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ABSTRACT: Structural disorder can improve the optical
properties of metasurfaces, whether it is emerging from some
large-scale fabrication methods or explicitly designed and built
lithographically. For example, correlated disorder, induced by a
minimum inter-nanostructure distance or by hyperuniformity
properties, is particularly beneficial for light extraction. Inspired
by topology, we introduce numerical descriptors to provide
quantitative measures of disorder with universal properties,
suitable to treat both uncorrelated and correlated disorder at all
length scales. The accuracy of these topological descriptors is
illustrated both theoretically and experimentally by using them
to design plasmonic metasurfaces with controlled disorder that
we then correlate to the strength of their surface lattice resonances. These descriptors are an example of topological tools that
can be used for the fast and accurate design of disordered structures or as aid in improving their fabrication methods.
KEYWORDS: metasurface, surface lattice resonance, topological data analysis, plasmonic, disorder, design, optimization

Metasurfaces are two-dimensional metamaterials with
subwavelength scattering elements designed to have
electromagnetic properties unobtainable from bulk

materials.1 However, executing their designs usually requires
expensive and time-consuming fabrication methods, such as
lithography, limiting their large-scale and large surface area
production. In order to circumvent such limitations, significant
effort has been devoted to devise quicker and cheaper
fabrication techniques, which led to some successes, but
usually at the cost of emerging structural disorder. Such
examples include gas-phase cluster beam deposition,2 nano-
sphere photolithography,3 or lithography-free fabrication
methods,4 such as bottom-up self-assembled systems,5−9

colloid deposition,10 or polymer phase separation.11−13

While the emergence of structural disorder is usually
thought as being an unavoidable downside of these fabrication
methods, some photonic-based applications actually benefit
from it.14 Indeed positional disorder helps to tune15−17 or
reduce the diffraction,18 scattering,19−21 reflection,6,8 or
radiation17,22 of metasurfaces, with potential applications in
the fabrication of better displays.23 Disorder can also suppress
grating effects,24 make surface-enhanced Raman scattering
broadband,11 enhance localized photoluminescence,25 improve
wavefront shaping,26,27 and increase light absorption,28,29 e.g.,

for solar cells12 or light extraction.5,30 For example, coating the
air−LED interface with disordered nanostructures provides a
broadband coupling between what would have been internally
trapped photons to the external radiation, making more energy
efficient LEDs.2 In some of these systems, correlated disorder
is indeed particularly important. For example, a correlation
length, induced either by a minimum distance between the
nanostructures or by some stealthy hyperuniformity properties,
helps to create metasurfaces with larger absorption bands28 or
broader diffusive properties19 or prevent light trapping
between nanostructures for more efficient light extraction.30

The promising applications of disordered metasurfaces have
led to more recent effort to tailor disorder for specific, desired
optical properties,31−34 for example, using inverse design
methods35,36 based on machine learning37,38 or via topology
optimization.39,40 Indeed, by combining disorder engineering
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and topology optimization, one can build metasurfaces with
selective light polarization conversion, while minimizing the in-
plane phase fluctuation.41 Such methods can directly generate
optimized disordered patterns, but they can be time-
consuming and computationally expensive to implement. In
some cases, knowing the link between disorder and the optical
properties of a metasurface could significantly speed up the
design process by restricting the optimization to the degree of
disorder of a metasurface. However, all existing methods to
quantify disorder have their strengths and weaknesses, such as
being only relevant for specific applications34 and being
exclusively sensitive to disorder at either long,42,43 or short44,45

length scales, with some extensions of their scope to medium
length scales.46 On the other hand, topology has been used to
provide insight on physicochemical properties of matter,
hinting at potential alternative ways to quantify disorder.
Examples of the application of topology include computing
graph invariant indices such as the Randic ́ index47 and Zagreb
indices,48 measuring statistics of knots49,50 and rings,51,52 or
using persistent homology.53,54 In particular, topological
defects are a key element to understand the melting of crystals
in 2D into a hexatic phase, by losing translational order, and a
fluid phase, by losing orientational order, within KTHNY
theory.55−57

In this work, we present topology-inspired numerical tools
for a comprehensive characterization of disordered meta-
surfaces. The universality of the tools is established for both
correlated and uncorrelated disorder in different systems and
structured surfaces. Specifically, they can be used either for the
characterization of disordered metasurfaces, built with
techniques similar to those mentioned above, or for the fast
and accurate design of metasurfaces of specific disorder levels.
We applied these tools to design plasmonic metasurfaces, with
specific, tailored structural, correlated disorder, originating
from randomly generated lattices with different disorder
parameters. We illustrate the power of these topological tools
by showing theoretically and experimentally that the disorder
of the designed metasurfaces, related to the strength of their
surface lattice resonances (SLRs), was more accurately
represented by our topological measure of disorder than by
their generative disorder parameters.

RESULTS AND DISCUSSION
First, a generalized model to generate disorder is presented.
We show that a large correlation length may lead to potentially
ambiguous designs, where the degree of disorder is poorly
represented by the generative/statistical parameters, hinting at
the need for better disorder descriptors. Second, the most
relevant aspects from topological data analysis (TDA), and the
tools required to characterize metasurfaces, are introduced.
Using them, it is then shown that disordered metasurfaces with
correlated disorder are not well represented by their generative
parameters and, instead, are being suitably described by the
topological descriptors. Finally, we show the characterization
accuracy and predictive properties of these tools by designing
metasurfaces with specific disorder levels, first theoretically
then experimentally.

Models of Correlated and Uncorrelated Disorder. A
recent work17 presented a model of disorder to study how
correlated and uncorrelated disorder influence the far-field
optical response of a metasurface. We apply our character-
ization of disorder on their model of disorder that we
reintroduce here.

Starting with a regular lattice, such as a square lattice of
period P made of Nx × Ny = N nanostructures whose positions
are defined by r i N, 1,i [ ], one can define correlated and
uncorrelated disorder as follows. Each nanostructure position
is modified by a random vector ri

÷÷÷÷÷
whose x and y components

are generated from a continuous uniform probability
distribution bounded by [−SdP, SdP]. The nondimensional
parameter Sd determines the strength of the uncorrelated
disorder. A correlation length can be implemented by adding
to ri

÷÷÷÷÷
the uncorrelated disorder of nearby nanostructures,

indexed by j, weighted according to how far they are with a
factor Cij,

C eij

r
L P2

ij

c

2i
k
jjj y

{
zzz= (1)

with rij the distance between the nanostructures i and j,
including the uncorrelated disorder applied to ri and rj

÷÷ . The
correlation length is given by the full width at half-maximum of
Cij, which is equal to L P2 2 ln 2 c , which is proportional to the
nondimensional parameter Lc. The total disorder perturbation
can be summarized as

r r r r Ci i i
j i

j ij
÷÷÷÷÷ ÷÷÷÷÷÷

= + +
(2)

Using the expression eq 2, we generated lattices with varying
values of Lc and Sd; see Figure 1. In Figure 1a and d, one can

visually appreciate that the strength of uncorrelated disorder,
for Lc = 0, is well represented by Sd. However, while a nonzero
correlation length makes the lattices’ distortion smoother
(middle and right columns of Figure 1), it can also make the
disorder strength of the lattices ambiguous. For example, one
can see that the lattice in Figure 1e is more disordered than the
lattice in Figure 1b, as expected from the values of their Sd
parameter (0.4 and 0.2, respectively). The same cannot be said
about the lattices in the right column. Indeed, the lattice
represented in Figure 1c seems more disordered than the
lattice represented in Figure 1f, despite being respectively
generated with Sd = 0.2 and Sd = 0.4. Therefore, even though
the lattices in Figure 1b and c, or in Figure 1e and f, were

Figure 1. Examples of randomly generated disordered lattices. The
top and bottom row lattices are generated using Sd = 0.2 and Sd =
0.4, respectively. The lattices in the left column are uncorrelated,
Lc = 0, while those in the middle and right columns have nonzero
correlation, Lc = 6.
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generated with the same parameters Lc and Sd, respectively, the
probabilistic descriptor Sd does not provide a clear comparison
of their relative disorder strength.
While a nonzero correlation length makes the generative

parameter Sd less accurate to represent the positional disorder
of a lattice, it also destroys the information about the original
regular lattice by inducing collective movements of the lattice’s
points. This makes a statistical description of correlated
disordered lattices much harder to implement due to not
having a reference lattice to compare them to. In order to
circumvent such constraints, we introduce topology-inspired
numerical tools allowing us to compare lattices with each other
in a way that highlights the influence of a correlation length
and provides a more accurate measure of disorder than Sd.

Topological Characterization of Disorder. TDA is a
collection of tools originating from topology and geometry,
designed to provide qualitative and quantitative descriptors of
structures in data sets. They have been successfully applied to
various systems in different fields ranging from cosmology58,59

to solid state physics.60−64 Topological measures such as the
Randic4́7 and Zagreb indices48 rest on the topological
properties of graphs, making them particularly interesting
when a physical system has natural graph representation, such
as molecular compounds. Similarly, statistics of knots provides
relevant insight on configurations of elongated objects such as
DNA49 or proteins.50 On the other hand, persistent homology
relies on tracking the topological properties of a family of
simplicial complexes indexed by a scale parameter, such as a
distance or pixel intensity,65 thus providing insight on the scale
of topological features, with applications for example in
material science.53,54 We give here a brief description of
persistent homology. More detailed, introductory notes can be
found in the literature,66,67 and the whole process can be
executed using standard libraries such as GUDHI68 or
Ripser.69

Starting from a point cloud such as that in panel a of Figure
1, we build a collection of topological spaces called Rips

simplicial complexes, indexed by a real number r. For a given
value of r, the complex is constructed as follows. A ball of
radius r is drawn around each point of the point cloud. If two
balls intersect, a link between their respective centers is added.
Similarly, higher order links are added to the complex upon the
intersection of three or more balls. Restricting ourselves to
only two dimensions, which is relevant for flat metasurfaces,
circles of radius r are drawn around each point and only the
connections between pairs and triplets of points are
considered. The topological properties of each simplicial
complex, the number of connected components, encoded in
the homology of degree 0 (H0), and the number of loops in
two dimensions, encoded in the homology of degree 1 (H1),
can be directly computed using algebraic topology. Tracking
the evolution of these topological features for different values
of r provides useful insight into their scale. These features can
be summarized in a persistence diagram for which each feature,
indexed by the integer i, is represented by two coordinates,
their “birth”, bi, and their “death”, di, which are the values of 2r
at which they appear and disappear.
For example, if we consider a simple point cloud such as a

square of side 500, Figure 2a, the birth of a loop happens when
the diameter of the circles is equal to the side length of the
square, Figure 2b. When the diameter of the circles is equal to
the diagonal of the square, Figure 2c, the area between the four
points is filled. This induces the death of the loop, as it can
now be contracted to a single point. The loop is then
represented as a point at coordinates (500, 707), labeled H1, in
the persistence diagram, Figure 2d Additionally, four
connected components, one for each point of the point
cloud, are born at r = 0. When the diameter of the circles is
equal to the side length, Figure 2b, only one connected
component remains as all the points are connected to each
other. Therefore, three connected components die when the
circles intersect, and they are represented as three points at
coordinates (0, 500), labeled H0, in Figure 2d. The last
connected components remain for r → ∞. As the computation

Figure 2. Examples of two key TDA processes used in this paper. The top row represents the computation of persistent homology from the
data set (a) to its representation in a persistent diagram (d). In (b) and (c) are represented the circles whose diameters correspond
respectively to the birth and death of the loop of this data set (single H1 point in the persistence diagram in panel d). The bottom row
represents the computation of the embedding of data sets (e) in a two-dimensional space (h) via the computation of their persistence
diagrams (f) and the distance between them (g). Data sets of the same type are clustered in the embedding space (panel h).
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of persistent homology was stopped at r = 400, we assign to
the last connected component the H0 point at coordinates (0,
800).
This example illustrates how persistent homology can

provide interesting insight into KTHNY theory.55−57 Indeed,
the coordinates of the topological features in the persistence
diagrams directly depend on the shape of the points in the
point cloud. In particular, if a lattice is made of regular
polygons with N vertices, each polygon will contribute N
points labeled H0 at coordinates (0, L), with L the distance
between the vertices, and 1 point labeled H1 at coordinates

( )L , L
Nsin( / )

. Topological defects can therefore be effectively

tracked in a persistence diagram as they induce a shift of the
positions of the topological features.
The second row of Figure 2 illustrates how TDA can be used

for the clustering analysis of point clouds. The first step is to
measure the “distance” between point clouds, which can be
done by measuring the distance between their corresponding
persistence diagrams. Several metrics can be defined over the
space of the persistence diagrams. We have chosen the
Wasserstein distance70 for its simplicity of use. If several point
clouds are considered, one can build a geometrical embedding,
for example, via classical multidimensional scaling,71 in which
each point cloud can be represented as one point and the
distance between each point is given by the distance between
their respective persistence diagrams (Figure 2h). This
provides a visual representation of the configuration space of

the different point clouds and can be used to detect clustering.
Classical multidimensional scaling provides an embedding of
the set of point clouds in a potentially large vector space.
However, by sorting the dimensions by how much the
embedding varies in each direction, one can project the
embedding in a lower dimensional space while minimizing
distortions.
For example, we considered two sets of four point clouds

made of either triangles or squares, such as represented in
Figure 2e. Upon computing their persistence diagrams (Figure
2f), one can measure the Wasserstein distance between every
pair of diagrams. The distances can be summarized in a
distance matrix (Figure 2g), where the sets of squares are
indexed by 0 and 1 and the two sets of triangles are indexed by
2 and 3. This distance matrix shows that a set of squares seems
to be more similar, or closer, to another set of squares than to
the sets of triangles, as the distance (0, 1) is smaller than the
distances (0, 2) and (0, 3). Similarly, a set of triangles is more
similar to another set of triangles than to the sets of squares.
This can be directly visualized in their embedding, projected
on its two principal components PC1 and PC2, in Figure 2h,
where we observe two clusters corresponding to the sets of
squares and triangles.
In order to visualize the space of configurations obtained

from the definition of correlated disordered lattices in eq 2, we
performed the embedding of 1203 lattices generated for three
different lattice periods, 500, 600, and 700 nm, and five
different values of Sd ∈ [0, 0.4]. This was repeated for

Figure 3. Scatter plots of the two-dimensional embedding of three sets of generated lattices with uncorrelated (a), weakly correlated (b), and
strongly correlated (c) disorder. Each set was generated from an original square lattice of period 500, 600, and 700 nm (left to right in panel
a) and with Sd ∈ [0, 0.4]. In the absence of correlation, lattices with different values of the period and of Sd are well clustered. In the inset of
panel a we adapted the size of points to illustrate how clustered the lattices are. The clustering is lost in the presence of correlations, panels b
and c. Panels d and f and panels e and g are equivalent to panels a and c, respectively, with color coding based on the value of nSH0 (TD) in
panels d and f (e and g). In both cases the color gradient is not significantly affected by correlation.
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uncorrelated disorder, Lc = 0, weakly correlated disorder, Lc =
2, and strongly correlated disorder, Lc = 8 (panels a, b, and c of
Figure 3). We see in Figure 3a an unambiguous clustering, with
a silhouette coefficient of 0.8, of the uncorrelated disorder
lattices in terms of their generative parameters, i.e., Sd and the
original lattice period. For a fixed value of the period, the
lattices appear to live on a simple curve on which five separated
clusters of points can be seen, corresponding to the five values
of Sd considered. A correlation length increases the size of each
cluster, allowing them to overlap, Figure 3b, and therefore
reducing the quality of their clustering, with a silhouette
coefficient of 0.5. For a large correlation length, like in Figure
3c, each cluster is so large that, effectively, any clustering in
terms of their generative parameters is lost (silhouette
coefficient equal to 0.001). This is in agreement with what
we presented in the previous section, as the configuration
space of lattices with nonzero correlation length is much larger,
which leads to a far greater variability of the resulting structures
despite using the same generative parameters. The expansion
of the lattices’ configuration space, proportional to Lc, leads to
situations where different clusters overlap, like in Figure 3b,
which represents lattices generated with different parameters
ending up being very similar to each other. Eventually, a large
enough Lc makes the overlap between the clusters too
significant to accurately represent the lattices as belonging to
different clusters labeled by their generative parameters Lc and
Sd, Figure 3c. Even if one can still see some general trend
between the overall lattices’ position and the value of Sd in
Figure 3c, one cannot accurately recover the value of Sd of a
lattice based on its position. This leads to situations where a
lattice generated with a high amount of disorder, i.e., a large
value of Sd, may be as, or more, ordered than a lattice
generated with a small amount of disorder, such as represented
in the right column of Figure 1, therefore significantly reducing
the accuracy of Sd to quantify the disorder of a lattice.
Using TDA, we were able to overcome the limitation of the

parameter Sd to characterize generated lattices. One can build
several metrics to describe persistence diagrams, which can be
used as simpler descriptors of the topology of data sets or as
inputs of more refined machine learning based models.72,73 In
this work, we use two statistical descriptors based on lattices’
persistence diagrams in order to describe both the typical
distance between each point of the lattices and their positional
disorder. The first numerical descriptor is normalized structural
heterogeneity of degree 0 (nSH0) and is the sum of the lifetime
of the topological features of homology 0, the connected
components,65 divided by the number of points of the lattice,
N:

SH
N

d bn
1

b d H
0

( , ) 0

=
(3)

with b and d the birth and death of each topological feature of
degree 0, H0, of the persistence diagram . As the death of the
topological features of homology 0 is proportional to the
distance between the points of the lattices, as seen in the
example represented in Figure 2a to 2d, nSH0 can be directly
related to the average nearest neighbor distance between the
nanostructures. If one colors the embeddings of uncorrelated
and strongly correlated, Lc = 8, lattices of Figure 3 according to
the value of nSH0 of each lattice, we see in Figure 3d that this
quantity almost recovers perfectly the periodicity of the lattice
for uncorrelated disorder, which confirms our interpretation of

the topological features of degree 0. When applied to strongly
correlated disordered lattices, Figure 3e, SH0 provides a
smooth ordering of the lattices, following a similar trend to
that for uncorrelated disordered lattices.
We also introduce a descriptor called topological disorder

(TD), inspired from the persistent entropy (PE).74−76 PE is
defined as

PE d b
L

d b
L

L d bln ,
b d b d( , ) ( , )

i
k
jjj y

{
zzz= =

(4)

PE is maximal for d b l b d(constant), ( , )= and
equal to log Ω, with Ω the total number of topological features
in . Therefore, PE is maximal for regular, periodic lattices
and measures how ordered lattices are. In order to avoid the
counterintuitive association of a highly ordered lattice with its
high persistent entropy, and to define a measure of disorder
independent of the lattice’s size, which modifies the number of
topological features Ω, we define TD as

( )
TD L d b1

ln

log
,

i

b d H
d b

L
d b

L

i
i

b d H

( , )

( , )

i i i

i

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

É

Ö

ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ
= + =

(5)

where the computation is split over the homology degrees i in
order to capture the fundamental differences between
topological features of different homology. Indeed, one can
see in Figure 2d that, despite the regularity of the data set in
Figure 2a, the topological features in the persistence diagram
are located in different places, which would artificially increase
the value of TD. While the example in Figure 2a is simple, this
remains the case for ordered lattices. By construction, TD is
invariant by rescaling of the typical length of the lattices,
making it an orthogonal descriptor of the lattices with respect
to nSH0. TD is also minimal for ordered lattices, equal to 0,
and is independent of the number of points of the lattices.
Therefore, it can be used as a universal measure of disorder,
not only for point clouds perturbed from different periodic
lattices array but also for point clouds without any inherent
order, such as in self-assembled systems. If one colors the
embeddings of uncorrelated and strongly correlated lattices of
Figure 3 according to their TD, we see in Figure 3f that TD
recovers perfectly the strength of the uncorrelated disorder,
regardless of the lattices’ periodicity, which confirms that TD is
indeed a measure of the lattices’ disorder. When applied to
strongly correlated disordered lattices, Figure 3g, TD provides
another smooth ordering of the lattices, orthogonal to the one
given by nSH0.
These observations suggest that TD and nSH0 are two

topologically inspired descriptors that can be used to quantify
the positional disorder and the typical distance between points
of a data set, respectively. Being, by construction, independent
of any reference data set, these tools are suitable to classify data
sets that are not easily described using classical statistical
methods, such as correlated disorder point clouds or self-
assembled systems.

Tailored Metasurface Design, Fabrication, and Spec-
troscopy. We show the accuracy of TD by using it to design,
and subsequently build, plasmonic metasurfaces of specific
degree of disorder, which we relate to the strength of their
SLRs. We first investigate the link between TD and the
strength of the SLRs theoretically using the discrete dipole
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approximation.77 A total of 1200 lattices of 25 × 25 points
were randomly generated with Lc = 8 and Sd = 0.3, starting
from a square lattice of period 500 nm, where each point
represents the position of a plasmonic nanostructure. The
lattices with the highest, lowest, and median value of TD, while
having similar nearest neighbor distance, estimated by nSH0,
were selected (Figure 4a, b, and c). Each nanostructure is

modeled as a gold nanodisk of height 50 nm and diameter 120
nm whose optical properties, under the dipole approximation,
are fully determined by their polarizability. The gold nanodisks
are assumed to be embedded in a homogeneous glass-like
dielectric layer of refractive index 1.41. We numerically
compute the reflectance of the three metasurfaces under
illumination by a circularly polarized plane at normal

Figure 4. Theoretical investigation of the correlation between TD and the strength of SLR. Panels a, b, and c represent respectively the
generated metasurfaces of lowest, median, and highest TD. Their computed reflectance spectrum, in arbitrary units, is represented in d.

Figure 5. SEM images of the experimental samples (top row) and their transmittance spectra under normal incidence light linearly polarized
parallel (middle row) or perpendicular (bottom row) to the long axis of the nanodisks. Each plot displays the spectra of a low and high TD
metasurface, dashed light green and solid green, respectively, and an ordered metasurface with the same pitch (black). Each column
corresponds to the metasurfaces generated with Lc ∈ [6, 8, 10] from left to right.
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incidence, Figure 4d. As predicted, the higher the topological
disorder, the weaker the SLRs are. Indeed, one can see on
Figure 4d that the amplitude of the SLR dip is inversely
proportional to TD. Similarly, the quality factors of these
resonances are 8.2, 7.5, and 6.5 for the lowest, median, and
highest TD, respectively.

Experimental Verification of the TD−SLR Link. We
additionally experimentally confirmed the link between TD
and the strength of SLRs by designing metasurfaces built using
focused ion beam (FIB) lithography. Using three different
correlation lengths Lc ∈ {6, 8, 10} and starting from a regular
square lattice of period 500 nm, we generated several hundreds
of lattices for two values of Sd: 0.2 and 0.4. For each value of Lc,
two lattices were selected to be compared with each other: the
one with the highest value of TD among those generated with
Sd = 0.2 and the one with the lowest value of TD among those
generated with Sd = 0.4. Similarly to the previous section, nSH0
was used to select lattices of similar nearest neighbor distances.
We built two sets of seven metasurfaces, three pairs for each
value of Lc and one reference square lattice of period 500 nm.
The two sets only differ in the size of the nanostructures, which
in both cases were elongated 50 nm thick gold nanodisks. The
top nanodisk cross-sections are elliptical with x- and y-axis of
size (160, 180) nm and (120, 140) nm for the first and second
set, respectively. The resonant wavelength of the SLRs depends
both on the distance between the nanodisks and on their
polarizability. The latter is strongly affected by the shape of the
nanodisks, and their anisotropy induces a shift of the SLRs’
wavelength of up to 60 nm according to the polarization of the
exciting light. We therefore report the optical properties of the
metasurfaces excited under normal incidence light for two
linear polarizations: polarized along the y-direction, parallel to
the nanodisks’ long axis, and polarized along the x-direction,
perpendicular to the nanodisks’ short axis. SEM images of the
first set, as well as their transmittance spectrum compared to
the square lattice, are shown in Figure 5. The results for the
second set of metasurfaces, the comparison of these
experimental results to the dipolar model, and the SEM
images at higher magnification are included in the Supporting
Information, in Figures S5 to S8 and in Figure S2, respectively.
The three columns of Figure 5 contain for each Lc the SEM

images of the designed pair of metasurfaces (first row) and
their transmittance spectra upon excitation by light polarized
parallel to the nanodisks’ long axis (second row) and
perpendicular to the nanodisks’ short axis (third row). The
transmittance spectrum of a periodic metasurface with the
same pitch is added for comparison (black lines). We report in
Table 1 the quality factors of all the SLRs shown in Figure 5 as
well as the TD of the corresponding metasurfaces.
As can be seen in Figure 5 and Table 1, in five configurations

out of six, the SLRs of the metasurfaces designed with a high Sd
but a low TD are stronger and have a larger quality factor than
the metasurfaces designed with a low Sd but a high TD,
showing that TD is indeed an accurate measure of disorder.
The only exception is the configuration with Lc = 10 and
perpendicular polarization, Figure 5i, for which both
metasurfaces have similarly strong SLRs with a quality factor
of 11.5, equivalent to the square lattice for this polarization,
despite the lattice generated with Sd = 0.2 having a very high
TD of 0.026. Upon inspecting the lattices of the two
metasurfaces generated for Lc = 10, shown in the panel c of
Figure 5 or in larger versions in the Supporting Information,
one can see that the lattice generated with Sd = 0.4 is ordered,

which is reflected in its low TD and its high quality factor.
However, on the lattice generated with Sd = 0.2 with a high
TD, also represented in Figure 6b, one can visually appreciate

that positional distortion seems to be noticeable only at a large
scale, while at short scales, the nanodisks seem to be more
regularly spaced as if they were on a square lattice. Indeed,
larger values of Lc average out the uncorrelated disorder of
neighboring nanodisks, which effectively smooths out the
positional shift of each nanodisk, while maintaining large-scale
shifts, responsible for the wavy patterns of the two right
columns of Figure 1. While this shows that TD is sensitive to
positional disorder at every scale of the metasurface, the
strength of SLR depends mostly on short-scale disorder.
Indeed, the interaction strength between the nanodisks
decreases as the inverse of the distance between them, under
the dipolar approximation, and, effectively, a nanodisk only
interacts with a few of its neighbors. Therefore, a metasurface
with short-scale order but long-scale disorder, such as the one
generated with Lc = 10 and Sd = 0.2 in Figure 6b, can exhibit
strong SLRs despite having a large TD. This effect can also be
visualized if one represents the quality factors of the SLRs in
terms of the TD of the metasurfaces for both polarizations of
the exciting light, Figure 6. We see a decreasing trend of the
quality factor in terms of TD despite outliers such as the
metasurface generated with Lc = 10, Sd = 0.2 that we just
commented on and some fluctuations that can be similarly
explained as TD being affected by large-scale disorder while the
quality factor is not. A simple improvement would be to define

Table 1. TD of the Metasurfaces Reported in Figure 5 and
the Corresponding Quality Factors (Q) of Their SLRs for
Parallel and Perpendicular Polarization of the Exciting
Light

lattice parameters TD Q (parallel) Q (perpendicular)

Lc = 0, Sd = 0 0 10.1 11.5
Lc = 6, Sd = 0.2 0.030 4 5.2
Lc = 6, Sd = 0.4 0.012 9.3 6.8
Lc = 8, Sd = 0.2 0.025 6.7 4.4
Lc = 8, Sd = 0.4 0.005 7.8 7
Lc = 10, Sd = 0.2 0.026 8 11.5
Lc = 10, Sd = 0.4 0.002 10.1 11.5

Figure 6. (a) Graph of the quality factors of the SLRs reported in
Figure 5 in terms of the TD of the metasurfaces under normal
incidence light linearly polarized parallel (green dots) and
perpendicular (red crosses) to the long axis of the nanodisks.
Two best-fit lines are added to represent the general trend of the
quality factors for the parallel polarization, in green, and
perpendicular polarization, in red, in terms of TD. (b) SEM
image of the lattice with a high TD and a high quality factor,
indicated by the arrow.
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TD locally and also to some defined scale, therefore making it a
multiscale measure of disorder, and only consider it up to the
scale relevant for optical properties, dependent on the
metasurface’s disorder. However, we chose for simplicity to
keep the definition of TD, eq 5, global in this work.
This illustrates that TD is a more accurate measure of the

positional disorder of these metasurfaces compared to Sd, as in
all of the cases reported here, the metasurface that should have
been the most ordered, generated with the lowest value of Sd, is
actually at least as disordered as the metasurface that should
have been the most disordered, generated with the highest
value of Sd. Indeed, while a correlation length, induced by Lc ≠
0, made Sd more ambiguous to describe the disorder of the
metasurfaces, TD was able to accurately select lattices of
chosen disorder, which we experimentally probed via the
quality factor of their SLRs, despite the nonunique relationship
between TD and SLR quality factors. For comparison, we
investigated, in the Supporting Information, the correlation
between the built metasurfaces’ quality factors and two
standard measures of disorder used in the study of the phase
transition of a two-dimensional system, orientational and
translational order.56,57,78 We found that orientational order
provides similar insight to TD but overemphasizes the
difference between the ordered lattice and the most ordered
of the disordered lattices, despite the similarity in their
configurations and optical responses. On the other hand, the
standard error on the translational order of the disordered
lattices is too significant for translational order to accurately
quantify their disorder.

CONCLUSION
We have shown how topological data analysis and persistent
homology can be used to classify both correlated and
uncorrelated disordered metasurfaces via their topological
disorder. In particular, topological disorder is a significantly
more accurate measure of disorder than the generative
probabilistic parameters of correlated disorder. We showed,
theoretically and experimentally, this accuracy by correlating
topological disorder to the strength of surface lattice
resonances of metasurfaces made of plasmonic nanostructures,
despite the global definition of topological disorder being
sensitive to large-scale distortion, while surface lattice
resonances are not. While topological disorder can easily be
modified to make it a multiscale measure of disorder, the
universality, accuracy, and computational speed of its global
definition make it an advantageous tool to characterize and
tune the fabrication methods of self-assembled disordered
metasurfaces, as well as to help design metasurfaces of specific
degree of disorder, for example to enhance light extraction for
more efficient LEDs or light absorption for improved solar
cells. Furthermore, the natural awareness of persistent
homology to topological defects suggests interesting future
applications of topological data analysis to study phase
transitions of two-dimensional systems.

EXPERIMENTAL/METHOD
The metasurfaces have a lateral size of approximately 12 × 12 μm and
were fabricated in a 50 nm thick film of Au-coated glass substrate
using a focused ion beam facility, Helios Nanolab 600 from FEI
ThermoFisher Scientific. The metasurfaces were then spin-coated
with IC1-200, whose refractive index is similar to that of the glass
substrate.

The spectral characterization was performed in transmittance at
normal incidence using a microspectrophotometer (CRAIC Tech-
nologies) equipped with a tungsten−halogen light source and cooled
CCD array.

The persistent homology of all lattices was computed using the
Ripser python package.69 The computation for each lattice, made of
625 nanodisks, was done in a fraction of a second. The computation
of the distance between each lattice’s persistence diagrams considered
for Figure 3 was done using the Wasserstein distance from the
GUDHI python package.68 Embeddings were obtained from the
distance matrices by using classical multidimensional scaling. We
projected the embeddings in two dimensions for the visual
representations in Figure 3. In general such embeddings live in a
very high dimensional, non necessarily euclidean, space, and a
projection to a two-dimensional flat space can lead to distortions.
However, the magnitude of these distortions can be estimated in the
classical multidimensional scaling methods by considering the relative
absolute value of the eigenvalues of the embedding in each
dimension.79 For the embedding represented in Figure 3, the
eigenvalues of the two largest dimension, used to represent the
embedding in 2D, are respectively 278 and 40 times larger than the
largest negative eigenvalue, proving that an embedding in a euclidean
space is a good approximation. Similarly, the eigenvalues of the two
largest dimensions are respectively 22 and 3 times larger than the
third largest positive eigenvalue, hinting that a projection in 2D is an
accurate visual representation of the embedding.

The numerical simulations of the metasurfaces’ optical properties
were done using the discrete dipole approximation77 where each
nanodisk is modeled as a dipole of the same polarizability. We
assumed that the nanodisks were located in a homogeneous dielectric
medium of refractive index n = 1.41, which is a good approximation of
the refractive index of the glass substrate and of the IC1 layer. The
reflectance was measured by computing the electromagnetic flux in
the direction perpendicular to the surface, assuming a numerical
aperture of 0.28, to match the experimental setup. The nanodisks’
polarizability was computed from simulating the optical response of
an isolated nanodisk upon excitation by plane waves of different
polarizability,17 which we performed using the electromagnetic waves,
frequency domain interface of the optics module of COMSOL 5.6,
solved with a direct solver.80

ASSOCIATED CONTENT
*sı Supporting Information
The Supporting Information is available free of charge at
https://pubs.acs.org/doi/10.1021/acsnano.3c08776.

SEM images of all samples with close-up views; details of
numerical simulations corresponding to the fabricated
samples; comparison between experimental results and
simulations; comparison of the quality factor with the
metasurfaces’ orientational and translational order
(PDF)

AUTHOR INFORMATION
Corresponding Author
Tristan Madeleine − Mathematical Sciences, University of
Southampton, Southampton SO17 1BJ, United Kingdom;
orcid.org/0000-0001-7655-8367; Email: tm3u18@

soton.ac.uk

Authors
Nina Podoliak − Physics and Astronomy, University of
Southampton, Southampton SO17 1BJ, United Kingdom

Oleksandr Buchnev − Optoelectronics Research Centre and
Centre for Photonic Metamaterials, University of
Southampton, Southampton SO17 1BJ, United Kingdom;
orcid.org/0000-0001-6161-2797

ACS Nano www.acsnano.org Article

https://doi.org/10.1021/acsnano.3c08776
ACS Nano XXXX, XXX, XXX−XXX

H

https://pubs.acs.org/doi/suppl/10.1021/acsnano.3c08776/suppl_file/nn3c08776_si_001.pdf
https://pubs.acs.org/doi/10.1021/acsnano.3c08776?goto=supporting-info
https://pubs.acs.org/doi/suppl/10.1021/acsnano.3c08776/suppl_file/nn3c08776_si_001.pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Tristan+Madeleine"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0001-7655-8367
https://orcid.org/0000-0001-7655-8367
mailto:tm3u18@soton.ac.uk
mailto:tm3u18@soton.ac.uk
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Nina+Podoliak"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Oleksandr+Buchnev"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0001-6161-2797
https://orcid.org/0000-0001-6161-2797
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Ingrid+Membrillo+Solis"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
www.acsnano.org?ref=pdf
https://doi.org/10.1021/acsnano.3c08776?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


Ingrid Membrillo Solis − Mathematical Sciences, University
of Southampton, Southampton SO17 1BJ, United Kingdom

Tetiana Orlova − Physics and Astronomy, University of
Southampton, Southampton SO17 1BJ, United Kingdom;
Infochemistry Scientific Center, ITMO University, Saint-
Petersburg 191002, Russia; orcid.org/0000-0002-1594-
291X

Maria van Rossem − Physics and Astronomy, University of
Southampton, Southampton SO17 1BJ, United Kingdom

Malgosia Kaczmarek − Physics and Astronomy, University of
Southampton, Southampton SO17 1BJ, United Kingdom

Giampaolo D’Alessandro − Mathematical Sciences,
University of Southampton, Southampton SO17 1BJ, United
Kingdom

Jacek Brodzki − Mathematical Sciences, University of
Southampton, Southampton SO17 1BJ, United Kingdom

Complete contact information is available at:
https://pubs.acs.org/10.1021/acsnano.3c08776

Notes
The authors declare no competing financial interest.
A preliminary version of this manuscript have been uploaded
on arXiv.81

ACKNOWLEDGMENTS
The authors acknowledge the use of the IRIDIS High
Performance Computing Facility and associated support
services at the University of Southampton, in the completion
of this work. This work was supported by the Leverhulme
Trust (grant RPG-2019-055).

REFERENCES
(1) Chen, H.-T.; Taylor, A. J.; Yu, N. A review of metasurfaces:
physics and applications. Rep. Prog. Phys. 2016, 79, No. 076401.
(2) Mao, P.; Liu, C.; Li, X.; Liu, M.; Chen, Q.; Han, M.; Maier, S. A.;
Sargent, E. H.; Zhang, S. Single-step-fabricated disordered meta-
surfaces for enhanced light extraction from LEDs. Light-Science &
Applications 2021, 10, 180.
(3) Ushkov, A.; Dellea, O.; Verrier, I.; Kampfe, T.; Shcherbakov, A.;
Michalon, J.-Y.; Jourlin, Y. Nanosphere Photolithography: The
Influence of Nanopore Arrays Disorder on Extraordinary Optical
Transmission. Photoptics: Proceedings of the 9th International Confer-
ence on Photonics, Optics and Laser Technology; Setubal, 2021; pp 46−
53.
(4) Yildirim, D. U.; Ghobadi, A.; Soydan, M. C.; Atesal, O.; Toprak,
A.; Caliskan, M. D.; Ozbay, E. Disordered and Densely Packed ITO
Nanorods as an Excellent Lithography-Free Optical Solar Reflector
Metasurface. Acs Photonics 2019, 6, 1812−1822.
(5) Wu, Z.; Zhang, Y.; Du, B.; Yang, K.; Wu, J.; Dai, T.; Dong, C.;
Xia, J.; Wu, A.; Zhao, Z. Disordered metasurface-enhanced perovskite
composite films with ultra-stable and wide color gamut used for
backlit displays. Nano Energy 2022, 100, 107436.
(6) Tani, T.; Hakuta, S.; Kiyoto, N.; Naya, M. Transparent near-
infrared reflector metasurface with randomly dispersed silver nano-
disks. Opt. Express 2014, 22, 9262−9270.
(7) Chen, H.; Zhao, J.; Fang, Z.; An, D.; Zhao, X. Visible Light
Metasurfaces Assembled by Quasiperiodic Dendritic Cluster Sets.
Advanced Materials Interfaces 2019, 6, 1801834.
(8) Piechulla, P. M.; Slivina, E.; Batzner, D.; Fernandez-Corbaton, I.;
Dhawan, P.; Wehrspohn, R. B.; Sprafke, A. N.; Rockstuhl, C.
Antireflective Huygens’ Metasurface with Correlated Disorder Made
from High-Index Disks Implemented into Silicon Heterojunction
Solar Cells. Acs Photonics 2021, 8, 3476−3485.

(9) Shutsko, I.; Buchmueller, M.; Meudt, M.; Goerrn, P. Light-
Controlled Fabrication of Disordered Hyperuniform Metasurfaces.
Advanced Materials Technologies 2022, 7, 2200086.
(10) Piechulla, P. M.; Muehlenbein, L.; Wehrspohn, R. B.; Nanz, S.;
Abass, A.; Rockstuhl, C.; Sprafke, A. Fabrication of Nearly-
Hyperuniform Substrates by Tailored Disorder for Photonic
Applications. Advanced Optical Materials 2018, 6, 1701272.
(11) Narasimhan, V.; Siddique, R. H.; Park, H.; Choo, H.
Bioinspired Disordered Flexible Metasurfaces for Human Tear
Analysis Using Broadband Surface-Enhanced Raman Scattering. Acs
Omega 2020, 5, 12915−12922.
(12) Siddique, R. H.; Donie, Y. J.; Gomard, G.; Yalamanchili, S.;
Merdzhanova, T.; Lemmer, U.; Hölscher, H. Bioinspired phase-
separated disordered nanostructures for thin photovoltaic absorbers.
Science Advances 2017, 3, No. e1700232.
(13) Donie, Y. J.; Schlisske, S.; Siddique, R. H.; Mertens, A.;
Narasimhan, V.; Schackmar, F.; Pietsch, M.; Hossain, I. M.;
Hernandez-Sosa, G.; Lemmer, U.; Gomard, G. Phase-Separated
Nanophotonic Structures by Inkjet Printing. ACS Nano 2021, 15,
7305−7317.
(14) Cao, H.; Eliezer, Y. Harnessing disorder for photonic device
applications. Applied Physics Reviews 2022, 9, No. 011309.
(15) El Shamy, E.; Jaeck, J.; Haidar, R.; Bouchon, P. Light scattering
by correlated disordered assemblies of nanoantennas. Appl. Phys. Lett.
2019, 115, No. 041103.
(16) Antosiewicz, T. J.; Tarkowski, T. Localized Surface Plasmon
Decay Pathways in Disordered Two-Dimensional Nanoparticle
Arrays. ACS Photonics 2015, 2, 1732−1738.
(17) Sterl, F.; Herkert, E.; Both, S.; Weiss, T.; Giessen, H. Shaping
the Color and Angular Appearance of Plasmonic Metasurfaces with
Tailored Disorder. ACS Nano 2021, 15, 10318−10327.
(18) Chevalier, P.; Bouchon, P.; Jaeck, J.; Lauwick, D.; Bardou, N.;
Kattnig, A.; Pardo, F.; Haider, R. Absorbing metasurface created by
diffractionless disordered arrays of nanoantennas. Appl. Phys. Lett.
2015, 107, 251108.
(19) Zhang, H.; Cheng, Q.; Chu, H.; Christogeorgos, O.; Wu, W.;
Hao, Y. Hyperuniform disordered distribution metasurface for
scattering reduction. Appl. Phys. Lett. 2021, 118, 101601.
(20) Vynck, K.; Pacanowski, R.; Agreda, A.; Dufay, A.; Granier, X.;
Lalanne, P. The visual appearances of disordered optical metasurfaces.
Nat. Mater. 2022, 21, 1035−1041.
(21) Agreda, A.; Wu, T.; Hereu, A.; Treguer-Delapierre, M.; Drisko,
G. L.; Vynck, K.; Lalanne, P. Tailoring Iridescent Visual Appearance
with Disordered Resonant Metasurfaces. ACS Nano 2023, 17, 6362−
6372.
(22) Haghtalab, M.; Tamagnone, M.; Zhu, A. Y.; Safavi-Naeini, S.;
Capasso, F. Ultrahigh Angular Selectivity of Disorder-Engineered
Metasurfaces. Acs Photonics 2020, 7, 991−1000.
(23) Bertin, H.; Brule, Y.; Magno, G.; Lopez, T.; Gogol, P.; Pradere,
L.; Gralak, B.; Barat, D.; Demesy, G.; Dagens, B. Correlated
Disordered Plasmonic Nanostructures Arrays for Augmented Reality.
Acs Photonics 2018, 5, 2661.
(24) Sterl, F.; Strohfeldt, N.; Both, S.; Herkert, E.; Weiss, T.;
Giessen, H. Design Principles for Sensitivity Optimization in
Plasmonic Hydrogen Sensors. Acs Sensors 2020, 5, 917−927.
(25) Roubaud, G.; Bondareff, P.; Volpe, G.; Gigan, S.; Bidault, S.;
Gresillon, S. Far-Field Wavefront Control of Nonlinear Luminescence
in Disordered Gold Metasurfaces. Nano Lett. 2020, 20, 3291−3298.
(26) Veksler, D.; Maguid, E.; Shitrit, N.; Ozeri, D.; Kleiner, V.;
Hasman, E. Multiple Wavefront Shaping by Metasurface Based on
Mixed Random Antenna Groups. Acs Photonics 2015, 2, 661−667.
(27) Jang, M.; Horie, Y.; Shibukawa, A.; Brake, J.; Liu, Y.; Kamali, S.
M.; Arbabi, A.; Ruan, H.; Faraon, A.; Yang, C. Wavefront shaping
with disorder-engineered metasurfaces. Nat. Photonics 2018, 12, 84−
90.
(28) Kim, W.; Simpkins, B. S.; Guo, H.; Hendrickson, J. R.; Guo, J.
Hyperuniform disordered metal-insulator-metal gap plasmon metasur-
face near perfect light absorber. Optical Materials Express 2021, 11,
4083−4092.

ACS Nano www.acsnano.org Article

https://doi.org/10.1021/acsnano.3c08776
ACS Nano XXXX, XXX, XXX−XXX

I

https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Tetiana+Orlova"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0002-1594-291X
https://orcid.org/0000-0002-1594-291X
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Maria+van+Rossem"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Malgosia+Kaczmarek"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Giampaolo+D%E2%80%99Alessandro"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Jacek+Brodzki"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/doi/10.1021/acsnano.3c08776?ref=pdf
https://doi.org/10.1088/0034-4885/79/7/076401
https://doi.org/10.1088/0034-4885/79/7/076401
https://doi.org/10.1038/s41377-021-00621-7
https://doi.org/10.1038/s41377-021-00621-7
https://doi.org/10.1021/acsphotonics.9b00636?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acsphotonics.9b00636?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acsphotonics.9b00636?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1016/j.nanoen.2022.107436
https://doi.org/10.1016/j.nanoen.2022.107436
https://doi.org/10.1016/j.nanoen.2022.107436
https://doi.org/10.1364/OE.22.009262
https://doi.org/10.1364/OE.22.009262
https://doi.org/10.1364/OE.22.009262
https://doi.org/10.1002/admi.201801834
https://doi.org/10.1002/admi.201801834
https://doi.org/10.1021/acsphotonics.1c00601?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acsphotonics.1c00601?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acsphotonics.1c00601?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1002/admt.202200086
https://doi.org/10.1002/admt.202200086
https://doi.org/10.1002/adom.201701272
https://doi.org/10.1002/adom.201701272
https://doi.org/10.1002/adom.201701272
https://doi.org/10.1021/acsomega.0c00677?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acsomega.0c00677?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1126/sciadv.1700232
https://doi.org/10.1126/sciadv.1700232
https://doi.org/10.1021/acsnano.1c00552?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acsnano.1c00552?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1063/5.0076318
https://doi.org/10.1063/5.0076318
https://doi.org/10.1063/1.5097461
https://doi.org/10.1063/1.5097461
https://doi.org/10.1021/acsphotonics.5b00420?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acsphotonics.5b00420?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acsphotonics.5b00420?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acsnano.1c02538?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acsnano.1c02538?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acsnano.1c02538?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1063/1.4938472
https://doi.org/10.1063/1.4938472
https://doi.org/10.1063/5.0041911
https://doi.org/10.1063/5.0041911
https://doi.org/10.1038/s41563-022-01255-9
https://doi.org/10.1021/acsnano.2c10962?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acsnano.2c10962?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acsphotonics.9b01655?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acsphotonics.9b01655?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acsphotonics.8b00168?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acsphotonics.8b00168?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acssensors.9b02436?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acssensors.9b02436?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.nanolett.0c00089?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.nanolett.0c00089?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acsphotonics.5b00113?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acsphotonics.5b00113?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1038/s41566-017-0078-z
https://doi.org/10.1038/s41566-017-0078-z
https://doi.org/10.1364/OME.439586
https://doi.org/10.1364/OME.439586
www.acsnano.org?ref=pdf
https://doi.org/10.1021/acsnano.3c08776?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


(29) Reyes-Coronado, A.; Pirruccio, G.; Gonzalez-Alcalde, A. K.;
Urrutia-Anguiano, J. A.; Polanco-Mendoza, A. J.; Morales-Luna, G.;
Vazquez-Estrada, O.; Rodriguez-Gomez, A.; Issa, A.; Jradi, S.; Garcia-
Valenzuela, A.; Barrera, R. G. Enhancement of Light Absorption by
Leaky Modes in a Random Plasmonic Metasurface. J. Phys. Chem. C
2022, 126, 3163−3170.
(30) Jouanin, A.; Hugonin, J. P.; Lalanne, P. Designer Colloidal
Layers of Disordered Plasmonic Nanoparticles for Light Extraction.
Adv. Funct. Mater. 2016, 26, 6215−6223.
(31) Bertolotti, J. Designing disorder. Nat. Photonics 2018, 12, 59−
60.
(32) Rothammer, M.; Zollfrank, C.; Busch, K.; von Freymann, G.
Tailored Disorder in Photonics: Learning from Nature. Advanced
Optical Materials 2021, 9, 2100787.
(33) Dupré, M.; Hsu, L.; Kanté, B. On the design of random
metasurface based devices. Sci. Rep. 2018, 8, 7162.
(34) Yu, S.; Qiu, C.-W.; Chong, Y.; Torquato, S.; Park, N.
Engineered disorder in photonics. Nature Reviews Materials 2021, 6,
226−243.
(35) Pestourie, R.; Yao, W.; Kanté, B.; Johnson, S. G. Efficient
Inverse Design of Large-Area Metasurfaces for Incoherent Light. ACS
Photonics 2022, 10, 854−860.
(36) Li, Z.; Pestourie, R.; Lin, Z.; Johnson, S. G.; Capasso, F.
Empowering Metasurfaces with Inverse Design: Principles and
Applications. ACS Photonics 2022, 9, 2178−2192.
(37) Jiang, J.; Chen, M.; Fan, J. A. Deep neural networks for the
evaluation and design of photonic devices. Nature Reviews Materials
2021, 6, 679−700.
(38) Khoram, E.; Wu, Z.; Qu, Y.; Zhou, M.; Yu, Z. Graph Neural
Networks for Metasurface Modeling. ACS Photonics 2022, 10, 892−
899.
(39) Hammond, A. M.; Slaby, J. B.; Probst, M. J.; Ralph, S. E. Phase-
Injected Topology Optimization for Scalable and Interferometrically
Robust Photonic Integrated Circuits. ACS Photonics 2022, 10, 808−
814.
(40) Ballew, C.; Roberts, G.; Zheng, T.; Faraon, A. Constraining
Continuous Topology Optimizations to Discrete Solutions for
Photonic Applications. ACS Photonics 2023, 10, 836−844.
(41) Xu, M.; He, Q.; Pu, M.; Zhang, F.; Li, L.; Sang, D.; Guo, Y.;
Zhang, R.; Li, X.; Ma, X.; Luo, X. Emerging Long-Range Order from a
Freeform Disordered Metasurface. Adv. Mater. 2022, 34, 2108709.
(42) Roche, S.; Bicout, D.; Maciá, E.; Kats, E. Long Range
Correlations in DNA: Scaling Properties and Charge Transfer
Efficiency. Phys. Rev. Lett. 2003, 91, 228101.
(43) Yu, S.; Piao, X.; Hong, J.; Park, N. Bloch-like waves in random-
walk potentials based on supersymmetry. Nat. Commun. 2015, 6,
8269.
(44) Steinhardt, P. J.; Nelson, D. R.; Ronchetti, M. Bond-
orientational order in liquids and glasses. Phys. Rev. B 1983, 28,
784−805.
(45) Kansal, A. R.; Truskett, T. M.; Torquato, S. Nonequilibrium
hard-disk packings with controlled orientational order. J. Chem. Phys.
2000, 113, 4844−4851.
(46) Lechner, W.; Dellago, C. Accurate determination of crystal
structures based on averaged local bond order parameters. J. Chem.
Phys. 2008, 129, 114707.
(47) Baig, A. Q.; Imran, M.; Ali, H. On topological indices of poly
oxide, poly silicate, DOX, and DSL networks. Can. J. Chem. 2015, 93,
730−739.
(48) Ghani, M. U.; Sultan, F.; Tag El Din, E. S. M.; Khan, A. R.; Liu,
J.-B.; Cancan, M. A Paradigmatic Approach to Find the Valency-
Based K-Banhatti and Redefined Zagreb Entropy for Niobium Oxide
and a Metal−Organic Framework. Molecules 2022, 27, 6975.
(49) Arsuaga, J.; Vazquez, M.; McGuirk, P.; Trigueros, S.; Sumners,
D. W.; Roca, J. DNA knots reveal a chiral organization of DNA in
phage capsids. Proc. Natl. Acad. Sci. U. S. A. 2005, 102, 9165−9169.
(50) Lua, R. C.; Grosberg, A. Y. Statistics of Knots, Geometry of
Conformations, and Evolution of Proteins. PLOS Computational
Biology 2006, 2, e45.

(51) Kondakci, H. E.; Abouraddy, A. F.; Saleh, B. E. A. Lattice
topology dictates photon statistics. Sci. Rep. 2017, 7, 8948.
(52) Roy, P. K.; Heuer, A. Ring Statistics in 2D Silica: Effective
Temperatures in Equilibrium. Phys. Rev. Lett. 2019, 122, No. 016104.
(53) Murakami, M.; Kohara, S.; Kitamura, N.; Akola, J.; Inoue, H.;
Hirata, A.; Hiraoka, Y.; Onodera, Y.; Obayashi, I.; Kalikka, J.; Hirao,
N.; Musso, T.; Foster, A. S.; Idemoto, Y.; Sakata, O.; Ohishi, Y.
Ultrahigh-pressure form of $\mathrm{Si}{\mathrm{O}}_{2}$ glass
with dense pyrite-type crystalline homology. Phys. Rev. B 2019, 99,
No. 045153.
(54) Stanifer, E.; Manning, M. L. Avalanche dynamics in sheared
athermal particle packings occurs via localized bursts predicted by
unstable linear response. Soft Matter 2022, 18, 2394−2406.
(55) Harris, A. B. Effect of random defects on the critical behaviour
of Ising models. Journal of Physics C: Solid State Physics 1974, 7, 1671.
(56) Anderson, J. A.; Antonaglia, J.; Millan, J. A.; Engel, M.; Glotzer,
S. C. Shape and Symmetry Determine Two-Dimensional Melting
Transitions of Hard Regular Polygons. Physical Review X 2017, 7,
No. 021001.
(57) Li, Y.-W.; Ciamarra, M. P. Accurate determination of the
translational correlation function of two-dimensional solids. Phys. Rev.
E 2019, 100, No. 062606.
(58) Xu, X.; Cisewski-Kehe, J.; Green, S. B.; Nagai, D. Finding
cosmic voids and filament loops using topological data analysis.
Astronomy and Computing 2019, 27, 34−52.
(59) Heydenreich, S.; Brück, B.; Harnois-Déraps, J. Persistent
homology in cosmic shear: Constraining parameters with topological
data analysis. Astronomy & Astrophysics 2021, 648, A74.
(60) Cramer Pedersen, M.; Robins, V.; Mortensen, K.; Kirkensgaard,
J. J. K. Evolution of local motifs and topological proximity in self-
assembled quasi-crystalline phases. Proceedings of the Royal Society A
2020, 476, 20200170 Place: London Publisher: Royal Soc
WOS:000571133900001.
(61) Hiraoka, Y.; Nakamura, T.; Hirata, A.; Escolar, E. G.; Matsue,
K.; Nishiura, Y. Hierarchical structures of amorphous solids
characterized by persistent homology. Proc. Natl. Acad. Sci. U.S.A.
2016, 113, 7035−7040.
(62) Ormrod Morley, D.; Salmon, P. S.; Wilson, M. Persistent
homology in two-dimensional atomic networks. J. Chem. Phys. 2021,
154, 124109.
(63) Hirata, A.; Wada, T.; Obayashi, I.; Hiraoka, Y. Structural
changes during glass formation extracted by computational homology
with machine learning. Communications Materials 2020, 1, 98.
(64) Onodera, Y.; Kohara, S.; Salmon, P. S.; Hirata, A.; Nishiyama,
N.; Kitani, S.; Zeidler, A.; Shiga, M.; Masuno, A.; Inoue, H.; Tahara,
S.; Polidori, A.; Fischer, H. E.; Mori, T.; Kojima, S.; Kawaji, H.;
Kolesnikov, A. I.; Stone, M. B.; Tucker, M. G.; McDonnell, M. T.;
et al. Structure and properties of densified silica glass: characterizing
the order within disorder. Npg Asia Materials 2020, 12, 85.
(65) Membrillo Solis, I.; Orlova, T.; Bednarska, K.; Lesiak, P.;
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