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Abstract
Knowledge Graphs (KGs) have emerged as funda-
mental platforms for powering intelligent decision-
making and a wide range of Artificial Intelligence
(AI) services across major corporations such as
Google, Walmart, and AirBnb. KGs complement
Machine Learning (ML) algorithms by providing
data context and semantics, thereby enabling fur-
ther inference and question-answering capabilities.
The integration of KGs with neuronal learning (e.g.,
Large Language Models (LLMs)) is currently a topic
of active research, commonly named neuro-symbolic
AI. Despite the numerous benefits that can be ac-
complished with KG-based AI, its growing ubiquity
within online services may result in the loss of self-
determination for citizens as a fundamental societal
issue. The more we rely on these technologies, which
are often centralised, the less citizens will be able

to determine their own destinies. To counter this
threat, AI regulation, such as the European Union
(EU) AI Act, is being proposed in certain regions.
The regulation sets what technologists need to do,
leading to questions concerning How the output
of AI systems can be trusted? What is needed to
ensure that the data fuelling and the inner work-
ings of these artefacts are transparent? How can
AI be made accountable for its decision-making?
This paper conceptualises the foundational topics
and research pillars to support KG-based AI for
self-determination. Drawing upon this conceptual
framework, challenges and opportunities for citizen
self-determination are illustrated and analysed in
a real-world scenario. As a result, we propose a
research agenda aimed at accomplishing the recom-
mended objectives.

2012 ACM Subject Classification Social and professional topics → Computing / technology policy;
Computing methodologies → Knowledge representation and reasoning; Human-centered computing →
Collaborative and social computing theory, concepts and paradigms; Security and privacy → Human and
societal aspects of security and privacy; Computing methodologies → Distributed artificial intelligence
Keywords and phrases Trust, Accountability, Autonomy, AI, Knowledge Graphs
Digital Object Identifier 10.4230/TGDK.1.1.9
Category Vision
Related Version Previous Version: https://arxiv.org/abs/2310.19503

Funding Luis-Daniel Ibáñez: Partially funded by the European Union’s Horizon Research and Innovation
Actions under Grant Agreement nº 101093216 (UPCAST)
Sabrina Kirrane: Partially funded by the FWF Austrian Science Fund and the Internet Foundation

© Luis-Daniel Ibáñez, John Domingue, Sabrina Kirrane, Oshani Seneviratne, Aisling Third, and
Maria-Esther Vidal;
licensed under Creative Commons License CC-BY 4.0

Transactions on Graph Data and Knowledge, Vol. 1, Issue 1, Article No. 9, pp. 9:1–9:32
Transactions on Graph Data and Knowledge

T G D K Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:l.d.ibanez@southampton.ac.uk
https://orcid.org/0000-0001-6993-0001
mailto:john.domingue@open.ac.uk
https://orcid.org/0000-0001-8439-0293
mailto:sabrina.kirrane@wu.ac.at
https://orcid.org/0000-0002-6955-7718
mailto:senevo@rpi.edu
https://orcid.org/0000-0001-8518-917X
mailto:aisling.third@open.ac.uk
https://orcid.org/0000-0002-0386-1936
mailto:maria.vidal@tib.eu
https://orcid.org/0000-0003-1160-8727
https://doi.org/10.4230/TGDK.1.1.9
https://arxiv.org/abs/2310.19503
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/tgdk
https://www.dagstuhl.de/tgdk
https://www.dagstuhl.de


9:2 Trust, Accountability, and Autonomy in KG-Based AI

Austria under the FWF Elise Richter and netidee SCIENCE programmes as project number V 759-N.
Oshani Seneviratne: Partially funded by NSF IUCRC CRAFT center research grant (CRAFT Grant
#22008) and the Algorand Centres of Excellence programme managed by Algorand Foundation. The
opinions expressed in this publication do not necessarily represent the views of NSF IUCRC CRAFT or
the Algorand Foundation.
Maria-Esther Vidal: Partially funded by Leibniz Association, program “Leibniz Best Minds: Programme
for Women Professors”, project TrustKG-Transforming Data in Trustable Insights; Grant P99/2020
Received 2023-06-30 Accepted 2023-11-17 Published 2023-12-19
Editors Aidan Hogan, Ian Horrocks, Andreas Hotho, and Lalana Kagal
Special Issue Trends in Graph Data and Knowledge

1 Introduction

Modern Artificial Intelligence (AI) can be traced back to a workshop held at Dartmouth College
in the summer of 1956 [66] and is most commonly defined as the use of computers to simulate
human intelligence, in particular human reasoning, learning, and problem-solving. Since 1956, AI
has lived through times of increased interest and funding, and also “AI Winters”, such as after the
1974 Lighthill report [63], when overall funding was reduced. Over the last few years, however,
funding and interest in AI have been high and exploded in November 2022, when ChatGPT, a
type of Generative AI, was announced by OpenAI, exposing the power of Large Language Models
(LLMs) to the general public. Since its release, ChatGPT has become the fastest-growing app
in history, reaching 100M users in just two months, and is now estimated to have 200M users.
Generative AI will continue to grow following a significant investment by Microsoft into OpenAI
and announcements by Microsoft and Google on how Generative AI will be embedded in future
products [36]. Data-centric AI [114] recognises the immense value of data as crucial resources for
training, optimising, and evaluating AI systems. Databricks, a prominent AI company, has defined
data-centric AI as the challenge of designing processes for data collection, labelling, and quality
monitoring in machine learning (ML) datasets [85] highlighting the need for continuous re-running
and re-training, actionable monitoring, and the difficulties of incorporating data inaccessible to
human annotators due to privacy concerns as primary research directions. Knowledge Graphs
have been used as a resource and structure to support data-centric AI processes.

The term Knowledge Graph (KG) was first introduced by Google in 2012 and is usually
defined as a type of knowledge structure that uses a graph data model to integrate data. KGs
are strongly linked to the work of the Semantic Web community, which first began in around
2001 and was introduced in a seminal paper by Tim Berners-Lee [13]. The Semantic Web
initiative produced a stack of web standards on which KGs are based. These include the Resource
Description Framework (RDF), where data is encoded as subject-predicate-object triples, and
the Web Ontology Language (OWL), a set of web-based languages mostly based on description
logic. The common theme of these semantic representations is that they facilitate the publishing,
use, and re-use of data at the web-scale. In particular, they allow disparate heterogeneous data
sources to be integrated continuously at scale. Over the past decade, KGs have become a mainstay
for several key large-scale applications found online. For example, KGs underpin Google Search,
which saw 5,900,000 searches in just one minute in April 2022. Similarly, the same minute saw
1,700,000 pieces of content shared on Facebook, 1,000,000 hours streamed, and 347,200 tweets
shared on Twitter. All of this content and data are linked to a plethora of AI services that have
increasingly been based on KGs, as mentioned above, founded upon machine-readable data and
schema representations based on a web stack of standards. AI services cover a wide number
of areas, including content recommendation, user input prediction, and large-scale search and
discovery and form the basis for the business models of companies like Google, Netflix, Spotify,
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and Facebook. Given the above, we define KG-based AI as an AI system (replicating some aspect
of human intelligence) based on a KG that possibly uses the web standards produced by the
Semantic Web community.

In addition to privacy concerns, there has been a growing worry about how personal data can be
abused and, thus, how AI services impinge on citizen rights. For example, the over-centralisation
of data and its misuse led Sir Tim Berners-Lee to call the Web “anti-human” in an interview in
2018 [18]. Since 2016, hundreds of United States (US) Immigration and Customs Enforcement
employees have faced investigations into abuse of confidential law enforcement databases, from
stalking and harassment, to passing data to criminals [69]. The subject of much of the proposed
legislation today is ensuring that digital platforms, including AI platforms, provide real societal
benefit. Within Europe, the proposed European Union (EU) AI Act1 aims to support safe AI
that respects fundamental human rights. The regulation sets what technologists need to do. The
concept of data self-determination, which is often used in a legal context, implies that individuals
are not only aware of who knows what about them but can also influence data processing that
concerns them [60]. Given that nowadays, data processing is conducted by opaque AI algorithms
behind corporate firewalls, sometimes even without our knowledge, data self-determination is
harder than ever before. When it comes to trust in web data and services, Berners-Lee and
Fischetti [12] envisaged an “Oh yeah?” button embedded into Web browsers that would provide
justifications as to why a page or a service should be trusted. Alas, their vision was never realised
in popular web browsers2. Instead, we have dedicated websites, e.g., the Ecommerce Europe
Trustmark3 that are used to perform company reputation checks and fact-checking websites, such
as Snopes4, that can be used to check the validity of information posted online. Although some
automated fact-checking techniques have been proposed [87], they are used solely for developing
trust in information resources and cannot provide any guarantees with respect to AI-based data
processing. As we move beyond trust towards accountability, policies have already been used
to specify legal data processing requirements that serve as the basis for automated compliance
checking, for example, [82]. But what happens when service providers or AI algorithms do not
comply? How far can technology go in terms of helping us determine non-compliance and make
service providers accountable for their actions?

In this paper, we propose a research agenda for ensuring that KG-based AI approaches
contribute to user self-determination instead of hindering it. Our vision, which is depicted in
Figure 1, is structured around three pillar research topics - trust, accountability, and autonomy -
that represent the desired goals for how AI can benefit society and facilitate self-determination.
The pillars combine fundamental principles of the proposed EU AI Act and self-determination
theory. Both trust and accountability are imperative for safeguarding against adverse impacts
caused by AI systems, while autonomy is critical for ensuring individuals are able to determine their
own destinies. The pillars are supported via four foundational research topics - machine-readable
norms and policies are needed for humans to declare regulatory frameworks, privacy and usage
constraints that can be interpreted by the machines that process their data; decentralised KG
management and decentralised infrastructure to provide alternatives to approaches where a central
entity controls a whole process, that are prone to abuse of power; and explainable neuro-symbolic
AI to clearly communicate and prove the decisions AI systems make. We posit the following
research questions:

1 https://artificialintelligenceact.eu/
2 However, a linked browser prototype, the Tabulator, incorporated this feature in an Justification UI (http:

//dig.csail.mit.edu/TAMI/2008/JustificationUI/howto.html#useTab).
3 https://ecommercetrustmark.eu/
4 https://www.snopes.com/
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Figure 1 KG-based AI for Self-determination Conceptualisation. KG-based AI for self-
determination is supported by the pillars of trust, accountability, and autonomy, built upon the foundational
topics of machine-readable norms and policies, decentralised infrastructure, decentralised KG management,
and explainable neuro-symbolic AI.

Q1 What are the key requirements for an AI system to produce trustable results?
Q2 How can AI be made accountable for its decision-making?
Q3 How can citizens maintain autonomy as users or subjects of KG-based AI systems?

In order to facilitate exposition, we ground our discussion in a healthcare scenario inspired
by the recently proposed regulation on European Health Data Space5 that aims to ensure that
“natural persons in the EU have increased control in practice over their electronic health data” and
to facilitate access to health data by various stakeholders in order to “promote better diagnosis,
treatment and well-being of natural persons, and lead to better and well-informed policies”. The
proposed healthcare scenario, which is illustrated in Figure 2, is composed of the following actors
and interactions:
Individuals manage their Personal Knowledge Graphs (PKGs) (aligned with the original Semantic

Web vision and modern interpretations [7, 47]). They collect knowledge about their medical
conditions, symptoms, treatments, reactions to treatments, etc. Individuals get services from
KG-based AI applications that utilise their PKGs, e.g., therapy bots or health assistants.

Experts in healthcare also have PKGs where they collect their knowledge about diseases, results
of the treatments they have suggested in the past, links to general medical knowledge graphs,
etc. Experts may also be assisted by KG-based AI models.

5 https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex%3A52022PC0197

https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex%3A52022PC0197


L.-D. Ibáñez, J. Domingue, S. Kirrane, O. Seneviratne, A. Third, and M.-E. Vidal 9:5

Figure 2 Illustrative Scenario for KG-Based AIs in the healthcare domain. Individuals use
AI assistants to make sense of data collected in their PKGs. They may also share perspectives of their
PKGs with other individuals and healthcare experts in knowledge-sharing communities that aggregate
and curate data to power AI services for the benefit of all members. Public and private organisations can
negotiate access to data from communities and individuals to train KG-based AI models, which in turn
are used to build services for them.

Knowledge sharing communities are spaces where individuals and healthcare experts may share
subsets of their PKGs in the context of specific knowledge, e.g., diseases. We call these
community-based perspectives. Perspectives from different contributors are aggregated into
community KGs (e.g., disease-based). AI applications use these KGs for community benefit,
e.g., assessing if a treatment that worked for an individual may work for a different individual.

Public and private organisations may negotiate access to data and knowledge from communities
to train large KG-based AI models to either improve internal processes or power products sold
to communities, experts, or individuals, completing the cycle.

The remainder of the paper is structured as follows: Section 2 introduces the necessary
background in terms of KG-based AI. Section 3 highlights the importance of trust, accountability,
and autonomy when it comes to ensuring that AI benefits society. Section 4 presents several
KG-based tools and techniques that can be used to facilitate trust, accountability, and self-
determination. In Section 5, we propose a research roadmap that includes several challenges and
opportunities for KG-based AI that benefits individuals and society. Finally, we conclude and
outline important first steps in Section 6.

2 Knowledge Graph-based AI

In his seminal publication, “Thinking, Fast and Slow”, Daniel Kahneman [49] presents a com-
prehensive theory of human intelligence, offering profound insights into the workings of the
human mind. This groundbreaking work separates intuition from rationality when approaching
problem-solving tasks, defining them as two sets of abilities or systems. System 1 operates at an

TGDK
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unconscious level, generating responses effortlessly and swiftly. In contrast, System 2 requires
conscious attention and concentration, enabling the generation of responses needing complex com-
putations. Kahneman’s characterisation of mental cognition aligns with statistical and symbolic
learning models that seek to simulate human thinking processes [16]. These systems are known as
neuro-symbolic systems [17], and there is a growing interest in emerging hybrid approaches that
aim to integrate cognitive capabilities. Specifically, they strive to combine the power of neural
networks, such as LLMs, with the interpretability offered by symbolic processing, particularly
semantic reasoning over KGs.

2.1 Knowledge Graphs
Google first introduced KGs in 2012 when they enabled “Knowledge Panels” to contain descriptions,
including pictures, for search items. For example, if one types “London” in Google Search, the
Knowledge Panel displays pictures, the current weather, a map, directions, elevation, and related
entities (e.g., Paris). The seed for the Google KG was Freebase – a community knowledge base
initially launched in 2007 with an add-on RDF service launched at the International Semantic
Web Conference in 2008. In 2010, Google bought Metaweb, the company that owned Freebase
and extended the knowledge base into the Google KG6.

In 2011, Bing, Google and Yahoo! launched Schema.org, a reference website for common data
schemas related to web search engines. The proposal was that website owners would use the
published schemas alongside Semantic Web standards such as RDFa and JSON-LD. A number
of the schemas, such as Organisation, influence the results returned by Google KG search.
Schema.org is an example of a shared vocabulary for semantic representation; the use of such
vocabularies or ontologies in KGs, along with the ability to map between equivalent schemas in
them, enables the integration of heterogeneous data at scale.

Today, KGs are used in a wide range of areas and products outside of search. For example,
Netflix, Amazon, and Facebook all use KGs as the foundation for their recommendation engines
for television programmes and films, consumer products and posts7, whereas in the healthcare
sector, KGs are used to integrate medical knowledge and support drug discovery.8

2.2 Large Language Models
A Large Language Model (LLM) is a specialised machine learning model constructed using a
transformer architecture, a category of deep neural networks [120]. LLMs are primarily designed
for predicting the next word in a sequence, making them flexible tools for various text-processing
tasks, such as text generation, summarisation, translation, and text completion. Examples of
existing LLMs include OpenAI’s ChatGPT [93] and Google’s PALM [24]. These models have
demonstrated high performance in Natural Language Processing (NLP) tasks like code generation,
text generation, tool manipulation, and comprehension across diverse domains, often achieving
high-quality results in zero-shot and few-shot settings. This success has stimulated advancements
in LLM architectures, training techniques, prompt engineering, and question answering [72].

Despite their unquestionable capabilities in emulating human-like conversations, there is an
ongoing debate regarding the intelligence exhibited by LLMs, particularly, since their fluency
in language does not necessarily imply a cognitive understanding of real-world problems [72].
Additionally, LLMs can only learn knowledge when it appears in the training data and may

6 https://en.wikipedia.org/wiki/Schema.org
7 https://builtin.com/data-science/knowledge-graph
8 https://www.wisecube.ai/blog/20-real-world-industrial-applications-of-knowledge-graphs/
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perform badly when answering questions involving long-tailed facts [30]. Moreover, they may
struggle to absorb new knowledge and are not easy to audit [73], suggesting potential risks of
discrimination and information hazards.

2.3 Neurosymbolic AI

LLMs and machine learning models, in general, are trained on extensive datasets, resulting in
high-quality outcomes whenever applied to specific prediction tasks. However, LLMs, like OpenAI’s
ChatGPT [93], lack causal understanding and may hallucinate in cases which are not statistical in
nature (e.g. memories or explanations) [40]. On the other hand, symbolic AI systems are capable
of emulating human-like conscious processes required for causality, logic, and counterfactual
reasoning, as well as maintaining long-term memory. As a result, symbolic systems can empower
LLMs by modelling human learning and combining knowledge extracted (e.g., from KGs) to
formulate prompts that allow for more fluent communication with users.

Neuro-symbolic AI provides the basis for integrating the discrete approaches implemented by
Symbolic AI with high-dimensional vector spaces managed by LLMs. They must decide when
and how to combine both systems, e.g. following a principled integration (combining neural
and symbolic while maintaining a clear separation between their roles and representations) or
integrated (e.g., a symbolic reasoner integrated into the tuning process of an LLM). Recently, van
Bekkum et al. [109] propose 17 fundamental design patterns to model neuro-symbolic systems.
These patterns encompass many scenarios where the symbiotic relationship between symbolic
reasoning and ML models becomes apparent. Since these combinations may enable symbolic
reasoning and enhance contextual knowledge, neuro-symbolic systems may empower explainability
and, as a result, also improve transparency by showing how a system works based on the symbolic
explanations deduced by the hybrid system.

3 KG-based AI that Benefits Individuals and Society

Considering our vision that KG-based AI can facilitate self-determination, we start by discussing
the pertinent role played by trust, accountability, and autonomy when it comes to ensuring that
AI benefits society. In each case, we highlight existing challenges and present arguments in favour
of a KG-based AI system.

3.1 Trust and KG-based AI

One of the primary objectives of the proposed EU AI Act is the “development of an ecosystem
of trust by proposing a legal framework for trustworthy AI”. The Merriam-Webster dictionary
definition of trust includes a “firm belief in the reliability, truth, or ability of someone or some-
thing” [70]. Questions we address in this paper include understanding how KG-based AI systems
can demonstrate reliability, truth, and ability through mechanisms which add transparency to all
elements involved in KG-reasoning. These include comprehensive provenance tracking of data
sources and data elements used for any output; understanding repeatability for all KG-based AI
reasoning (e.g. if datasets are altered or disappear altogether or if other reasoning methods, such
as LLMs, are involved); and alleviation mechanisms when KG-based AI system responses are
untruthful.

The proliferation of misinformation on the internet has risen significantly in recent years,
coinciding with the advancements in generative AI technologies. As AI becomes more sophisticated,
it has inadvertently provided tools and techniques for the creation and dissemination of false
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information, leading to widespread confusion and societal harm [25, 121]. For instance, AI-
generated deepfake videos have become a concerning source of misinformation. Deepfakes use
AI algorithms to manipulate and superimpose faces onto existing videos, making it difficult to
discern real from fabricated content [113]. This technology has been used to create fake videos
of public figures saying or doing things they never actually did, leading to potential defamation
and manipulation of public opinion. AI-powered chatbots and automated accounts on social
media platforms have been employed to spread false information and manipulate public sentiment.
These bots can mimic human-like conversations and flood social media platforms with fake news,
propaganda, and divisive narratives, influencing public opinion and sowing discord, and have even
contributed to misinformation in medical literature [65]. AI-powered recommendation algorithms
used by platforms like social media and video-sharing websites can inadvertently contribute to
the spread of misinformation. These algorithms aim to maximise user engagement by suggesting
content based on user preferences and behaviour. They can create filter bubbles, reinforcing users’
existing beliefs and exposing them to a limited range of perspectives, potentially amplifying false
information and preventing users from accessing accurate and diverse sources of information [84].

Amidst these challenges, KG technologies have emerged as a potential solution to curb mis-
information and enhance trust. Leveraging the power of crowd-supplied and verified knowledge
sources, such as Wikidata [111], KGs enable comprehensive fact-checking capabilities. By integ-
rating diverse and reliable information from various trusted sources, these graphs can potentially
identify and flag misleading or inaccurate content more effectively. By utilising the collective
intelligence of a crowd, KG technologies empower users to contribute to the verification process,
enhancing the accuracy and credibility of the information presented. Through collaborative efforts
and the utilisation of KG technologies, it is possible to combat the rising tide of misinformation,
safeguard the integrity of online information and foster a more informed digital society. Coupled
with distributed ledgers KG-based AI may combat misinformation on the web [95]. There is
already a growing body of work in this space, which shows some promise. For example, Mayank
et al. [68] and Koloski et al. [57] describe systems that leverage KGs to detect fake news; Kou et
al. [59] and Shang et al. [96] describe how crowd-sourced KGs can be used to mitigate COVID-19
misinformation; and Kazenoff et al. [50] use semantic graph analysis to detect cryptocurrency
scams propagating in social media.

3.2 Accountability and KG-based AI
According to the proposed EU AI Act, when it comes to high-risk AI, “accuracy, reliability
and transparency are particularly important to avoid adverse impacts, retain public trust and
ensure accountability and effective redress”. Accountability in a KG-based AI context assumes
that data scientists, computer scientists, and software engineers will follow best practices and
ensure compliance with relevant legislation. In the purely symbolic world, such properties can
be achieved via consistency and compliance checking based on formal requirements specified in
policy languages such as LegalRuleML [4] and ODRL [46]. When it comes to the sub-symbolic
world, these principles are particularly challenging, as ML algorithms are often opaque and could
potentially infer confidential information during the training process. In recent years, various
Explainable AI (XAI) techniques have been used to build or to be applied to the output of
models such that they can be interpreted and understood by various stakeholders [56]. In the
context of KG-based AI, this will require the intersection between two strains of explainability:
the explanation of why a statement is in the KG that supports the AI and the explanation of how
the model used the statements from the KG to reach a particular decision. KGs can also be used
to support the modelling, capturing, and auditing of records useful for accountability throughout
the system life cycle [75]
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When it comes to AI and accountability, technical research should go hand in hand with the
interdisciplinary research conducted in communities like FaccT9. A recent paper [26] revisited the
four barriers of accountability that were developed in the 1990s for accountability of computerised
systems in the light of the rise of AI, finding that they are even more important than before.
The main barrier is the problem of many hands – the large amount of actors involved in the
construction of an AI service creates difficulties in the assignment of responsibilities in case of harm.
Advancing efficient provenance collection and verifiability will be the key technical intervention to
overcome this barrier. Fields such as data science require strong guarantees for provenance to
build context-aware KGs [94]. Similar to explainability, we consider two different approaches that
need to be combined: the provenance of statements in the KG and the provenance of the pipeline
that was followed to construct the ML model.

3.3 Autonomy and KG-based AI

Alongside accountability and trust, the third pillar needed to support self-determination is
autonomy, defined from a self-determination theory10 perspective as “the belief that one can choose
their own behaviours and actions”. In the current context, we take this to mean that individuals
should be able to make their own decisions about their uses of KG-based AI and about its uses
of their data (and have their wishes respected). Assuming that AI systems can be made to be
trustable and accountable, how can we best support autonomy in this way? That is to say, if
we can know that an AI will behave in a desired and known way and that its decisions and
processes are transparent and traceable, how can we express and enable control over what it does
in regard to an individual? A number of approaches have emerged in recent years which facilitate
individuals’ data sovereignty and how they represent and express their identity online.

The concept of a PKG, introduced in our illustrative scenario (Figure 2), is one means of
facilitating autonomy; Solid pods [91, 67] are secure decentralised data stores accessible through
standard semantic interfaces for applications that generate and consume linked data. Currently,
the default model on the Web is for service providers to host and control access to user data by
means of a user account. This denies autonomy to the individuals concerned since all access is
mediated via applications and interfaces designed and controlled by service providers. The PKG
model is that personal data is independent of any application; PKGs are the primary source of
data under the control of individuals, and they mediate service access via standard interfaces. On
top of shifting control away from service providers, this approach makes it technically simpler to
implement data usage policies, as they can be stored with the data and evaluated at the PKG
level.

One prominent way of achieving the second goal is through the notion of Self-Sovereign Identity
(SSI) [27]. Traditional digital identity (e.g. as in OpenID Authentication [41]) has been modelled in
terms of Identity Providers (IdPs). An individual and an IdP establish a relationship, and the IdP
generates a digital identity for them. If the individual wants to authenticate with a third party, the
IdP confirms the relationship to them and then asserts that identity to the relying party. Crucially,
sovereignty over that identity and decisions about who can see it, the data associated with it, or
whether it continues to exist are taken by the IdP. With SSI, an individual generates their own
digital identity (e.g. a cryptographic key pair), makes their own identity assertions, and therefore
has full control over that identity, with correlations between two identities (digital or physical)

9 https://facctconference.org/index.html
10 https://en.wikipedia.org/wiki/Self-determination_theory

TGDK

https://facctconference.org/index.html
https://en.wikipedia.org/wiki/Self-determination_theory


9:10 Trust, Accountability, and Autonomy in KG-Based AI

relying explicitly on attestation by others, and trust relationships with them11. The autonomy
enabled by SSI makes selective disclosure possible, meaning that what identity information gets
shared with whom can be made contextually and on a case-by-base basis – much like presenting
different aspects of one’s personal identity in daily life (e.g., work and home personas).

Considerations of identity pervade technical ones for safeguarding self-determination. It seems
uncontroversial that there will be scenarios in which an individual’s identity is relevant to what
they wish to do with a KG-based AI, whether in training, KG contents, or inference, and indeed,
even where anonymity is desired, identity must be considered in order to avoid revealing it.
Identity is also fundamental to the concept of trust; trust in a person, organisation, system, AI
model, KG, etc., is useful only insofar as it is possible to identify relevant entities as needed, and
accountability cannot be tracked or apportioned without it. We consider autonomy in terms of
the identity, data, and sovereignty afforded to an individual or organisation in terms of what they
or others communicate to a KG-based AI ecosystem or elements thereof, what they or others
receive from those, and what happens to those (including respect of choices) as data is processed
in the ecosystem, with each of these evaluated through the lenses of selective disclosure, relevant
identities, and utility.

4 A KG Toolbox for Trust, Accountability, and Autonomy

In order to ground our pillars, we motivate and introduce relevant literature and highlight open
research challenges and opportunities concerning our foundational topics: machine-readable norms
and policies, decentralised infrastructure, decentralised KG management, and explainable neuro-
symbolic AI, each of which plays a pivotal role in facilitating trust, accountability, and autonomy
in KG-based AI.

4.1 Machine-readable Norms and Policies
When it comes to KG-based AI, norms and policies could potentially be used to inform data
processing based on legal requirements, social norms, privacy preferences, and licensing. Legal
documents are designed in natural language for human consumption; thus in order to enable
machines and automated agents to evaluate and enforce the agreements embodied in documents,
we need to translate them to formats they can read and process efficiently.

4.1.1 Norm and Policy Encoding
Languages to express policies, including but not limited to data access, can be categorised as either
general or specific. In the former, the syntax caters to a diverse range of functional requirements
(e.g. access control, query answering, service discovery, negotiation), whereas the latter focuses on
just one functional requirement. In the early days of the Semantic Web, research into general
policy languages that leverage semantic technologies (e.g. KAoS [108], Rei [48], AIR [51], and
Protune [15]) was an active area of research. However, despite the huge potential offered by these
general-purpose languages to date, none of them achieved mainstream adoption [55]. More recently,
researchers have proposed ontologies that can be used to represent licences, privacy preferences,
and regulatory obligations [53]. When it comes to the legal domain specifically, Semantic Web
researchers have proposed cross-domain ontologies that can be used to encode legal text in a

11 As it ultimately does in traditional digital identity, where trust in a small number of well-known IdPs serves
as a simplified proxy for more detailed or fine-grained considerations of trust networks.



L.-D. Ibáñez, J. Domingue, S. Kirrane, O. Seneviratne, A. Third, and M.-E. Vidal 9:11

machine-readable format using LegalRuleML12 and adaptations thereof (e.g. [3, 80]). Others focus
on facilitating legal document indexing and search using the European Law Identifier (ELI)13 and
the European Case Law Identifier (ECLI)14 (e.g. [78, 22]), or bridging the gap between the EU
and member state legal terminology (e.g. [1, 14]). Besides these cross-domain activities, there have
also been various domain-specific initiatives. For instance, the ELI ontology has to be extended
to facilitate the encoding of the text of the General Data Protection Regulation (GDPR)15

(e.g. [83]). At the same time, others have focused specifically on modelling privacy policies
(e.g. [79, 82]). The Open Digital Rights Language (ODRL)16, which is a W3C recommendation,
has gained a lot of traction in recent years in terms of intellectual property rights management
(e.g. [42, 74]). Additionally, the ODRL model and vocabularies have been extended in order
to model contracts [39], personal data processing consent [32], and data protection regulatory
requirements [110]. There has also been some work on automatically extracting rights and
conditions from textual documents (e.g. [21, 20]) or extracting important information from legal
cases (e.g., [116, 77]). Although many of the proposed approaches are based on existing standards,
there is a lot of overhead involved for systems that need to consider different types of policies that
are encoded using different languages. General-purpose policy languages are particularly attractive
in such scenarios as they lessen the administrative burden. However, considering the potential
complexity of such a language, there is a need for policy profiles with well-defined semantics and
complexity classes.

4.1.2 Norm and Policy Encoding

From a policy governance perspective, LegalRuleML researchers have proposed automated compli-
ance approaches based on auditing (e.g. [28, 82]) and business processes (e.g. [81, 9]). While [37]
shows how LegalRuleML, together with semantic technologies, is used for business process regulat-
ory compliance checking based on a rule-based logic combining defeasible and deontic logic. One of
the advantages of description logic-based approaches, when it comes to consistency and compliance
checking, is that they can leverage generic reasoners, such as Pellet17 (e.g. [33]). Although there
are presently no ODRL-specific reasoning engines, researchers have demonstrated how ODRL can
be translated into rules that can be processed by Answer Set Programming (ASP) [8] solvers such
as Clingo [35] (e.g. [42, 110]). Additionally, there have been several custom applications that are
designed to support ODRL enforcement or compliance checking, such as a licence-based search
engine [74]; generalised contract schema and role-based access control enforcement [39]; and access
request matching and authorisation [32]. Despite existing efforts, challenges arise when it comes
to ensuring that AI and processing algorithms adhere to the policies. This could potentially be
achieved either before or during processing using Trusted Execution Environments (TEEs) [10]
or after execution by detecting data misuse via automated compliance checking using system
logs [54]. The combination of ex-ante and ex-post compliance checking is particularly appealing
for supporting risk-based conformance checking such as that envisaged in the proposed EU AI
Act. Nevertheless, the practicality, performance and scalability of these proposals remain to be
determined. In order to further support self-determination, data owners and processors should

12 https://docs.oasis-open.org/legalruleml/legalruleml-core-spec/v1.0/os/legalruleml-core-spec-
v1.0-os.html

13 https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:52012XG1026(01)
14 https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:52011XG0429(01)
15 https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32016R0679&qid=1681238509224
16 https://www.w3.org/TR/odrl-model/
17 https://github.com/stardog-union/pellet
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Figure 3 Machine-readable norms and policies to support self-determination. A Policy
Composer/Translator assists individuals in writing data usage policies, communities in defining their rules,
and organisations in declaring their data processing purposes in both human- and machine-readable formats.
Policy Evaluation Engines assess the acceptability of perspectives in a community by evaluating policies
and rules. Engines assess organisations’ data usage compliance with regulations. If permitted, processing
can occur in a Trusted Execution Environment, ensuring compliance. If not allowed, a Negotiation engine
may be utilised to seek agreement with data owners/stewards under relevant regulations.

be able to engage in on-demand negotiation over policies, assisted by technology that ensures a
safe and fair space and helps assess the compliance of negotiated terms with existing regulations.
Negotiation between automated agents has been a topic of interest since the early 2000s, but in
the context of self-determination, we must pay attention to the right balance between artificial
representation and human involvement [5, 6].

4.1.3 Grounding based on our Illustrative Scenario
Figure 3 illustrates how machine-readable policies and norms can be used to support self-
determination. Considering our illustrated scenario (Figure 2), individuals may want to establish
policies to precisely define the subset of their PKGs to be shared with communities and what
forwarding they allow. For example, share with the diabetes community my blood in sugar values
measured by my connected device and the output of my AI healthcare assistant, or only share and
forward anonymised aggregates to medical research institutions, or contact me for negotiation if
the pharma company is interested in using my data for clinical studies. Communities may do
the same, e.g. requiring specific data to be shared to join the community, but also requiring
agreements in order to ensure that participants will abide by social and behavioural norms needed
for self-regulation. Public and private organisations may need to adhere not only to privacy
preferences and licences but also to various general regulations, e.g., the GDPR, the proposed
AI Act in the EU or the Health Insurance Portability and Accountability Act (HIPAA)18 in the
US, as well as domain-specific regulations (e.g. advanced therapy medicinal products19 and rare
diseases20).

18 https://www.hhs.gov/hipaa/index.html
19 https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex%3A32007R1394
20 https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex%3A32009H0703%2802%29

https://www.hhs.gov/hipaa/index.html
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https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex%3A32009H0703%2802%29
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4.2 Decentralised Infrastructure
Over the last 15-20 years, a number of communities have come to accept that centralised computing
systems, despite many benefits, can lead to issues such as the over-centralisation of power, the
risk of single points of failure, potential abuse of personal data and creation of data silos which
can inhibit innovation. A boon from this realisation is that we now have a number of technologies,
standards, and approaches to decentralisation which offer benefits in terms of scalability, diversity,
and privacy, as well as individually-centred flexibility and control, and is an appealing basis for
maintaining and increasing trust, accountability, and autonomy with KG-based AI.

4.2.1 Personal Knowledge Graphs
The concept of a Personal Knowledge Graph (PKG) is that an individual can keep their personal
or private data in a space belonging to them, rather than with siloed centralised service providers
with limited access and control [7]. A Solid pod21 is an example of a PKG platform, and the key to
the vision of Solid is that there should be standard interfaces and authorisation models to grant or
deny access to the contents of a PKG at a granular level. This is argued in particular22 to enable
a highly decentralised architecture for Web applications. Rather than a provider aggregating data
from all users into a single location controlled by the provider and application code accessing such
data there, an individual permits (or does not permit) Web applications of their choice to access
whatever subsets of their data they decide from their PKG. As well as autonomy, this enables
greater accountability since access to the PKG can be filtered via personal machine-readable
policies at source, and activities can be tracked directly (e.g. [29]). Although PKGs offer great
potential, they also come with challenges in terms of performance and scalability, as applications
will need to interact with multiple distributed data sources as opposed to a single backend server.
These challenges, however, may also simultaneously be opportunities for scalability trade-offs,
querying over multiple low-powered data sources rather than a high-powered central one.

4.2.2 Distributed Ledger Technology
Distributed Ledger Technology (DLT) [104] promotes trust and empowerment through the replica-
tion of data across contributing nodes, which are geographically distributed across many sites, and
the use of consensus algorithms which enable collective fair decision-making with no central control.
Blockchains are a type of distributed ledger where an ever-growing list of records in blocks is tied
together with cryptographic hashes, often, although not necessarily, associated with a securely
exchangeable token system or “cryptocurrency”. This technology rose to prominence following the
release of Bitcoin [76] in 2008 - a blockchain-based currency that has now been adopted by El
Salvador as their legal tender. Ethereum [115], a blockchain platform released in 2015, contains
the notion of a “Smart Contract” [19] (originally coined in the 1990s by Nick Szabo [105]), which
is a collection of code that executes in a fully decentralised way. Smart Contracts have been
used to implement a range of decentralised applications, including Decentralised Autonomous
Organisations (DAOs) [64], which are organisations where decisions are made through blockchain
consensus mechanisms. The best-known example of a DAO was “The DAO”, which at one point
was worth more than $70M; they have been applied to a number of different activities, including
scholarly publishing [43]. Despite the fact that immutability and transparency guarantees offered
by DLT are very attractive when dealing with personal data, both the ledgers and the smart

21 https://solidproject.org/
22 https://ruben.verborgh.org/blog/2017/12/20/paradigm-shifts-for-the-decentralized-web/
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contracts themselves will need to be protected against unauthorised access and usage. Personal
data itself is neither stored in, or derivable from, immutable DLT records. Smart contracts may
also introduce scalability issues: the default Ethereum model involves every contributing node
executing every run of a smart contract and thus has inherent scale limitations. Relaxing this
model may, however, affect trust.

4.2.3 Self Sovereign Identity
In the Web space, Self-Sovereign Identity (SSI) is being developed through a combination of
Decentralised Identifiers (DIDs) [101] and Verifiable Credentials (VCs) [102], W3C standards for
identity and verifiable attestation claims, respectively. DLT is one of the ways in which DIDs can
be grounded, although, by design, the DID standard is open in terms of method. A DID is a
URL (did:<method>:<...>) which can be resolved in a method-specific manner (e.g. HTTP(S)
dereferencing, reading from a smart contract, etc.) to obtain a DID document, a Linked Data set
containing information about digital identity in a standard form - for example, how to verify it
(e.g. a public key), methods for communicating with the entity controlling it, and so on. DIDs
enable SSI; the creation and use of DIDs are open and decentralised, and by using different DIDs
with different audiences, individuals can minimise how easily their information can be tracked or
correlated across services and can contextually and selectively disclose personal information as
desired. This grants individuals significantly greater autonomy than current practices. There is a
potential trade-off with trust and accountability of an individual when it comes to information
that others need to rely on, which is that effective anonymity of a unique DID can be used to
misrepresent oneself (e.g. fake a qualification or entitlement) or pretend to be someone else. VCs
are a proposed solution to this. The VC data model is for sharing data alongside information that
a recipient can use to verify its integrity or origin, such as a digital signature or DLT record. If a
DID is presented to a service that is restricted to legal adults, for example, the DID owner may
also present a VC issued by a government body confirming their adulthood; methods for selective
disclosure supported by both DID and VC standards allow this to be done verifiably without
requiring disclosure of real-world identity. These technologies are relatively new in comparison
with standard digital identity models, and while intended and designed to address issues in those
models, they may also introduce new difficulties or enable different vulnerabilities to, e.g. identity
fraud, than current standards.

4.2.4 Federated Learning
In the context of data-driven AI and decentralised infrastructure, there are also techniques for
decentralised machine learning. Federated Learning (FL) [118] is the idea that rather than
aggregating training data in one location controlled by a model developer (thereby compromising
subject privacy), data holders can run learning algorithms to generate model weights for their own
data locally and privately, and then send only the weights to the developer to be incorporated into
the larger model. An example might be a smartphone text prediction personalisation algorithm,
where a user’s own writing is used to generate predictive weights on the device, where periodic
selections of these can be aggregated to improve general text prediction models. Refinements
of FL approaches include sending not the actual learned model weights but a set of weights
with statistically similar properties [112] to further reduce the risk of privacy breaches without
affecting model performance. A related approach takes this concept even further, with the idea of
embeddings in a larger model, e.g. “Textual Inversion” [34] to personalise large generative image
diffusion models. The intuition here is that if someone wants certain personalised types of output
from a generative AI, then if a model is sufficiently large, there is a good chance that the desired



L.-D. Ibáñez, J. Domingue, S. Kirrane, O. Seneviratne, A. Third, and M.-E. Vidal 9:15

Figure 4 Decentralised Infrastructure supporting self-determination, shown from the perspective of
one individual with a PKG23. According to individual wishes, portions of the PKG can be shared either
directly with a healthcare provider, with web applications for health, or indirectly with peer or research
communities. Identity is via DIDs (anonymous in the latter cases), with VCs used for trustable selective
disclosure. KG-based AI models can be trained and personalised in federated and private ways on
knowledge from diverse sources.

concept already exists within it. More recently, the idea of federating for preserving privacy has
been applied specifically to deep learning, in particular in the context of the Internet of Things. [119]
proposes an architecture with a control layer including a distributed ledger, while [117] propose
advanced cryptographic mechanisms to reduce the risk of privacy leaks, following more general
approaches that apply either differential privacy, homomorphic encryption or secure multi-party
computation. Federation also has the positive side effect of potentially speeding up model training
when the privacy constraints allow for a helpful distribution of the process [11]. However, when
opening the process to multiple parties, there are a number of attack vectors that do not exist in
a centralised approach for which we need protection and pay a communication and computation
overhead [44].

4.2.5 Grounding based on our Illustrative Scenario
A decentralised infrastructure supporting self-determination for our illustrative scenario (Figure 2)
is depicted in Figure 4. Health data is highly sensitive and private, and individuals may want
or need to interact with multiple services where it is relevant, including KG-based AI systems.
It thus makes sense to create a personal health knowledge graph (PKG) to be a comprehensive

23 The full picture would have knowledge exchange between multiple parties; to avoid an unreadable cluttered
figure, this is left implied by the background network.
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and interconnected representation of an individual’s health information, including their medical
history, lifestyle choices, genetic data, and real-time health monitoring data from IoT devices.
Data from various sources, such as wearable devices, mobile applications, electronic health records,
and even genomic sequencing, can be linked together to form a holistic view of an individual’s
health in such a personal health knowledge graph. An early example of a PKG was in [106], where
medical, lifestyle, and IoT health monitoring data in a PKG was integrated into a (patient-focused)
decision support system built around a public medically-curated KG representing cardiovascular
risk factors, giving individuals the autonomy to gain deeper insights into their own health patterns
and risks, identify correlations, and make more informed decisions.

More recently, BlockIoT [97, 98] aims to integrate health data seamlessly in a decentralised
PKG using blockchain and KG technologies, addressing this trust aspect and using PKG-driven
smart contracts to trigger the personalised recommendations for lifestyle modifications, medication
adjustments, or even timely interventions by the healthcare providers. Furthermore, the PKG
can serve as a powerful tool for healthcare beyond the individual. Communities of patients,
providers, researchers, etc., or combinations thereof, can share knowledge about various aspects
of, e.g., particular conditions, whether that is clinical evidence and best practice, peer advice
and support on living with a condition, or data on novel or rare symptoms and side effects, with
this knowledge used for support, care, or medical research across populations. De-identified and
aggregated data from multiple individual KGs can be collected in community KGs, with trust
securely established using DIDs and VCs, and accessed by community, practitioner, researcher,
and service provider stakeholders, allowing for decentralised large-scale analysis and identification
of broader health trends from multiple perspectives and intersecting factors. This can lead to
advancements in disease prevention, treatment protocols, and the development of personalised
medicine in a collaborative manner [99]. KG-based AI systems can be both trained and used
across this ecosystem, with FL being applied to train larger models (e.g., the organisation models
in Figure 2) and personalised embeddings used by individuals to get the best experience from
their therapy bots and healthcare assistants while maintaining privacy and autonomy.

4.3 Decentralised KG Management
As the amount of data and knowledge grows exponentially, managing and harnessing this vast
information becomes increasingly complex. Traditional centralised approaches to KG management
face challenges in terms of scalability, privacy, and control over data, and to address these issues,
decentralised KG management emerges as a promising solution. This section explores the key
aspects and open challenges in decentralised KG management to enable trust, accountability, and
self-determination for individuals in a rapidly evolving AI ecosystem.

4.3.1 Decentralised KG Access and Management
Efficient query processing infrastructures are fundamental for traversing decentralised KGs. There
have been notable efforts such as Fedbench [92] in the past. However, these infrastructures should
be capable of executing queries against the available KGs while respecting privacy and adhering
to norms and policies. With the increasing emphasis on privacy protection with regulations such
as GDPR, it is crucial to develop mechanisms that allow users to access and extract knowledge
from KGs without compromising sensitive information or violating privacy regulations. Several
research directions are worth considering to address the open challenges in decentralised KG
management. Firstly, developing the formalisms to describe KG management semantically can
provide a common ground for understanding and interoperability across different decentralised
KG systems. Such formalisms can enable standardised representations of KGs in the form of
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ontologies and facilitate seamless integration and collaboration among diverse knowledge sources.
Architectures supporting new protocols and standards specific to decentralised KGs are essential
for establishing interoperability and seamless communication between knowledge sources and
systems. By defining and adopting common protocols and standards, decentralised KGs can
collaborate more effectively, share insights, and facilitate cross-domain knowledge discovery.

Note that if we add LLMs to the picture, their current training and execution processes are
currently centralised. Decentralised KG management is useful for providing transparency in data
used for their training. For approaches involving the interaction between LLM and KGs, the
transparency of the LLM itself still depends on the owner.

4.3.2 Provenance and Explanations
Furthermore, explainable methods for data integration and curation, as well as KG validation and
distribution, such as the Explanation Ontology for user-centric AI, are necessary to ensure the
reliability and accuracy of decentralised KGs [23]. By providing transparent and interpretable
approaches, users can have better insights into knowledge integration and validation, enhancing
trust and accountability of the knowledge contained in the KG and the insights derived. This
is especially critical because, in decentralised KGs, data may come from various sources and
be represented in different ways. The standardised framework provided in the Explanation
Ontology for representing domain-specific explanations of KG entities and relationships helps
users and applications understand the meaning and context of the data in the KG. Provenance
and traceability also play a vital role in decentralised KG management. Establishing mechanisms
to track and validate the origin, history, and lineage of knowledge within KGs is crucial for
accountability and the ability to trace back the sources and transformations that contribute to the
resulting knowledge. The W3C Provenance Data Management standards [71] provides the basis
for encoding provenance attributes in KGs, and subsequent nanopublications specification [38]
has gained a lot of traction in the biomedical domains. While these solutions exist, there needs
to be a cohesive framework that ties together explanation provenance data management in a
decentralised KG context and ensures that users can trace the origins, transformations, and
sources of the data, which is crucial for trust, accountability, and data quality assurance. The
W3C provenance data management suite of recommendations provides normative interoperable
guidance on recording information about data sources, contributors, and how data is collected
or transformed, making integrating heterogeneous data into a coherent KG easier. When data
quality issues arise, users can trace back to the source of the problem and take corrective actions,
ensuring the KG remains accurate and reliable. The W3C recommendations for decentralised
provenance management provide a mechanism for attributing data to its sources or contributors.
This attribution is essential for accountability, especially when multiple parties contribute to a KG.

4.3.3 Blockchain Technologies and Tokenomics
In recent years, the integration of blockchain technologies and tokenomics has gained attention in
the context of decentralised KG management. Projects such as OriginTrail24 have contributed to
the development of ownable DKGs, which leverage blockchain’s inherent properties to enhance
trust, provenance, and accountability. By utilising blockchain, KG management systems can
ensure the integrity and traceability of data and metadata across various nodes in the network.
The OriginTrail protocol aims to create a trustless environment where data providers, consumers,

24 https://origintrail.io
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and verifiers can interact and validate the authenticity and reliability of data stored within the
knowledge graph. Their protocol issues tokens as incentives for data contributors, validators, and
curators within the KG ecosystem. The integration of blockchain technologies and tokenomics
in decentralised KG management addresses several critical aspects. Firstly, blockchain’s immut-
ability and transparency enable the traceability and provenance of data and metadata, ensuring
accountability throughout the KG management pipeline. Secondly, the decentralised nature of
blockchain mitigates single points of failure and promotes the distribution of knowledge and
decision-making power among participants. This decentralised approach aligns with the principles
of self-determination, empowering individuals to have control over their data and knowledge. By
rewarding contributors, validators, and curators with tokens, these systems encourage continuous
improvement, data quality assurance, and community engagement. Token-based economies can
drive the development of sustainable KG management pipelines, enabling the growth and evolution
of DKGs over time. However, the tokenomics have to be carefully designed and monitored to avoid
the possibility contributors have a motivation (possibly extrinsic) to misbehave. There is also the
risk that a sudden churn in blockchain participants impacts performance and availability. There is
also the question of the performance of the consensus algorithm of a specific blockchain itself.

4.3.4 Grounding based on our Illustrative Scenario
An approach to decentralised knowledge graph management in the context of healthcare in
our illustrative scenario (Figure 2), where users retain control over their personal information
while benefiting from enhanced privacy measures and seamless collaboration in a community, is
illustrated in Figure 5. At the heart of this framework lies the concept of PKGs, such as Solid,
which empowers individuals to store and manage their personal health data securely. Central
to the architecture are specific components aimed at safeguarding user privacy and ensuring
data transparency. The process begins with knowledge sanitisation, which anonymises sensitive
information and filters the data according to the user’s preferences and data policies. These
policies encompass not only globally recognised regulations like GDPR and HIPAA but also
individual data policies, enabling users to set granular restrictions on how their data is used,
such as opting out of genetic data usage for medical research. To ensure interoperability and
standardisation, the creation of knowledge graphs leverages community-defined ontologies and
vocabularies. These shared frameworks facilitate seamless integration and alignment of personal
knowledge graphs within the broader ecosystem, promoting data exchange and collaboration.
Users are incentivised to aggregate their knowledge graphs, contributing to the construction
of community-based knowledge graphs focused on specific diseases. Through community-based
verification, validation, and knowledge aggregation processes, these disease-based knowledge
graphs are created, providing valuable insights and fostering collaborative efforts among healthcare
professionals, researchers, and the wider community. Blockchain-based incentives drive user
participation, rewarding both community users and healthcare experts for their verification,
validation, and aggregation activities. The utilisation of an immutable ledger and verifiable
credentials ensures the integrity and trustworthiness of the verification process. The validation
process, powered by RDF SHACL and Shape descriptions, further enhances data quality and
consistency, instilling confidence in the aggregated knowledge. The integrated knowledge graphs,
encompassing personal, community-based, and healthcare expert knowledge, can be queried using
federated querying mechanisms powered by SPARQL. This allows various institutions, including
insurers, pharmaceutical companies, and medical research organisations, to access and leverage
the rich insights stored within the knowledge graphs, enabling evidence-based decision-making
and advancing medical research and healthcare practices. By combining decentralised knowledge
graph management, user-centric privacy controls, and collaborative data sharing, this innovative
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Figure 5 Decentralised KG Management Process in Healthcare. Emphasising user empower-
ment, privacy, and seamless collaboration, users maintain control over their personal health data through
personal data stores like Solid, and community and healthcare experts enhance different facets of the KGs
in the ecosystem. Decentralised KG management involves anonymisation, filtering based on data policies
(including GDPR and HIPAA), and alignment with community-defined ontologies. Incentives, driven
by blockchain technology, encourage user participation in aggregating KGs and incentivise healthcare
professionals for verification, validation, and aggregation activities. SHACL shapes ensure KG validation
and federated querying mechanisms enable access to the KGs to stakeholders, e.g. insurers, pharma, and
medical research organisations. Integrated KGs are iteratively generated; they comprise a federation of
KGs that may be autonomous, distributed, and heterogeneous. A federation query engine enables the
traversal of these integrated and connected KGs to provide useful insights to the stakeholders involved.

framework represents a significant step forward in transforming decentralised KG management,
fostering a secure, privacy-enhanced environment that empowers users, facilitates collaboration,
and drives advancements in domains such as medical knowledge and patient care.

4.4 Explainable Neuro-symbolic AI
Neuro-symbolic systems go beyond generating explanations solely based on the trained model or
the individual results derived from applying the model to specific data. They can produce symbolic
explanations capturing the essence of an AI model itself. These explanations can be classified as
either instance-level explanations generated for each specific result of the model or model-level
explanations of the structure of a learned model. Previous work on the role of KGs in AI has
focused on explainability. [61] frames explainability as a dimension of trustable AI and presents
challenges, existing approaches, limitations and opportunities for KGs to bring explainable AI to
the right level of semantics and interpretability. [107] and [88] conducted independent systematic
reviews of existing explainable AI systems to characterise KGs’ impact. These results put into
perspective the role of KGs in providing symbolic reasoning and learning capabilities with the
potential to be precise, as shown by Akrami et al. [2], in addition to being explainable.
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4.4.1 Reasoning and AI
Despite the unquestionable reasoning features of symbolic systems and the studies reporting
limitations of LLMs in human-like tasks (e.g., explanations, memories, and reasoning over factual
statements) [40], there is an ongoing debate about LLM’s reasoning their causal inference capabil-
ities [52]. Although LLMs excel at certain reasoning tasks, they do poorly in others, raising the
question of whether they genuinely engage in causal reasoning or merely function as unreliable
mimics, generating memorised responses (e.g. [45]). Methods to reason can be roughly divided
into methods using only the LLM itself (e.g. with prompt engineering) and methods combining the
LLM with an external reasoner and/or external source of knowledge (e.g. a Knowledge Graph) [86].
Our vision posits that external help will always be needed, especially for concrete use cases. There
are discussions about the need for knowledge graphs in the era of LLMs. Sun et al. [103] and
Dong [31] report on an empirical assessment of ChatGPT [93] with respect to DBpedia, illustrating
the need of symbolic systems that over-fit for the truth whenever factual statements are collected
from KGs. In addition, symbolic approaches can support sanity checking and be easily auditable
and traceable. These features position the combination of both approaches in neuro-symbolic AI
as a feasible option to provide KG-based AI. Neuro-symbolic AI delivers the basis to integrate the
discrete methods implemented by symbolic AI with high-dimensional vector spaces managed by
LLMs. They must decide when and how to combine both systems, e.g., following a principled
integration (combining neural and symbolic while maintaining a clear separation between their
roles and representations) or integrated (e.g. a symbolic reasoner integrated into the tuning
process of an LLM).

4.4.2 Trust and AI
Trust in AI systems stems from various factors, including transparency, reproducibility, predictab-
ility, and explainability. Neuro-symbolic systems play a vital role in enhancing trustworthiness
by enabling communication between modules and facilitating tracing. Modularity enables the
specification, verification, and validation of each component and its interactions. As a result, a
system’s behaviour can be traced and validated. Specifically, within the domain of KG-based AI
for self-determination, the seamless integration of KGs and symbolic semantic reasoning offers a
comprehensive and unified perspective on curated knowledge. This integration holds immense
value in addressing critical tasks such as validating, refuting, and explaining incorrect, biased,
or misleading information that may potentially be generated by LLMs. By combining symbolic
reasoning over KGs with LLMs, the propagation of misinformation can be mitigated while simul-
taneously enhancing the transparency and trustworthiness of AI-generated outputs. Consequently,
KG-based AI systems can effectively emulate human behaviour by subjecting mistakes arising
from false or incomplete information to a process of validation and enrichment using curated and
potentially peer-reviewed sources of knowledge [109].

4.4.3 Quality and AI
A notable application of KGs in neuro-symbolic AI is as a source of informative prior knowledge to
increase the quality of machine learning models. An example is the work by Rivas et al. [89], where
a deductive database, expressed in Datalog, establishes an axiomatic system of the pharmacokinetic
behaviour of a treatment’s drugs and enables the deduction of new drug-drug interactions in
cancer treatments. This prior knowledge plays a crucial role in elucidating the characteristics
of a therapy and justifying its efficacy by considering all the interactions and the dynamic
movement of drugs within the body. It encompasses factors such as the absorption, bioavailability,
metabolism, and excretion of drugs over time. A KG embedding model improves its prediction
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Figure 6 Design Patterns for Hybrid AI. Extension of patterns by van Bekkum et al. [109] for
running example in Figure 2. The patterns represent an explainable system with prior knowledge created
by the alignments of data from health-related data sources (e.g. insurance, pharma, and medical data).

of the effectiveness of a treatment based on prior knowledge, which encodes statements about a
treatment’s characteristics; these statements are inferred by a deductive system which comprises
the symbolic component of the hybrid approach. An approach for explaining link prediction
(e.g. [90]) allows the justification of why this added prior knowledge affects the model’s decisions,
potentially improving trust in the model’s results.

4.4.4 Grounding Based on Our Illustrative Scenario
Grounding on the example presented in Figure 2, when individuals and professionals engage in
communities with bots and assistants powered by AI models, it is critical to ensure the transparency
of their decision-making process. However, despite the increasing focus on LLMs in healthcare
and their continual improvement in terms of precision and accuracy [100], their outcomes can
still be susceptible to hidden biases and a lack of traceability [62]. To tackle these challenges, the
utilisation of a neuro-symbolic system can enhance LLMs by incorporating reasoning capabilities.
This system operates as a deductive system on a user’s Knowledge Graph (KG). These hybrid AI
systems can be effectively modelled using patterns proposed by [109]. Figure 6 depicts a pattern
describing a hybrid AI system that enhances the explainability of the LLMs described in our
running example. At the community level, symbolic reasoning applied to the ontology of shared
PKGs can generate prior knowledge, enabling precise and concrete questioning of an LLM and
providing additional contextual information. Moreover, a symbolic system facilitates the linking
of shared PKGs with corresponding entities in KGs related to insurance, pharmaceuticals, and
medical research. By incorporating this prior knowledge, the LLM’s answers are improved and
validated with the assistance of the symbolic system. The systems operating at the community
level and involving heterogeneous sources can be described using the explainable system with prior
knowledge pattern; data alignments comprising prior knowledge enhance contextual knowledge
provided to the therapy bot, facilitating thoughtful health recommendations.
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5 Proposed KG-based AI for Self-determination Research Agenda

In this section, we derive a set of requirements concerning KG-based AI for self-determination
and map them to the concrete research goals introduced at the start of this vision paper.

5.1 Trust, Accountability, and Autonomy Foundational Goals
In the following, we highlight five open research challenges and opportunities in each of our
proposed foundational topics (machine-readable norms and policies, decentralised infrastructure,
decentralised KG management, and explainable neuro-symbolic AI). Considering the complex
nature of each of these requirements, an assessment of the maturity of existing technologies with
respect to the various requirements is beyond the scope of a vision paper.

MRP1: Seamless policy translation. There is a need for humans to express policies in machine-
readable format and for machines to express them in natural language or via appropriate
visualisations. A major challenge involves checking that machine-readable policies faithfully
represent their human-readable counterpart.

MRP2: Multi-level policy evaluation. Several policy languages exist. However, many of them
do not have corresponding enforcement mechanisms. Given that usage constraints, community
rules, and regulations operate at different yet interconnected levels, there is a need to devise
effective and efficient enforcement and/or compliance-checking strategies.

MRP3: Negotiation. Facilitate autonomy via fair and safe negotiation between individuals,
communities, and organisations. Here, there is a need to study the benefits and trade-offs
between merely assisting humans in making decisions and developing automated approaches
that alleviate individuals from constant affirmations (e.g. the cookie problem).

MRP4: Compliance verification. Provide support for both ex-ante and ex-post compliance check-
ing mechanisms. Despite their potential, it remains to be seen which machine-readable agree-
ments can actually be enforced by TEEs. Additionally, in scenarios where it does not pay
data processors to cheat, game theoretic approaches could be used to underpin honours-based
compliance-checking.

MRP5: Data misuse detection. Instil trust and ensure accountability in KG-based AI by devel-
oping mechanisms that can detect if any party violated policies and norms. In this context,
causal reasoning and explanations could potentially be used to both detect misuse and to
better understand the root cause.

5.1.1 Decentralised Infrastructure
DI1: Comprehensive recording. A DLT can provide an immutable ledger, but work remains on

how best to connect KG-based AI activities, e.g. to a possible federated query engine.
DI2: Personalised tracing. Providing individual and community owners of PKGs with person-

alised traces of how acquired data was processed and used will involve dis-aggregating KG-
processing and inferencing according to different user data and ensuring that privacy is not
violated when individual results are returned.

DI3: “Decency” check. There is a need for easy-to-use services that allow users and communities
to check if an organisation has behaved in a “decent” way when it processes acquired data.
Research here will examine how “decency” can be defined and validated by comparing PKG
declarations of use (e.g. policies) with generated traces of use.
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DI4: Interoperability. Develop mechanisms that facilitate comprehensive, interoperable identi-
fication of human and machine participants in KG-based AI processes. For example, users
and communities will wish to know and be able to validate claims that a data request comes
from a particular organisation, unit and even individual KG processor. This will provide a
foundation for accountability at all levels of granularity.

DI5: Self-sovereignty. True self-sovereign KG-based AI needs to be: (i) based upon easy-to-use
self-sovereign identities and data management; and (ii) capable of supporting the continuous
monitoring of organisational behaviours in a transparent fashion.

5.1.2 Decentralised KG Management

DKG1: Knowledge Sanitisation. Develop robust techniques for knowledge sanitisation that en-
sure user privacy by anonymising and filtering sensitive information based on data policies.
These policies can be regulations such as GDPR and HIPAA, as well as individual-level
data policies enforced at their personal data store, empowering users to specify their sharing
preferences and control the aspects of data they disclose.

DKG2: Knowledge Graph Aggregation. Design and implement mechanisms to encourage users
to contribute their PKGs towards aggregated knowledge graphs, such as a concerted effort
towards developing specific disease KGs. Blockchain-based incentive models that reward users
for contributing to constructing such knowledge graphs, fostering collaborative efforts, and
enriching the overall quality of shared knowledge are components of this goal.

DKG3: Knowledge Verification. Develop community-based and expert processes to verify the
knowledge available in the global KGs. On the community front, it is critical to ensure that a
knowledge item that was previously contributed through an individual has not been altered
(either through error or with malicious intent), for instance, via blockchain primitives, as
explained in the previous section.

DKG4: Knowledge Validation. Validation of knowledge is paramount to ensure KG interoper-
ability and the consumption of knowledge in target applications. By employing RDF and
SHACL technologies, we ensure that the DKGs across different data stores conform to a specific
template, thus enabling their integration with community-supported KGs.

DKG5: Federated Querying. Explore and implement federated querying mechanisms, specifically
utilising SPARQL, to enable efficient querying across integrated KGs. This process includes
developing techniques to support various institutions, such as insurers, pharmaceutical compan-
ies, and medical research organisations, accessing and extracting insights from the knowledge
graphs to enhance decision-making and advance their respective domains.

5.1.3 Explainable Neuro-Symbolic AI

XNS1: User-dependent Recommendations. Neuro-symbolic systems need to be empowered to
present results transparently to the users according to their interests. For example, in our
illustrative scenario (Figure 2), an individual may not expect the same level of detail in a
health recommendation as a medical doctor or a community representative.

XNS2: Adaptive Hybrid AI. Define models that can adaptively combine predictive models with
logical reasoning, encompassing abilities such as generalisation and causal inference. For
accountability, the neuro-symbolic system should explain when the combination of logical
reasoning with a therapy bot or healthcare assistant will be beneficial. For autonomy, the
neuro-symbolic system should include the user in the loop and consider their opinion in this
decision. Finally, trust requires verifying and validating these decisions.
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Table 1 Mapping of foundational requirements to pillars. A checkmark signifies that the
corresponding requirement is necessary for answering a research question related to a pillar.
(Q1) is related to Trust, (Q2) to Accountability, and (Q3) to Autonomy.

Machine-readable norms and policies
Trust Accountability Autonomy

MRP1 ✓ ✓
MRP2 ✓ ✓
MRP3 ✓
MRP4 ✓ ✓

MRP5 ✓ ✓ ✓
Decentralised Infrastructure

Trust Accountability Autonomy
DI1 ✓ ✓
DI2 ✓ ✓
DI3 ✓ ✓
DI4 ✓
DI5 ✓

Decentralised KG Management.
Trust Accountability Autonomy

DKG1 ✓
DKG2 ✓ ✓
DKG3 ✓
DKG4 ✓
DKG5 ✓

Explainable Neuro-Symbolic AI
Trust Accountability Autonomy

XNS1 ✓
XNS2 ✓ ✓
XNS3 ✓ ✓
XNS4 ✓
XNS5 ✓

XNS3: Contextual-based Hybrid AI. Equip neuro-symbolic systems with contextual knowledge,
reasoning capabilities, and causal inference to effectively evaluate the strengths and limitations
of machine learning components. This goal empowers the system to identify optimal combina-
tions of statistical and symbolic AI methods, requiring the definition of causal models on top
of KGs capable of combining reasoning over KGs with causal inference.

XNS4: Symbolic Reasoning. Employ inference processes, both inductive and deductive, on
knowledge graphs to enable ML models, and LLMs in particular, to adjust hyper-parameters
and a model’s configuration to new environments (i.e., Personal, community-based, and
integrated healthcare KGs) and provide explanations for their decisions. Despite the advances
of Automated Machine Learning (AutoML) systems (e.g., AutoML25 and AutoWeka [58], to the
best of our knowledge, there are no developments for AutoML over KGs or for neuro-symbolic
systems, which will enhance accountability, autonomy, and trust.

XNS5: Learning Transparency. Investigate if existing XAI mechanisms can be tailored for learn-
ing transparency, such that it is possible to explain what action was taken, how the decision
making was performed, and why this was perceived as the outcome offering the greatest
expected satisfaction.

25 https://www.automl.org/

https://www.automl.org/


L.-D. Ibáñez, J. Domingue, S. Kirrane, O. Seneviratne, A. Third, and M.-E. Vidal 9:25

5.2 AI for Self-determination
The identified foundational research topic challenges and opportunities can be used to better
contextualise concrete goals in relation to trust, accountability, and autonomy from a KG-based
AI for self-determination perspective. An overview of this mapping, which is depicted in Table 1,
is provided by attempting to answer the overarching questions that guide our vision paper.

(Q1) What are the key requirements for an AI system to produce trustable results? From a
trust perspective, it is important that machine-readable policies faithfully represent the human-
readable policies (MRP1) in a manner that can be verified automatically (MRP2). Regardless of
whether systems are automated or semi-automated, we need to be able to verify that processes
behave as expected (MRP4) and any misuse can be detected and rectified (MRP5). Trust
could potentially be facilitated via auditing (DI1) and tracing (DI2), as well as certification
mechanisms that support decency checks (DI3) and (semi-)automated knowledge verification
(DKG3) and validation (DKG4) techniques. While human involvement is paramount to
establishing trust in adaptive (XNS2) and contextualised (XNS3) hybrid AI.

(Q2) How can AI be made accountable for its decision-making? The first step to achieving
accountability is to ensure it is possible to detect if any party violated policies and norms
(MRP5) and that the recommendations given and decisions taken using both induction and
deduction (XNS4) are comprehensible from a user perspective, for instance via user focuses
recommendations (XNS1), providing explanations for recommendations and decisions (XNS2),
facilitating learning transparency (XNS5), and contextualisation based on causal inference
(XNS3). Considering that machines can only work with the knowledge that it has at hand, it
is important that systems are able to integrate knowledge from disparate sources (DI4) and
are capable of querying (DKG5) and aggregating (DKG2) relevant sources.

(Q3) How can citizens maintain autonomy as users or subjects of KG-based AI systems?
Citizens’ autonomy in a KG-based AI context is necessary to ensure that humans are able to
control not only who has access to their personal data, but also that its usage is in line with
existing regulatory requirements. This could be achieved with automated compliance checking
(MRP4) and misuse detection (MRP5) built on top of machine-readable policies (MRP1) and
evaluation mechanisms (MRP2). Negotiation could potentially enable organisations to gain
access to better quality data (MRP3) or to foster collaboration via aggregation (DKG2) and
strong privacy guarantees via anonymisation (DKG1). Meanwhile, self-sovereign identities
(DI5), auditing (DI1), tracing (DI2), and decency certification (DI3) have a major role to play
when it comes to continuous monitoring.

6 Conclusion

This paper presents a compelling argument for integrating KG-based AI to empower individuals’ self-
determination and benefit society. This overarching goal is supported by three fundamental pillars:
trust, accountability, and autonomy. We advocate that the foundations of these pillars require
focused research in four areas: machine-readable norms and policies, decentralised infrastructure,
decentralised KG management, and explainable neuro-symbolic AI. By drawing on a concrete
scenario within the healthcare domain, we demonstrate the relevance of each foundational topic
and outline a comprehensive research agenda for each of them.

We aspire for the insights presented in this paper to catalyse the creation of AI services
that genuinely support citizens while upholding their rights. Responsible advancement of the
foundational topics is crucial to ensure that future KG-based AI solutions are comprehensive and
possess the qualities of being traceable, verifiable, and interpretable. It is essential that relevant
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legislation, such as the EU AI Act, provides clear guidance to steer the development of these
forthcoming applications, emphasising the need for accurate, reliable, and transparent AI systems.
Within this context, we recognise the Semantic Web community as uniquely positioned to drive
transformative change and contribute solutions that illuminate the workings of opaque AI models.
Through this concerted effort, we envision a paradigm shift in KG management and analytics that
establishes KG-based AI to empower individuals in their pursuit of self-determination.
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