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This thesis will cover the development of holographic domain wall models, inspired

by implementations of chiral fermions on the lattice. Starting in the D3/D7 holo-

graphic system, and solving the Dirac-Born-Infeld (DBI) action for the sinusoidal

embedding of the probe sevenbranes, a spatially dependant, step-like mass term for

quarks in the dual theory can be included. Where this mass profile sharply passes

through zero, massless quarks are isolated on co-dimension one domain wall defects

in the dual gauge theory. Development of the large mass limit, allows us to exam-

ine fluctuations in the dimensionally reduced theory living on the domain walls.

We show that the domain wall theory is capable of dynamically generating mass

for the dimensionally reduced quarks, complete with a Gell-Mann-Oakes-Renner

relation between the masses of quarks, and pseudoscalar mesons, indicating the

spontaneous breaking of “chiral” symmetry. With the construction of the holo-

graphic domain walls understood, we implement them on the field theory limit of

the D5/D7 intersection. This system is holographically dual to a 4+1 dimensional

theory of quarks in a 5+1 dimensional confining gauge background. The resulting

domain wall theory consists of 3+1 dimensional quarks in a confining geometry,

and posesses neither conformal symmetry, nor supersymmetry. We dub this model

Domain Wall AdS/QCD, and present a numerical calculation of its spectrum of

mesonic observables. By including a black hole in the geometry, we can examine

the phase transitions of the model at finite temperature, and find that there is a

second order meson-melting transition.
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Chapter 1

Introduction

Quantum Chromodynamics, or QCD, is a quantum field theory that describes the

interactions of elementary quarks and gluons. It is asymptotically free [4]; which

is to say that at high energy scales, it approaches a free field theory of quarks and

gluons. However at low energy scales non-perturbative dynamics dominate. The

QCD vacuum, a far cry from the peace of the electromagnetic vacuum, froths vio-

lently with quarks and gluons. The theory confines the colour degrees of freedom,

and the quarks and gluons join together to form the spectrum of colour singlet

bound states which are observed in experiment. This has been verified in com-

putational studies of QCD done on discrete euclidean space-time lattices, where

confininement is characterised by area-law behaviour of gauge invariant operators,

called Wilson loops [5]. Outside of lattice studies, there are few approaches that

are capable of characterising the non-perturbative behaviour of QCD. It is here at

the low energies where we are presented with an issue. We lack the proper tools

to calculate in the non-perturbative regime of quantum field theories (outside of

a few special cases with greatly enhanced symmetry, such as [6]). We will circum-

vent this by turning to gravity.

Gravity is an altogether different beast. It is most successfully described by a

classical theory, General Relativity [7], which tells us that gravity arises from the

geometry of spacetime itself. Attempts to quantize gravity, and put it on a similar

footing to the rest of the standard model, have been numerous. However, field the-

ory approaches seem plagued by divergences and non-renormalisability [8]. String

theory stands as a leading candidate for a quantum theory of gravity and contains

in its spectrum spin 1, 1/2 and 0 excitations. This would allow it to describe mat-

ter, the gauge fields that carry the fundamental forces, and gravity, which make

it a candidate theory of everything. Perhaps the most striking feature of string
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theory are its dualities, which map between the various string theories suggesting

that they are all limits of some unknown parent theory. It is with one particular

duality that this thesis will be concerned. The AdS/CFT correspondence, con-

jectured by Maldecena in 1997 [9], sets out the duality between type IIB string

theory on five dimensional Anti-de-Sitter space (times a five sphere) and maxi-

mally supersymmetric Yang-Mills theory in 4 dimensions. This duality is striking

for a number of reasons: firstly, it is a duality between a theory containing gravity

and a non-gravitating theory (in this case a gauge theory); and secondly it is a

duality which links the strong coupling regime of one theory, with the weak cou-

pling limit of the other. This opens the window to many possiblities and has, in

the 25 years since its inception, revolutionised high-energy physics. There have

been an incredible number of checks across either side of this duality, matching

elements of the holographic dictionary. One early example of this was the work by

Witten [10], matching of spectrum of Kaluza-Klein modes in IIB supergravity on

AdS5 × S5 to the chiral operators of N = 4 Super-Yang-Mills (SYM). Here it was

identified that the field theory could be thought of as “living” on the asymptotic

conformal boundary of the space.

Whilst one may use such dualities, to attempt to understand the nature of quan-

tum gravity; our goal going forward will be to examine the non-perturbative regime

of quantum field theories. In particular, we will exploit the dual nature of non-

perturbative objects in string theory, called D-branes, to construct a top-down

holographic model of low energy QCD. There are rich non-perturbative phenom-

ena associated with strongly coupled QCD, such as the dynamical breaking of

chiral symmetry and confinement, that are difficult to describe in perturbative

field theory. Through holography, we will come to understand these features in

terms of simple geometry.

This thesis will be structured as follows: Chapter 2 will discuss the relevant the-

oretical background on the gauge theory side of the duality. Namely, it will be a

discussion of Non-Abelian Gauge theories and QCD. The chapter will review some

of the aspects of these theories which are most puzzling from the perspective of

field theory. Chapter 3 will be devoted to the relevant background in string theory

and supergravity, it will discuss some of the historic origins of string theory, as a

theory of Hadrons, and will cover some of the essential non-perturbative ingredi-

ents, such as D-branes which are the real main characters of this story. Chapter 4

will discuss domain walls, and some of the context (and inspiration) from lattice

field theory. This chapter will then go on to discuss our domain wall construction

in the D3/D7 brane intersection. The D3/D7 domain wall system, first detailed

in [1], which is dual to a theory of “chiral” fermions in 2+1 dimensions. Chapter
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5 will go on to discuss the construction (and spectrum) of the D5/D7 domain wall

model, dual to a 3+1 dimensional confined model of quarks and gluons, which

we dub Domain Wall AdS/QCD [2]. Chapter 6, will then examine the D5/D7

model in a black brane background, dual to a 3+1 dimensional model of gluons

and quarks at finite temperature [3].
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Chapter 2

Non-Abelian Gauge Theories and

QCD

This chapter will cover some of the requisite theoretical background pertaining to

Quantum Chromodynamics. It is by no means intended to be a historical record of

the strong force, indeed the history of QCD is both long and fascinating, with the

close interplay of experiment and theory throughout the mid 20th century. Instead

this chapter will aim to be a relatively concise introduction to Non-Abelian gauge

theories, and some of the properties and behaviour that makes them interesting!

We will start by writing down the QCD Lagrangian, and discussing some of the

behaviour at high energies, where the theory is weakly coupled. Here we can do

trustworthy perturbative calculations in quantum field theory. The calculation

of the running of the Yang-Mills coupling, due to Gross and Wilczek [4], reveals

two interesting facets of QCD: Firstly, that the coupling constant runs to zero in

the far UV, and the theory is asymptotically free; secondly that in the IR, the

theory becomes very strongly coupled and we lack the ability to do perturbative

computations in quantum field theory. The strong coupling regime of QCD is

somewhat of a mystery from a theoretical standpoint, and understanding: the

confinement of colour, the masses of hadrons, and their emergence from the QCD

Lagrangian as degrees of freedom is still out of reach. Still theorists persevere and a

phenomenological model exists, that describe the dynamics of mesons based on the

approximate chiral symmetry of QCD, called chiral perturbation theory (or χPT).

Methods do exist to tackle QCD non-perturbatively. The most prominent of these

is lattice QCD, wherein the background spacetime is treated as a discrete Euclidean

lattice of finite size1 on which QCD can be tackled using Monte-Carlo methods. It

1a T 4 lattice to be precise
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should be said here that appropriately discretising the QCD lagrangian seemingly

recovers the wealth of emergent long range phenomena when moving to the strong

coupling regime. It is also possible in principle to solve the renormalisation group

flow equations exactly, which would provide the ability to calculate at strong

coupling. This approach, known as the functional renormalisation group, or fRG,

in the context of QCD is reviewed here [11] (though with emphasis on QCD at

finite density and temperature). A great deal of progress was made in the late

90’s on the supersymmetric relatives of QCD [6, 12]. Here the greatly enhanced

symmetry of the theory, and subsequent applicability of the tools of complex

analysis, allowed a first analytic example of confinement in gauge theories. It

is not yet known whether the mechanisms discussed in these theories extend to

their less supersymmetric cousins. Another notable avenue of approach is through

String Theory, which will be discussed in much more detail in Chapter 32. String-

like behaviour is common in non-abelian gauge theories, and indeed QCD contains

a kind of string! It is not a “fundamental string” but a tube of colour flux that

stretches between spatially separated quarks and anti-quarks. This string-like

behaviour will be discussed towards the end of the chapter, and will culminate in

a discussion of Yang-Mills theory at “large N”. It is here that stringiness comes

to the foreground. The Feynman diagrams are best organised by their topology,

and alongside the t’Hooft double line formalism, there is a striking resembelance

to string perturbation theory (where instead of Feynman diagrams, we have string

world-sheets organised by their Euler characteristic). Lastly we will discuss the

confinement of colour charged degrees of freedom, and the characterisation of the

confined phase of QCD by Wilson loops.

We will start by examining the Lagrangian density that describes QCD, which can

be written neatly as3

LQCD = −1

4
Gµν,aG

µν
a +

∑︂
f

ψ̄f

(︁
i /D −mf

)︁
ψf , (2.1)

but the simplicity of this closed form masks a great deal of complexity underneath

the surface. We will start by discussing the matter content of the Lagrangian.

There are six Dirac fermions, ψf , that can roughly be grouped4 into the “light”

quarks: the up u, the down d, and the strange s quarks; and the “heavy” quarks:

the charm c, bottom b, and top t quarks. These quarks are interesting objects in

2and indeed, the rest of this thesis.
3There could also be a term proportional to G ∧G and a “gauge fixing” term, but these will

not be discussed here.
4based on their relative masses
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their own right. For one they are never seen as asymptotic states in scattering

experiments, and for a long time were considered merely a mathematical device to

describe the observed groupings of the mesons and baryons. After the results from

the Deep Inelastic Scattering (DIS) experiments at the Stanford Linear Accelerator

Centre (SLAC) in 1968, it became clear that the hadrons had substructure [13, 14].

Whilst the quarks were not observable, they are physical and must carry internal

degrees of freedom to describe the proton. This internal degree of freedom is

known as ‘colour’. In more mathematical terms, the quarks are fermions that

transform in the fundamental representation of the gauge group SU(3). In order

to make the symmetry under SU(3) transformations local, there must be a vector

field that “carries the colour force”. These are the eight gluons, who form an

adjoint representation of SU(3), (Aµ)ij = (t)aijA
a
µ, where the matrices taij are the

generators of the adjoint representation of SU(3), commonly parameterised as

the Gell-Mann matrices, ta = λa/2. These fields allow us to write down a gauge

covariant derivative,

Dµ = ∂µ − igAa
µt

a, (2.2)

such that under a transformation

ψ(x) → V (x)ψ(x), V (x) ∈ SU(3) (2.3)

the covariant derivative of ψ transforms in the same way5

Dµψ(x) → V (x) (Dµψ(x)) . (2.4)

A more mathematical way to talk about this is to realise that the gauge field

Aµ is infact a connection!6 Equivalently we can then define a curvature from the

covariant derivatives,

Gµν,a =
i

g
[Dµ, Dν ]a = ∂µAν,a − ∂νAµ,a + gfabcAµ,bAν,c (2.5)

where the structure constants fabc comes from the commutator of the matrices ta,

which satisfy

[ta, tb] = ifabctc. (2.6)

A clear difference between QCD and Quantum Electrodynamics, is the presence of

the last term in Equation 2.5, which arises because the gluon fields Aµ are matrix

5thus the kinetic term iψ̄γµDµψ is both a lorentz scalar, and gauge invariant.
6The pullback of the connection on the principle bundle M×G, to the base space M.
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Figure 2.1: Schematic forms of the interaction vertices in QCD: The quark-
gluon, three gluon, four gluon, and ghost-gluon vertices are depicted.

valued, and as such their commutator does not vanish. As a result the QCD la-

grangian contains a self interaction term for the gluons, including both three and

four gluon interactions, stemming from the Tr G2 term; and an interaction between

the quarks and gluons, from the ψ̄ i /Dψ term. To calculate physical observables,

one must also “fix the gauge”. This involves removing, one way or another, un-

physical degrees of freedom baked into the theory. Using the Faddeev-Poppov

procedure as an example7, one introduces unphysical states that only appear at

loop level, Faddeev-Poppov ghosts, which are Grassman valued scalar fields [15].

When properly accounted for these extra fields remove the extra unphysical de-

grees of freedom. As a result, there is another interaction term, though one that

should only formally show up at loop level, because the ghost fields cannot lead to

asymptotic particle states. This interaction vertex is a ghost-ghost-gluon vertex.

All the interaction vertices of the theory are displayed schematically in Feynman

diagram form in Figure 2.1.

2.1 QCD across the scales

Any discussion of QCD would be remiss without at least a mention of the renor-

malisation of the QCD coupling. The basic interaction vertex between quarks

and gluons at one loop order, receives contributions from eight diagrams, which

are displayed in Figure 2.2. These contributions can roughly be grouped into:

the tree level contribution, external leg corrections, one particle irreducible vertex

corrections, and counter terms which absorb the ultraviolet divergence from the

diagrams. They must also be defined with respect to a reference scale, M1, such

that the higher order contributions vanish at this scale, and the interaction is well

described by the tree level diagram. Interactions at a different scale, M2 ̸=M1 are

then described by the full set of diagrams in the perturbative expansion. Equally

7other gauge-fixing methods are available
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Figure 2.2: A schematic drawing of the Feynman graphs that contribute to
the quark-gluon interaction vertex at one loop.

one could have initially decided that M2 was a good reference scale, and then one

would define their renormalisation scheme at this scale, setting the corrections to

vanish at M2. However this potentially presents a contradiction, the way out of

which is to realise that the coupling constant is not a constant at all. It must be

dependant on the scale at which it is measured8. One can then calculate, at one

loop from the diagrams in Figure 2.2, the (logarithmic) variation in the coupling

at an arbitrary scale µ. This result is known as the “beta function” and was cal-

culated at one loop in QCD by Gross and Wilczek in 1973, for which they would

win the Nobel prize in 2004. The one loop result is

βQCD(g) =
∂g(µ)

∂ log(µ)
= −

(︄
11

3
C2(G)−

4

3
nfT (R)

)︄
g3

(4π)2
(2.7)

where C2(G) is the quadratic Casimir invariant of the gauge group G, nf is the

number of Dirac fermions, and T (R) is a Casimir of the representation of the gauge

group that the fermions transform under. For nf fermions in the fundamental

representation of SU(3), this evaluates to

βQCD(g) = −
(︃
11− 2

3
nf

)︃
g3

(4π)2
(2.8)

which for fewer than 33/2 Dirac fermions, has an overall negative sign. The

negativity of βQCD has vast physical significance, and implies that the physical

8outside of a special class of theories with enhanced symmetry.
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coupling at a scale µ, which can be solved from (2.7)

g2(µ) =
g20

1 +
g20

(4π)2

[︁
11
3
C2(G)− 4

3
nfT (R)

]︁
log
(︁

µ
M

)︁ . (2.9)

with reference to the coupling at scale M , g0 = g(M), vanishes asymptotically.

Conversely there is a scale at which the coupling begins to diverge, even from the

näıve one loop calculation. This is not obvious from (2.9) and the scale at which

the theory becomes very strongly coupled is not determinable from first principles,

being generated by the dynamics of the theory itself! We can however estimate it

from experiments, which give a typical determination of ΛQCD ∼ 200 - 300 MeV.

It is at energy scales below ΛQCD that the theory is its most mysterious!

Perhaps a sensible avenue of approach to QCD at long distances is to discuss the

symmetries of the theory. As mentioned previously there is a local, or gauge, sym-

metry under SU(3) transformations that forms the backbone of QCD. This is not

the only symmetry that the theory possesses! It is invariant under Lorentz trans-

formations, and under the combined actions of charge conjugation (C), parity (P),

and time reversal (T), known collectively as CPT. There is also an approximate

SU(3) flavour symmetry. The interactions in QCD are “flavour blind” in that

they treat the six quark flavours identically, the real difference comes down to

the quark masses. The three lightest quarks: the up, down and strange; all have

masses that are small compared to typical nuclear binding energies, and thus there

is an approximate SU(3) global symmetry that rotates between them. This is a

different symmetry from the local SU(3) colour gauge symmetry that the quarks

are charged under. A consequence of this is that the mesonic bound states of

quarks and anti-quarks arrange themselves into a representation of this symmetry,

the so-called eightfold way [16, 17, 18]. Within this SU(3) symmetry is an SU(2)

subgroup of rotations between the up and down quarks dubbed isospin9. This is

due to the difference in masses between the up and down quarks, around ∼ 2 MeV

and ∼ 5 MeV respectively, compared to the strange quark which weighs in at ∼ 95

MeV. Whilst these are only approximate symmetries, they proved to be effective

organising principles for the slew of QCD bound states discovered at collider ex-

periments in the mid 20th century. In the limit that we take the quarks to be

massless, the QCD Lagrangian has an enhanced U(Nf )R × U(Nf )L flavour-chiral

symmetry, which will play a large role in the discussion to come. This particular

symmetry is interesting because it is dynamically broken; meaning that while it is

9Historically, isospin was a symmetry between nucleons, though this later turned out to be a
reflection of the approximate symmetry of their constituent quarks.
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a symmetry of the Lagrangian, it is not a symmetry respected by the QCD vac-

uum. Still for the discussion of the low energy properties of QCD this symmetry

is a good starting point. The U(NF )L × U(NF )R symmetry can be decomposed

into SU(NF )L×SU(NF )R×U(1)B ×U(1)A, of the two U(1) symmetries, only the

U(1)B associated with the conservation of baryon number survives. The U(1)A

symmetry, associated with axial transformations is broken by anomalies. Includ-

ing a quark mass term, even one proportional to the identity, explicitly breaks the

SU(NF )L × SU(NF )R to the diagonal subgroup SU(NF )V . This can be seen by

the following, imagine a quark mass term in three flavour QCD

q̄L,iMijqR,j + h.c. (2.10)

where Mij is a 3× 3 matrix, and the i, j run over three quark flavours. Under an

SU(3)L × SU(3)R transformation this term becomes

q̄LL
†MijRqR + h.c. (2.11)

Taking a case where you haveMij ∼ mδij, then it becomes clear that the subgroup

of these transformations that leaves this mass term invariant must also obey L†R =

I3×3, and thus we have the breaking of SU(3)L×SU(3)R to the “vector” subgroup

SU(3)V , though this is an explicit breaking of the symmetry. If this symmetry

is spontaneously broken it will come along with a set of Goldstone bosons, one

for each generator of the broken symmetry. The Goldstone bosons in this case

are the light pseudoscalar mesons, which form an SU(3) octet. So to examine

this symmetry further, we should write down a Lagrangian consistent with the

symmetries that describes the Goldstone bosons. This is commonly done in the

form of a non-linear sigma model, known as chiral perturbation theory (for an

introduction see [19]). We will start from a non-linear realisation of the chiral

symmetry10, starting from an exponential of the eight Goldstone boson fields,

noted πa,

U = exp
(︂
2iΠ̃/f

)︂
, (2.12)

with11

Π̃ = πaTa, (2.13)

where U is both a unitary, and unimodular, 3 × 3 matrix; f is a constant with

dimensions of mass; and the Ta are the generators of SU(3). Requiring that U

10much of the following was taken from Howard Georgi’s book [20], which has a nice section
on chiral Lagrangians

11the overhead tilde will denote this contraction on SU(3) indices in this section
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transforms linearly under SU(3)× SU(3) we have

U → U ′ = LU R† = exp (2iπ′
aTa/f) (2.14)

we may then parameterise the matrices L, and R as

L = eic̃eiϵ̃, R = e−ic̃eiϵ̃, (2.15)

where the ca and ϵa’s are real parameters. If ca = 0, then the transformation

U → LU R† = eiϵ̃ U e−iϵ̃ (2.16)

is an ordinary SU(3) transformation, and the ϵa’s parameterise the SU(3)V sub-

group that is left unbroken. Conversely if the ϵa’s are set to zero then the trans-

formation must be a purely chiral transformation, under which U transforms as

U → U ′ = e2iπ
′
aTa/f = eic̃ U eic̃ (2.17)

expanding the exponential functions in term of the matrices Π̃ and c̃, we see that

Π̃
′
= Π̃ + f c̃ (2.18)

and the inhomogeonous term is a sign of the spontaneous breaking of the flavour-

chiral symmetry to the vector subgroup. Writing the simplest Lagrangian that

nonlinearly realises the SU(3) × SU(3) symmetry12, to lowest order we have the

two-derivative term

f 2

4
tr
(︁
∂µU

†∂µU
)︁
∼ 1

2
∂µπa∂

µπa + ... (2.19)

where the prefactor f 2/4 is chosen to canonically normalise the kinetic term for

the Goldstone modes, and the higher order terms include the self-interactions of

the Pions. Including classical sources in the Lagrangian for massless QCD we have

L = LQCD
0 + q̄γµ (vµ + aµγ5) q − q̄ (s+ ipγ5) q (2.20)

or written in terms of the chiral quark variables

L = LQCD
0 + q̄Lγ

µlµqL + q̄Rγ
µrµqR − q̄R(s+ ip)qL − q̄L(s− ip)qR (2.21)

12to avoid introducing extra fields that do not describe the Goldstone modes
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where the lµ = vµ + aµ, and rµ = vµ − aµ act as classical gauge fields for the

SU(3)L and SU(3)R symmetries respectively, transforming as

rµ → RrµR
† + iR∂µR

†

lµ → LlµL
† + iL∂µL

†

s+ ip→ R(s+ ip)L† (2.22)

we must also include these in the low energy effective theory, if we are to properly

discuss symmetry breaking, and the pseudo-Goldstone nature of the light mesons.

Generically we will have some Lagrangian that is L = L(U, r, l, s, p), naturally
the derivatives in (2.19) should be promoted to covariant derivatives to reflect the

introduction of the gauge fields lµ, rµ. The unique lowest order term that includes

the s, p and U is

v3tr (U(s+ ip)) + h.c. (2.23)

With the constant v added in on dimensional grounds. We can see from (2.21)

that the combination s + ip mixes the left and right handed quarks, and so acts

like a mass term. Setting s = diag(m,m,M)13 and p = 0, and expanding U in

powers of Π̃ yields at lowest order a term quadratic in Π

L ⊃ −4
v3

f
tr
(︂
sΠ̃

2
)︂

(2.24)

which is the mass term of a scalar field theory −1
2
m2ϕ2. Writing explicitly the

matrix Π̃ in terms of the pseudoscalar meson octet, we have

Π̃ ∼

⎛⎜⎝π
0 + η/

√
6 π+ K+

π− −π0 + η/
√
6 K0

K− K0 −2η/
√
6

⎞⎟⎠ (2.25)

expanding this in terms of the fields πa, particularly for the pion, reveals that

m2
π = 4

v3

f 2
m. (2.26)

This is the Gell-Mann-Oakes-Renner relation, and tells us that for small quark

masses, the square of the pion mass is linear in the quark mass. This will appear

frequently later when we discuss the holographic models of Chapters 4 and 5, and

is characteristic pseudo-Goldstone bosons.

There is much more that could be discussed within the remit of chiral perturbation

13this is the limit of isospin invariance, with small mu = md ̸= ms
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theory, inclusion of higher orders in the momenta presents a phenomenologically

viable model of low energy QCD in terms of the psuedo-scalar mesons. Interest-

ingly, this model presents the possiblity of studying single baryon systems which

appear as soliton (this is discussed in some detail in the context of QCD here [21]).

A non-trivial field configuration, that whilst satisfying the equations of motion,

does not have zero action. Solitons, and instantons, in gauge theories present their

own subfield of theoretical physics that is well developed and will not be discussed

here14. Indeed there are a few more relevant areas that should be mentioned in

this chapter before moving on, the next of which will be the large N limit of Yang-

Mills theories [22].

2.2 Large N

The idea behind the large N limit, is to imagine that one has a Yang-Mills theory,

gauged under SU(N), where both the number of colours N and the gauge coupling

g are arbitrary parameters that one can choose at will, and quark multiplets trans-

forming in the fundamental representation of SU(N). The Lagrangian associated

with such a theory is, with the colour indices, i, j written explicitly,

L = −1

4
(Fµν)i

j (F µν)j
i +
∑︂
f

ψ̄
f
i (i /D −m)ψi,f . (2.27)

Where there is a gauge covariant derivative, defined similarly to 2.2 but withN2−1

“gluon” fields and the N2 − 1 generators ta of SU(N), and Fµν is a field strength

tensor defined as the commutator of gauge covariant derivatives (as in (2.5)). The

Feynman rules for this theory can then be written in terms of oriented sets of

lines (and famously double lines), which show the contraction of colour indices.

A diagrammatic representation of the vertices in large N QCD is displayed in

Figure 2.3. Including c-number sources on the external legs, which functionally

ties up external lines, the Feynman diagrams become sets of polygons stuck on a

two dimensional surface. Gluon lines, noted by the double solid lines then act like

rules for gluing the polgyons together, into a solid surface. Wherever a colour line

is closed, the diagram picks up a combinatoric factor of N . This closed line can

be counted by the number of faces of the various polygons on the two dimensional

surface. Each vertex in the theory carries a similar combinatoric factor of N , and

the edges carry a factor of 1/N . Näıvely counting the powers of N in a diagram

14this thesis needs to be a reasonable length after all.
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with V vertices, E edges, and F faces, one arrives at

power of N multiplying the diagram = NF+V−E (2.28)

This combination F + V − E is the famous Euler characteristic, χ, of a surface

and is a topological invariant. It can alternatively be written as χ = 2−2g, where

g is the genus of a surface, and so

NF+V−E = N2−2g, (2.29)

and we see that the diagrams arrange themselves not by powers of gauge couplings,

or number of loops, but by the topology of the diagrams themselves! In this

limit, the leading diagrams are not the tree level, but the planar diagrams. That

is, diagrams with genus zero. This is a striking feature of the large N limit of

gauge theories, and is a first hint of the emergence of stringy behaviour. In string

theories, the perturbation series for calculating the scattering of string states comes

with powers of the string coupling gs that increase with the genus of the string

worldsheet, though this will be discussed more in the next chapter. Indeed it is

still anticipated that true dual of large N Yang-Mills theory, or QCD, at strong

coupling is likely a non-critical string theory living in some five dimensional space

[23]. This is not the only sign of string-like physics in QCD. Studies of QCD on the

lattice reveal that tubes of chromoelectric flux stretch between spatially separated

quarks and anti-quarks. This picture originates from the “dual superconductor”

picture of the QCD vacuum, where confinement is the product of the condensation

of chromomagnetic charges which cause the confinement of electric flux akin to

the confinement of magnetic flux in the BCS theory of superconductors [24, 25].

2.3 Confinement

The final aspect of QCD that we will discuss in this chapter, having been men-

tioned off-handedly before, is confinement. At collider experiments, only colour

singlet states such as mesons and baryons have been detected as asymptotic states.

This is a property of QCD for which the evidence is almost purely experimental,

and experimental searches have produced no evidence of free quarks [26]. Lattice

QCD provides numerical results which support the claim that quarks are confined.

A paper written by Wilson [5] discusses confining behaviour in terms of non-local

gauge invariant operators, called Wilson loops. The Wilson loops are defined as



16 Chapter 2. Non-Abelian Gauge Theories and QCD

Figure 2.3: Vertices in QCD (Left), and their analogue at large N (Right)

the trace of path ordered integrals of gauge fields around a closed loop15, or

W [γ] = tr

(︃
P exp

[︃
i

∮︂
γ

Aµdx
µ

]︃)︃
, (2.30)

where γ is a closed path in the background space. This operator acts as an order

parameter of theory, where its expectation value characterises the phase of the

15or as the trace of the holonomy of the gauge connection
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theory16 . In this case, we are interested in whether the theory is in a confined, or

deconfined phase. For example in pure Yang-Mills theory the expectation value

for the Wilson loop gives an area law in the confined phase,

⟨W [γ]⟩ ∝ e−A[γ] (2.31)

where A[γ] is the area enclosed by the loop γ; and a perimeter law in the deconfined

(or Higgs) phase

⟨W [γ]⟩ ∝ e−L[γ] (2.32)

where similarly L[γ] is the length of the loop γ. To motivate the first of these

results consider a rectangular Wilson loop, in the (t, x) plane, with sides R, T and

T >> R. In axial gauge17 we have A0 = 0 and only the component in the x axis

contributes to the Wilson loop,

⟨W [γ]⟩ =
⟨︃
Pexp

[︃
i

∫︂ R

0

A1(t = 0)dx1 − i

∫︂ 0

R

A1(t = T )dx1
]︃⟩︃

. (2.33)

Writing this in a slightly different notation, with

Ψij(t) = Pexp
[︃
i

∫︂ R

0

A1(t)dx
1

]︃
ij

(2.34)

where i, j are SU(3) indices, we have

⟨W [γ]⟩ = ⟨Ψij(t = 0)|Ψ†
ij(t = T )⟩. (2.35)

By inserting a complete set of states we have

⟨W [γ]⟩ =
∑︂
n

⟨Ψij(0)|n⟩⟨n|Ψ†
ij(T )⟩ =

∑︂
n

|⟨Ψij(0)|n⟩|2e−EnT (2.36)

and at very long times, the dominant contribution is the ground state so

⟨W [γ]⟩ ∝ e−E0T . (2.37)

A characteristic of the confining phase is that the potential between two spatially

separated quark anti-quark pairs grows linearly, V (r) ∼ σr, with thier separation

16This is true in pure Yang-Mills theory, however light quarks can break extended Wilson
lines/loops. So formally there is no order parameter in a theory with light quarks.

17This argument comes from a nice review of Wilson loops and large N written by Yuri Makeeno
[27]
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r. Thus if we attribute the rectangular Wilson loop to the interaction of a sepa-

rated quark anti-quark pair we have E0 = V (R) ∼ σR, and

⟨W [γ]⟩ ∼ e−σRT = e−σA. (2.38)

The variable σ has dimensions of energy per unit length, and is called the QCD

string tension. We will see a holographic representation of this area law in the

next chapter.

2.4 Summary

This chapter has been a lightning review of some of the salient features of quantum

chromodynamics. It is by no means comprehensive, but has touched upon some

of the aspects that make QCD particularly fascinating. Starting by writing the

QCD Lagrangian, and showing the interaction vertices, and going from there to

sketch the famous β function calculation which reveals the asymptotic freedom of

the theory. We then discuss the symmetry structure of the theory, stopping for a

while to examine the flavour-chiral symmetry that the Lagrangian enjoys in the

chiral limit, and talk about how it is broken by the QCD vacuum, with an aside

on chiral Lagrangians to uncover the Gell-Mann-Oakes-Renner relation that we

will later come across in a holographic setting. The next significant thing to talk

about, particularly for later discussion, is the large N limit of Yang-Mills theo-

ries and QCD. In this limit the leading contributions in the perturbation series

come from planar diagrams (which can be drawn on a two dimenisonal surface

of genus zero). Lastly we discuss perhaps the most mysterious feature of QCD

from a theoretical perspective, colour confinement. Whilst the mechanism behind

confinement remains a mystery from a theoretical perspective, we know how to

characterise the confined phase in terms of Wilson loops, which act as order pa-

rameters for the confined phase.

The next chapter will go on to cover some of the necessary ingredients of string

theory, and the AdS/CFT correspondence18. We will see direct holographic in-

terpretations of the phenomena mentioned in this chapter, such as confinement

and chiral symmetry breaking, which manifest geometrically in the dual gravity

theory.

18or gauge/gravity correspondence, or holography, as the reader prefers.
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Chapter 3

Strings, Branes and Supergravity

This chapter will be devoted to the discussion of the aspects of string theory that

are required for understanding holographic approaches to QCD. We will begin with

a short reflection on the history of string theory, before going on to discuss the

spectrum of the bosonic string; showing that the lowest lying modes on the open

string describe spin one gauge fields, and that the low energy modes on the closed

string include a massless spin two field that can describe the graviton. In requiring

that these modes are massless it is revealed that string does not live in the familiar

four dimensions that are expected at low energies, but in 26 dimensions. From

here we will go on to discuss the addition of fermionic degrees of freedom to the

theory in the form of the superstring. Introducing fermions, reduces the number

of dimensions required for the theory to be consistent from 26 to 10. Some time

will be spent on the introduction of D-branes, which are non-perturbative states

in string theory first identified by Polchinski in 1995 [28] (though p-branes had

been identified as solitionic objects allowed in supersymmetric theories of gravity

earlier). These objects brought with them the second superstring revolution and

lead to the construction of more realistic low energy effective theories from the

various string theories. They break half the supersymmetries of the parent theory,

and host string states that are restricted to live on a hypersurface within the 10

dimensional bulk space. These are key ingredients necessary to come to the most

significant topic in this section, holographic duality1. We will present the results

in [9] leading to the famous AdS/CFT conjecture, that type IIB string theory

on AdS5 × S5 is dynamically equivalent to maximally supersymmetric Yang-Mills

theory in four dimensions. We will then highlight some of the key results that

have built on top of this conjecture in the nearly 26 years since its advent. One

1at least so far as this thesis is concerned
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such key result is the addition of probe branes in the supergravity theory, which

represent the inclusion of fundamental matter supermultiplets in the dual gauge

theory. This already pushes the AdS/CFT correspondence closer to being able

to describe the gauge theories that are testable in terrestrial collider experiments

(that is we can reduce the amount of supersymmetry, and can include dynamical

quarks). Lastly we will discuss some of the features that a gravity dual must

possess if it is to describe QCD at low energies, namely that there is a holographic

representation of confinement, and chiral symmetry breaking.

3.1 Early History and the Bosonic String

String theory emerged from the S-matrix program of the mid twentieth century.

Attempts were underway to bootstrap the underlying scattering amplitudes, or

elements of the S-matrix, from simple consistency conditions without relying on

some microscopic Lagrangian that describes the elementary degrees of freedom. In

a 1968 paper by Veneziano [29] an amplitude for meson scattering was presented,

which had the properties that it was symmetric under interchange of the s, t and u

channels, where s, t, and u refer to the Mandelstam variables of four-particle scat-

tering. The s channel can be interpreted as two particles, coming together to form

an intermediate state which decays into the two final states. The energy of the two

initial particles in the centre of mass frame is
√
s. Similarly, the t and u channels

can be thought of as two initial particles interacting by exchange of an intermediate

state, and in these cases the four-momentum transfer by the intermediate particle

is
√
t, and

√
u repsectively. The amplitude also displays the expected Regge be-

haviour, that the masses of particles lie on Regge trajectories, increasing linearly

with their angular momentum. This was the first of the dual resonance models,

which were early attempts at an S-matrix theory of strong interactions. Ultimately

these models were dropped in favour of Quantum Chromodynamics for a myriad of

reasons, but among them is that the amplitudes were far too soft in the ultraviolet

regime to describe the scattering of ordinary particles. This is however because

they were not describing the scattering of ordinary particles but of open string

states. This identification can be attributed to Nambu (the papers are reprinted

in [30]), Susskind [31], and Nielsen [32]. The present view of string theory is vastly

different from its original conception as a theory of hadrodynamics. It was realised

that the formula of Virasoro [33], written shortly after the Veneziano amplitude

and constructed with similar properties, described the scattering of closed string

states. Among the closed string states is a massless spin two particle which is
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not a desirable feature of a theory of the strong interaction. Alongside this it was

realised that the model comes with a critical dimension [34]2, a natural number of

physical spacetime dimensions that the model lives in, where dynamics simplify.

In this case it was noted that unless the model lived in 26 spacetime dimensions,

the theory would not have space-time Lorentz symmetry. These features, and the

aforementioned rise of QCD, meant that string theory fell from grace as a model

of hadrons. However, it is prescisely these properties that make it a candidate

theory of quantum gravity. In a 1974 paper by Scherk and Schwarz [35] it was

realised that fluctuations on the closed string had the right properties to be a

candidate graviton, and that in a low energy limit general relativity emerged from

the theory3. Moreover, with the inclusion of massless vector degrees of freedom,

it was suggested that string theory might be a candidate unified theory of grav-

ity with electroweak interactions. In the six short years between the advent of

dual resonance models, there was an abundance of papers, that took us from a

model of Hadrodynamics, to a potential theory of unified interactions. It would

be another ten years before the landmark paper of Green and Schwarz [36] which,

by examining anomaly cancellation in the type I superstring, recognised that the

gauge anomalies only cancel if the gauge group is either SO(32) or E8×E8. Both

of these groups are large enough to contain the standard model gauge group as

a subgroup, and thus the superstring may be a theory that unifies all the funda-

mental forces of nature, and the matter contents. This began a period in time

known as the first superstring revolution, and by 1985 there were five, seemingly

distinct, superstring theories: Type I, Type IIA, Type IIB, Heterotic SO(32), and

Heterotic E8 × E8. In 1989, two critical pieces of the puzzle were uncovered by

Polchinski, Dai, and Leigh in the paper [37]; which posited that the IIA, and IIB

theories T-dualise on tori to one another, and discovered the D-brane4. Another

ten years later, in 1995, these D-branes would be identified with the solitionic

p-brane solutions in type II supergravity [28]. Around this time it was realised by

Witten that the five superstring theories, could be considered different limits of

another theory, which he dubbed M-theory [39]. To this day, a suitable descrip-

tion of M-theory in terms of its microscopic degrees of freedom remains unfound,

however its low energy limit is thought to be eleven dimensional supergravity5.

Strikingly, eleven dimensional supergravity has no strings at all. It does contain a

2I would like to note that due to writing this out of sequence, there was a point where this
was reference number 26, and it made me smile

3with an extra scalar
4D-branes were also discovered independently by Hořava [38] at the same time
5An interesting note here is that eleven dimenisons is the largest number of dimenisons it is

possible to formulate a supersymmetric theory.
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two, and five, dimensional membrane; which when properly compactified on torii,

give the D-branes of the type II string theories. Not only that, but the approach

from eleven dimensional supergravity seemingly predicts the RR charge/tension

of the type II D-branes. This sparked the second superstring revolution. The last

milestone that will be mentioned in this brief retrospective, is the 1997 paper by

Maldacena [9], which sets out the AdS/CFT correspondence. This paper would

go on to become the most cited paper in the history of high-energy physics, and

would carve out a new discipline examining the dualities between gauge theories

and gravity.

The quick historical tangent also sets out somewhat the path we will take through

the introductory material. We will start by looking at the Nambu-Goto and

Polyakov actions for the classical relativistic string, before examining its first quan-

tisation6.

3.1.1 Classical Bosonic Strings

Since the strings are extended objects, we will need a method by which to discuss

their motion. In the case of a classical point particle, we can consider the trajectory

that they trace out via their time evolution, xµ(τ). This is the particle’s worldline,

and is a map from some internal variable τ to the d−dimensional spacetime the

particle propagates in. We can consider the equivalent for strings, which is the

worldsheet. Given that the path traced out by the string is a two-dimensional

surface, we will need to parameterise it by a pair of variables σi, with i = 0, 1.

Generally we will consider these to be the worldsheet time σ0, and position along

the length of the string σ1. The analogous embedding functional is then xµ(σ0, σ1),

which is a map from a point on the worldsheet to a position in the bulk spacetime.

Strings are tensionful objects, and as such will aim to reduce the area of their

worldsheet. The action functional that implements this most obviously is the

Nambu-Goto action,

SNG = −T
∫︂ √︁

−detg̃ d2σ = −T
∫︂
d2σ

√︄
−det

(︃
gµν

∂xµ

∂σa

∂xν

∂σb

)︃
. (3.1)

In this equation, gµν is the metric of the spacetime in which the strings propagate,

and g̃ is the pullback of the bulk metric to the string worldsheet. This action

functional is just the proper volume integral on a two dimensional surface, the

worldsheet, living in a higher dimensional curved space. We can make note of

6the following section largely follows the anlysis in chapter 2 of Becker, Becker, Schwarz [40]
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an interesting property of the string without further calculation, it is reparam-

eterisation invariant! Meaning that upon a change of worldvolume co-ordinates

σi → σ̃i(σ) the action remains unchanged, making this a symmetry of the theory7.

However, this action is incredibly difficult to quantise due to the presence of the

square root. Fortunately, there is another action that is classically equivalent the

Polyakov action, or string sigma-model action,

S = −T
2

∫︂
d2σ

√
−det h habgµν∂axµ∂bxν . (3.2)

This action includes an auxiliary field hab which, is identified with the worldsheet

metric. This field has no kinetic term, and as such is non-dynamical. This au-

tomatically implies that the worldsheet energy momentum tensor Tab vanishes.

Concretely,

Tab = − 2

T

δS

δhab
= 0, (3.3)

where the δS
δhab denotes the functional differential of the action with respect to the

worldsheet metric. Performing the functional differential, this evaluates to

Tab = ∂ax · ∂bx−
1

2
habh

cd∂cx · ∂dx = 0, (3.4)

or more usefully,

∂ax · ∂bx =
1

2
habh

cd∂cx · ∂dx. (3.5)

In these two formulae, the · represents the contraction on the bulk spacetime

indices on the embedding fields xµ. Taking the (-ve) determinant of both sides we

have

−det g̃ = 1

2
(−det h)

(︁
hcdgµν∂cx

µ∂dx
ν
)︁2
. (3.6)

Taking the square root of both sides reveals that the integrand of (3.1) and (3.2)

are equal when hab is set on its equation of motion. Therefore (3.1) and (3.2) are

equivalent descriptions of the classical relativistic string. The real bonus here is

that the string sigma model action is much simpler to work with! It is easier to

quantise due to the lack of square roots, and reveals an interesting facet of the clas-

sical string. If we take the worldsheet metric to be a two dimensional Minkowski

7this is just a property of proper volume elements. They are defined such that any Jacobian
factor induced by the integral measure is counteracted by the one induced by the determinant
of the metric, which is a tensor density.
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metric, which is equivalent to a choice of gauge using the reparameterisation sym-

metry of the string worldsheet8,9, and we examine the string in a d-dimensional

Minkowski background spacetime then we have

S = −T
∫︂
d2σ

1

2
ηab∂ax · ∂bx. (3.7)

This is the Lagrangian for a collection of massless scalar fields in two dimensions.

The classical equations of motion are then

∂a∂
axµ = 0. (3.8)

The fields xµ are also subject to the constraint that the worldsheet energy mo-

mentum tensor vanishes,

T10 = T01 = ∂0x
µ ∂1xµ = 0, (3.9)

and

T00 = T11 =
1

2
(∂1x

µ∂1xµ + ∂0x
µ∂0xµ) = 0. (3.10)

The last ingredient to add before being able to solve the classical equations of

motion, is that since strings have a finite spatial extent, one must carefully con-

sider the allowed boundary conditions at the edges of the worldsheet. Usually

when solving classical field equations, it is sufficient to require that the fields fall

off at spatial infinty (or at an asymptotic boundary). In this case, the string

endpoints are not infinitely far away, and we must carefully consider what hap-

pens at the edges of the string. Taking the worldsheet spatial parameter to be

σ ∈ {0, π}. There are three cases to consider. The first is the closed string. Taking

the embeddings to be periodic with respect to the worldsheet spatial co-ordinate

xµ(σ, τ) = xµ(σ+ π, τ) one does away with the necessity for boundary conditions,

because there are no spatial boundaries. Secondly, there are open strings with

two types of allowed boundary conditions: Neumann and Dirichlet. At the spatial

boundary the Neumann condition is ∂σx
µ = 0 at σ = 0, π, and the Dirichlet con-

dition is xµ = aµ at σ = 0, and xµ = bµ at σ = π with a, b being arbitrary constant

vectors. The Dirichlet condition implies that the string endpoints are stuck in

8The caveat here is that we are considering worldsheets that have vanishing Euler character-
istic, though we’ll get to this a bit later

9Also in 1+ 1 dimensions, Einstein gravity is purely topological. The Einstein-Hilbert action
is total derivatve and evaluates to the Euler character of the surface. So even the choice of metric
is not particularly consequential.
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place, interestingly this was initially considered unphysical, and the Dirichlet con-

dition would initially be neglected in favour of solely working with closed strings

or a Neumann boundary condition. In part this is because the Dirichlet condition

seemingly allows momentum to flow off the end of the string. Clearly this is un-

physical, unless there is another object there that the momentum is transferred

to, which is where D-branes come into the picture [37]. One way to think about

these objects is as a hypersurface on which strings may end, satisfying a Dirichlet

condition (having their endpoints on the brane). In this vein, it is also possible

to have mixed boundary conditions, with a Neumann condition at one end of the

string, and a Dirichlet condition at the other. These mixed boundary conditions

are important when discussing intersections of D-branes. The discussion of branes

will be largely relegated to the penultimate section of this chapter. The resulting

equations of motion, from solving (3.8), subject to constraints from the vanish-

ing of the worldsheet energy momentum tensor (3.9), (3.10) and the appropriate

boundary conditions follow straight-forwardly. We will first discuss the closed

string, which has classical solutions,

xµ = xµc + α′pµc τ +
i

2
α′1/2

∑︂
n̸=0

1

n

(︁
αµ
ne

−2in(τ−σ) + α̃µ
ne

−2in(τ+σ)
)︁
. (3.11)

Where an important parameter α′ has been introduced, the string Regge slope

parameter, which is related to the length scale of fundamental strings ls =
√
α′.

At a first glance this looks complicated, but the terms are xc, an initial reference

position, α′pµc τ the displacement of the string “centre of mass” from the initial

position, and the last term encodes the oscillations of the string. The requirement

that xµ is real, that it represents a position, forces the following property of the

oscillator modes

(αµ
n)

∗ = αµ
−n and (α̃µ

n)
∗ = α̃µ

−n. (3.12)

It is convenient to decompose this into a left-moving and right-moving sector

xµR =
1

2
xµc +

1

2
α′pµc (τ − σ) +

i

2
α′1/2

∑︂
n̸=0

1

n
αµ
ne

−2in(τ−σ), (3.13)

and

xµL =
1

2
xµc +

1

2
α′pµc (τ + σ) +

i

2
α′1/2

∑︂
n̸=0

1

n
α̃µ
ne

−2in(τ+σ). (3.14)
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Functionally, this is also a move to light-cone gauge on the string, with σ± = τ±σ.
This allows us to package the solutions nicely in the form

∂+x
µ
R = 0, ∂−x

µ
R = α′1/2

∞∑︂
n=−∞

αµ
ne

−2inσ−
, (3.15)

and

∂−x
µ
L = 0, ∂+x

µ
L = α′1/2

∞∑︂
n=−∞

α̃µ
ne

−2inσ+

, (3.16)

if we identify a common oscillator zero mode for the left and right movers,

αµ
0 = α̃µ

0 =
1

2
α′1/2pµc . (3.17)

In order to quantise the theory, we must identify the symplectic structure that

defines the classical theory. To do so the cannonical momentum conjugate to xµ

is introduced,

pµ =
δS

δ(∂τxµ)
=

1

2πα′∂τx
µ, (3.18)

and the Poisson brackets, {·, ·}PB, of the theory can be defined. They are, at equal

time,

{pµ, pν}PB = {xµ, xν}PB = 0, (3.19)

{pµ(σ, τ), xν(σ′, τ)}PB = ηµνδ(σ − σ′). (3.20)

By inserting the solutions for xµ we can write the above Poisson bracket in terms

of the oscillator modes α, α̃. This is

{αµ
m, α̃

ν
n}PB = 0, (3.21)

and

{αµ
m, α

ν
n}PB = {α̃µ

m, α̃
ν
n}PB = imηµνδm,−n, (3.22)

respectively. The theory can be quantised by promoting the oscillators to op-

erators, and replacing the Poisson brackets with commutators of operators. It

should be noted here that the open string with Neumann boundary conditions at

both ends is very similar, with the caveat that there is only one set of oscillators,

because the boundary condition at the string end-points functionally reflects the

right-movers into the left-movers. The Neumann condition also projects out the

sinusoidal component of the exponential functions in (3.11).
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3.1.2 Quantum Bosonic Strings

Replacing the Poisson brackets by the commutation relations −i{·, ·}PB → [·, ·],
we have

[αµ
m, α̃

ν
n] = 0, (3.23)

and

[αµ
m, α

ν
n] = [α̃µ

m, α̃
ν
n] = imηµνδm,−n. (3.24)

Rescaling the operators, defining10

aµm =
1√
m
αµ
m, (aµm)

† =
1√
m
αµ
−m (3.25)

subject to m ∈ Z+, reveals that the commutation relations (3.24) are the commu-

tator algebra of a set of d independent quantum harmonic oscillators, where d is

the dimension of the spacetime,

[aµm, a
ν
n
†] = ηµνδm,n. (3.26)

Thus the operators aµm
†, and aµm are creation and annihilation operators, that

respectively create and annihilate states on the string worldsheet, by acting on

the vacuum state |0⟩. There is however a glaring issue here, that the µ = 0 index

leads to negative norm states, which have ⟨0|α0
mα

0
m

†|0⟩ = −1. This negative norm

state must be eliminated from the theory to maintain unitarity! This hits upon

some interesting facets of the quantum theory. Firstly, that not all states are

created equal! There are consistency conditions that come from the vanishing of

the worldsheet energy momentum tensor that must be obeyed by the quantum

theory also. Secondly, quantisation promotes the mass of string states to being a

mass operator, and we must deal with ambiguities arising from ordering of ladder

operators before we can determine the mass of string states.

3.1.3 String Mass Formula, Level Matching, and Spectrum

Turning back to the classical theory for now, and working in light-cone gauge on

the string worldsheet, by inserting the oscillator mode expansion (3.11) for the

10The algebra is the same for the tilde’d variables, but will not be rewritten.
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closed string into (3.4) on arrives at the conditions

T−− = 4α′
∞∑︂

m=−∞

Lme
−2imσ−

, T++ = 4α′
∞∑︂

m=−∞

L̃me
−2imσ+

, (3.27)

with Fourier coefficients

Lm =
1

2

∞∑︂
n=−∞

αm−n · αn, L̃m =
1

2

∞∑︂
n=−∞

α̃m−n · α̃n. (3.28)

These coefficients are the generators of the Virasoro algebra. The vanishing of the

energy momentum tensor implies that

Lm = L̃m = 0, ∀ m ∈ Z. (3.29)

In particular the vanishing of the zero mode can be used to determine the mass

of string states,

L0 =
∞∑︂
n=1

α−n · αn +
1

2
α2
0 =

∞∑︂
n=1

α−n · αn + α′p2, (3.30)

which in conjunction with the mass shell condition, m2 = −pµpµ, leaves

m2 =
1

α′

∞∑︂
n=1

α−n · αn. (3.31)

Of course there are contributions from both sets of Fourier coefficients, so for the

closed string this should be extended to

m2 =
2

α′

∞∑︂
n=1

α−n · αn + α̃−n · α̃n. (3.32)

Unfortunately while this holds for the classical string, the quantum string is

plagued by normal ordering ambiguities. The operators in the quantum theory

are defined to be normal ordered, with the annihilation operators to the right of

the creation operators. This poses a particular problem for the zero mode L0 (and

L̃0). Normal ordering of the zero mode

L0 =
1

2

∞∑︂
n=−∞

: α−n · αn :=
1

2
α2
0 +

∞∑︂
n=1

α−n · αn, (3.33)
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is ambiguous. This ambiguity boils down to the question which α0 acts first?

The other Virasoro generators avoid this problem, and are nicely defined quantum

operators which, as a result of the constraint that the worldsheet energy momen-

tum tensor vanishes, must annihilate the physical states. Here one comes to the

realisation that just because one can generate states with the action of the ladder

operators, it does not mean they are physical! The states that obey the constraint

equations, or in this case are annihilated by the Virasoro generators11, live in the

physical Hilbert space of the theory. A similar constraint for the zero mode must

also exist, but in the quantum theory it is modified. One must include a normal

ordering constant a, that makes the constraint well defined. As such we must have

(L0 − a) |phys⟩ = (L̃0 − a) |phys⟩ = 0. (3.34)

Nicely, for the closed string, the normal ordering constant cancels for the difference

of these operators acting on a physical state

(L0 − L̃0) |phys⟩ = 0. (3.35)

This combination can be rewritten as

L0 − L̃0|phys⟩ =
∞∑︂
n=1

α−n · αn − α̃−n · α̃n |phys⟩ = 0. (3.36)

When written in terms of the annihilation and creation operators,
∑︁∞

n=1 α−n ·αn is

the familiar number operator of the quantum harmonic oscillator. Equation (3.36)

can then be written in terms of the number operators N and Ñ as

(N − Ñ)|phys⟩ = 0, (3.37)

which implies for the physical states, the number of left moving modes, is equal

to the number of right moving modes. This is the level matching condition of the

closed string, any physical states must have the same number of left movers as

right movers. Returning to the string mass formula, it too must be corrected by

the normal ordering constant a. The mass operator is therefore

m2 =
1

α′

∞∑︂
n=1

α−n · αn − a =
N − a

α′ , (3.38)

11Half of them in this case.
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for the open string, and

m2 =
2

α′

(︄
∞∑︂
n=1

α−n · αn + α̃−n · α̃n − 2a

)︄
=

2N + 2Ñ − 4a

α′ , (3.39)

for the closed string. We can see the issues with the bosonic string now clearly.

Imagine we would like the open string to have in its spectrum a massless spin one

state. We would create this vector state, by acting on the vacuum by the creation

operator

aµ1
†|0⟩ = |Aµ⟩. (3.40)

For this state to be massless, given that we have excited one mode on the open

string N = 1 and thus m2 = 1−a
α′ , we must have a = 1. However immediately

this can be problematic, this implies that the vacuum state is a tachyon, with

mass m2 = −1/α′. Tachyonic states are not unfamiliar from field theories, indeed

they arise in cases where you create states from the wrong vacuum, this signals an

instability of the theory. The second problem12 is that the first excited state of

the closed string, which must have at least one left mover and one right mover is

also massless,

aµ1
†ãν1

†|0⟩ = |T µν⟩, (3.41)

but it has spin two. From the perspective of string theory as a theory of quantum

gravity this is neccesary! So for the bosonic string the massless states are a vector

field on the open string and a spin two tensor field on the closed string. Generically

any rank two tensor can be decomposed into three parts: a symmetric traceless

part gµν , the graviton; a totally antisymmetric part Bµν , the Kalb-Ramond two-

form; and the trace ϕ, the dilaton. The Kalb-Ramond field, is an analogue of a

gauge field that couples to the string. As one could write the coupling of a point

particle to a gauge field as

−q
∫︂
Aµ

∂xµ

∂τ
dτ, (3.42)

equally one can write the coupling of this two form to a string as

∝ −
∫︂
Bµν

∂xµ

∂σ0

∂xν

∂σ1
d2σ. (3.43)

Infact we will later see that the appearence of p−forms in the spectrum is linked to

the existence of p dimensional objects that couple to them electrically. Whilst the

justification of wanting a massless spin one particle was invoked here to quickly

see that such a string theory would have massless propagating spin two degrees

12At least from the prespective of theorists in the 60s
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of freedom and tachyons, it is not actually a choice. In the quantum theory the

Virasoro generators Lm obey the algebra

[Lm, Ln] = (m− n)Lm+n +
c

12
m(m2 − 1)δm+n,0, (3.44)

which is the Virasoro algebra [41]. This is a central extension of the Witt algebra

with central charge c. In the case of a collection of free bosons, we can relate the

central charge with the number of spacetime dimensions. Examining the genera-

tors of spacetime Lorentz transformations, and requiring that the strings transform

sensibly in the spacetime, leads to relations between the generators Lm and the

condition that the normal ordering constant must be a = 1, and d = 26. In fact,

there are several routes to this result, for example this is the number of dimensions

that the negative norm states discussed earlier decouple from the theory [42]13.

This string theory discussed to this point also lacks fermions! Describing nature

requires that we have a model that includes fermions14. So the next step in our

discussion of string theories will be the inclusion of fermions on the string world-

sheet, introducing the superstring.

3.2 Superstring Theory

Interestingly, the superstring also began life as a dual resonance model. Among the

issues with the Veneziano model, were that it described bosons but not fermions.

A dual model for free fermions was concted in 1970 by Ramond [43]. Around

the same time Neveu, and Schwarz were attempting to extend the original dual

models by including anti-commutation relations [44]. Neveu and Schwarz would

eventually combine their model with Ramonds, in what they would dub a quark

model of dual pions [45]. This RNS model was later identified as a model of

“spinning strings”15 [46], which propagates in ten spacetime dimensions [42]. The

spinning string has many interesting properties, among them is that it contains the

same number of bosonic degrees of freedom as fermionic degrees of freedom on the

string worldsheet, which is an incarnation of supersymmetry16. Whilst this model

has manifest supersymmetry on the worldsheet, it is not obvious that it possesses

spacetime supersymmetry. The RNS model still has a tachyon, though this state

13Technically there are no ghosts in d ≤ 26, because one can think of the lower dimensional
theory as a subspace of the full 26 dimenisonal theory.

14and interactions between fermions and bosons for that matter.
15In the sense of intrinsic spin.
16In fact the dual model by Ramond includes the first superalgebra written down.
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can be removed by performing a GSO projection, which removes a subset of the

allowed states from the theory [47]. Not only does this project the tachyonic state

out of the ground state, but it also makes the RNS spinning string, equipped with

the GSO projection, spacetime supersymmetric [48, 49].

3.2.1 Spinning Strings, and the GSO Projection

The action functional that describes the RNS spinning string from the worldsheet

perspective is17

SRNS = −T
2

∫︂
d2σ

√
−h
(︁
gµνh

ab∂ax
µ∂bx

ν + 2iα′gµνψ̄
µ
ρa∂aψ

ν + F µFµ

)︁
. (3.45)

There is a lot to unpack in this action, but the first thing to discuss is spinor repre-

sentations. Generically on some curved d-dimensional manifold, co-ordinate trans-

formations come packaged as elements of GL(d,R), which does not admit spinor

representations. However the manifolds we are most interested in are pseudo-

Riemannian; so around each point on the manifold, there is a frame where the

metric is locally Minkowski, and infinitesimal co-ordinate transformations belong

to the group SO(1, d− 1) which does have spinor representations. So to appropri-

ately describe fermions on a curved manifold, one has to transform to some locally

flat frame, which we will do by the introduction of the vielbein formalism. The

frame fields are defined such that,

gµν = eaµ e
b
ν ηab, (3.46)

with µ, ν the Einstein indices associated to the full manifold, and a, b the Lorentz

indices associated with the locally Minkowski patch. In this regard, the vielbein

field swaps an Einstein index for a Lorentz index. A useful relation is that follows

from the above is,

det g = det e× det e× det η, (3.47)

and thus, √︁
−det g = det e ≡ e. (3.48)

For this reason the vielbein are sometimes likened to the square roots of the metric.

In this case our manifold is the two dimenisonal string worldsheet, so we will

17This section follows the conventions from Blumenhagen, Lüst, and Theisen [50], the discus-
sion loosely follows their discussion of the classical fermionic string
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introduce a zweibein such that

hab = eca e
d
bηcd. (3.49)

Usually the metric on a two dimensional surface can be “gauged away” by using the

reparameterisation symmetry of the strings, however this is only up to topological

obstructions which become important when discussing interactions! The fields

ψ̄
µ
, ψµ are then two dimensional spinors on the string worldsheet, they carry indices

of the bulk spacetime, but in this case it simply means that there are d spinors on

the worldsheet (as with the d two dimensional scalars of the bosonic string). ρa is

the analogue of the Dirac matrices for a two dimensional manifold. Generally the

Dirac matrices satisfy a Clifford algebra defined on a flat space {γa, γb} = ±2ηabId,
which clearly doesn’t hold for the full curved manifold. As such when we talk

about the Dirac matrices on some general manifold, we mean the Dirac matrices

supplanted with the appropriate vielbein γµ = eµaγ
a. In this case on the string

worldsheet, this is denoted ρa. The fields ψ̄, ψ are Dirac fermions on the worldsheet

which can be decomposed into two Majorana fermions. When the fermions are on

shell the Majorana condition implies that there are only d-propagating fermionic

degrees of freedom, rather than 2 × d. So there are an equal number of bosonic

and fermionic degrees of freedom on-shell. Off-shell is another matter, and here we

must introduce the auxiliary field F µ which carries d bosonic degrees of freedom

but is non-dynamical, and as such these degrees of freedom vanish on-shell. The

result is that both on- and off-shell the action (3.45) has manifest worldsheet

supersymmetry18. The remainder of the action for the RNS spinning string is

familiar, as it is identical to that of the bosonic string. A direct consequence

of this is that the spinning string contains the spectrum of the bosonic string

as a subset of its spectrum (though in a different number of dimensions). By

considering the variation of (3.45) with respect to the new fermionic fields, we

arrive at,

ρa∂aψ
µ = 0, (3.50)

or in light-cone coordinates on the string worldsheet

∂−ψ
µ
+ = ∂+ψ

µ
− = 0. (3.51)

18it is not locally supersymmetric however, which requires an addition term in the action, that
includes the worldsheet gravitino. This is then typically removed using a mix of reparameteri-
sation on the worldsheet and gauge fixing.
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Here the Dirac fermion has been decomposed into the Majorana components,

ψµ =

(︄
ψµ
+

ψµ
−

)︄
. (3.52)

As was the case for the bosonic string, one must also consider boundary conditions

on the fermions that live on the worldsheet. We will focus here on closed string,

and the allowed boundary conditions are,

ψµ
+(σ, τ) = ±ψµ

+(σ + π, τ), and, ψµ
−(σ, τ) = ±ψµ

−(σ + π, τ). (3.53)

Wrapping once around the string worldsheet, the fermions can be either periodic,

or anti-periodic. These conditions are dubbed the Ramond (R), or Neveu-Schwarz

(NS) boundary conditions respectively. The two fermions, or to use the termi-

nology from the last section, the left movers and right movers, can be chosen

separately which gives rise to four sectors

(R,R), (R,NS), (NS,R), (NS,NS). (3.54)

From the perspective of the bulk spacetime, string states arising from the (R,R)

and (NS,NS) sectors are (spacetime) bosons, where states from the (R,NS) and

(NS,R) sectors are (spacetime) fermions. The bosonic sectors however, contain

tachyons, which must be projected out. To do this, an operator is defined (−1)F

which has eigenvalues +1 on bosonic states, and −1 on fermionic states. To define

how (−1)F acts on any given state, one must first define how it acts on the ground

state. In the NS sector the ground state has

(−1)F |NS⟩ = −|NS⟩, (3.55)

that is the ground state is fermionic. One can split the sectors into sub-sectors

based on whether the states are bosonic or fermionic, which will be denoted with

a plus or a minus respectively (such as NS+,NS−). The NS− sector is contains

tachyons, so choosing the NS+ sector is the quickest way to a consistent theory.

The Ramond sector is more complicated, and has two sets of ground-states, one

set has (−1)F = 1, the other has (−1)F = −1, though both carry spinor indices.

Ultimately it does not matter which you chose, both have the same number of

states so either way half must be projected out. For closed strings this leads to

two distinct string theories. Because the closed string has both left and right

moving sectors, the choice of projection can be made independently for both the

left and right moving sectors. Both will have an NS+ sector and an R± sector,
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the key difference comes in whether the sign of the R sector is matching on the

left and right sector or not. For example we can have

Left Right

NS+ NS+

R− R+

(3.56)

or
Left Right

NS+ NS+

R− R−
(3.57)

which give the type IIA and type IIB string theories respectively. This consistent

truncation of the four sectors down to the subsectors defined above is known as the

GSO projection, and is required for the theories to have spacetime supersymmetry

[47]19. These theories have different spectra. In particular they have the following

massless fields that come from the Ramond-Ramond sectors:

Type IIA: C(1), C(3), (3.58)

Type IIB: C(0), C(2), C(4), (3.59)

which are intertwined with the stability of objects that couple electrically to them,

D-branes. Equally, both share an NS−NS sector which gives rise to

Both: gµν , Bµν , ϕ, B
(6). (3.60)

The first three of these are familiar from the classical string, however the fourth

is not. The NS−NS sector contains a massless six-form field that implies the

existence of a stable object that couples to it called the NS-fivebrane.

The main moral of the story so far is that the both types of closed string presented

so far contain a graviton, and different p-form fields that imply the existence of

objects that couple to them electrically. There are three other ten dimensional

supersymmetric string theories: type I, heterotic SO(32), and heterotic E8 × E8,

which will not be covered in any detail here. At low energies, all string theories

include gravity. Even if one tries to consider only open strings, closed strings

arise as bound states of open strings, leading back to gravity. For the type II

19This sort of projection might seem unnatural, but when looking at superstring perturbation
theory the same condition can be realised as summing over spin structures arising from having
non-contractible loops [51]
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theories, where one tries to only consider closed strings, they contain hints of non-

perturbative states (D-branes) in their spectrum which naturally begin to include

open string degrees of freedom back into the theory. In fact, all of the listed

theories are limits of another parent theory, M-theory [39], and are linked by the

web of dualities that are a feature of superstring theories. This is a particularly

interesting obeservation that kick-started the second superstring revolution. This

however is a slight digression, and the main focus of the remainder of this thesis

will be on the rich physics of D-branes.

3.2.2 Differential Forms, Branes and Supergravity

This following section will discuss D-branes from the perspective of string theory,

and supergravity. In the spectrum of the type II superstring theories are a selection

of massless p-form gauge fields that arise from the Ramond-Ramond sectors of the

closed strings. We will start by examining these p-forms, which are intrinsically

linked to the existence of the D-branes, and their stability. In the type IIA theory,

there is a one-form and a three-form, and in the type IIB theory, there is an

additional massless scalar (or zero-form), a two-form, and a four-form. These

fields are differential forms and are particularly useful for discussions of higher

dimensional analogues of electromagnetism. They can be written in component

notation as,

A(p) =
1

p!
Aµ1...µp dx

µ1 ∧ ... ∧ dxµp , (3.61)

where ∧ is the wedge product, which is totally antisymmetric on the indices20 µi,

for example, for a two form in two dimensions

1

2
Aabdx

a ∧ dxb = 1

2
A12(dx

1dx2 − dx2dx1) = A12dx
1dx2. (3.62)

This is a particularly useful way to write things for two reasons. Firstly, it is

co-ordinate invariant, and the above expressions hold without particular reference

to a choice of co-ordinates. Secondly, it allows us to very neatly write integrals of

the differential forms over p-volumes; which can simply be written as,∫︂
A(p), (3.63)

20As a consequence, in component notation the field Aµ1...µp
is completely antisymmetric on

exchange of any of its indices.
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with the caveat that we are integrating a p-form over a p-dimensional surface. The

wedge product can also be applied to differential forms, and generally the product

of a p-form and a q-form is a (p+ q)-form, which can naturally be integrated over

a (p + q)-dimensional surface (though this integral must be supplemented with

a factor of the induced metric on the surface). A notion of a derivative exists

for differential forms, called the exterior derivative. Acting on a p-form with the

exterior derivative gives a (p+ 1)-form,

dA(p) =
1

p!
∂µAµ1...µp dx

µ ∧ dxµ1 ∧ ... ∧ dxµp = F (p+1). (3.64)

This operation is clearly nilpotent21, and the object d(dA(p)) = dF (p+1) = 0. This

is the analogue of the Maxwell equations in the vacuum for extended objects

charged under a p-form. This also implies that A(p) is equivalent to any field

configuration that can be written as A(p) + dλ(p−1), since they give the same field

strength tensor, F (p+1), upon taking the exterior derivative. This transformation

A(p) → A(p) + dλ(p−1) is a gauge transformation, and with the above definitions

relativistic electrodynamics follows from the case p = 1. This approach generalises

Stokes theorem, which can be written for some general manifold M as,∫︂
M

dA =

∫︂
∂M

A, (3.65)

where in this case, A is a p-form and the manifold is of dimenison p + 1. The

last operation to define here is the Hodge dual. If one has a p-form field A, in a

d-dimensional space, the Hodge dual defines a (d− p)-form ∗A by contraction on

the d-dimensional epsilon symbol,

∗A =

∫︂ √
−g ϵν1...νpµp+1...µd

Aν1...νp dxµp+1 ∧ ... ∧ dxµd (3.66)

=

∫︂
(∗A)µp+1....µd

dxµp+1 ∧ ... ∧ dxµd . (3.67)

Note that the metric has appeared in both the contraction on the epsilon symbol,

and as a determinant out at the front to maintain the nice transformation proper-

ties of the differential forms. The key take away from this however is that one can

define this operation that maps a p-form to a (d − p)-form. This really suggests

that the spectrum of the type II theories should be extended further!

Each p-form field implies the existence of a p-dimensional object that is charged

under it. These objects are the D-branes. A Dp-brane couples electrically to a

21Writing the expression explicitly reveals that there is a symmetric tensor contracted on an
antisymmetric one which vanishes automatically.
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(p + 1)-form by a term proportional to (3.63)22. Taking as an example the type

IIB string theory, which has massless fields C(0), C(2), and C(4). The theory will

have stable: D(−1)-, D1- and D3-branes charged under these forms respectively.

Corresponding to the above differential forms, one can define the field strength ten-

sors: F (1), F (3), and F (5). One can define the Hodge dual of these field strength

tensors, so the theory should also have the forms F (9), and F (7). The five-form field

strength is self dual in ten dimensions, so we need not include another five-form.

These new field strengths could equally be written as the exterior derivative of

p− 1 forms, and as such there also should be C(8) and C(6) fields in the theory as

well, which implies the existence D7-, and D5-branes living in the theory. There

also can be a ten-form gauge field under which the D9 brane is charged. However

it is not possible to write down a differential form with p > d, so it is also not

possible to write down the field strength, which would be an “eleven-form”. It is

also not possible to write down a kinetic term for the gauge field, which is propor-

tional to
∫︁
F ∧ ∗F , so the ten form is non-dynamical. They won’t be discussed

in the remainder of this thesis, but the D9-branes are an important ingredient in

the web of dualities that link the five consistent superstring theories. The brane

content of the type IIB string theory is summarised in Table 3.1, which shows the

differential forms in the theory, and which branes couple electrically and magnet-

ically to them23.

p-form Electrically coupled brane Magnetically coupled brane

C(0) D(−1) D7
C(2) D1 D5
C(4) D3 D3
C(6) D5 D1
C(8) D7 D(−1)
C(10) D9

Table 3.1: The D-brane content of type IIB string theory

The brane content of the type IIA theory is summarised in Table 3.2. Similarly

to the type IIB theory, in type IIA the D8-brane is non-dynamical. Its associated

field strength is a ten-form. The “kinetic term” associated to it is proportional

to
∫︁
F (0) × F (10), though this is a single derivative term, and thus it is still non-

dynamical. This is often skirted by moving to the massive type IIA theory where

this is allowed to be dynamical, which suggests we should include a D(−2) brane.

22The p in Dp-brane counts the number of spatial dimensions, not spacetime dimensions, so
there is a counting difference of 1 between the differential forms and their associated D-branes

23By couple magnetically to them it is meant that they couple through the chain of: Dp-brane
→ p+1-form → field strength → dual field strength → (d−(p+2)−1)-form → D(d−p−4)-brane
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p-form Electrically coupled brane Magnetically coupled brane

C(1) D0 D6
C(3) D2 D4
C(5) D4 D2
C(7) D6 D0
C(9) D8

Table 3.2: The D-brane content of type IIA string theory

So it appears that from the spectrum of the type II strings D-branes appear, but

there were hints of their existence as far back as the boundary conditions on the

bosonic string. Recall that there were two possible choices for the boundary con-

ditions on open strings, Neumann (N) and Dirichlet (D). For a long time, the

Dirichlet condition was considered non-physical and disregarded. However each of

the d scalars or, as it might be more useful to picture them, each of the d fluctua-

tions of the string worldsheet can have the choice of N or D boundary conditions.

So it is possible to define an open string with p + 1 fluctuations that have the N

condition, and d− p− 1 Dirichlet boundary conditions. The Neumann condition

is that at the string endpoints we have na∂ax
µ = 0, where na is a unit normal vec-

tor24, and similarly the Dirichlet condition is xν = cν , with cν being an arbitrary

constant vector. Taking µ = 0, .., p and ν = p+1, ..., d defines a p+1 dimensional

hypersurface on which the string endpoints are free to propagate, with the caveat

that they must attach normal to the surface. This p+1 dimensional surface is the

Dirichlet p-brane, or the Dp-brane. In the type II string theories, we can consis-

tently include an open string sector, however they must have even p in the type

IIA theory, and odd p in the type IIB theory.

The first excited states of the open string are massless spacetime vectors Aµ. In

the presence of a Dp-brane the vector decomposes into a vector field on the world-

volume of the Dp-brane, Aa, with a = 0, ..., p and a set of d − p − 1 scalar fields

on the worldvolume of the brane ϕi. Perhaps the quickest way to see this, with-

out re-quantising the string in the D-brane background, is to consider a single

Dp-brane in 10 dimenional Minkowski space. The presence of the D-brane breaks

the symmetry group of the background spacetime into two subgroups, spacetime

rotations in the directions the brane fills, and spatial rotations in the direction

that the brane is pointlike. The presence of the brane breaks symmetry group of

the spacetime from SO(1, 9) to SO(1, p) × SO(9 − p). Naturally fields living in

24to the p+ 1 dimensional hyperplane
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the spacetime will arrange themselves in representations of the remaining symme-

try groups. In this case what previously was a vector field transforming under

SO(1, 9) decomposes into a vector field living on the worldvolume, transforming

under SO(1, p) and a set of 9−p scalar fields that have an internal SO(9−p) sym-

metry that rotates the scalars into one-another. These scalars can be interpreted

as describing the position, or fluctuation about the position, of the D-brane in the

transverse directions. In the case of N co-incident D-branes, the string endpoints

each pick up an index which identifies which brane in the stack the string is at-

tached to. In the low energy limit, when string fluctuations are of vanishing size,

these indices, or Chan-Paton factors [52], give rise to a U(N) gauge group under

which the vector and scalar fields are charged.

Each of the D-branes has both charge, under their respective Ramond-Ramond

p-form, and tension. A nice line of reasoning from Polchinski [28] goes: “One

would not expect a perfectly rigid object in a theory with gravity, and indeed

the D-brane is dynamical”. To phrase this slightly differently, one could imagine

having a hypersurface in a gravitating theory, through which some propagating

fluctuation of the metric might pass. Such a gravitational wave would distort the

hypersurface, implying that one cannot have rigid hypersurfaces in a gravitating

theory, and all such hypersurfaces should be dynamical. As such we can write an

action that describes the low energy dynamics of the D-branes. The bosonic part

of the action is,

SDp = −µp

∫︂
dp+1x e−Φ

√︁
−det[P [G]ab + P [B]ab + (2πα′)Fab] (3.68)

+µp

∫︂ ∑︂
q

P [C(q+1)] ∧ eP [B]+2πα′F . (3.69)

Taking this term by term, (3.68), is the Dirac-Born-Infeld term. µp is a dimension-

ful factor that encodes the tension of the D-brane, and the integral runs over the

co-ordinates that span the worldvolume of the brane. Φ here is the Dilaton, which

arises from closed strings in the background solution. Underneath the square root

we have: P [G], the pullback of the bulk metric to the brane; P [B] the pullback of

the Kalb-Ramond two form to the surface of the brane, and F the field strength

induced by the gauge field from open string fluctuations on the brane. This term

is the generalisation of the Nambu-Goto action from strings to surfaces of higher

dimension. Unfortunately, the square root can not be thrown away here, and there

is not yet a known analogue of the sigma model action for D-branes. This makes

them very difficult to quantise. The second term, (3.69), encodes the coupling

of various RR-forms to the D-brane. C(q+1) are the RR-forms sourced by other
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Dq-branes in the system, and is of interest when examining multi-brane systems.

A Dp-brane will couple to a q + 1 form if q < p, and 1
2
(p− q) ∈ Z. The second of

these conditions is automatically satisfied in the type II theories, which have only

odd, or only even p and q respectively. When the first condition is met, then the

brane will couple to the q+1 form through powers25 of (P [B] +F ). This appears

in the action like interactions of the field strength and the q-form, such as the

coupling of a four-form to a D7 brane which is proportional to
∫︁
C(4) ∧ F ∧ F . In

the particular case of p−q = 2 the coupling looks like a source term for field on the

brane worldvolume and this coupling can have a significant effect on the dynamics

of the brane (as an example see the D3/probe D5 holographic system [53, 54, 55]).

It is possible to extend this action to include non-abelian gauge groups26, and cou-

pling of Dp-branes to forms of degree q > p, which gives rise to novel interactions

between the branes, such as the Myers effect [56]. The low energy open string

modes on the D-branes are generically a (p + 1) dimenisonal gauge theory, this

link between branes, their dynamics and gauge theories is reviewed nicely in [57].

An alternate perspective on D-branes, comes from supergravity. In [58] extremal

and non-extremal p-brane solutions were presented in type II supergravity, which

are generalisations of the familiar black-hole geometries of general relativity to

extended objects. The extremal cases were identified with D-branes in [28]. From

the perspective of supergravity, D-branes appear as charged extended analogues

of black holes. These p-brane solutions are summarised in Table 3.327. The dual

interpretation of the physics of D-branes in terms of how they deform the back-

ground spacetime that they inhabit and fields propagating on their worldvolume

is central to holographic dualities, which is the final topic to cover in this chapter.

ds2 = H(r)−
1
2dx2|| +H(r)

1
2dx2⊥, H(r) = 1 + α

r(7−p) , (p < 7)

Fm0...p = ∂m(H(r)−1), eϕ(r) = H(r)
3−p
4 ,

α = (4π)
1
2
(5−p)Γ

(︁
1
2
(7− p)

)︁
(α′)

1
2
(7−p)gsN.

Table 3.3: The 1
2BPS supergravity solution, in string frame, corresponding
to a stack of N co-incident Dp-branes.

25meaning repeated wedge products
26One has to be careful to say that there is a direct non-abelian analogue of the DBI action.

In the case that α′ is taken to zero this is true since the result is super Yang-Mils theory. This is
sufficient for the purpose of holography, an example case is flavour branes in the Sakai-Sugimoto
model; however, it doesn’t capture stringy corrections appropriately

27The formulae listed here were taken from chapter 18 in [50]
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3.3 Holography and the AdS/CFT Correspon-

dence

This section will be dedicated to reviewing the AdS/CFT correspondence and

some of the developments in the years since its inception that are of particular

importance to holographic models of quantum chromodynamics. It will begin with

the arguments set out in [9], that there are two interpretations of the physics of

D3 branes: closed strings absorbed and emitted by the brane, and open string ex-

citations on the brane worldvolume. In the decoupling limit these are conjectured

to be equivalent descriptions of the same physics. Consider N parallel D3 branes

separated by some distance r, embedded in 10 dimensional Minkowski space. The

decoupling limit, involves taking α′ → 0 whilst keeping U ≡ r/α′ fixed. From

the perspective of the theory on the D3 brane worldvolume, this corresponds to

keeping the vacuum expectation value of the scalar field that describes the sepa-

ration of the branes fixed28. In the low energy theory, the coupling to bulk gravity

appears through the effective coupling gsα
′2, so taking α′ → 0 kills off any interac-

tion between the worldvolume theory, and gravity in the bulk. The bosonic part

of action for the D3 branes can be written as29

SD3 = −T3
∫︂
d4x
√︁
− det(P [G]ab + (2πα′)Fab). (3.70)

In 10 dimensional flat space, and in static gauge, the pullback of the metric can

be written as

P [G]ab = ηab + ∂aX
i∂bX

i (3.71)

where X i = (2πα′)Φi represents the fluctuations of the brane in the six trans-

verse directions. Writing in matrix notation, S = (2πα′)2η−1(∂Φ∂Φ) and A =

(2πα′)η−1 F , the action can be then written as

SD3 = −T3
∫︂
d4x
√︁

−det(η)×
√︁
det(1 + S + A). (3.72)

Under matrix transposition ST = S and AT = −A, so the last part can be written

as (detM)1/2 = (det(MMT ))1/4 = det ((1 + S + A)(1 + S − A))1/4. Applying the

identity ln(detM) = Tr(lnM), and then replacing natural log by its power series

28equivalently, this is keeping the mass of strings stretched between the branes fixed
29there’s an implicit trace of U(N) indices here, that won’t be written
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for the matrix we arrive at√︁
det(1 + S + A) = exp(Tr(

1

4
(2S − A2 + ...))). (3.73)

Only the lowest terms in powers of 2πα′ are written, which in this case is O(α′2).

Inserting the expression for the D3 brane tension T3 in terms of the string coupling,

the DBI action becomes30

SD3 = − 1

2πgs(2πα′)2

∫︂
d4x

(2πα′)2

2
∂aΦ

i∂aΦi − (2πα′)2

4
FabF

ab + ..., (3.74)

lim
α′→0

SD3 = − 1

2πgs

∫︂
d4x

1

2
∂aΦ

i∂aΦi − 1

4
F 2, (3.75)

which is the bosonic part of the N = 4 super-Yang-Mills action with coupling

g2YM = 2πgs on four dimensional flat space31. The six scalar fields can be rotated

into one another by an SO(6) transformation, which is isomorphic to SU(4)R, the

R-symmetry transformation of the supersymmetric theory. So in the decoupling

limit there are two sectors of the theory that don’t interact, N = 4, d = 4 super-

Yang-Mills theory with gauge group SU(N) 32, and type IIB supergravity on 10

dimensional Minkowski space. Turning now to the supergravity, the solution to

the supergravity equations corresponding to N units of RR 4-form flux33 is

ds2 =

(︃
1 +

4πα′2gsN

r4

)︃− 1
2

ηabdx
adxb +

(︃
1 +

4πα′2gsN

r4

)︃ 1
2

δijdy
idyj. (3.76)

The limit, α′ → 0, U = r/α′ → fixed, requires taking r → 0 and the 1 in the

harmonic functions can be dropped, giving

ds2

α′ =

(︃
U2

√
4πgsN

ηabdx
adxb +

√
4πgsN

U2
dU2 +

√︁
4πgsNdΩ

2
5

)︃
, (3.77)

which is the metric of five dimensional Anti-de Sitter space times a five sphere

with radius, common to both the AdS space and the sphere, R2 =
√
4πgsN .

The original metric (3.76) features a region that is asymptotically Minkowski,

and a warped throat, leading to a near horizon geometry, that is (3.77). Taking

the α′ → 0 limit, from the supergravity perspective, splits the theory into two

decoupled sectors: type IIB supergravity on AdS5×S5, and type IIB supergravity

on 10d Minkowski space. The leap of Maldecena was the following: that if these

30again with the ... representing higher order terms in α′

31The fermionic part of the D3 brane action similarly reduces to give the fermionic part of the
N = 4 action

32the U(1) photon decouples in this limit also [59].
33or having N D3 branes
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are two different representations of the same physics, then type IIB supergravity on

AdS5×S5 with radius R2 =
√
4πgsN is dynamically equivalent to N = 4, SU(N)

supersymmetric Yang-Mills theory on four dimensional Minkowski space. Further,

that given we started in a quantum theory, this is expected to hold for type IIB

superstring theory, not just supergravity. At large N on the gauge theory side of

the correspondence, one can go to the t’Hooft limit, defining the t’Hooft coupling

λ = g2YMN . In the dual string theory, the coupling equates to λ = 2πgsN . Large

t’Hooft coupling in the gauge theory can be satisfied by having a large number

of D3 branes N >> gs, whilst still having gs < 1, and retaining the ability to

do perturbative calculations in string theory/supergravity. Thus: weakly coupled

type IIB string theory on AdS5 × S5 is dynamically equivalent to N = 4, SU(N)

SYM at large t’Hooft coupling, λ. This is the statement of the correspondence

that will be important to us going forwards. Whilst the most studied form of

the correspondence is based upon D3 branes, there is an analogous field theory

limit that can be defined for most D-branes [60]. This limit links the physics of

the gauge theory supported on the brane worldvolume, to the higher dimenisonal

gravitating theory in the near horizon geometry sourced by the branes.

N = 4 super-Yang-Mills is a particularly special theory. It has the maximal

amount of supersymmetry allowed in a gauge theory34. It is also a conformal field

theory. To all orders in perturbation theory, the β-function vanishes, signalling

that the coupling is constant all the way along the renormalisation group flow of the

theory. This ties into the enhanced conformal symmetry that the theory enjoys.

It includes, in addition to the usual invariance under Poincaré transformations, an

invariance under scale transformations, and special conformal transformations. In

d dimensions, the conformal group is SO(2, d) (as opposed to the Lorentz group,

SO(1, d − 1)). This brings us to our second element of the dictionary between

gauge theories and gravity35, the matching of the symmetries of field theory, with

the isometries of gravity dual. The isometry group of AdSd is SO(2, d− 1), which

stems from the ability to embed AdSd as a hyperboloid in a higher dimensional

space with two time-like directions, similarly the isometry group of a sphere Sd

is SO(d + 1), so the isometry group of the spacetime AdS5 × S5 is SO(2, 4) ×
SO(6). On the other side of the correspondence, N = 4 SYM is invariant under

transformations valued in the Lie superalgebra PSU(2, 2|4), which has the bosonic

subgroup SO(2, 4), and SU(4) 36. Thus the symmetries of the field theory are

34N > 4 leads to having particles of spin higher than one in the spectrum. This is consistent
only in supergravity theories, where the higher spin states appear as the graviton and its super-
partners.

35the first was the identification of the couplings on both sides
36which as mentioned previously, is isomorphic to SO(6)
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reflected in the isometries of the gravity dual. Matter fields, in the field theory,

will come packaged in representations of symmetry groups of the dual theory, but

how they are represented in the bulk AdS geometry is not obvious at a first glance.

The clearest example of how the symmetries of the dual theory are represented in

the bulk theory, comes from a scalar field on AdS5. Writing now the AdS5 metric

as,

ds2AdS =
L2

z2
(ηµνdx

µdxν + dz2), (3.78)

the action for a massive scalar in the geometry is∫︂
d5x

√
−g
(︃
1

2
gMN∂Mϕ∂Nϕ− 1

2
M2ϕ2

)︃
. (3.79)

The equation of motion for the Klein-Gordon scalar is,

1√
−g

∂M
(︁√

−ggMN∂Nϕ
)︁
−M2ϕ = 0, (3.80)

invoking separation of variables we can make an ansatz ϕ(x; z) = e−ik·xϕ(z),

though we will take the case k · k = 0 to focus on the radial profile. The equation

of motion becomes

z2∂2zϕ− 3z∂zϕ−M2L2ϕ = 0. (3.81)

From the structure of (3.81), a sensible ansatz for ϕ(z) is ϕ ∼ z∆. Which gives a

condition on the mass of allowed scalars in the geometry. They have

M2L2 = ∆(∆− 4). (3.82)

In this writing of the geometry, the asymptotic boundary is at z → 0. For this

to be a sensible solution, it should be normalisable out to the boundary. This

constrains us to ∆ ≥ 0. Under a scale transformation z → λz, the scalar will

transform as ϕ → λ∆ϕ, and we can identify ∆ as the conformal weight of the

scalar field. Furthermore, the presence ∆ = 2 states in the dual theory implies the

stability of states in AdS with M2L2 = −4. In flat space, this would be worrying,

states with negative mass squared are tachyonic and signal instabilities37. How-

ever, a small amount of tachyonicity is allowed in negatively curved spaces, like

AdS. The requirement thatM2 ≥ −4/L2 is known as the Breitenlohner-Friedmann

(BF) bound [61]. The violation of this bound introduces instabilities in the dual

theory. Critically, BF bound violations can be linked to the breaking of chiral

37or worse, acausal behaviour
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symmetry in the dual theory when matter is included [62]. Another aspect of the

original correspondence, is the presence of the radial direction, U . In order to

understand the mapping between the two theories, one would like to understand

the interpretation of this holographic coordinate in the dual gauge theory. From

the perspective of the field theory, this co-ordinate has dimensions of mass, and a

line of analysis based on moving a D3 brane off the stack of N D3 branes in the U

direction suggests that it is the energy scale of the dual theory. Moving to large

U , towards the conformal boundary of the space is moving to the UV of the dual

theory, whereas the interior of the geometry represents the IR.

An early work of importance to the AdS/CFT correspondence was [10]38, where

Witten matched the spectrum of chiral primary operators in N = 4 SYM to their

counterpart Kaluza-Klein modes in the dual gravity theory. Here it was proposed

that the asymptotic behaviour of supergravity fields at the conformal boundary

of AdS related to correlators in the dual gauge theory. The asymptotic boundary

of AdS5 × S5 is conformal to four dimenisonal flat space, and as such one can

think of the dual gauge theory as living on the conformal boundary of the gravity

theory, making this an explicit realisation of the holographic principle [64], that

originated from the study of black holes. That the entropy of various black holes

is proportional to the area of their even horizon [65], in Planck units, suggests

that there is an upper bound to the amount of information that can be stored in a

given volume in a gravitating theory. If one can describe the dual theory as living

on the boundary of the space-time, then this principle is realised by the AdS/CFT

correspondence, with the bulk theory being completely described by the degrees

of freedom living on the boundary.

Unfortunately, whilst the AdS/CFT correspondence provides a novel way to cal-

culate observables in a strongly coupled gauge theory (by doing calculations in

weakly coupled gravity), it does not give us the immediate ability to calculate

in the theory we want to. QCD has neither the conformal invariance or super-

symmetry of the super-Yang-Mills theory. It also has matter, transforming in the

fundamental representation of the gauge group, which SYM does not. We must

deform the correspondence to introduce aspects of more realistic physical theo-

ries. There are two major approaches to this, top down holography, and bottom

up holography. In the bottom up approach, one starts with the original corre-

spondence, and notes the following: the argument based on symmetries suggests

that the five-sphere is linked to the presence of supersymmetry, so a non super-

symmetric theory is expected only to live in the five dimensional space. Further

if a gravitating theory AdS5 represents some four dimensional theory conformal

38A similar work around the same time was [63]
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theory, then deforming the interior of the spacetime in some way will represent the

breaking of conformal symmetry, and possibly chiral symmetry[66], at some scale

in the theory. The new geometry represents the flow of some quantum field theory

from a CFT in the UV to some unknown theory in the IR with properties that are

nice from a phenomenological point of view, with fields in the new geometry dual

to source-operator pairs in the dual theory. This approach has led to successful

bottom up holographic models of QCD. However, we will focus on the top down

approach in this thesis, which starts from some brane setup in string theory, and

taking the field theory limit identifies more precisely the dual holographic theory.

Deformations of the interior of the bulk theory come from interactions between

fields in the type II string theory/supergravity, or are engineered by compactify-

ing a direction wrapped by some of the branes. An advantage to the top down

approach, is that we are not limited to examining the physics of D3-branes. This

brings us to an important facet of building holographic models, matter.

3.3.1 Probe Branes and Fundamental Matter

In [67] a prescription was set out for including matter fields, transforming in the

fundamental representation of SU(N), to the AdS/CFT correspondence by adding

probe branes. In the top down picture, one can think of having Nc Dp branes,

and Nf Dq branes that are aligned in 10 dimensional Minkowski space, which

will be referred to as colour branes, and flavour branes respectively. For the case

that Nc is large, and Nc >> Nf then it is appropriate to consider the backreac-

tion of the colour branes, but not the flavour branes. In the field theory limit,

this is equivalent to having the flavour branes, probing the near horizon geometry

sourced by the colour branes. Functionally, this adds an extra sector to the string

theory, open strings that have one or both ends on the flavour branes. Strings that

stretch from the colour branes to the flavour branes are identified as quarks, with

mass proportional to their length. On each end of the string there are indices that

identify which brane in the stack the string is attached to. For the case of Nc co-

incident colour branes, and Nf co-incident flavour branes, the Chan-Paton factors

form an Nc ×Nf matrix, which can be interpreted as having Nf mass degenerate

quarks transforming in the fundamental representation of SU(Nc). Similarly, the

strings that have both endpoints on the flavour branes are interpreted as mesons,

with each string endpoint representing a quark and an anti-quark. Not all allowed

intersections of branes give stable theories however, and whether the brane inter-

section preserves supersymmetry or not plays a large role in this. The decay of
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D-branes is mediated by tachyons [68, 69], and in a supersymmetric theory, all

the states must have a positive energy39 so there can be no tachyons, and the

configuration is stable. Whether a given brane intersection retains supersymme-

try can be deduced from the boundary conditions allowed on the open strings.

Recall that for a Dp brane, the open string modes obey Neumann, or N, boundary

conditions on the p + 1 directions spanned by the brane, and a Dirichlet, or D,

boundary conditions on the direction the brane is pointlike in. Having multiple

branes allows string modes with an N condition at one end, and a D condition at

the other (or vice versa). A consideration of the NS sector ground state on the

open superstring suggests that the brane intersections break supersymmetry when

the number of directions that permit an N and a D condition, hence #ND, is two

or six [70]. Loosely, this is the number of directions in a brane intersection with

only one brane. Given that the difference in dimension of the branes is always

a multiple of two, there are three sets of particular importance: the Dp/Dp + 4

intersection, the Dp/Dp+ 2 intersection, and the Dp/Dp intersection.

In reverse order, the Dp/Dp intersection is not particularly suitable for describing

fundamental matter. One could consider the probe p brane as coming from the

stack of Nc colour branes, and moving a brane off the stack can be interpreted

as breaking the gauge group on the worldvolume of the brane stack from SU(Nc)

to SU(Nc − 1) × U(1), which is a stringy example of Higgsing the gauge group.

The strings that stretch between the Nc−Nf colour branes, and the Nf “flavour”

branes form a massive vector state akin to the W and Z bosons of the standard

model. An example of this case is provided in Maldecena’s original paper on the

subject, where this is identified as probing the moduli space of the Higgs branch

of N = 4 SYM.

The Dp/Dp + 2 intersection is the next one that shows real promise for describ-

ing matter fields. The alignment of these branes that preserves supersymmetry

is displayed in the brane scan below. A • indicates a direction that the brane is

pointlike in, and − indicates that the brane is extended in that direction,

0 1 ... p p+ 1 p+ 2 p+ 3 ... 9

Dp − − − − • • • • •
Dp+ 2 − − − • − − − • •

. (3.83)

39This is a consequence of the supersymmetry algebra {Qα, Q̄α̇} = 2σµ
α,α̇Pµ, ⟨ψ|{Qα, Q̄α̇}|ψ⟩ =

⟨ψ|QQ̄ + Q̄Q|ψ⟩ = ⟨ψ| |Q†|2 + |Q|2 |ψ⟩, which is positive semi-definite, hence P0 is positive
semidefinite also.
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Note that this intersection has the flavour brane pointlike in one of the directions

spanned by the colour brane. This is neccesary to preserve supersymmetry, other-

wise we would have #ND = 2 which is not allowed, wheras in this configuration we

have #ND = 4 which is allowed. The field theory limit, with α′ → 0 is also a limit

where the string tension T = 1/2πα′ diverges. The result is that the open strings

are restricted to living on a co-dimension one defect in the dual gauge theory.

So this intersection holographically describes a quark supermultiplet in the dual

gauge theory, just restricted to a defect. This type of intersection, though with

a near extremal stack of colour branes, will be the backbone of the holographic

model in Chapters 5 and 6.

Lastly the Dp/Dp + 4 intersection, which because #ND = 4 is allowed, can be

aligned such that the directions on the Dp brane are covered by the p + 4 brane

(shown in (3.84)). This implies that the quark supermultiplet described by the

open strings between the p and p + 4 branes is dynamical on the worldvolume

of the p brane. A concrete example of this is the D3/D7 intersection, speciali-

sation to p = 3, which is holographically dual to the N = 2 Karch-Katz theory

(N = 4, SU(Nc) SYM deformed by the presence of Nf , N = 2 quark supermulti-

plets). In this case the D7 brane wraps an asymptotically AdS5 × S3 subspace of

the full geometry, with embedding field Li(ξa) = X7+i that represents the position

of the sevenbrane in the X8 and X9 directions (with i = 1, 2, and a = 0, ..., 7),

0 ... p p+ 1 p+ 2 p+ 3 p+ 4 ... 9

Dp − − − • • • • • •
Dp+ 4 − − − − − − − • •

. (3.84)

Generically the presence of branes breaks the Lorentz symmetry of spacetime, and

fluctuations of the branes come packaged in representations of remaining symmetry

group. In this case, the brane intersection breaks the symmetry from SO(1, 9) to

SO(1, 3)× SO(4)× U(1). From the perspective of fluctuations on the D7 brane,

there is a vector field on the directions covered by the D3 brane, which are dual

to the vector mesons, scalars with an internal SO(4) rotation, which is doubly

covered by SU(2), and indicative of the remaining supersymmetry, and finally

two scalars that rotate into one another by a U(1) transformation. This last case

is simplest to consider, and can be written in terms of the embedding function

L, and fluctuations there about. We can always make a U(1) rotation to choose

X8 = L,X9 = ϕ(x). The DBI action for the vacuum state evaluates to,

SD7 = −T7
∫︂
d8x
√︁

−det(P [G]ab) = −T7
∫︂
d8x ρ3

√︂
1 + (∂ρLi)2, (3.85)
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which is solved by L = const. This represents, through the asymptotic value of

the field L, the inclusion of quarks with a supersymmetry preserving mass term

L ∼ mq. The equation of motion that follow from (3.85) is,

ρ3∂ρL√︁
1 + (∂ρL)2

= const, (3.86)

which asymptotically is satisfied by

L ∼ mq +
c

ρ2
, (3.87)

where mq is the current quark mass, and c is the chiral condensate. The super-

symmetric theory forbids the formation of condensates, so to realise the breaking

of chiral symmetry the theory must be further deformed to break the remaining

supersymmetry (see [71]). For L = 0, there is a rotational symmetry in the X8,9

directions, which is broken by the presence of quark masses. Small fluctuations

of the embedding in the X8,9 directions, ϕ represents a pseudoscalar meson in the

dual theory (the correspond to fluctuations of 7-7 strings in the brane picture).

In the N = 2 theory, with L = const, we can calculate the meson spectrum by

allowing fluctuations to have spatial dependence on the worldvolume co-ordinates

of the D7 brane, ξa. Taking the embedding [72]

X8 = L+ (2πα′)ϕ(ξa), X9 = 0 + (2πα′)ψ(ξa), (3.88)

the pullback of the metric to the D7 brane worldvolume, in static gauge, evaluates

to;

P [G]ab = gab + (2πα′)2
R2

r2
(∂aϕ∂bϕ+ ∂aψ∂bψ) (3.89)

, where gab is the static-gauge metric on the D7 brane worldvolume co-ordinates.

The Lagrangian for the D7 brane fluctuations is then

LD7 = −µ7

√︄
−det

[︃
gac

(︃
δcb + (2πα′)2

R2

r2
gcd(∂dϕ∂bϕ+ ∂dψ∂bψ)

)︃]︃
. (3.90)

Expanding this to quadratic order in the fluctuations we have

LD7 ∼
√︁

−det g ×
(︃
1 +

1

2
(2πα′)2

R2

ρ2 + L2
gcd(∂cϕ∂dϕ+ ∂cψ∂dψ)

)︃
. (3.91)
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The resulting equations of motion are,

∂a

(︃
ρ3gab∂bϕ

ρ2 + L2

)︃
= 0. (3.92)

The equations of motions for the field ψ, are identical with the replacement ϕ→ ψ.

Generally, we can take a modified version of a plane-wave ansatz

ϕ(ξa) = e−ik·xf(ρ)Y l(S3), (3.93)

which factorises the solution into: plane wave behaviour on R1,3, a radial profile

f(ρ), and spherical harmonics Y l(S3) on the three sphere. Neglecting the dynamics

on the three sphere, we have

R4

(ρ2 + L2)2
ηµν∂µ∂νϕ+

1

ρ3
∂ρ
(︁
ρ3∂ρϕ

)︁
= 0. (3.94)

Inserting the ansatz (3.93), gives

f ′′(ρ) +
3

ρ
f ′(ρ) +

R4M2

ρ2 + L2
f(ρ) = 0, (3.95)

which can be solved analytically in terms of the hypergeometric functions,

f(ρ) = (ρ2 + L2)−a
2F1

(︃
−a, 1− a; 2;− ρ2

L2

)︃
, (3.96)

where 2a = −1+
√︁

1 + (M2R4/L2). Ensuring that the solution is normalisable, or

demanding that the solution asymptotically falls off with some negative power of

ρ, imposes constraints on the allowed values of a. The leading ρ behaviour of this

series is f ∼ const+ ρ2(1−a). Combined with regularity at the origin, which places

integer constraints on the allowed values of a, we must have 1− a = −n, n ∈ Z+.

This quantisation condition for a, gives a quantised meson spectrum,

M =
2L

R2

√︁
(n+ 1)(n+ 2). (3.97)

We can identify n with the principle quantum number of the pseudoscalar mesons.

For the case of massless quarks, L = 0, and the meson spectrum becomes degen-

erate (up to intrinsic angular momentum l, that has been omitted in this pas-

sage). When the quark mass is generated dynamically, these mesons are pseudo-

Goldstone bosons of the broken chiral symmetry in the dual gauge theory. This

model has some of the requisite features of a holographic dual of QCD. It has
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dynamical quarks, which can display dynamical chiral symmetry breaking when

the theory is appropriately deformed; calculations can be extended to finite tem-

perature by using the AdS-Schwarzchild geometry (introduced as the finite T dual

of N = 4 SYM in [10]); however it is not a confining theory! Holographic Wilson

loops were introduced in [73], where the expectation value of the Wilson loop is

determined from, the exponential of, the area of string worldsheets which end on

the boundary of AdS. For cases where the string is obstructed at some radial scale,

the dominant spatial contribution to the worldsheet is proportional to the asymp-

totic separation of the strings. Giving the overall contribution as proportional

to T × separation, which is a holographic incarnation of the area law for Wilson

loops. Figure 3.1, is a cartoon that depicts strings with endpoints on the boundary

of AdS in a confining theory. The obstruction can arise from strong divergences

in the interior of the space, such as in [74, 75] or branes wrapping compact cycles

such as in [76, 77]. In pure AdS5 this does not happen, and thus pure N = 4

SYM is not confining. The expectation value of Wilson loops is instead controlled

by conformal symmetry and the value calculated from the supergravity approach

reflects this. A holographic dual of QCD is expected to have all of the above fea-

tures, we will conclude this Chapter by reviewing some existing holographic duals

with QCD like phenomenology.

3.3.2 Holographic QCD

This section will review some of the pre-existing approaches to holographic QCD.

It will be split into two parts, bottom up approaches, and top down approaches.

3.3.2.1 From the bottom up...

Bottom up approaches to QCD typically feature an Einstein-dilaton gravity liv-

ing on an asymptotically AdS5 geometry. The field content of the gravity dual

is then informed by the choice of operators that are to be included in the dual

gauge theory. These typically subdivide into hard-, and soft-wall models, which

refer to how confining behaviour is included in the dual gauge theory. In the hard-

wall approach [78] typically some IR cutoff scale is included in the geometry, with

boundary conditions for the fields specified on the “IR brane”. This inclusion of a

hard-wall in the geometry is inspired by the Klebanov-Strassler model [79], where

a similar behaviour is realised from branes probing warped conifolds. In the soft

wall approach [80], the Regge behaviour of the meson spectrum is included by
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Figure 3.1: A cartoon depicting a string (Blue) with endpoints on the bound-
ary of AdS in a confining theory. The string is excluded from the red region, so
for sufficiently large ∆x the area of the string worldsheet is dominated by the

contribution from the part of the string lying across the obstruction.

parameterising the geometry in terms of two factors, which govern the behaviour

in the UV and IR respectively. In the IR the dilaton grows quadratically, which

kills off field fluctuations in the IR of the geometry, whereas in the UV the remain-

ing factor accounts for the restoration of conformal symmetry in the asymptotic

region. An approach featuring non-trivial dilaton potentials, which may more

accurately mimic QCD is improved holographic QCD [81, 82]. There is a class

of models that describes large Nc, large Nf QCD in the Veneziano limit dubbed

V-QCD [83], which builds upon improved holographic QCD by including flavour

D4 branes, through a tachyonic DBI action (due to Sen [84]). There are a class of

models known as holographic light-front QCD, which arise from the wavefunction

of Baryons in light cone quantised QCD, which obey a Schrödinger equation on

an emergent seemingly AdS geometry [85].

3.3.2.2 ...and the top down

Comparably, there are far fewer top down approaches to Holographic QCD. A

significant body of work has been done on the D3/D7 intersection, which is a

good toy model for understanding how different aspects of QCD arise in top down
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models. A sizable amount of this work is reviewed in [86], amongst other things.

The understanding of breaking of chiral symmetry is due to [71]; the inclusion of

finite baryon density is due to [87], with some exact results therein from [88]; holo-

graphic renormalisation of probe branes from [89]. Perhaps the most sucessful top

down holographic model of QCD to date is the Sakai-Sugimoto model40[77, 90].

This model is based on an intersection of D4 and D8 branes in massive type IIA

string theory. A compact direction wrapped by the Nc D4 branes provides a ge-

ometry that is capped. In the supergravity solution, the S1 wrapped by the D4

branes collapses to zero size at a finite radial scale, where the geometry “ends”.

Crucially probe branes in theory cannot pass the cap, suggesting the presence of

a mass gap. At the tip of the geometry the probe D8 branes are forced to turn

around, emerging at the antipodal point on the S1 41. This model successfully

incorporates the non-abelian SU(Nf )L × SU(Nf )R flavour-chiral symmetry (and

it’s breaking), confinement, and has a meson spectrum comparable to QCD. A

baryonic sector can be added to the model by including D4 branes wrapped on

spheres [91] (this is analogous to the approach by Witten in AdS5 in [92]).

Ultimately, a potential model of holographic QCD should: have a four dimensional

dual theory (at least in the IR), exhibit confining behaviour, and include quark

and meson degrees of freedom, with a mechanism to break chiral symmetry dy-

namically.

3.4 Summary

This chapter has presented some of the neccesary background theory pertaining

to string theory, supergravity, D-branes, and the AdS/CFT correspondence. We

started with a brief early history of strings, dual models, and their connection to

hadronic physics, before moving to a discussion of the bosonic string. Upon quan-

tisation we saw that the spectrum of the bosonic string contained gauge fields (for

the open strings), and gravity (for the closed strings). It however also contains

tachyons, necessitating the move to superstrings. Focussing on closed superstrings

we sketched the necessity of the GSO projection, which is a consistent truncation of

the closed superstring, removing tachyons and yielding spacetime supersymmetry.

The Ramond-Ramond sector of the resulting type II superstring theories naturally

includes massless p-forms which imply the existence of extended objects that cou-

ple to them, generalising Maxwell theory to extended objects. These objects are

40sometimes Witten-Sakai-Sugimoto.
41equivalently there are D8 and anti-D8 branes that meet at the tip of the geometry.
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D-branes, extended tensionful hypersurfaces that open strings can end on. The

D-branes are dynamical non-perturbative objects in the string theory, that gener-

ically host gauge theories on their worldvolume. From the perspective of super-

gravity, these tensionful hypersurfaces are generalisations of charged black holes to

higher dimensions. This interplay of perspectives, supergravity and worldvolume

theory lies at the heart of the AdS/CFT correspondence. In the decoupling limit it

is suggested that the worldvolume theory on D3 branes is dynamically equivalent

to type IIB string theory propagating in their near horizon geometry. This duality

between strongly coupled gauge theory and weakly coupled gravity opens up new

avenues of approach to non-perturbative QCD. The remainder of this thesis will be

concerned with the construction of a candidate holographic dual of QCD, based on

the domain wall fermion construction, widely used in the lattice QCD community

to represent chiral matter. In Chapter 4 the Holographic Domain Wall formalism

will be developed, in the D3/D7 holographic model. In Chapter 5, this formalism

will be embedded in a higher dimenisonal, confining background culminating in

the Domain Wall AdS/QCD model. This model comes from intersecting D5 and

D7 branes, and we will calculate the mesonic observables of the model. Chapter

6 will be devoted to an analysis of this system at finite temperature, examining

the thermal meson melting transition when the dual geometry contains a black

hole. Finally Chapter 7 will conclude this thesis with an overview of some ongoing

work, and a view to the future.
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Chapter 4

Domain Wall Fermions

This chapter will focus on the construction of domain walls in the D3/probe D7

brane intersection [1]. It will start by discussing some of the inspiration for this

work, taken from the lattice community, going on to detail the holographic domain

wall construction. We first construct domain walls by linearising the DBI action for

the embedding of a D7 brane in AdS, with an ansatz of sinusoidal X3 dependence.

This allows us to build periodic domain walls at the boundary of AdS via Fourier

analysis. The large mass limit will be introduced as the natural next step, allowing

us to examine the fluctuations of the brane that live on the domain wall. It is

these fluctuations that will be the main characters of the story going forwards.

Analysis of the fluctuations reveals that whilst the system displays chiral symmetry

breaking, it is not dynamical! Domain walls with worldvolume magnetic fields on

the D7 brane, and in deformed AdS geometries are considered. In these cases a

Gell-Mann-Oakes-Renner relation is observed for the pseudo-Goldstone bosons of

the theory, signalling the dynamical breaking of chiral symmetry.

4.1 Domain Wall Fermions on the lattice, and in

the continuum

In [93] domain wall fermions were introduced to address the challenge of simulat-

ing chiral fermions on the lattice. Put simply, there is a no-go theorem by Nielsen

and Ninomiya [94, 95] which posits that under a very general set of assumptions,

namely: locality, hermiticity, and translational invariance; that any attempt to

simulate chiral fermion on a lattice will incur fermion doubling. There will always
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be the same number of left handed and right handed species of fermion. This pre-

sented a clear challenge for any lattice theorist attempting to simulate: the weak

interactions, the standard model, or chirally invariant QCD. To quote Kaplan

directly “A lattice regulator that achieves this while preserving gauge invariance

will have to be devious”. To circumvent the no-go theorem the 2n dimensional

theories were uplifted to live in 2n+1 dimensions, with translational invariance in

the 2n+1th direction broken, by a step function like mass profile for the fermions

in the 2n+1 dimensional theory. Where this step function sharply passes through

zero, there lives a theory of 2n dimensional massless chiral fermions localised on

a co-dimension one defect. This still incurs fermion doubling, however this can be

removed by inclusion of a gauge invariant Wilson term in the higher dimensional

theory.

In the following passage we will follow the analysis in [93], for the case of reduction

from a 3 + 1 dimensional theory, to a 2 + 1 dimensional theory. Note however,

that there is no notion of chirality in an odd number of spacetime dimensions.

More concretely, in an even number of dimensions the Spin(d−1, 1) group admits

two inequivalent complex-linear representations of (complex) dimension 2(d/2)−1,

which are the chiral representations. In an odd number of dimensions, then there

is a single representation of complex dimension 2(d−1)/2 [96]. However, we shall

explicitly demonstrate that it is possible to split the four component Dirac spinor

into two distinct pieces. Whilst these are not Weyl spinors, it serves as a proof of

concept. As such, the word “chiral” will be used loosely in this sense throughout

this chapter; which deals principally with these 2+1 dimensional theories, and

should be taken with a pinch of salt to refer to this spliting of the spinor compo-

nents until the next chapter, in which we reduce a 4+1 dimensional theory to a

3+1 dimensional theory with genuine chirality.

We begin with the Dirac equation for a free fermion in 3+1 dimensional Minkowski

space, with a fermion mass dependant on position in x3

[︁
−iγµ∂µ − iγ3∂3 +M(x3)

]︁
Ψ = 0, (4.1)

here the Lorentz indices run over µ = 0, 1, 2. Note that in the Dirac basis, the γ

matrices are,
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γ0 =

⎛⎜⎜⎜⎜⎝
1 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 −1

⎞⎟⎟⎟⎟⎠ , γ1 =

⎛⎜⎜⎜⎜⎝
0 0 0 1

0 0 1 0

0 −1 0 0

−1 0 0 0

⎞⎟⎟⎟⎟⎠ ,

γ2 =

⎛⎜⎜⎜⎜⎝
0 0 0 −i
0 0 i 0

0 i 0 0

−i 0 0 0

⎞⎟⎟⎟⎟⎠ , γ3 =

⎛⎜⎜⎜⎜⎝
0 0 1 0

0 0 0 −1

−1 0 0 0

0 1 0 0

⎞⎟⎟⎟⎟⎠ .

(4.2)

We now wish to define a “projector” such that the four component Dirac spinor

is split into a pair of two component spinors in 2+1 dimensions upon dimensional

reduction. We define

P± =
1

2

(︁
1± iγ3

)︁
(4.3)

and then write the four component Dirac spinor as (here the +,− refers to the

static energy eigenvalue)

Ψ =

⎛⎜⎜⎜⎜⎝
ψ+
1

ψ+
2

ψ−
1

ψ−
2

⎞⎟⎟⎟⎟⎠ , (4.4)

which is acted upon by the projector to give the following four component spinors

P±Ψ =

⎛⎜⎜⎜⎜⎝
χ±
1

χ±
2

−iχ±
1

iχ±
2

⎞⎟⎟⎟⎟⎠ ,

χ±
1 =

(︁
ψ+
1 ± iψ−

1

)︁
χ±
2 =

(︁
ψ+
2 ∓ iψ−

2

)︁ , (4.5)

each of which carries the information content of a two component spinor. Now we

consider the mass profile in the x3 direction, which we write piecewise as,

M(x3) =

⎧⎪⎨⎪⎩
+M, x3 > 0

0, x3 = 0

−M, x3 < 0

⎫⎪⎬⎪⎭ , M ∈ R+. (4.6)

We can now seek solutions for the massless modes of (4.1), by decomposing the

spinor into eigenmodes of the projector (4.3),

Ψ(xM) =
[︁
a(x3)P+ + b(x3)P−

]︁
ψ0(x

µ). (4.7)
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Where the indexM = 0, ..., 3 runs over the whole space and a(x3), b(x3) are simply

functions that carry the x3 dependence of Ψ. It is assumed that the mode ψ0 is

massless on the 2+1 dimenisonal space spanned by x0...2 thus,

iγµ∂µψ0 = 0. (4.8)

This assumption alongside the anticommutation of the γ matrices and the defini-

tion of the projector, give the relations γµP+ = P−γ
µ and γµP− = P+γ

µ, which

allows us to drop the first term in (4.1). This leaves just the dynamics of the

functions a(x3) and b(x3),

(︁
−iγ3∂3 +M(x3)

)︁ [︁
a(x3)P+ + b(x3)P−

]︁
ψ0(x

µ) = 0. (4.9)

Now by noting that γ3 squares to −I4, it is straightforward to realise that iγ3P+ =

P+ and iγ3P− = −P− and, for (4.9) to hold, one must have

[︁
M(x3)− ∂3

]︁
a(x3) = 0,

[︁
M(x3) + ∂3

]︁
b(x3) = 0. (4.10)

The second of these equations, has a normalisable solution

b(x3) = Cb e
−|M |x, (4.11)

whereas the first is non-normalisable and as such is an unphysical mode at the

discontinuity about x3 = 0. The sign of the change in M is significant here!

Including a second discontinuity, at some x3 = const > 0, with opposite sign

will localise the a(x3) mode on the new discontinuity (here instead b(x3) will

be non-normalisable). So we see that the two, two component spinors localise on

individual domain walls separated in the x3 direction. We will now try to replicate

the above construction in a controlled, well understood, holographic setting. The

D3/D7 intersection of IIB string theory.

4.2 Domain Walls in the D3/D7 system.

The first system in which we shall construct the domain wall theories, D3/D7 brane

intersection, holographically dual to N = 4 super-Yang-Mills with the addition

of a matter hypermultiplet in the fundamental representation of SU(N) (quarks),

that preserves half the supersymmetries of the original super-Yang-Mills theory

[67]. When the D7 branes are considered in the probe limit, this is equivalent to a
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quenched approximation in the dual field theory. The quark loops are suppressed

but the full effect of the gauge field dynamics on the quarks is considered. In

the string picture, the branes are aligned in the half supersymmetry preserving

configuration shown in the brane scan,

0 1 2 3 4 5 6 7 8 9

D3 - - - - • • • • • •
D7 - - - - - - - - • •

. (4.12)

The two sets of D-branes live in a 10 dimensional supersymmetric Minkowski

vacuum which, when backreaction of the D3 branes is taken into account, becomes

a warped asymptotically Minkowski space. Deep in the “throat” of the geometry,

there is a black hole-like horizon and the near horizon region is the familiar AdS5×
S5. Still this top down picture is incredibly useful for classifying the fluctuations of

the theory, and generally garnering some intuition (there is a beautiful exposition

on this in [97]). In the probe limit the D7 branes wrap an asymptotically AdS5×S3

subspace of the full AdS5 × S5. Writing the metric in a form that is amenable to

the embedding of the probe sevenbranes,

ds2 =
r2

R2
(ηµν) +

R2

r2
(︁
dρ2 + ρ2dΩ2

3 + δijdL
(i)dL(j)

)︁
, (4.13)

it becomes obvious that branes lying flat in the L(i) (with i = 1, 2) directions wrap

an asymptotically AdS5×S3 subspace. Here the dΩ2
3 is a shorthand to denote the

line element on the three sphere and the AdS radial direction r2 = ρ2 + (L(i))2

the indices µ, ν run over the “field theory” directions, that is to say, the directions

shared with the stack of coincident D3 branes generating the near horizon geometry

(in this case µ, ν = 0, ..., 3). The embedding functions that describe the position of

the D7 brane in the X(8,9) directions can be written as L(i)(ξa). These functions

transform as scalar fields on the worldvolume of the probe. The sevenbranes are

tensionful, charged objects and as such, will act to minimise their worldvolume.

The natural action that governs the dynamics of the embedding scalars is then the

Dirac-Born-Infeld (DBI) action [98]. In this case, we take the embedding scalar to

be dependant on the x3 direction (henceforth z), and the radial direction on the

probes ρ. The DBI action for the probe branes is

SD7,DBI = −T7
∫︂
d8ξ
√︁

−det[Gab +Bab + Fab], (4.14)

and the lowercase latin indicies (a, b) = 0, .., 7 are worldvolume indices; indicating

that bulk quantities like the metric GMN , and the Kalb-Ramond Field BMN , have
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been pulled back to the worldvolume of the sevenbrane. Low energy dynamics of

strings that start and end on the D7 brane(s) are captured by a U(1) gauge field

strength Fab which is native to the sevenbrane, and when considering the lowest

energy state of the D7 we can neglect the excited open string modes living on its

surface (meaning we set Fab = 0). In the AdS5×S5 background, the Kalb-Ramond

field is everywhere zero1, so the DBI action for the scalars L(i)(z, ρ) reads,

SD7,DBI = −T7Ω3ND7

∫︂
d4x dρ ρ3

√︃
1 + (∂ρL(i))

2
+
R4

r4
(∂zL(i))2. (4.15)

This is of course not the full action for the probe branes! The other part describes

the coupling to RR forms, the Wess-Zumino terms [99]. The three angular co-

ordinates on the equatorial S3 ⊂ S5 have been integrated over, giving the factor

Ω3, and the factor ND7 denotes the number of probe branes. We shall consider

only a single probe in this case.

For D7 probes, the embedding fields L(i)(ρ) describe the mass-chiral condensate

source-operator pair, in the asymptotic region, at the conformal boundary. Con-

sidering a radially dependent embedding, the action for the D7 probes is simply

SD7,DBI ∼
∫︂
dρ ρ3

√︂
1 + (∂ρL)

2, (4.16)

and the resulting equation of motion for the scalar L is 2,

ρ3∂ρL√︁
1 + ∂ρL2

= c, (4.17)

where c is a constant of integration. For probes that asymptotically approach some

constant position on the boundary, that is L → const, ∂ρL → 0, the asymptotic

solution is

L ∼ A+
B

ρ2
. (4.18)

One can analyse the above on dimensional grounds, and realising that [L] = [ρ] = 1

leads to the conclusion that [A] = 1, and [B] = 3 which is the expected pairing

of a dimension one source, and a dimension three operator in a 3+1 dimensional

theory. This aides in the identifiction of the pair A and B as m, ⟨q̄LqR⟩. Thus the
1AdS5 × S5 is the near horizon geometry of black threebrane solution corresponding to the

D3 branes. The only non-trivial form in the geometry is the four-form which is sourced by the
D3 branes

2The scalars have a U(1) symmetry that rotates L(1), L(2) into one another. Without loss of
generality we will set L(1) = L, L(2) = 0 for now. Later fluctuations of L(2) about 0 will describe
the pseudoscalar mesons of the theory.
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DBI scalars describing the D7 embedding give information about the mass and

condensate of the N = 2 hypermultiplet. We take our z dependant embedding

scalar to asymptotically describe a position dependant source operator pair

L(z) ∼ mq(z) +
⟨q̄LqR(z)⟩

ρ2
. (4.19)

From here the approach will be to write out and then linearise the equations of

motion, and apply a z dependant mass perturbation to the massless theory (where

the D7 has a flat embedding at L = 0). We shall then normalise and sum the

perturbations such that the boundary profile for the quark mass is periodic with

period K, and describes two sharp walls at z0 and K − z0 where the sign of the

mass changes. The boundary profile for the D7 brane embedding in the z direction

can be written as,

L(z) =

⎧⎪⎨⎪⎩
1, 0 ≤ z ≤ z0, and, K − z0 ≤ z ≤ K

0, z = z0, and, z = K − z0,

−1, z0 ≤ z ≤ K − z0.

(4.20)

The equations of motion linearised about L = 0 are,

∂ρ
(︁
ρ3∂ρL

)︁
+

1

ρ

(︁
∂2zL

)︁
= 0, (4.21)

and we seek solutions to these equations of the form,

L(ρ, z) =
∑︂
k

fk(ρ) · ak cos kz . (4.22)

The linearised equations of motion are independant of value L itself, depending

only on the derivatives, and thus the physics is independant of the chosen normal-

isation for the scalar field. We choose to normalise the solutions such that

lim
ρ→∞

fk(ρ) = 1, (4.23)

leaving the boundary solution,

lim
ρ→∞

L(ρ, z) =
∑︂
k

ak cos kz. (4.24)

What remains is to determine the coefficients ak through Fourier expansion of

(4.20), which decomposes into:
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f(z) =
a0
2

+
∞∑︂
n=1

an cos

(︃
2πn

K
z

)︃
,

a0 =
8z0
K

− 2, (4.25)

an =
2

πn

[︃
sin

(︃
2πn

K
z0

)︃
− sin

(︃
2πn

K
(K − z0)

)︃]︃
.

The first 10,000 terms of this series are plotted in Figure (4.1). We now must solve

0.5 1.0 1.5 2.0 2.5 3.0
z

-1.0

-0.5

0.5

1.0

f[z]

Figure 4.1: A plot of the fourier series (4.25) truncated at n = 10,000. Here
the values K = 3, z0 = 1 were used to produce the plot.

for the radial profiles fk(ρ). With the ansatz (4.22), the linearised equations of

motion become,

ρ3∂2ρfk(ρ) + 3ρ2∂ρfk(ρ)−
k2

ρ
fk(ρ) = 0, (4.26)

which can be solved numerically. It should be noted, that since there is no scale in

the bulk AdS the solutions will be ill behaved in the IR. To avoid this we include a

hardwall regulator at ρ = 1, and shoot from ρ = 1 with ∂ρL = 0, however, in doing

this we should only trust any structures we see far away from the hardwall, with

ρ >> 1. A subset of these solutions are displayed in Figure (4.2), it is shown that

the higher k modes are less supported at small radial scales, which is expected.
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Figure 4.2: Some solutions fk(ρ) in AdS5 × S5 with a hardwall at ρ = 1 for:
k = 2π

K (blue), k = 20π
K (orange), and k = 60π

K (green).

The more highly oscillating (and thus highly energetic) modes are not expected to

play a part in the IR physics of the theory. Putting together the radial profiles we

can plot out a section of the solution, which is displayed in Figure (4.3). Critically

Figure (4.3) shows that the pair of domain walls3, whilst separated in the UV,

may join together in the interior of AdS5
4. This joining behaviour is not so

much of a surprise, it is familiar from probe embeddings in systems with branes

and anti-branes (such as the Sakai-Sugimoto Model [77, 90], and D3/D5D5 [102,

53, 103, 54, 89, 55]). Where the walls join in the bulk, we take this to be an

indication of the fermions forming a condensate. The operator that condenses is

not a local operator. The left-handed, and right-handed fermions are separated in

the z direction by some width w at the boundary, so the gauge invariant operator

that condenses must be an open Wilson line, with quarks at either end pinned to

the domain walls,

O = q̄1e
i
∫︁
A(1)q2. (4.27)

This operator is dual to a long open string [104], which in this case extends between

the domain walls. In the IR where the domain walls join there is no separation

and thus this operator mixes freely with q̄1q2. By fitting to the asymptotic form

of the solution (4.18) we plot the local (3+1 dimensional) quark condensate in

3Some work on a similar system with a single defect was done in [100, 101]
4One may wonder whether this is a trustworthy behaviour from the comments about the

hardwall, strictly we should only trust this behaviour in the region ρ >> 1. However we later
devise an analytic way to describe the joining of the walls, or at least the L=0 surface, which
shows good agreement even around ρ ∼ 5.
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Figure 4.3: An example domain wall solution from two perspectives. top: a
perspective showing the overall shape, bottom: a perspective “from the bound-
ary” showing the boundary profile of the D7 brane realising (4.20). For these
plots K = 3, z0 = 1.25, was used and the series was truncated at n = 350.

Figure (4.4). This figure shows the numerical value for the condensate localising

around the position of the domain walls. The condensate becomes more localised

the more terms that are included in the Fourier series, whilst having a zero value

at the exact position of the domain wall defects. It is not at this point clear

whether the peaks either side of the domain walls, one positive and one negative,

will merge in the full theory with the true condensate presumably summing to

zero. This however, is difficult to calculate in the linearised theory. To this end,

we will aim to dimensionally reduce to the locus where the 3+1 dimensional quark

mass vanishes. The next section will develop the large mass limit, where we take

the magnitude of the 3+1 dimensional quark mass to be infinite5, everywhere

5technically, of a scale |M | >> 1/w
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Figure 4.4: The 3+1 d quark condensate at the boundary of AdS plotted
against z for 150 Fourier modes (top), 100 Fourier modes (middle), and 50
Fourier modes (bottom). The positions of the domain walls are indicated with

red dots on the z axes.
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except on the domain wall locus where it is zero. In this limit the dynamics of the

quarks becomes strictly localised on the domain walls, and they then describe a

novel holographic theory of quarks on a codimension one defect in the dual theory.

We find explicit similarities to another codimension one holographic theories, the

D3/D5D5 intersection. This construction will allow us to explicitly examine the

fluctuations living on the domain walls which are in turn dual to operators living

on the defect in the gauge theory.

4.3 The Large Mass Limit: a tale of U shaped

loci

In this section we develop the large mass limit, and find explicit equations for the

domain wall loci where the four dimensional quark mass vanishes. This will be

done through two methods. The first method, is one in which the embedding fields

of the D7 brane are considered to be Heaviside function valued6 on some contour

z(ρ). The assumption that contour is smooth and monotonic, enables us write

down an action for z(ρ) that is analogous to the DBI action for the embedding

field of a brane. In this case it is the same action that one would expect to find

for the U shaped brane-antibrane configurations of the D3/D5D5 system. The

second approach is more direct and assumes only that the wall is sufficiently steep,

such that the brane has a step like profile across the whole of the z(ρ) locus. One

can then immediately write down an action functional that extremises the 6+1

dimensional worldvolume of the locus, which is reminiscent of the minimal surface

perscriptions seen in discussions of entanglement entropy of holographic CFTs

[105]. Ultimately the two approaches are equivalent so far as the cases in this

thesis are concerned. They produce the same equations of motion for the various

domain wall loci, and thus the same physics.

4.3.1 One Large Step for Brane-kind

We will start by making the following ansatz, we are searching for solutions of the

DBI action of the form

∂ρL ∼ J × δ(z(ρ)− z) (4.28)

6more accurately, the radial derivative, ∂ρL ∼ δ(z − z(ρ))
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where J is a Jacobean factor, which is included to adjust the appropriately reduce

to the subspace z(ρ). We will identify this factor by considering first a toy example

in a three dimensional flat space. The analogous “DBI” action for a “2-brane” in

three dimensional Euclidean space is

S =

∫︂
dx dy

√︂
1 + (∂xL)2 + (∂yL)2. (4.29)

We see here that by factoring out ∂xL we arrive at

S =

∫︂
dx dy ∂xL

√︄
1 +

(︃
∂x

∂y

)︃2

+
1

(∂xL)2
. (4.30)

We claim that the last term under the square root can be neglected on the locus

of the domain wall, where ∂xL is large. Now we want to intuit the form of ∂xL

that gives an action for the curve y(x) on two dimensional euclidean space. This

form is naturally

∂xL ∼ ∂y

∂x
δ (y − y(x)) , (4.31)

which when inserted into (4.30) gives the action,

S =

∫︂
dx

√︄
1 +

(︃
∂y

∂x

)︃2

. (4.32)

This is immediately recognisable as the proper length of the line y(x) on a Eu-

clidean two plane. There is still some ambiguity in (4.31) however, metric factors

will come into play as we allow non-trivial background geometries. So now we

shall examine a case of a “two brane” embedded in a non trivial three dimensional

space, with metric

ds2 = gxxdx
2 + gyydy

2 + gLLdL
2 (4.33)

with “brane” embedding L(x, y). The analogous DBI-like action is then,

S =

∫︂
dx dy (gxxgyy)

1/2

√︃
1 +

gLL
gxx

(∂xL)
2 +

gLL
gyy

(∂yL)
2. (4.34)

We can now play a similar game and factor out gLL

gxx
∂xL, whilst modifying (4.31)

to include the new metric factors. Now we arrive at

S =

∫︂
dx dy (gLL gyy)

1/2 (∂xL)

√︄
1 +

gxx
gyy

(︃
∂x

∂y

)︃2

. (4.35)
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Inserting the modified ansatz

∂xL ∼ G̃
∂y

∂x
δ (y − y(x)) , (4.36)

where G̃ is some combination of metric factors to be determined. This gives,

S =

∫︂
dx (gLL)

1/2 G̃ (gxx)
1/2

√︄
1 +

gyy
gxx

(︃
∂y

∂x

)︃2

. (4.37)

To recover an action that extremises the length of the line y(x), on the two di-

mensional surface at L = 0, we must identify G̃ with g
−1/2
LL

⃓⃓⃓
L=0

. Given that the

dynamics we are interested in will be limited to a three-volume, as in the above

example, we have all the tools needed to implement the D3/D7 domain walls. We

start from the action (4.14), and factor out ∂ρL. Then inserting the ansatz

∂ρL ∼ 1
√
gLL

⃓⃓⃓⃓
L=0

∂z

∂ρ
δ (z − z(ρ)) =

ρ

R

∂z

∂ρ
δ (z − z(ρ)) , (4.38)

the resulting action for the locus is,

Slocus = −T7Ω3ND7

∫︂
d4xdρ ρ3

ρ

R

∂z

∂ρ
δ (z − z(ρ))

√︄
1 +

R4

r4

(︃
∂ρ

∂z

)︃2

= −T7Ω3ND7R

∫︂
d3x dρ ρ2

√︄
1 +

ρ4

R4

(︃
∂z

∂ρ

)︃2

. (4.39)

It should be noted that performing the integral over the delta function, δ(z−z(ρ)),
restricts us to the contour where L = 0 by construction. As such, it sets all the

metric factors which have dependence on L to gab|L=0. In this case, we must

replace any factors of r with factors of ρ.

From here we can now treat z(ρ) as a functional to be varied, and the equation of

motion from (4.39)) minimises the volume of the domain walls. Since the action

carries no explicit dependence on z(ρ), the equations of motion simplify to

ρ6∂ρz√︁
1 + ρ4∂ρz2

= cz, (4.40)

or

∂ρz = ± cz

ρ2
√︁
ρ8 − c2z

. (4.41)

Here cz is a constant of integration associated with the independence of the action
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on z(ρ), and the co-ordinates have been re-scaled7 to pick up stray factors of the

AdS radius R. We can now look to (4.41) to identify the constant of integration

with a physically useful quantity in the bulk. The derivative ∂ρz diverges at

some point c
1/4
z in the bulk, further into the bulk (ρ ≤ c

1/4
z ) the equations of

motion become complex, suggesting the solution “ends” at c
1/4
z . We will thus

identify cz = ρ4min. Conversely, in the asymptotic region it falls off as cz/ρ
6. The

asymptotic flattening of the solutions, with a sharp divergence in the bulk suggests

that we should set boundary conditions at ρmin: z(ρmin) = 0, z′(ρmin) → ±∞.

This gives U-shaped solutions for the locus z(ρ), with well separated walls joining

(and terminating) at ρmin. We should then check that this is in good agreement

with the linearised system discussed in the previous section.

20 40 60 80 100
ρ

1.45

1.50

1.55

z

Figure 4.5: A plot of the solutions to (4.41) (Black, Red), matched to the
L = 0 contour of their linearised conterparts (Orange, Blue). The solutions are

matched by their separation at the boundary.

Figure (4.5) shows that there is good agreement between the solutions to (4.41),

and the L = 0 contours of the linearised system. There is some noise present in

the plots from the linearised system, which is an artefact of truncating the Fourier

series down to a finite number of terms. Presumably, plotting all terms would

solve this.

4.3.2 Minimal Surface

Before moving on to discuss the fields that live on the domain wall loci; there is a

second, more direct, approach to finding the equations of the loci that should be

7This is not a necessary step, it just makes the later formulae look neater.
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mentioned. In this approach we start with some prior knowledge of what we want

from the solution. We’d like to write down an action that minimises the volume

of some fictitious “sixbrane”8 that lives in the background, extended along some

contour z(ρ), at zero transverse displacement from the stack of D3 branes. The

appropriate action to write down is then one that gives the proper volume of the

“sixbrane”, which is

S ∼
∫︂
d7x

√︂
−det G̃ (4.42)

where G̃ is the induced metric on the “sixbrane”. Calculating the induced metric,

one arrives at

S ∼
∫︂
d3x dρ ρ2

√︂
1 + ρ4 (∂ρz)

2, (4.43)

which up to factors is the same as (4.39). Ultimately there is no tangible difference

between the two methods.

4.3.3 A Non-Supersymmetric D3/D7 Intersection

Late in the writing of this thesis, a third method for calculating the geometry of the

domain walls was realised. By taking the large mass limit, the resulting system

is a brane configuration that is extended in X8, and point-like embedded in z.

The remaining flat plateaus have been functionally removed from the system, by

taking |M | → ∞. From the perspective of the dual field theory the quarks living

off the locus are non-dynamical and decouple from the theory. Functionally, we

have started with a supersymmetric brane intersection and deformed it to study

a non-supersymmetric defect system. After the large mass limit the brane system

that we are left with is,

0 1 2 3 4 5 6 7 8 9

D3 - - - - • • • • • •
D7 - - - • - - - - - •

. (4.44)

This intersection has #ND = 6, and therefore preserves none of the supersymme-

try of the original theory. By re-writing the metric in a way that manifests the

symmetries of the new brane intersection,

ds2 =
r2

R2
(ηµνdX

µdXν) +
R2

r2
(︁
dρ2 + ρ2dΩ2

4 + (dX9)2
)︁
, (4.45)

8Non-supersymmetric D-branes of even (odd) spatial dimension in type IIB (IIA) string theory
do exist, see [106] for example, but they are unstable. These are not the branes we discuss here.
Our “branes” are just a construct to arrive at the right loci intuitively
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with r2 = ρ2+L̃
2
, we can embed the D7 brane in the geometry with the embedding

scalars X3 = z(ρ), and X9 = L̃(ρ). Suddenly we have done away with explicit

z dependence in favour of allowing z(ρ) to be determined dynamically9. One

thing to note here, is that we have redefined the radial co-ordinate ρ. The radial

direction in our system is what previously would have been ρ2 + L2. Clearly on

the L = 0 contour, these are equivalent. This approach now allows us to solve for

the full ρ-X8 dependence that had previously been neglected. The DBI action for

the sevenbrane is,

SD7 = −T7Ω4

∫︂
d4x

ρ4R2

r2

√︃
1 + (∂ρL̃)2 +

r4

R4
(∂ρz)2. (4.46)

The presence of a factor of r in the denominator of the action is worrying. However,

by calculating the equation of motion for the field L̃,

∂ρ

⎛⎝ ρ4

ρ2 + L̃
2

∂ρL̃√︂
1 + (∂ρL̃)2 +

r4

R4 (∂ρz)2

⎞⎠

+
ρ4

(ρ2 + L̃
2
)2

· 2L̃ ·
√︃

1 + (∂ρL̃)2 +
r4

R4
(∂ρz)2

− ρ4(∂ρz)
2√︂

1 + (∂ρL̃)2 +
r4

R4 (∂ρz)2
· 2L̃ = 0, (4.47)

we realise that ∂ρL̃ = L̃ = 0 is a solution to the equations of motion. It is possible

that this solution is a maximum, and unstable to turning on some non-trivial L̃(ρ).

Setting L̃ = 0 the action for the D7 brane becomes,

SD7 = −T7Ω4R
2

∫︂
d3x dρ ρ2

√︃
1 +

ρ4

R4
(∂ρz)2, (4.48)

which up to a multiplicative factor is equivalent to (4.39). With this in mind, we

realise that we can solve the resulting equation of motion, (4.41), explicitly for the

full spatial dependence of the domain walls,

z(ρ,X8) =

√︂
(ρ2 + (X8)2)4 − c2 2F1

(︃
3
8
, 1; 7

8
;
(ρ2+(X8)2)

4

c2

)︃
c
√︁
ρ2 + (X8)2

, (4.49)

9which was sort of the point anyways
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where c is a constant analogous to cz that controls the closes approach of the

U-shaped brane-antibrane configuration to the origin of the space. Given that we

now have three methods of determining the geometry of the loci, and a fourth

if one considers the D3/D5 anti-D5 system, which has identically shaped brane

embeddings, we can be confident that our large mass limit is reasonably capturing

the physics of the domain wall systems. Further, given that the same defect

geometry has arisen in several different systems, it seems that the shape of the

joined branes/domain walls is controlled by the co-dimension of the defect.

4.4 Fluctuations about the Wall

The next step in the exploration of this system is to understand the fluctuations

of the DBI fields restricted to the loci. These fluctuations, restricted to the loci,

are then assumed to be holographically describing the quantum field theory that

lives on the domain wall defect. The goal is to take the action (4.15) and restrict

to the contour z(ρ) that solves (4.41). Schematically, this will look like

SDW =

∫︂
d8ξ ∆(z − z(ρ)) LD7 =

∫︂
d7ξ LDW (4.50)

where ∆ is some function that restricts to the contour z(ρ), and dimensionally

reduces the action. This function must carry the geometric data of z(ρ), and thus

we identify

∆(z − z(ρ)) =
√︁
det g̃ δ (z − z(ρ)) . (4.51)

Here g̃ is the induced metric on the line z(ρ) (in the two plane z − ρ). It may at

first seem odd that the factor pre-multiplying the δ function is not the same as in

(4.38) however, the goal in these two cases is not the same! Here we wish to restrict

the D7 action by applying some appropriate function that localises fluctuations of

the DBI fields onto the locus, in (4.38) the goal was to find the leading behaviour

of the DBI fields that realises the geometry of the domain wall system, and allows

us to calculate the loci. So it is not surprising that these two delta functions are

not the same. For the case at hand we have

∆(z − z(ρ)) =
√︂
Gρρ +Gzz(∂ρz)2

⃓⃓⃓⃓
L=0

δ(z − z(ρ)),

=
1

ρ

√︂
1 + ρ4(∂ρz)2 δ(z − z(ρ)). (4.52)
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The resulting action for the fluctuations is then

SDW ≃
∫︂
d2x dρ

√︂
1 + ρ4(∂ρz)2 ρ

2

√︄
1 +A (∂ρL)

2 +
(∂iL)2

(ρ2 + L2)2
, (4.53)

with

A = 1 +
1

(ρ2 + L2)2 (∂ρz)2
. (4.54)

The indices i run over the X0,1,2 directions, and the function A encodes the z

dependence of the solutions. In this case, we do not treat ∂ρz as a functional to be

varied, but instead as input data to the theory. For the lowest energy state for the

scalar L, in which there are no fluctuations in the X0,1,2 directions, the equation

of motion for L is

∂ρ

(︄√︁
1 + ρ4(∂ρz)2 ρ

2A (∂ρL)√︁
1 +A(∂ρL)2

)︄

+
1

2
ρ2
√︂

1 + ρ4(∂ρz)2
∂A
∂L

(∂ρL)
2√︁

1 +A(∂ρL)2
= 0. (4.55)

By inspection we can see that this is satisfied by ∂ρL = 0, L = constant. Now

the fluctuations of the field L are dual to the quark mass-chiral condensate source-

operator pair for the 2+1 dimensional theory that lives on the domain walls. Its

asymptotic behaviour is

L→ mq +
c

ρ
, (4.56)

therefore we must identify the L = mq at all points on the RG flow given by

(4.55) and thus the system describes a massive quark state in a conformal gauge

background. We now can identify the only sensible boundary condition in the IR of

the theory, where the domain wall pair join up. Here we must have L(ρmin) = ρmin,

reflecting the presence of the dimensionful mass scale given by the loci, and thus

ρmin = mIR = mq. Now that we have described the vacuum of the theory, it is time

to look to the mesons. These are described by fluctuations about the vacuum DBI

field L. We will consider the system with X8 = L(ρ, z), X9 = ϕ(ρ, z, xi), where

xi are the co-ordinates that span the 2+1 dimensional domain wall defect. The

linearised action for the fluctuations ϕ about L is

Sϕ =

∫︂
d2x dρ ρ2

√︂
1 + ρ4(∂ρz)2

(︃
1 +

1

2
A(∂ρϕ)

2 +
1

2

(∂xiϕ)2

(ρ2 + L2)2

)︃
. (4.57)



76 Chapter 4. Domain Wall Fermions

taking the following standard ansatz for ϕ

ϕ(ρ,X i) = ϕ̃(ρ)eik·X , with k · k = −M2
ϕ. (4.58)

We arrive at the equation of motion for the meson ϕ,

∂ρ

(︃
ρ2
√︂

1 + ρ4(∂ρz)2A ∂ρϕ̃

)︃
+M2

ϕ

ρ2
√︁

1 + ρ4(∂ρz)2

(ρ2 + L2)2
ϕ̃ = 0. (4.59)

By shooting out from ρmin with boundary conditions ϕ̃(ρmin) = 1, ϕ̃
′
(ρmin) = 0

numerically it is found that the mass of the mesonic fluctuation ϕ is non-zero10.

Critically, we do not see pseudo-Goldstone boson-like behaviour expected for the

field ϕ as we move away from zero quark mass. Really, this tells us that whilst we

see “chiral” symmetry breaking by the joining of the domain walls in the IR, it is

not dynamical.

4.4.1 A system of two levels

In the previous sections we have set up the ingredients for constructing, and work-

ing with, with the domain wall theories. Consider this subsection an aside that

details more practically how to work with them. Firstly, one takes either of the

methods described in Section 4.3, and determines the set of domain wall loci. The

loci are, generally, a one parameter family of curves defined by how far they reach

into the interior of the geometry. The choice of locus (choice of ρmin) then defines

the microscopic theory. One then dimensionallly reduces the DBI action for the

D7 brane, in such a way that the DBI fields are restricted to live on the locus (as

in (4.50) and the following example). The resulting equation of motion for the

DBI scalar(s) describes then the (inverse) RG flow, from the IR surface to the UV

boundary, of the quark mass-chiral condensate source-operator pair. Fluctuations

about the solution describe the pseudoscalar mesons as in the usual D3/D7 inter-

section. At the UV cutoff, one can then determine the mass of the dimensionally

reduced quarks living on the locus (or any other microscopic quantities prescribed

by the holographic dictionary of the theory). Note here that just because the mass

of the quarks in the higher dimenional theory vanishes on the locus, it does not

neccesarily mean that this is the case in the lower dimensional theory. Indeed,

much of the interesting physics in this theory comes from allowing the 2+1 dimen-

sional quark mass to fluctuate away from zero. One is also not limited to working

10for ρmin = 1, we have Mϕ/mq ∼ 12, and for ρmin = 0.1 we have Mϕ/mq ∼ 13.



4.5. Dynamical “Chiral” Symmetry Breaking 77

in “nice” backgrounds, or with just the DBI scalars. Chapter 5 will largely be con-

cerned with embedding this type of domain wall theory in a confining geometry,

and with the spectrum of meson fluctuations from gauge fields on the D7 brane.

Chapter 6 will be concerned with working in a finite temperature system, and the

phase transitions therein. It is important to stress that these systems be taken in

two steps, the background geometry (gauge dynamics) dictates the set of loci, the

loci in turn control the dynamics of the fields on their surface.

4.5 Dynamical “Chiral” Symmetry Breaking

So far we have described a 2+1 dimensional theory of massive quarks on the

defects, with a quark mass controlled by where the defects join in the interior (or

conversely their asymptotic width11). There is breaking of the “chiral” symmetry

for quarks on the defects but it is not dynamical! Instead the separation of the

walls reflects the presence of a hard quark mass. There are however several known

methods to realise dynamical chiral symmetry breaking in D3/D7 systems [71,

107, 108]. In this section we will investigate the methods through which we can

dynamically break the “chiral” symmetry in the domain wall theories.

4.5.1 Magnetic Fields on the Probe Brane

The first method, will involve turning on a worldvolume magnetic field on the D7

brane. Starting again from the the DBI action for a D7 brane in AdS5 × S5

SD7 = −T7
∫︂
d8ξ
√︁

−det [Gab + (2πα′)Fab]. (4.60)

This time, we take

F12 = −F21 = Bz, (4.61)

and evaluating the action as before yields

SD7 = −T7Ω3

∫︂
d4x dρ

√︄
1 +

B2R4

(ρ2 + L2)2
×

ρ3

√︄
1 + (∂ρL)2 +

R4

(ρ2 + L2)2
(∂zL)2. (4.62)

11In the AdS case, these are linked on dimensional grounds and numerically we find ρm =
mq ∼ 2

3w
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The worldvolume magnetic field acts as an effective dilaton factor, eΦ =
√︂

1 + B2R4

r4

that makes the interior of the geometry repulsive to the D7 probe. In the D3/D7

system without domain walls, it is found that the D7 brane rises up to some

non-zero L at ρ = 0. This is true even when the transverse displacement at the

boundary vanishes! Given that the embedding scalar is holographically dual to

the quark mass-chiral condensate, this “pile-up” behaviour is interpreted as the

system dynamically generating a quark mass as it flows into the IR of the theory.

This breaks the supersymmetry of the theory and allows non-zero consensates,

and thus represents dynamically breaking chiral symmetry on the probe brane.

We will now attempt to realise this in the domain wall construction.

As a first attempt we will move back to the linearised regime, applying the spatially

dependant mass defect as a perturbation to the massless D3/D7 system. As before

we wish to impose (4.20) at the boundary, and take the ansatz (4.22) for the

embedding fields L. The linearised equation of motion for the Fourier modes fk(ρ)

in this system is12

∂ρ
(︁
eΦρ3 ∂ρfk(ρ)

)︁
− eΦ

k2

ρ
fk(ρ) +

2B2

eΦρ3
fk(ρ) = 0. (4.63)

This is problematic! The system appears unstable and the low k Fourier modes

rise up to very large values on the IR hardwall. This is not the instability we

would like to study; and so we abandon the approach of starting by applying the

periodic mass defect as a perturbation to the massless system in favour of moving

directly to the large mass limit. The linearised system was a useful toy approach

to gain some intuition, but it has served its purpose!

So far, we have been careful to emphasise that the interesting physics of the

system is governed by the set of domain wall loci in the background. We then

expect that the pile up behaviour of quarks in the D3/D7 system will be reflected

in the geometry of the loci. We now show that this is the case for systems that

dynamically break “chiral” symmetry in the domain wall theory. Starting from

(4.62) we apply the large mass limit, following the steps set out in Section 4.3.

This brings us to the locus action for this system,

Slocus ∼
∫︂
dρ

√︄
1 +

B2

ρ4
ρ2
√︂

1 + ρ4(∂ρz)2. (4.64)

This is potentially promising! As in (4.62) the magnetic field makes the interior

of the geometry repulsive to the U-shaped loci. The equations of motion however

12again with stray factors of R scaled out
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tells a different story, defining h(ρ) =
√︂

1 + B2

ρ4
, we have

h(ρ)ρ6∂ρz√︁
1 + ρ4(∂ρz)2

= cz,

∂ρz = ± cz

ρ2
√︁
h(ρ)2ρ8 − c2z

. (4.65)

Now we see that whether the system displays pile-up behaviour or not is controlled

by the roots of the polynomial

h(ρ)2ρ8 − c2z = 0. (4.66)

When this polynomial has only positive powers of ρ, it is possible to tune cz such

that the minimum of the U-shaped configuration (ρmin) is allowed to smoothly go

to zero. This is the case with the worldvolume magnetic field case, and we do not

see dynamical chiral symmetry breaking. The repulsion induced by the magnetic

field is seemingly not strong enough in this system. However, we can take some

inspiration from this system and consider instead an effective dilaton profile

h(ρ)2 = 1 +
bq

ρ q
, (4.67)

where b is a positive constant with mass dimension one, which ensures h is di-

menisonless13. In turn this makes the polynomial (4.66)

ρ8 + bqρ8−q − c2z = 0. (4.68)

Clearly, for q > 8 the loci display the desired pile up behaviour. As a toy to

understand how dynamical chiral symmetry breaking manifests in the domain

wall theories, let us take an “effective dilaton flow” with q = 10.

4.5.1.1 q=10 “effective dilaton flow”

For this toy model, we have a set of of loci governed by

∂ρz = ± cz

ρ2
√︁
ρ8 + b10ρ−2 − c2z

. (4.69)

13when performing numerics this will be set to 1.
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We can explore this set numerically to identify where the configurations begin to

pile up. We can identify the constant c2z with ρ
8
min +

b10

ρ2min
with b, ρmin ∈ R+, there

are no solutions where cz = 0, and thus no flat configurations of domain walls

that fall all the way in to ρ = 0. Numerically, we find that the loci pile up at

ρ = ρ ≃ 0.8706. The constant b sets the scale in the geometry that the loci pile

up at14

ρ =
(︂q
8
− 1
)︂ 1

q
b. (4.70)

This is clearly visible in Figure (4.6), the loci begin to widen asymptotically the

closer to ρ they reach into the bulk, diverging sharply as ρmin → ρ.

2 4 6 8 10
ρ

-4

-2

2

4

z(ρ)

Figure 4.6: The domain wall loci in the toy model showing pile up behaviour.
The four loci depicted are ρmin = 1.5 (Purple), ρmin = 1 (Magenta), ρmin = 0.89
(Orange), ρmin = 0.87056 (Red), the pile up scale ρ is also included (Black,

Dashed).

The real test here however will come from examining the fields dual to the quarks

living on the domain walls. We expect to see the behaviour of the loci reflected in

the fields that live on their surface. The action for the vacuum, L(ρ) is

SDW ∼
∫︂

d2x dρ h(r)
√︂

1 + ρ4(∂ρz)2ρ
2
√︂

1 + F(∂ρL)2 (4.71)

with15

F = 1 +
1

(ρ2 + L2)2(∂ρz)2
. (4.72)

14this is arrived at by minimising the first two terms of (4.68), effectively finding the smallest
allowed value of cz

15This may seem indistinguishable from (4.54), in large part they are the same, though here
we take the geometric data, ∂ρz from the new set of loci (4.69)
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The effective dilaton flow h now has dependence on r, rather than just ρ. The

equation of motion for L is

∂ρ

(︄
h(r)ρ2

√︁
1 + ρ4(∂ρz)2F√︁

1 + F(∂ρL)2
∂ρL

)︄

−2L

(︄
1

2

(︄
h(r)

√︁
1 + ρ4(∂ρz)2ρ

2(∂ρL)
2√︁

1 + F(∂ρL)2

)︄
∂F
∂r2

+
∂h(r)

∂r2

√︂
1 + ρ4(∂ρz)2ρ

2
√︂

1 + F(∂ρL)2
)︃

= 0, (4.73)

which we can solve numerically, shooting from ρmin, with boundary conditions

L(ρmin) = ρmin, L
′(ρmin) = 0, and examine the behaviour of the field L on loci

with ρmin approaching ρ, to understand the dynamics of the quarks as the loci pile

up. The numerical solutions are plotted in Figure (4.7), the vacuum functions are

shown to rise up to nonzero values in the IR of the theory, even from a UV quark

mass of zero! This suggests that, in analogy with the worldvolume magnetic field

on a D7 probe in AdS5 × S5, the “chiral” symmetry in the theory on the domain

wall defect is dynamically broken. The final piece of supporting evidence will be a

holographic variant of the Gell-Mann-Oakes-Renner relation [109], confirming that

fluctuations about L, in the region of small quark mass, act as a pseudo-Goldstone

boson of the theory. To do this, we will examinine the pseudoscalar meson ϕ, as

we did in Section 4.4.

The action for the meson ϕ in the toy model is

Sϕ =

∫︂
d2x dρ g

(︃
1 +

1

2

F(∂ρϕ)
2

1 + F(∂ρL)2
+

1

2

(∂xiϕ)2

(ρ2 + L2)2(1 + F(∂ρL)2)

)︃
(4.74)

where g̃ is the collection of geometric factors

g(ρ, L, ϕ) = h(r)
√︂

1 + ρ4(∂ρz)2ρ
2
√︂

1 + F(∂ρL)2 (4.75)

evaluated on the solution L, with r2 = ρ2 + L2 + ϕ2. Taking the same plane

wave ansatz as before, ϕ(xi, ρ) = ϕ̃(ρ) eik·x, the equations of motion for the meson
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Figure 4.7: Numerical solutions to (4.73) (Blue), on loci that join near the
pile up scale ρ (Red, Dotted) are plotted. The range of ρmin on the loci plotted

is ρ < ρmin ≤ ρ+ 0.0003

become;

∂ρ

(︄
g

F∂ρϕ̃
1 + F(∂ρL)2

)︄
+M2

ϕ

gϕ̃
2

(ρ2 + L2)2(1 + F(∂ρL)2)
− 2

(︃
∂g

∂r2

)︃⃓⃓⃓⃓
ϕ=0

ϕ̃ = 0,

(4.76)

which can be solved numerically subject to the boundary conditions ϕ̃(ρmin) =

1, ϕ̃
′
(ρmin) = 0. For each vacuum configuration L, corresponding to a quark mass

mq, we can determine the mass of the meson ϕ by requiring that asymptotically,

ϕ̃ → 0. In doing so we can plot M2
ϕ against mq, and we expect to find a linear

relation between the two when the quark mass is small, and for larger quark masses

it will return to the more typical M2
ϕ ∝ m2

q. This linear behaviour is known as

the Gell-Mann-Oakes-Renner relation and is a characteristic behaviour of pseudo-

Nambu-Goldstone boson, such as the pion in QCD [109]. Figure 4.8 is exactly this

plot, and shows clearly the holographic Gell-Mann-Oakes-Renner relation. Happy

now that the domain wall method can realise a spontaneously broken “chiral”

symmetry, we attempt to show this in a backreacted dilaton flow geometry that

is a genuine solution to the supergravity equations.
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Figure 4.8: The meson mass squared against the quark mass, corresponding
to the vacuum functions in Figure 4.7. A linear guide function has been added
to emphasise the behaviour at small mq (Top). A magnified view of the small

quark mass region clearly showing the linear GMOR behaviour (Bottom).

4.5.2 Constable-Myers Deformation

The dilaton flow background of choice, is the Constable-Myers deformation of

AdS5×S5 [74]. This system was first discussed in the context of holographic chiral

symmetry breaking in [71]. From the perspective of the dual gauge theory the

deformation of the AdS geometry corresponds to turning on a vacuum expectation

value for a dimenison four operator, such as TrF 2, or TrF F̃ . The metric in
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Einstein frame can be written as,

ds2 = Gx(r) dx
2
4 +Gr(r)(dρ

2 + ρ2Ω2
3 + dL2

i ), (4.77)

with metric factors,

Gx = H−1/2(r)

(︃
r4 + b4

r4 − b4

)︃δ/4

,

Gr = H1/2(r)

(︃
r4 + b4

r4 − b4

)︃(2−δ)/4
r4 − b4

r4
,

H =

(︃
r4 + b4

r4 − b4

)︃δ

− 1, (4.78)

and dilaton profile,

e2Φ = e2Φ0

(︃
r4 + b4

r4 − b4

)︃∆

. (4.79)

b is a dimensionful quantity that sets the scale of the deformation. The metric

factors and dilaton are singular at r = b. It is not known how to resolve this

singularity in the context of supergravity, but it is hopeful that in an uplift to

the full string theory it may be resolved. This shall not pose an issue to us, as

the loci, and fields living on them, will be restricted to lie sufficiently far from the

singularities that the supergravity solution is trustworthy. The exponents δ,∆ in

(4.78) must sum in quadrature to

δ2 +∆2 = 10, with δ =
R2

2
. (4.80)

For ∆ ̸= 0 the geometry allows no killing spinors. As such, this deformation breaks

all of the supersymmetries in the dual field theory; permitting condensates and

non-trivial renormalisation group flows as discussed in Section (4.5.1). Now we

repeat the calculations done in the previous cases in the new geometry. Firstly we

set out to reduce the D7 brane action to determine the set of loci in this geometry.

The DBI action for the D7 probes is

SD7 = −T7Ω3Nf

∫︂
d4x dρ eΦG2

xG
2
r ρ

3

√︃
1 + (∂ρLi)2 +

Gr

Gx

(∂zLi)2. (4.81)
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Following the example of (4.38) we set

∂ρL ∼ 1
√
gLL

⃓⃓⃓⃓
L=0

∂ρz δ(z − z(ρ)) =
1√
Gr

⃓⃓⃓⃓
L=0

∂ρz δ(z − z(ρ)). (4.82)

Inserting this into the DBI action gives the locus action,

Slocus ∼
∫︂
dρ eΦG3/2

x G2
rρ

3

√︃
1 +

Gx

Gr

(∂ρz)2. (4.83)

This can be extremised to determine the set of loci. The resulting equation of

motion for the loci simplifies as before due to the presence of a conserved quantity,

to the one parameter family of curves,

∂ρz = ± cz G
1/2
r

G
1/2
x

√︁
e2ΦG4

xG
3
rρ

6 − c2z
. (4.84)

This has a non trivial pile up behaviour with, ρ, the pile up scale determined by

solutions to(︂
3(2−δ)

4
+ δ +∆

)︂
(ρ̄4 − b4)

3

(︃
4ρ̄3

ρ̄4−b4
− 4ρ̄3(ρ̄4+b4)

(ρ̄4−b4)2

)︃(︂
ρ̄4+b4

ρ̄4−b4

)︂ 3(2−δ)
4

+δ+∆−1

ρ̄6

√︃(︂
ρ̄4+b4

ρ̄4−b4

)︂δ
− 1

+
12 (ρ̄4 − b4)

2
(︂

ρ̄4+b4

ρ̄4−b4

)︂ 3(2−δ)
4

+δ+∆

ρ̄3

√︃(︂
ρ̄4+b4

ρ̄4−b4

)︂δ
− 1

−
6 (ρ̄4 − b4)

3
(︂

ρ̄4+b4

ρ̄4−b4

)︂ 3(2−δ)
4

+δ+∆

ρ̄7

√︃(︂
ρ̄4+b4

ρ̄4−b4

)︂δ
− 1

−
δ (ρ̄4 − b4)

3

(︃
4ρ̄3

ρ̄4−b4
− 4ρ̄3(ρ̄4+b4)

(ρ̄4−b4)2

)︃(︂
ρ̄4+b4

ρ̄4−b4

)︂ 3(2−δ)
4

+2δ+∆−1

2ρ̄6
(︃(︂

ρ̄4+b4

ρ̄4−b4

)︂δ
− 1

)︃3/2
= 0, (4.85)

which will be determined numerically. For this case we scale the co-ordinates such

that R = 1, b = 1, and the resulting pile up scale is ρ ∼ 1.30326. The pile up

scale lies above the singularities at b = 1 so the domain wall construction nicely

protects us from having to worry too much about the validity of the gravity dual in

this case. A sampling of the loci is plotted in Figure 4.9, where pile up behaviour

is seen analogous to that in Figure 4.6. Again, we turn to the fluctuations on the
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Figure 4.9: The domain wall loci in the Constable-Myers deformation of
AdS5 × S5 displaying pile up behaviour. The configurations plotted are:
ρmin ∼ 1.6033 (Purple), ρmin ∼ 1.4033 (Magenta), ρmin ∼ 1.3043 (Orange),

ρmin = ρ+ 0.00001 ∼ 1.30327 (Red).

loci to confirm that the pile up behaviour corresponds to the dynamical generation

of mass (and therefore dynamical breaking of “chiral” symmetry). This time the

function we use to dimensionally reduce is16

∆(z − z(ρ)) = G1/2
r

√︃
1 +

Gx

Gr

(∂ρz)2

⃓⃓⃓⃓
⃓
L=0

δ(z − z(ρ)),

= g1/2r

√︃
1 +

gx
gr
(∂ρz)2 δ(z − z(ρ)), (4.86)

where we have defined the metric factors on the loci, gi = Gi|L=0, to reduce

the notational clutter. When applied by hand to the D7 action, localises the

fluctuations on the locus, giving

SDW ∼
∫︂
d2xdρ g1/2r

√︃
1 +

gx
gr
(∂ρz)2 e

ΦG2
xG

2
r ρ

3
√︂

1 + G(∂ρLi)2 (4.87)

with

G = 1 +
Gr

Gx(∂ρz)2
. (4.88)

16identically to (4.52)
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Figure 4.10: Plot of the numerical solutions to (4.89) for the vacuum function
L(ρ) (Blue) on loci that join near the pile up scale ρ (Red,Dotted). The range

of ρmin on the loci plotted is ρ < ρmin < ρ+ 0.00015.

We can vary the action (4.87) to write down an equation that governs the behaviour

of the vacuum L(ρ),

∂ρ

(︄
eΦG2

xG
2
rρ

3
√︁
gr + gx(∂ρz)2G√︁

1 + G(∂ρL)2
∂ρL

)︄

−

(︄
2ρ3
√︂
gr + gx(∂ρz)2

√︂
1 + G(∂ρL)2

∂
(︁
eΦG2

xG
2
r

)︁
∂r2

L

)︄

−

(︄
ρ3
√︂
gr + gx(∂ρz)2

eΦG2
xG

2
r(∂ρL)

2√︁
1 + G(∂ρL)2

∂G
∂r2

L

)︄
= 0. (4.89)

The numerical solutions for the vacuum function, L, are plotted in Figure 4.10.

Moving once again to the mesonic fluctuations will determine whether the pseudo

scalar meson has Goldstone boson-like behaviour. Writing the action for the fluc-

tuations, ϕ about the vacuum (to quadratic order),

Sϕ ∼
∫︂

d2x dρ f

(︃
1 +

1

2

G(∂ρϕ)2

1 + G(∂ρL)2
+

1

2

Gr

Gx

(∂xiϕ)2

1 + G(∂ρL)2

)︃
(4.90)

with

f = eΦG2
xG

2
rρ

3
√︂
gr + gx(∂ρz)2

√︂
1 + G(∂ρL)2. (4.91)
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Varying with respect to the mesonic fluctuation gives17,

∂ρ

(︄
f

G∂ρϕ̃
1 + G(∂ρL)2

)︄
+M2

ϕ

f Gr ϕ̃
2

Gx(1 + G(∂ρL)2)
− 2

(︃
∂f

∂r2

)︃⃓⃓⃓⃓
ϕ=0

ϕ̃ = 0, (4.92)

which we solve, tuning the meson mass such that ϕ falls off to zero at the asymp-

totic boundary. Figure 4.11 shows the expected Gell-Mann-Oakes-Renner relation,

confirming that ϕ plays the role of a pseudo-Goldstone boson in this theory, and

that the “chiral” symmetry on the domain walls is broken spontanesously.
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Figure 4.11: Meson mass squared M2
ϕ plotted against quark mass mq for

domain walls in the Constable-Myers deformation of AdS5 × S5, a linear plot
has been added to emphasise the GMOR behaviour (Top). A zoomed in section

about small quark mass (Bottom)

17and inserting the familiar separable radial profile × plane wave ansatz
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4.6 Summary

This chapter has been a first exploration of domain wall configurations of D7

branes in AdS5 × S5, holographically dual to a 2 + 1 dimensional “chiral” theory

of quarks on the conformal boundary. The dynamics of the domain walls in the

interior of the AdS space gives a nice geometric realisation of the breaking of

“chiral” symmetry in this theory. We have explored some example cases where the

usual methods to break chiral symmetry in D3/D7 systems are not strong enough

to overcome the separation of the defects, and two cases where singularities in

the bulk are sufficiently strong to break the symmetry. We will move now to a

fully top down realisation of chiral symmetry breaking by confinement in a D5/D7

domain wall model, that we dub Domain Wall AdS/QCD. Here the theory on the

defects is 3 + 1 dimensional and thus genuinely chiral18. This theory displays a

wealth of QCD-like phenomenology and will take the spotlight for the remainder

of this thesis.

18and we may drop our zealous use of quotation marks.
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Chapter 5

Domain Wall AdS/QCD

This chapter will be concerned with the implementation of domain walls on a D7

probe brane, in a background sourced by a large number of coincident D5 branes

[2]. In the top down picture, the fivebranes wrap an R(1,4) × S1 cycle of the full

R(1,8)×S1 space. The compact direction wrapped by the brane stack induces a cap

in the resulting geometry, which indicates the confinement of the dual gauge theory.

The probe D7 branes in this theory are dual to quarks on a 4+1 dimensional

defect interacting with quarks in a 5+1 dimensional gauge theory. Applying a

spatially dependant quark mass term to create a domain wall defect in the 4+1

dimensional theory reduces us to a theory of massless quarks on a 3+1 dimensional,

co-dimension two defect in the 5+1 dimensional confining gauge theory. In the UV

of the holographic dual, the quarks are genuinely chiral. As one flows to the IR,

the capped geometry forces the domain walls to join, indicating the mixing of left

and right handed quarks. Thus the confinement scale breaks chiral symmetry. We

show that the domain wall loci in this geometry are again generically U-shaped,

piling up just before the confinement scale. The UV behaviour of this theory is

somewhat peculiar, and we comment on this. The background geometry comes

equipped with a dilaton flow that rises linearly into the ultraviolet, suggesting that

at some scale we should no longer trust the gravity dual description of this theory.

We argue that this is a somewhat necessary quirk of QCD like theories, and that

we should only really trust the gravity dual where QCD is strongly coupled. We

aim to match observables of the model at an intermediate coupling regime in real

world QCD, identifying the UV cutoff scale as ΛUV ∼ 3 GeV. Here we compute

the spectrum of the model, fitting the quark and pseudoscalar masses to QCD

data, and predicting the masses of the vector and axial vector mesons (and their

excited states), as well as the mesonic decay constants fπ, FA, and FV . Drawing
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further inspiration from the lattice community, we discuss (and implement) the

‘improvement’ of the model and its prediction for observables by considering the

effects of higher dimension operators. This somewhat improves the predictions for

the radially excited states.

5.1 D5 Background

The field theory limit of the geometry sourced by a stack of coincident D5 branes

is known (and is discussed in [60]). The expected low energy modes are a 5+1

dimensional supersymmetric Yang-Mills-type theory in the IR. There is some am-

biguity, and discussion of the UV limit of this theory. The D5 brane in type IIB

string theory forms an SL(2,Z) multiplet with, and thus S-dualises to, the NS5

brane. The UV limit is expected therefore to be described by the worldvolume

theory on an NS5-brane, which is conjectured to be the so called little string the-

ory. Further, NS5-branes are present in both type II superstring theories, in type

IIA (and thus in IIB via T-duality) it descends from the M5 brane of 11 dimen-

sional supergravity/M-theory. This system is holographically dual to the 6d (2, 0)

super conformal field theory, which famously lacks a Lagrangian description. This

is all to say that the UV limit of fivebranes in general is complicated, and bluntly,

not of direct interest to us here. We will be sufficiently happy to say that the

low energy limit of the type IIB strings on the worldvolume of the D5 branes is a

5+1 dimensional super-Yang-Mills theory. Which when compactified along one of

the directions wrapped by the fivebrane, is dual to a 4+1 dimensional confining

U(N) gauge theory. We are therefore interested, not in the field theory limit of

the D5 geometry, but in the geometry that results from wrapping the stack of D5

branes on a circle. It is known how to achieve this by double-wick-rotation of the

near extremal black p-brane geometries of type IIB supergravity [60, 110]. These

geometries are dual to the world-volume theories at finite temperature and thus

will be referred to as thermal geometries. The thermal geometry sourced by the

D5 branes is,

ds2

α′ =
U

R

(︁
−h(U)dt2 + δijdx

idxj
)︁
+
R

U

(︃
1

h(U)
dU2 + U2dΩ2

3

)︃
(5.1)
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where the indices span i, j = 1, .., 5, and

U =
r̃

α′ , R =
gYM

√
N

(2π)3/2
,

eΦ = RU, g2YM = (2π)3gsα
′

h(U) = 1−
(︃
U0

U

)︃2

. (5.2)

The this geometry comes equipped with two interesting ingredients. First is the

presence of a horizon scale U0 with dimensions of energy. Upon compactification,

this scale will become the position of the “cap” in the geometry that signals

confinement in the dual field theory. The second is the presence of the dilaton

profile, which rises linearly into the infrared. One can think of the presence of the

dilaton as the running of the coupling in the dual gauge theory. At some scale

in the UV the dilaton, which sets the string coupling, becomes large and we no

longer trust the supergravity description. It is here the authors in [60] move to

the S-dual NS5-brane solution, which is well behaved. Instead we will impose a

UV cut-off, such that we avoid the very stringy region, and match to QCD at

the cutoff scale. It is expected that a “true holographic dual of QCD”, should

one exist, is only valid in the non-perturbative region of QCD, becoming strongly

coupled where QCD becomes weakly coupled. Whilst the linear behaviour of this

theory does not seemingly capture the full running coupling of QCD, it is an

interesting example where the gravity dual reflects the “finiteness” of the non-

perturbative regime. With this thermal geometry in mind, we can double wick

rotate to exchange a temporal, and a spatial direction. In this case we take

t→ ix̃5,

x5 → it̃, (5.3)

which in turn changes the metric to

ds2

α′ =
U

R

(︂
−dt̃2 + δijdx

idxj + h(U)(dx̃5)2
)︂
+
R

U

(︃
1

h(U)
dU2 + U2dΩ2

3

)︃
. (5.4)

Now the indices i, j span 1, .., 4, and the 5-direction is written explicitly1. The

effect here, is to put the “horizon” onto one of the spatial directions, which then

becomes a conical deficit. The easiest way to see this, is by expanding the metric

around the “horizon” U0 in the x5−U plane. Taking U = U0+δU , for the relevant

1We will now drop the tilde on the t, and x5 directions. It was just there to make it obvious
which two co-ordinates had been exchanged.
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part of the metric, we find to leading order in δU ,

ds2 ∼ 2δU

R
(dx5)2 +

R

2δU
dδU2. (5.5)

Performing the co-ordinate transformation

α =
x5

R
, δU =

σ2

2R
, (5.6)

which sends (5.5) to

ds2 ∼ dσ2 + σ2dα2 (5.7)

which is clearly a two plane in polar co-ordinates! To avoid a conical deficit, then

we must have 0 ≤ α ≤ 2π. Which in turn means that we must periodically identify

the x5 direction, with period

0 ≤ x5 ≤ 2πR. (5.8)

This geometry, with x5 periodically identified, is one of the so called “capped”

geometries2. As one approaches U = U0, the radius of the compactified direction

shrinks to zero, and the geometry closes off. As a result, no branes (or strings)

probing the geometry may reach U ≤ U0. This is therefore a representation of

confinement in holography. If one considers a long open string with endpoints

on the boundary of the space (or in this case the UV cut-off) and evaluates the

exponential of worldsheet action for the static string, with finite separation at

the boundary one finds that the presence of a cap in the geometry forces the

leading contribution to the action to be proportional to ∆t · l, where l is the

asymptotic separation. This is the holographic area law for Wilson loops in the

dual theory [73], and thus the dual theory is confined. We are not quite done with

our manipulations of the background geometry. Before embedding D7 probes in

the background geometry, we must perform one last co-ordinate transformation

to make manifest the flat plane, transverse to the D5 brane (some example cases

are discussed in [71]). In particular, we would like to write

ds2 ⊃ R

U

(︃
1

h(U)
dU2 + U2dΩ2

3

)︃
= f(r)

(︁
dr2 + r2dΩ2

3

)︁
. (5.9)

The co-ordinate change that realises this must have

dr2

r2
=

dU2

U2h(U)
, (5.10)

2or “cigar” geometries.
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which is satisfied by ,

r2 =
1 + U√

U2−U2
0

U√
U2−U2

0

− 1
. (5.11)

More usefully, this can be written as,

U

U0

=
1 + r2

2r
. (5.12)

The interesting point here is that the left hand side of (5.12) is dimensionless, so r

is also dimensionless. It represents measuring the energy scales in the dual theory

by the confinement scale U0 and runs from 1 at U = U0 to rΛ at the UV cutoff,

where rΛ is given by the positive real root of the polynomial,

r2Λ − 2
Λ

U0

rΛ + 1 = 0. (5.13)

Crucially, when calculating any observables in this model we will have to translate

them back into physical units (either by setting scales with other quantities, or

into U co-ordinates3). The metric now reads,

ds2 = Gx(r)
(︁
−dt2 + δijdx

idxj + h(r)(dx5)2
)︁
+Gr(r)

(︁
dr2 + r2dΩ2

3

)︁
. (5.14)

The corresponding metric factors, when expressed in the r co-ordinates, are

Gx(r) =
U0

R

1 + r2

2r
, Gr(r) = U0R · 1 + r2

2r3
,

h(r) = 1−
(︃

2r

1 + r2

)︃2

, e−Φ =
1

U0R

2r

1 + r2
. (5.15)

We will now go on to embed D7 branes in this geometry.

5.2 D7 Probes

We consider the D-brane intersection described by the brane scan,

0 1 2 3 4 (5) 6 7 8 9

D5 - - - - - - • • • •
D7 - - - - | | • - - - •

(5.16)

where the brackets around the 5 direction indicate that it is compact. The

3We will do the former in this chapter, and neccesarily the latter in the next chapter when
discussing the thermal phase transitions.
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| | symbol in the 4 direction is designed to indicate that the D7 brane fills this

direction, but we will place the pair of domain wall defects in this direction. We

will choose the embedding x5 = constant, x9 = L(ρ, z). We will label the x4

direction z. This might be slightly counter intuitive, but for the sake of consistency,

the direction that we put the domain walls in will be deonted z from here on out.

This choice of embedding breaks the isometry group of the space tangent to the D5

branes from SO(4) to SO(3) (×U(1) for the massless case), and this is reflected

by splitting the co-ordinate r into r2 = ρ2 + L2, and writing the metric as,

ds2 = Gx(r)
(︁
− dt2 + δijdx

idxj + h(r)(dx5)2
)︁

+Gr(r)
(︁
dρ2 + ρ2dΩ2

2 + dL2
)︁
. (5.17)

The DBI action for the D7 probes in this geometry is,

SD7 = −T7Ω2

∫︂
d5x dρ e−ΦG5/2

x G3/2
r × ρ2

√︃
1 + (∂ρL)2 +

Gr

Gx

(∂zL)
2, (5.18)

and we can then begin to determine the set of domain wall loci that live in this

geometry. We take the large mass limit as in Section 4.3, taking the functional

form for L

∂ρL ∼ 1
√
gLL

⃓⃓⃓⃓
L=0

∂z

∂ρ
δ (z − z(ρ)) =

1√︁
Gr(ρ)

∂ρz δ(z − z(ρ)) (5.19)

which when inserted into the action (5.18) gives the action functional for the loci

Slocus = −T7Ω2

∫︂
d4x dρ e−Φ(ρ) g2x g

3/2
r × ρ2

√︃
1 +

gx
gr
(∂ρz)2, (5.20)

where as in the previous examples, the lower case metric factors4 are those evalu-

ated on L = 0 . The loci of this geometry obey the equation of motion

∂ρz =
g
1/2
r cz

g
1/2
x

√︁
e−2Φ(ρ)g5xg

2
rρ

4 − c2z
(5.21)

with the constant of motion

c2z =

(︃
U0

R

1 + ρ2min

2ρmin

)︃5

. (5.22)

4ϕ however is reserved for the pseudoscalar meson fluctuation, and therfore the cases with a
dilaton evaluated on L = 0 will have to be Φ(ρ).
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Figure 5.1: The domain wall loci (Blue/Red, Solid) in the capped AdS/QCD
geometry. The loci display pile up behaviour, widening as they approach the

cap in the geometry (Black, Dashed).

The loci in this geometry are plotted in Figure 5.1, where they clearly display

the pile-up behaviour associated with chiral symmetry breaking. This time the

breaking of chiral symmetry is directly induced by the confinement of the dual

gauge theory, which serves to exclude the loci from a region of the space, reflecting

the presence of a mass gap. With the set of loci determined, we can examine the

behaviour of quarks in the model. By restricting the sevenbrane action to the loci

and solving the resulting equations of motion, we can verify that the fields on the

sevenbrane are displaying spontaneously broken chiral symmetry.

5.2.1 Fluctuations on the Walls

We now restrict (5.18) to the loci described by (5.21) by including the factor,

∆(z − z(ρ)) =
√︂
Gρρ +Gzz(∂ρz)2

⃓⃓⃓⃓
L=0

δ(z − z(ρ)),

=
√︂
gr + gx(∂ρz)2 × δ(z − z(ρ)), (5.23)

by hand. This gives us the action for the fluctuations L,

SDW ∼
∫︂

d4x dρ e−ΦG5/2
x G3/2

r

√︂
gr + gx(∂ρz)2 × ρ2

√︂
1 + F(∂ρL)2, (5.24)



98 Chapter 5. Domain Wall AdS/QCD
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L(ρ)

Figure 5.2: Solutions to (5.26) for the vacuum functions L (Blue). The cap at
ρ = 1 is also plotted (Black, Dashed), alongside the line L(ρmin) = ρmin (Red)

representing the boundary condition on the vacuum functions in the IR.

with the factor

F = 1 +
Gr

Gx(∂ρz)2
. (5.25)

This action describes 3+1 dimensional chiral quarks, living on the pair domain

wall defects. The field L describes the dynamics of the quark mass and chiral

condensate source-operator pair. Its equation of motion is,

∂ρ

(︄
e−ΦG

5/2
x G

3/2
r

√︁
gr + gx(∂ρz)2ρ

2F∂ρL√︁
1 + F(∂ρL)2

)︄

−2ρ2
√︂
gr + gx(∂ρz)2

∂

∂r2

(︃
e−ΦG5/2

x G3/2
r

√︂
1 + F(∂ρL)2

)︃
· L = 0. (5.26)

The solutions for the vacuum functions L are displayed in Figure 5.2 and display

similar pile up behaviour to those in Figures 4.7 and 4.10. Whilst it looks like the

chiral symmetry is broken dynamically as in the previous examples, we will now

explicitly check this by examining the behaviour of pseudoscalar meson fluctua-

tions ϕ(xi, ρ, z).

5.2.2 Mesons in Domain Wall AdS/QCD

Having set out, and subsequently solved, the equations for the vacuum functions;

it is time to solve for the mesonic fluctuations. However, the brane scan (5.16)
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suggests that there are two DBI scalars, associated with fluctuations of the D7

brane embedding in the X5, and X9 directions. The fluctuations in the X5 direc-

tion will not be considered here, and the fluctuations in the X9 direction play the

role of the vacuum function L. So what fluctuation is dual to pseudoscalar mesons

in this theory? We argue that there is another fluctuation, akin to perturbing the

embedding in an “X10” direction. The X9 + iX10 complex number can then be

written as L(ρ)eiφ and acted upon by a U(1)A transformation that sets φ = 0.

This effectively “hides” the extra fluctuation. The degrees of freedom still remain

and we can write down an action that describes them. To quadratic order we have,

Sϕ =

∫︂
d4x dρ f

(︃
1 +

1

2

F(∂ρϕ)
2

1 + F(∂ρL)2
+

1

2

Gr ∂iϕ ∂
iϕ

Gx(1 + F(∂ρL)2)

)︃
+O(ϕ3) (5.27)

where the index i spans the field theory directions i = 0, ..., 3, and

f(ρ, L, ϕ) = e−ΦG5/2
x G3/2

r

√︂
gr + gx(∂ρz)2 ρ

2
√︂
1 + F(∂ρL)2

⃓⃓⃓⃓
r2=ρ2+L2+ϕ2

. (5.28)

We can now vary ϕ keeping terms to quadratic order, and implement the plane

wave ansatz ϕ(ρ, xi) = ϕ̃(ρ)eik·x, to arrive at the following equation of motion,

∂ρ

⎛⎝ e−ΦG
5/2
x G

3/2
r

√︁
gr + gx(∂ρz)2ρ

2F√︁
1 + F(∂ρL)2

⃓⃓⃓⃓
⃓
ϕ=0

· ∂ρϕ̃

⎞⎠

−2ρ2
√︂
gr + gx(∂ρz)2

∂

∂r2

(︃
e−ΦG5/2

x G3/2
r

√︂
1 + F(∂ρL)2

)︃⃓⃓⃓⃓
ϕ=0

· ϕ̃

+M2
ϕ

e−ΦG
3/2
x G

5/2
r ρ2

√︁
gr + gx(∂ρz)2√︁

1 + F(∂ρL)2

⃓⃓⃓⃓
⃓
ϕ=0

· ϕ̃ = 0. (5.29)

Plots of the meson mass squared against the quark mass are plotted in Figure

5.3, showing the linear Gell-Mann-Oakes-Renner behaviour at small quark mass,

suggesting that the chiral symmetry in this theory is spontaneously broken in the

IR. In this figure, both the meson mass, and the quark mass are in units of U0,

but since they are both in these units, we can trust the linear behaviour without

having to move back to physical units5. This model now displays confinement,

by virtue of the cap in the geometry, and spontaneously broken chiral symmetry

in a four dimensional quark theory. This means two things! Firstly we may take

5which requires fitting a few extra parameters anyways!
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Figure 5.3: The meson mass squared against the quark mass, corresponding
to the vacuum functions in Figure 5.2. A linear guide function has been added
to emphasise the behaviour at small mq (Top). A magnified view of the small

quark mass region clearly showing the linear GMOR behaviour (Bottom).

the pseudoscalar mesons ϕ and now dub it the pion of our model. It acts as the

pseudo-Goldstone boson of the broken chiral symmetry, as the pion does in QCD.

Secondly, this is now a good candidate for a holographic model of QCD! It is a

holographic dual with confinement and chiral symmetry breaking, and we should

compute the remainder of its meson spectrum. The rest of this chapter will be

devoted to doing exactly this.
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5.3 Worldvolume Gauge Fields, Vector Mesons,

and Matching to QCD

This section will set about writing down the Lagrangian for the fluctuations of the

(axial-)vector mesons; determining their source normalisation, by requiring that

they have a canonically normalised kinetic term at the UV cut-off; and calculating

their masses and decay constants, by matching to QCD at an intermediate scale

of around 3 GeV in physical units.

5.3.1 Worldvolume Gauge Fields

We include gauge fields propagating on domain wall loci6 in the following way,

SDW ∼
∫︂
d4x dρ dz ∆(z − z(ρ))× e−ϕ

√︁
−det [Gab + (2πα′)Fab] (5.30)

which when expanded to quardratic order in the fluctuations Fab, about the back-

ground vacuum solutions L(ρ) calculated in the previous section, gives

SF ∼
∫︂

d4x dρ f

(︃
1 +

1

2

gabgcdFacFbd

1 + F(∂ρL)2
+O

(︁
F 3
)︁)︃

(5.31)

with f defined in (5.28)7. Since this prefactor has no dependance on any of the

worldvolume gauge fields, we may drop the 1 inside the brackets, because it will

not show up in the equations of motion for the gauge fields. We are interested

here in the components corresponding to the spatial fluctuations Ax ∼ ax(ρ) e
ik·x.

Their equation of motion is

∂ρ

(︄
e−ΦG

3/2
x G

1/2
r ρ2

√︁
gr + gx(∂ρz)2F ∂ρAx√︁

1 + F(∂ρL)2

)︄

+M2
x

e−ΦG
1/2
x G

3/2
r ρ2

√︁
gr + gx(∂ρz)2 Ax√︁

1 + F∂ρL2
= 0. (5.32)

The spatial components of the gauge fields encode the behaviour of both the vector,

and axial-vector states of the model, which will be referred to as the ρ-meson, and

6on the D7 brane
7I’d like to take a moment to apologise for using three different script f’s in one equation.

Sorry about that! To ward off any confusion I vote we call them: little f , curly F , and F .
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the a-meson respectively. The difference between them comes down to boundary

conditions. Both states obey a Dirichlet boundary condition at the UV boundary,

AV,A(ΛUV ) = 0. However, on the IR surface at ρ = ρmin, the vector state obeys

a Neumann boundary condition, ∂ρAV (ρmin) = 0 with AV ̸= 0, and the axial

vector state obeys a Dirichlet boundary condition, AA(ρmin) = 0 with ∂ρAA ̸= 0.

In practice one sets these boundary conditions in the IR then varies the mass

squared, M2
V,A, to satisfy the Dirichlet condition in the UV. The wavefunction for

the vector, and axial-vector mesons must then be normalised. By hand we enforce

that the kinetic term must be cannonically normalised, requiring that

∫︂ Λ

ρmin

dρ
e−ΦG

3/2
x G

1/2
r ρ2

√︁
gr + gx(∂ρz)2A

2
x√︁

1 + F∂ρL2
= 1. (5.33)

We may also compute the decay constants FV , FA, and fπ. By definition, F 2
V is

the Feynman rule for the vector meson to turn directly into its source at q2 = 0.

We solve (5.32) with M2 = 0 to represent the source, AV,S and then Fv follows as,

(after removing the UV surface term),

F 2
V =

∫︂
dρ ∂ρ

[︄
e−ΦG

3/2
x G

1/2
r ρ2

√︁
gr + gx(∂ρz)2F ∂ρAV√︁

1 + F(∂ρL)2

]︄
AV,S(ρ). (5.34)

The normalisation of the sources here is tricky. Usually in AdS/QCD models,

the UV of the theory is conformal, and this symmetry enforces an asymptotic

∼ log (Q2/ρ2) form for the sources, which can be used to fix their normalisation.

We are not so lucky here, the UV of the domain wall AdS/QCD theory is not

conformal, and so we must set the normalisation of the sources such that FV lies

on its QCD value of ∼ 345 MeV. We are then free to use this source normalisation

to predict FA and fπ. The decay constant for the axial-vector mesons is a repeat

of the above calculation (5.34), but using the axial-vector solutions,

F 2
A =

∫︂
dρ ∂ρ

[︄
e−ΦG

3/2
x G

1/2
r ρ2

√︁
gr + gx(∂ρz)2F ∂ρAA√︁

1 + F(∂ρL)2

]︄
AA,S(ρ). (5.35)

Similarly, the pion decay constant can be computed from the axial-axial correlator

f 2
π =

∫︂
dρ

e−ΦG
3/2
x G

1/2
r ρ2

√︁
gr + gx(∂ρz)2F√︁

1 + F(∂ρL)2
(∂ρAA,S)

2. (5.36)
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The final step in our matching to QCD is determining which of the vacuum func-

tions L(ρ) is an appropriate “physical” vacuum. The vacuum functions are de-

cribed by one parameter, ρmin, so this choice is the same as picking out which of

the loci best describes QCD. There are several ways to do this, though three stand

out as “morally superior”. The first is that we can set some ρmin, then compute

the pion, and vector meson masses, calculate their ratio, and then iteratively tune

ρmin until we hit the desired ratio of Mρ

mπ
= 775

139
, which is observed in nature. We

may then predict the axial mass, and the two decay constants. This is the standard

approach and, in this case, the best fit to QCD8. There are two other approaches

that I would like to mention here as well. Equally one could fit the axial-vector

meson mass instead of the vector meson mass, predictingMV , FA and , fπ. Finally,

one could attempt a “best average” vacuum; where one asserts that the mass is

139 MeV and is the scale by which your system will be measured, then one could

tune the parameter that controls the vacuum to minimise the RMS deviation

RMS(Mρ,MA) =
1√
2

√︄(︃
139Mρ

mπ

− 775

)︃2

+

(︃
139MA

mπ

− 1230

)︃2

, (5.37)

from the QCD values. The numerical results for these three vacua are displayed

in Figure 5.4. Whilst fitting the vector meson mass gives the most reasonable

predictions for the decay constants, it consistently over-predicts axial sector of the

model. Fitting the axial-vector meson, and the RMS vacuum, likewise predicts

a comparably light vector meson, but massively overshoots the decay constants.

However these two vacua are much better at predicting the masses of the excited

states for both the vector and axial-vector mesons. Whilst it is clear that this

model is not perfect, it can be good at predicting the decay constants or the

excited state masses. But frustratingly, not both at the same time! We may now

however take further inspiration from our colleagues in lattice field theory, and

consider “improving” the action [111, 112]. We will do this by considering the

effect of higher dimension, multi-trace operators at the UV cutoff through the

Witten prescription.

8by a slightly näıve metric
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QCD Fitting Mρ Fitting MA RMS Vacuum
ρmin = 1.05065 ρmin = 1.0607 ρmin = 1.06298

mπ 139 MeV 139* 139* 139*
Mρ 775 MeV 775* 353 (-53%) 376 (-51%)**
Ma 1230 MeV 2910 (+136%) 1230* 1327 (+10%)**
FV 345 MeV 345* 345* 345*
FA 433 MeV 583(+35%) 1219 (+182%) 1153 (+166%)
fπ 93 MeV 95 (+2%) 451 (+385%) 398 (+328%)

Mv,n=1 1465 MeV 3258 (+122%) 1390 (-5%) 1496 (+2%)
MA,n=1 1655 MeV 4724 (+185%) 2037 (+23%) 2190 (+32%)

mean deviation 96% 129% 98%

Figure 5.4: Mesonic observables in the Domain Wall AdS/QCD model. QCD
data is displayed in the lefthand column, with the three chosen vacua displayed
alongside. The starred numbers indicate quantities that were used to set scales
and are not predictions. The two doubly starred values in the rightmost column
are found from minimising (5.37). The percentages in brackets indicate the

deviation from the QCD value.

5.3.2 Higher Dimension Operators via Witten Prescrip-

tion

In [113], a prescription was set out for including the effects of multi-trace, higher

dimension operators in gauge gravity duals, which is extended to conderations of

NJL-type interactions [114] in [115]. Here the logic is to fix by hand the masses

of the mesons, relaxing the Dirichlet boundary condition at the UV cutoff. Con-

sidering generically an operator of the form

GO†O ⊂ L, (5.38)

we attribute the boundary value of the holographic fields to the condensing of

an operator O. This leaves an effective source G⟨O⟩. For the present case, we

consider an NJL type four quark interaction, schematically

J ∼ g2

Λ2
O, (5.39)

as discussed in [116]; with an operator
g2V
Λ2
UV

|q̄γµq|, and g2A
Λ2
UV

|q̄γµγ5q| in the vector

and axial sectors respectively. We may then compute the couplings from the

values of the leading and subleading components, source and operator parts, of
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the holographic fields AV/A
9. The masses of the radial excited states can then be

read off, as the next massive states that have the same coupling g
ΛUV

for the vector,

and axial-vector states. This gives the following improvement to the spectrum. In

QCD DW AdS/QCD “Improved Model”
ρmin = 1.05065 ρmin = 1.05065

mπ 139 MeV 139* 139*
Mρ 775 MeV 775* 775*
Ma 1230 MeV 2910 (+136%) 1230*
FV 345 MeV 345*
FA 433 MeV 583(+35%) gV /ΛUV ∼ 2.3 GeV −1

fπ 93 MeV 95 (+2%) gA/ΛUV ∼ 2.1 GeV −1

Mv,n=1 1465 MeV 3258 (+122%) 1228 (-16%)
MA,n=1 1655 MeV 4724 (+185%) 3019 (+82%)

Figure 5.5: Mesonic observables in the base Model, and the numerical results
of the improvement to the model to more accurately describe the excited states.
The starred numbers are fixed to set scales and normalisations. The percentages

in brackets are the deviations from the QCD values

principle one could repeat the above for all three of the vacua considered in Figure

5.4, however the goal here is just to estimate the rough order of magnitude of the

effect of including higher dimension operators on the spectrum10. Still the axial

sector remains heavier than is observed in experiment, though now the radially

excited vector meson is in much better agreement with QCD.

5.4 Summary

This chapter has covered the realisation of a fully top down, holographic theory

of 4+1 dimensional gluons, interacting with quarks on a 3+1 dimensional defect.

The theory on the defect displays both confinement and dynamical chiral symme-

try breaking; and has neither conformal symmetry, nor supersymmetry, making

it a good candidate for a holographic model of QCD. The spectrum of mesonic

observables has been presented, showing a comparable accuracy to other holo-

graphic models for either the radially excited states, or the decay constants11.

9This is more of an aside here, and will be discussed more concretely in the next chapter when
examining the thermal transitions in a domain wall model with an NJL interaction generating
the quark mass.

10which in this case seems to be a reduction in the deviation from the QCD value of ∼ 100%
11Though sadly not both



106 Chapter 5. Domain Wall AdS/QCD

Consistently, the model predicts a heavier axial sector than is observed in nature,

though it does accurately represent the hierarchy of masses seen in QCD bound

states at colliders. The excited states rise rapidly in mass, suggesting they scale

Mn ∼ n, rather than Mn ∼
√
n which is more common in AdS/QCD models

[117]. An improvement of the model, from inclusion of higher dimension opera-

tors, to cure the problems with the abnormally heavy radially excited states was

considered; though it comes with the caveat of sacrificing predictive power, set-

ting another meson mass by hand. The next chapter will explore this model in the

presence of a black hole, dual to the field theory at finite temperature. We will go

on to explore phase transitions with respect to temperature in this model, with a

thorough discussion on the interpretation of the fields that live on the surface of

the D7 brane.
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Chapter 6

Thermal Transitions in Domain

Wall AdS/QCD

Having set out the Domain Wall AdS/QCD model in the previous chapter, based

on the intersection of D5 and D7 branes, this chapter will go on to discuss the

model at finite temperature [3]. It is expected that at high temperatures, there

will be a transition from a confined phase of QCD to a deconfined plasma phase.

In this plasma phase, hadrons are no longer “good” degrees of freedom1. These

bound states will decay into their constituent quarks and gluons in a meson melting

phase transition, dissipating in to the background plasma, much like ice cubes in

a glass of water at room temperature. The quark-gluon plasma has been observed

at heavy ion collider experiments2. Any good description of QCD, holographic

or not, should be able to accommodate a deconfined plasma phase. This chapter

will cover exactly this, for the Domain Wall AdS/QCD model. Starting from a

geometry attributed to a near extremal stack of D5 branes, our thermal geometry,

we perform the appropriate co-ordinate transformations to nicely embed D7 branes

in the background. From this point we begin the construction of the domain wall

defects by the large mass limit described in Chapter 4. The loci in this geometry

are explored and a new possibility is uncovered. Alongside the usual U-shaped loci,

one can have a pair of flat disconnected solutions. Here the bottom of the U-shape

has been swallowed by the black hole horizon lurking in the geometry. It is also

shown that the asymptotic separation of the loci, or width, in this system is no

longer monotonically increasing as one decreases ρmin to small values. The width

of the loci decreases close to the horizon, creating a situation where one can have

1Meaning appropriate descriptors of the physics.
2such as the Relativistic Heavy Ion Ccollider (RHIC) at Brookhaven national laboratory [118]
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potentially three different configurations of the same width at the boundary; with

two U-shaped loci and one pair of disconnected loci. Immediately this suggests

that there may be a first order transition in this system, but this is by no means

the full story. A careful examination of the DBI fields, restricted to the loci,

reveals that whilst they all have the same asymptotic width; they are different

theories. More precisely, they are theories with different values for the UV quark

mass. Reorganising the theory, insisting that we must look for loci equipped with

DBI fields asymptoting to the same quark mass3, reorders the solutions; revealing

the true nature of the phase transition, which is second order.

6.1 Black Branes and Finite Temperature

The thermal geometry that will be used to represent the finite temperature gauge

background has already been mentioned in Chapter 5. It is the same geometry

that was doubly Wick rotated to find the confining background of the Domain

Wall AdS/QCD model at zero temperature. We restate the solution here, the

metric is:

ds2

α′ =
U

R

(︁
−h(U)dt2 + δijdx

idxj
)︁
+
R

U

(︃
1

h(U)
dU2 + U2dΩ2

3

)︃
(6.1)

where the indices span i, j = 1, .., 5, and

U =
r̃

α′ , R =
gYM

√
N

(2π)3/2
,

eΦ = RU, g2YM = (2π)3gsα
′,

h(U) = 1−
(︃
U0

U

)︃2

. (6.2)

It is expected that at some temperature Tc, there will be a phase transition between

the thermal and confining geometries. These two geometries, when Wick rotated

back to Euclidean signature, have the same boundary at the UV cutoff. The usual

approach when discussing these types of transition in a gravitational setting is

to consider some appropriate boundary condition, in this case metrics with the

same boundary structure. Then one evaluates the gravitational path integral to

determine the rest of the metric. In practice one can evaluate this path integral

within a saddle-point approximation, where solutions to the supergravity equations

3Measured in units of ΛUV
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of motion, make up the dominant saddles. At some temperature scale the black

hole geometry becomes the dominant contributor to the path integral, and thus

emerges victorious from the battle of the metrics, signalling the transition to the

deconfined plasma phase. This however is an aside, justifying the use of the

thermal geometry. It is not the transition we are going to study in this section.

Instead we are interested in the behaviour of quarks living on domain wall defects in

this background. Before we can begin to look at domain walls in this background,

we must identify quite what is meant by temperature in this fivebrane system. We

will do this generally by examining the near extremal black p-brane solutions in

the field theory limit

6.1.1 Temperature of near extremal p-branes

Taking the result from [60] for the field theory limit of the near extremal black

p-brane geometry, we have4

ds2

α′ =

{︄
U

1
2
(7−p)

R
1
2
(7−p)

p

[︄
−

(︄
1−

(︃
U0

U

)︃7−p
)︄
dt2 + dy2||

]︄
+

R
1
2
(7−p)

p

U
1
2
(7−p)

⎡⎣ dU2(︂
1−

(︁
U0

U

)︁7−p
)︂ + U2dΩ2

8−p

⎤⎦⎫⎬⎭ , (6.3)

with

R
1
2
(7−p)

p ≡ gYM

√
N ×

√︄
27−2p π

9−3p
2 Γ

(︃
7− p

2

)︃
. (6.4)

Our next steps are to Wick rotate the time direction to Euclidean signature,

taking t → iτ , and to expand about the horizon U = U0 + δU , demanding that

the geometry is free of any conical singularities (this is identical to the steps taken

in (5.5), only this time in a general geometry). This yields,

ds2 ⊃ (7− p)
U

5−p
2

0

R
7−p
2

p

δU dτ 2 +
1

(7− p)

R
7−p
2

p

U
5−p
2

0

dδU2

δU
. (6.5)

Defining

K =
7− p

2

√︄
U5−p
0

R7−p
p

, (6.6)

4I am certain that this is not novel. I am merely presenting a calculation, with no doubt that
it is already published somewhere!
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we have

ds2 ⊃ 2KδUdτ 2 +
1

2KδU
dδU2, (6.7)

which when augmented with the co-ordinate transformation

α = Kτ, σ =

√︃
2δU

K
, (6.8)

reveals that (6.7) is in fact a flat two plane in the (α, σ) co-ordinates,

ds2 ⊃ dσ2 + σ2dα2. (6.9)

Therefore to have a complete plane, without an angular deficit, we must have

0 ≤ α ≤ 2π,

∴ 0 ≤ τ ≤ 2π

K
. (6.10)

Periodically identifying the Euclidean time direction, with period β, is in field

theory language equivalent to calculating at a temperature T = 1/β in the dual

Yang-Mills theory. Thus the temperature associated with the black p-brane is

T =
7− p

4π

(︃
U5−p
0

R7−p
p

)︃1/2

. (6.11)

This presents us with a problem. We are working in a fivebrane system, and

thus the temperature is independent of the horizon position (therefore the size

of the black hole). However hope is not lost. Still the position of the horizon

is a dimension 1 scale in the theory, which alongside the introduction of the UV

cutoff act as “ends” of the geometry. Still, branes can fall into the black hole in

the geometry, supporting the quasi-normal modes associated with meson melting

in the dual theory as in [119]. In fact we will see in the coming sections that to

the fields living on the domain walls, the position of the horizon acts exactly like

a temperature. This is all to say that, in the remainder of this chapter, we will

refer to U0 as a temperature. We shall label the axes of the figures U0(T )/ΛUV ,

indicating that whilst we do completely understand the interpretation of U0; from

the view of the fields living on the loci it is temperature-like.
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6.1.2 Thermal geometry

In order to progress we must perform the co-ordinate change,

U

U0

=
1 + r2

2r
, (6.12)

as in (5.11, 5.12). This leaves the metric in the form we will use going forwards,

ds2 = Gx(r)
(︁
−h(r)dt2 + δijdx

idxj
)︁
+Gr(r)

(︁
dr2 + r2dΩ2

3

)︁
, (6.13)

with the i, j indices spanning i, j = 1, ..., 5. The corresponding metric factors,

Gx(r) =
U0

R

1 + r2

2r
, Gr(r) = U0R · 1 + r2

2r3
,

h(r) = 1−
(︃

2r

1 + r2

)︃2

, e−Φ =
1

U0R

2r

1 + r2
, (6.14)

are identical to those in (5.15). As discussed previously, in this co-ordinate system

the factors U0 and R are dimensionful. As a consequence, the radial direction r,

becomes dimensionless, and runs from r = 1 at U = U0 to r = rΛ at the UV

cutoff U = Λ. This also means that the DBI fields carry no mass dimension, and

when asymptotics are considered, must be converted into units in terms of Λ. This

will be discussed in more detail when examining the fluctuations on the domain

walls. It should be noted here that (6.12) implies that scaling the temperature

U0 → AU0, is equivalent to scaling the cutoff Λ → Λ/A from the perspective of

the r co-ordinates. As such, varying the temperature will amount to variation of

the UV cutoff in the r co-ordinate system, rΛ. In the dimensionful U co-ordinates,

Λ will remain fixed. Now this is a geometry that it is simple to embed probe D7

branes within, and we shall do so in the following configuration:

0 1 2 3 4 5 6 7 8 9

D5 - - - - - - • • • •
D7 - - - - | | • - - - •

. (6.15)

Again the || symbol in the x4 direction indicates that the D7 brane wraps this

direction, but we will place the domain wall pair here effectively eliminating it

from the dynamics of fluctuations in the theory. Again we will refer to x4 as the z

direction, to keep consistent with the previous chapter(s). The major differences

from the previous chapter are: that now the x5 direction is not compact, the D7
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brane is pointlike in this direction and we will consider sevenbrane embeddings

that have x5 = const; and that the probe brane now wraps a direction that comes

equipped with the emblackening factor h(r). The DBI action for the probe branes,

with embedding x9 = L(ρ, z), in this background is

SD7 = −T7Ω2

∫︂
d5x dρ e−Φh(r)G5/2

x G3/2
r ρ2

√︃
1 + (∂ρL)2 +

Gr

Gx

(∂zL)
2. (6.16)

The next step will be to determine the set of loci in the thermal geometry, and

restrict the DBI fields to small fluctuations living on the surface of the domain

walls.

6.2 Domain Walls and Loci at Finite Tempera-

ture

As set out in Section 4.3, we take the following functional form for the embedding

field L(ρ, z),

∂ρL ∼ 1
√
gLL

⃓⃓⃓⃓
L=0

∂z

∂ρ
δ (z − z(ρ)) =

∂ρz√
gr
δ(z − z(ρ)), (6.17)

to determine the action functional for the loci, Slocus. We continue the convention

here, that metric factors which are lowercase are evaluated on L = 0. Implement-

ing (6.17) on the D7 action, we are lead to the action,

Slocus ∼
∫︂
d7x e−Φ(ρ) h(ρ) g2x g

3/2
r ρ2

√︃
1 +

gx
gr
(∂ρz)2 . (6.18)

Varying (6.18) with respect to z(ρ) gives the equations of motion that describes

the set of loci in the thermal geometry

∂ρz =
g
1/2
r cz

g
1/2
x

√︁
e−2Φ(ρ)h(ρ)2g5xg

2
rρ

4 − c2z
, (6.19)

with a constant of motion cz that parameterises the loci. This parameter is iden-

tified as

c2z =

(︄
1−

(︃
2ρmin

1 + ρ2min

)︃2
)︄2(︃

U0

R

1 + ρ2min

2ρmin

)︃5

. (6.20)

We see now that even with 1 ≤ ρmin < rΛ it is possible to have cz = 0, which was

not possible in the confining geometry. This gives rise to flat loci, which come in
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disconnected pairs. The approach now will be to analyse the system of domain

walls with some appropriate organsing principle. We will elucidate what is meant

by this, with an example of a poor organising principle.

6.3 The Width Transition - A Näıve Approach

Our goal going forward will be to organise the theory by a good UV parame-

ter. One potential candidate is given by the asymptotic separation, or width, of

the domain wall pair. In holography at finite temperature, we associate the free

energy of a given configuration5, in the grand canonical ensemble, with the Leg-

endre transform of the probe brane action with respect to the chemical potential

[87, 120]. In this system we argue that the dominant contribution to the action

will be proportional to the action Slocus, with the contribution of the fluctuations

being a subleading part of the action that need not be considered in the free en-

ergy calculations6. The loci are not explicitly dependant on any thermodynamic

variables, other than temperature which changes the background geometry. The

free energy F is therefore,

F = −T Slocus [ρmin, T ] + (counter term), (6.21)

evaluated on the solutions z(ρ). A numerical analysis of the loci reveals that at

any given temperature, there are two U-shaped loci at a given width. This is

displayed in Figure 6.1. Trivially there is also a pair of flat disconnected solutions

at any width, and so this is evocative of a Maxwell construction for a first order

phase transition in a thermodynamical system. An example set of solutions is

displayed in Figure 6.2. With this in mind we should calculate the free energies

of these solutions to determine whether there is a first order phase transition in

this system when the width is kept fixed. Problematically, the action Slocus is UV

divergent, and thus the free energy is dominated by the contribution from the

UV cutoff. We must endeavour to regularise it. There are two possibilities here,

either one can carefully examine the asymptotics of Slocus and construct a UV

counterterm that removes the dependence on the cutoff (and do the same for the

flat solutions), or one can note that the action for the flat configurations has the

same UV divergence as the connected solutions, and set this as the “zero point”

5specifically, βF
6formally there should be a factor of the 5-dimensional quark mass difference, M , between

them. So it is sufficient to consider just the locus action.
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Figure 6.1: The asymptotic separation of a domain wall pair, against ρmin for
system at a temperature of U0(T ) ∼ 0.066ΛUV

ΛUVU0(T)

2 4 6 8 10
U

-1.0

-0.5

0.5

1.0

X4

Figure 6.2: A cartoon depicting the set of three loci for a chosen width and
temperature, in the dimensionful “U” co-ordinate system.

of the free energy, defining the regularised free energy

Freg = −T
(︁
Slocus[ρmin, T ]− Slocus[0, T ]

)︁
. (6.22)

We will choose to do the latter7. Equipped with a properly regulated free energy

we can go on to numerically calculate and plot this for the three configurations

in Figure 6.3. Here we clearly see the swallowtail form associated with a first

7We will take T ∼ U0

Λ whilst doing numerics here. Formally the free energies should be
multiplied through by the energy scale Λ, but this is common to all the configurations.



6.4. The Domain Wall Theory at Finite Temperature. 115

order phase transition, with a critical temperature of U0(Tc)/Λ ≃ 0.33. With the

0.1 0.2 0.3 0.4
U0 (T)/Λ

-0.20

-0.15

-0.10

-0.05

0.05

0.10

Freg

Figure 6.3: A plot of the regulated free energy against temperature U0/Λ, for
an asymptotic width of W ∼ 0.964. The two U shaped loci are depicted (Blue,
Red), alongside the zero line representing the flat disconnected loci (Black).

presentation of Figure 6.3, it would be easy to assume that the meson melting

transition here is first order. However we have more powerful tools at our disposal

than just an examination of the domain wall loci. We can deal directly with the

fluctuations on the loci, dual to the quark mass/chiral condensate source/operator

pair.

6.4 The Domain Wall Theory at Finite Temper-

ature.

We now restrict the DBI fields to live on the domain walls as set out in Section

4.4. The action for fluctuations in the domain wall theory is

SDW = −T7Ω2

∫︂
d5x dρ e−Φh(r)G5/2

x G3/2
r

×
√︂
gr + gx(∂ρz)2ρ

2
√︂
1 + F(∂ρL)2. (6.23)

Yet again the function F encodes the z dependence of the solutions, and is given

by

F = 1 +
Gr

Gx(∂ρz)2
. (6.24)
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We can go on to extremise this action to write down the equations of motion

associated with the field L(ρ),

∂ρ

(︄
e−Φh(r)G

5/2
x G

3/2
r

√︁
gr + gx(∂ρz)2ρ

2F∂ρL√︁
1 + F(∂ρL)2

)︄

−2ρ2
√︂
gr + gx(∂ρz)2

∂

∂r2

(︃
e−Φh(r)G5/2

x G3/2
r

√︂
1 + F(∂ρL)2

)︃
· L = 0, (6.25)

solving them numerically8 to determine the UV quark mass from the boundary

values of the field. It has been stated previously that this field is dimensionless

in these co-ordinates. Whilst this was not an issue before, now we must convert

the values that we compute numerically into physical units. Noting that the co-

ordinate transformation (6.12) maps between dimensionful U co-ordinates and

dimensionless r co-ordinates, we apply this directly to the field L. The asymptotic

form for L given by the equations of motion is9

L→ m̃+
c̃

ρ11/2
, (6.26)

where the tilde-variables are dimensionless, by (6.12) we have10:

m

U0

=
1 + m̃2

2m̃
, (6.27)

which allows us to express the quark mass in terms of the temperature. Given

that we will be varying temperature in the examination of this system this is not

so useful. For direct comparison between theories at different temperatures we

should express the quark mass instead in terms of the ultraviolet cutoff scale Λ,

which is constant. A second application of (6.12) will aid us here! Clearly,

m

Λ
=
m

U0

U0

Λ
=

1 + m̃2

m̃

ρΛ
1 + ρ2Λ

. (6.28)

We would like to write down a similar expression for the condensate, however this

is more challenging. Both L and ρ are dimensionless, so we will have to make an

assumption (though a well motivated one). We will assume that the dimensionless

8Again, we take the IR BCs L(ρmin) = ρmin such that the IR mass gap is consistent, and
then shoot out to the UV.

9This might seem slightly odd, but often the nice asymptotia in AdS/CFT come from the
underlying conformal symmetry of the dual theory. This theory has no such symmetry.

10For m̃ > 1, which we always have on the connected loci.
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value c̃, is the physical condensate measured in units of temperature11, c̃ ∼ c/U3
0 ,

thus we can write physical condensate in terms of the cutoff as

c

Λ3
= c̃

(︃
U0

Λ

)︃3

≃ 8c̃

ρ3Λ
. (6.29)

With these relations in mind, we can go on to numerically explore the configura-

tions with fixed quark mass, m/Λ.

6.4.1 Fixed Quark Mass

Demanding that the UV quark mass is kept fixed we realise that, at a given

temperature, there are no longer three configurations to choose from. This is the

first obvious departure from keeping the asymptotic width fixed. In fact we find

only one configuration at each temperature that gives the chosen quark mass. In

this system, there cannot be a first order phase transition when the quark mass is

kept fixed. Instead we find that as the temperature rises the U-shaped loci begin to

narrow until they shrink to zero width, at which point they become a co-incident

pair of disconnected flat loci. In this respect, the U shaped loci smoothly map

onto the disconnected ones as temperature is increased at fixed quark mass. This

is illustrated in Figure 6.4. Note that there is variation in ρmin , however it is

small in the U co-ordinates displayed in Figure 6.4. In Figure 6.5 we display the

numerical results for the asymptotic width of example configurations with fixed

quark mass, m/Λ ∼ 0.2. We confirm that a phase transition occurs when the loci

dip into the horizon by calculating the condensate on each configuration displayed

in Figure 6.5. The numerical results are displayed in Figure 6.6. From this, we

conclude that the transition must be a meson-melting transition, that restores

chiral symmetry in the theory on the domain walls. We go on to explore the

variation in the critical temperature with respect to quark mass, and plot these

results in Figure 6.7; indicating that for temperatures above the U0(Tc) we have

a phase of melted mesons, with chiral symmetry restored, and below the critical

temperature we have stable mesons and a chirally broken phase. We conclude that

the phase transition in this case is at least second order.

11This is the simplest dimensionless ratio of the condensate and scales that we can write down.
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U0(T) Λ

2 4 6 8 10
U

-0.5

0.5

z

Figure 6.4: A cartoon showing the evolution of a domain wall system, with
fixed quark mass m/Λ, as the temperature is increased from U0(T1) (Dashed
configuration), to U0(T2) > U0(T1) (solid configuration), finally to U0(Tc) where
the tip of the U-shape has fallen into the horizon, becoming two disconnected
flat pieces (dotted configuration). The position of the horizon is drawn in red

(dashed, solid, and dotted respectively).
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Figure 6.5: Numerical results tracking the asymptotic width of configurations
with fixed quark mass m/Λ ∼ 0.2 as the temperature is varied. At a critical
temperature of U0(Tc)/Λ ∼ 0.2 the loci dip into the horizon and disconnect.

6.4.2 NJL Coupling

There is a second potential interpretation for the solutions living on the loci. We

could also consider the quark mass to be dynamically generated by the presence of

an NJL interaction. The NJL interaction term, as a higher dimension operator, is

introduced through the Witten presectiption for multi-trace operators. This was
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Figure 6.6: The chiral condensate (in units of Λ) plotted for the configurations
in Figure 6.5. We see explicitly that at the critical temperature U0(Tc) ∼ 0.2,
the condensate drops to zero, indicating the transition to a chirally restored

phase.
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Figure 6.7: A plot of the numerical results of the critical temperature U0(Tc)
varying with quark mass m/Λ.

mentioned in Chapter 5. Here we enforce by hand at the classical level;

g2

Λ2
⟨ψ̄LψR⟩ = m (6.30)

or rearrranging for the NJL coupling g2, and expressing in terms of the dimen-

sionless outputs of the holographic model,

g2 =
m

c
Λ2 =

m

U0

U3
0

c

Λ

U0

2

=
1 + m̃2

2m̃c̃

(︃
1 + v2Λ
2vΛ

)︃2

. (6.31)
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In this case, we would consider any configurations with the same value for g2 as

being the same theory, and can investigate the model holding the NJL coupling

fixed, and varying the temperature. The picture we see here is strikingly different!

Infact, at each temperature, we see again two U-shaped configurations with the

same NJL coupling. A third configuration with the same NJL coupling is given

by the flat disconnected loci, suggesting that the phase transition in this case is

first order. This is an interesting feature of the domain wall theories! There are

seemingly multiple interpretations for the field theory living on the domain wall

loci. Another way to say this is the following; in these models there are a set of

loci, that come equipped with DBI fields living on their surface. Reinterpreting

the boundary data provided by the solutions moves you between types of theory.

In this case, we go from a theory with a quark mass term in the Lagrangian, to

one with a quark mass generated by the condensation of an NJL interaction term.

Both of these theories share the same set of domain wall loci, they just re-order

them. We plot the free energies for a theory with NJL coupling g2 ∼ 0.57 in Figure

6.8, which shows the swallowtail form expected in the case of a first order phase

0.05 0.10 0.15 0.20 0.25 0.30
U0 (T)/Λ

-0.20

-0.15

-0.10

-0.05

0.05

0.10

Freg

Figure 6.8: The free energy of the three configurations with fixed g2 ∼ 0.57,
at varying temperature. The two U-shaped solutions are displayed (Red, Blue),

the disconnected solutions are also drawn on (Black)

transition. There is a gap in the solutions between 0 < U0(T )/Λ < 0.05, due to the

difficulty of numerical analysis at very low temperatures in this system. In Figure

6.9 we plot the variation in critical temperature with respect to g2, in analogy with

Figure 6.7, showing clearly a phase with melted mesons that is chirally restored,

and a phase with stable mesons that is chirally broken.
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Figure 6.9: A plot of the numerical results of the critical temperature U0(Tc)
varying with the NJL coupling g2. Again there are numerical difficulties at very

low temperatures.

6.5 Summary

This chapter has covered the extension of the Domain Wall AdS/QCD model to

finite temperature. Whilst on dimensional grounds one may expect the asymptotic

width of the domain wall configurations to be inversely proportional to the quark

mass, and indeed this is the case in the D3/D7 model, our analysis in this chapter

has disabused us of this notion. Not only does organising the loci by fixed width

not characterise the quark mass well, it shows a discrepancy in the order of the

phase transition compared to dealing with the fields that live on the loci. Solving

the equations of motion for the DBI fields restricted to the domain walls, allows us

to label the loci by the mass of quarks living on their surface, which is a genuine

UV parameter of the theory. Keeping the quark mass fixed, the loci rearrange

themselves, revealing that the meson melting transition is infact second order. To

the authors knowledge, this is unique in holography. We have also shown that

the same set of loci can describe a different, though related theory. Using the

Witten presecription for multi-trace operators we can also describe a theory of

massless quarks, with an NJL four-fermion interaction that provides an effective

quark mass. Interestingly this theory does have a first order phase transition

with respect to temperature! It is wholly possible that the width of the loci is

an indirect measure of the coupling strength in an NJL type model rather than a

direct measure of the quark mass.
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Chapter 7

Conclusion and Outlook

This thesis has detailed the development of holographic domain wall fermions,

inspired by implementations of chiral matter in lattice QCD. We start with a well

controlled holographic system: the D3/probe D7 intersection dual to N = 4 super-

Yang-Mills theory, with a dynamical N = 2 quark supermultiplet. Searching for

D7 brane embeddings that have sinusoidal, spatial dependence on one of the direc-

tions spanned by the D3 branes, allows us to build a step-like mass function for the

quark multiplet on the boundary of AdS. Where this mass function passes sharply

through zero, massless quarks are localised on a pair of 2 + 1 dimensional domain

wall defects in the 3 + 1 dimensional gauge theory. Solving the radial profile for

the D7 brane embedding reveals that the domain walls will join together in the

interior of AdS, mixing the quark degrees of freedom on each domain wall. This is

analogous to breaking the “chiral” symmetry on the defect quark theory. Taking

the large mass limit, where the quarks off the domain walls are taken to be very

heavy, and thus no-dynamical, leaves only a 2 + 1 dimensional domain wall locus

on which the dynamical quarks are restricted to live. Restricting the DBI action

for the probe branes, to the surface of the locus, provides us with tools to analyse

the behaviour of quarks in the dual theory. Specifically it provides us with a han-

dle on the quark mass/chiral condensate source/operator pair. Here we see that

the joining of the domain walls represents a hard mass term in the Lagrangian,

with a mass equal to the radial scale at which the domain walls join together. Un-

fortunately, this is not a quark mass generated by the non-perturbative dynamics

of the theory, and it can be removed by taking the asymptotic separation of the

domain walls to infinity, where the locus then is free to fall all the way to r = 0,

destroying the IR mass gap. By deforming the background AdS geometry, the

quark mass can be dynamically generated. This is represented by the domain wall
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loci being excluded from an interior region of the geometry, piling up before the

obstruction. The quark field on the loci also reflect this, having zero asymptotic

quark mass, while being gapped in the IR. In these cases the fluctuations about the

quark vacuum function, dual to a pseudoscalar meson, reveals that the symmetry

breaking is dynamical by way of a holographic Gell-Mann-Oakes-Renner relation.

Understanding how to construct the holographic domain walls, by use of the large

mass limit, we turn to the intersection of D5 and D7 branes. Taking the fivebrane

to wrap a compact cycle induces a cap in the geometry, which signals that the dual

theory is confining. By implementing the holographic domain walls, we restrict

the quarks to living on a co-dimension two defect in the dual theory. This defect,

being 3 + 1 dimensional, hosts quarks which are genuinely chiral. This model has

the requisite properties to be a holographic model of QCD, and we calculate the

spectrum of mesonic observables. The D5 background, comes equipped with a lin-

ear dilaton profile which includes the running coupling of the dual theory, though

it does not match the running calculated from QCD perturbation theory. It also

forces us to cut the gravity dual off at some energy scale, beyond which we can

no-longer trust the supergravity description of the branes. We argue that this nat-

urally includes the region where a QCD-like theory becomes weakly coupled. For

the mesonic observables, we match at a scale of ∼ 3GeV , which would correspond

to an intermediate coupling regime of QCD. The spectrum can be reasonably im-

proved by including the effects of higher dimenison operators in the dual theory.

Arguably this begins to capture some of the stringy corrections to the model.

Lastly we examine the behaviour of the model in a black hole geometry, which is

dual to the gauge theory at finite temperature. This presence of the black hole

in the interior of the geometry enlarges the set of allowed domain wall loci, to in-

clude flat pairs of domain walls that fall into the black hole. We then examine the

thermal phase transitions in the theory, from several perspectives. The first is to

treat the asymptotic separation of the domain walls as a genuine parameterisation

of the dual gauge theory, and keep it fixed as the temperature is varied. Doing so

suggests that the theory should have a first order phase transition with respect to

temperature. However, the fluctuations on the domain wall loci reveal that this

moves us between theories with different quark mass. Exploiting the fluctuations

on the loci to keep the quark mass fixed reveals that the phase transition is sec-

ond order. This realisation of a second order meson melting phase transition is

seemingly novel. By changing the asymptotic boundary conditions for the fields

on the domain walls, we can use the pre-existing loci to describe different theories.

By implementing a variant of the Witten multi-trace prescription, we can use the
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loci to describe a theory with a quark mass generated by the condensation of an

NJL four fermion interaction. Similarly, we can examine the phase transition with

respect to temperature while keeping the NJL coupling, and therefore effective

quark mass, fixed. Somewhat surprisingly, this theory displays a first order phase

transition.

At time of writing, we are working to extend the model to finite density. By turn-

ing on the temporal component of a U(1) gauge field on the loci, we can examine

the phase transitions with respect to quark chemical potential, µ (as in [87]). This

project seems promising, and draws particular attention to the boundary condi-

tions obeyed by the fields on the domain wall loci. The extra field on the locus can

functionally be replaced by its equation of motion, yielding a modified equation of

motion for the quark field, and an enlarged set of permissible boundary conditions.

This greatly increases the number of configurations capable of supporting quarks

of a given mass, and the effort to catalogue and characterise the phase transitions

in the µ− T plane is ongoing. It is possible that a re-examination of the domain

walls, as a non-supersymmetric brane anti-brane system might provide us with the

ability to make progress here. Being able to describe the loci without use of the

large mass limit may allow the gauge fields to deform the loci, increasing the set of

allowed configurations, resulting in a richer phase diagram. This approach would

also make the inclusion of a baryonic phase simpler. Ultimately, we would like to

include finite density, and baryons in the model before attempting to determine

the QCD equations of state. From there, it is planned to use the equations of

state to solve the Tolman-Oppenheimer-Volkoff equation [121], and see whether

the model is capable of producing astrohysical neutron stars. Ideally, it would be

capable of modelling a fully holographic neutron star, following the example of

[122].
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