees via anonymisation (DKG1). While, self-sovereign identities (DI5),
auditing (DI1), tracing (DI2), and decency certification (DI3) have a major role to play when
it comes to continuous monitoring.



REFERENCES 00:25

6 Conclusion

This paper presents a compelling argument for integrating KG-based AI to empower individuals’
self-determination and benefit society. This overarching goal is supported by three fundamental
pillars: trust, accountability, and autonomy. We advocate the foundations of these pillars require
focused research in four areas: machine-readable norms and policies, decentralised infrastructure,
decentralised KG management, and explainable neuro-symbolic AI. By drawing on a concrete
scenario within the healthcare domain, we demonstrate the relevance of each foundational topic
and outline a comprehensive research agenda for each of them.

We aspire for the insights presented in this paper to catalyse the creation of AI services
that genuinely support citizens while upholding their rights. Responsible advancement of the
foundational topics is crucial to ensure that future KG-based AI solutions are comprehensive
and possess the qualities of being traceable, verifiable, and interpretable. It is essential that
relevant legislation, such as the EU AI Act, provides clear guidance to steer the development of
these forthcoming applications, emphasising the need for accurate, reliable, and transparent AI
systems. Within this context, we recognise the Semantic Web community as uniquely positioned
to drive transformative change and contribute solutions illuminating opaque AI models’ workings.
Through this concerted effort, we envision a paradigm shift in KG management and analytics
that establishes KG-based AI to empower individuals in their pursuit of self-determination.
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