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We study domain wall fermions and their condensation in the D3/probe D7 system. A spatially
dependent mass term for the N ¼ 2 hypermultiplet can be arranged to isolate distinct two-component
fermions on two 2þ 1 dimensional domain walls. We argue that the system shows condensation/mass
generation analogous to the D3/probe D5 D5 system. The chiral condensate and pion mass can be directly
computed on the domain wall. We provide evidence that these systems with the domains separated by a
width w have a bare (current) quark mass that scales as 1=w when the spatially dependent mass is large.
Adding a magnetic field does not induce chiral symmetry breaking between the separated domain wall
fermions, but a similar phenomenological dilaton factor can be made strong enough to introduce
spontaneous symmetry breaking. We show a Gell-Man-Oakes-Renner relation for the pions in that case and
also for the case where the D7 probe is in a backreacted dilaton flow geometry. The vacuum configurations
can also be interpreted as having a spontaneously generated mass by a Nambu-Jona-Lasinio four fermion
operator, depending on the choice of boundary conditions on fluctuations, according to Witten’s multitrace
prescription.
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I. INTRODUCTION

Kaplan introduced the idea of domain wall fermions in
[1] to address the challenging issue of including chiral
fermions in lattice gauge theory simulations. A spatially
dependent mass term for quarks with a sharp crossing from
positive to negative mass isolates a single chirality of a
Dirac spinor at the boundary. The technique has gone on to
become an important tool for the lattice community.
In this paper, we apply the ideas of domain wall fermions

but in holography [2]. Here, we are motivated by enlarging
the holographic toolbox of methods to construct particular
gauge theories with holographic descriptions, as well as the
formal aspect of studying a new environment in holography.
As a first step in this direction, we consider spatially

dependent masses in the D3/probe D7 system which is a
very well understood holographic construction [3,4].
The base D3/probe D7 system describes an N ¼ 2
quark hypermultiplet in the fundamental representation
interacting with the adjoint fields of N ¼ 4 super
Yang Mills theory. Here, domain walls, on which the
quark mass is zero, isolate distinct two-component sub-
spinors of the four dimensional theory at each domain wall.

In 2þ 1 dimensions there is no formal chirality projector,
but the system is very analogous to the usual reduction
performed. We briefly review this formalism in Section III.
Related lattice work on this reduction is discussed in [5].
Note that some holographic work on a single defect of this
type already exists in [6] in a condensed matter setting.
Here though, we study the interactions between defects.
In the holographic setting, we begin by studying

(co)sinusoidal quark mass terms in a direction x3 or z in
the field theory. To introduce the ideas, we begin by
working at the level of the linearized equations of motion
for fluctuations of the D7 brane to allow analytic compu-
tation without complicated partial differential equations.
The results in this approximation contain many of the
physics ideas we would expect. Each Fourier mode of
momentum k is associated with a wave function fk in the
holographic radial direction on the probe, ρ. The higher the
k is, the quicker these modes die off into the infrared, i.e.,
small ρ. We can then construct arbitrary z-dependent
functions for the quark mass, M, as a Fourier series. We
choose a periodic function with two close domain walls,
well separated from the next pair. Since the higher Fourier
modes decouple as one moves to small ρ, the two domain
walls, defined by where M ¼ 0 approach each other,
eventually join. The locus where M ¼ 0 in the z–ρ plane
is very reminiscent of well known U-shaped brane anti-
brane systems with chiral symmetry breaking such as the
Sakai-Sugimoto model [7] or the D3/probe D5 D5 system
[8,9]. Thus, we interpret the domain wall system as
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showing symmetry breaking; for a single probe D7, there is
a U(1) symmetry on the spinors on each domain wall that is
broken to the “vector” subgroup. In the large spatially
dependent mass limit, the presence of a single two-
component fermion on the domain wall effectively removes
the coupling to the adjoint scalar of the N ¼ 4 theory; if
there were many branes, then one would expect a full
UðNfÞ symmetry to be present on each domain wall and the
IR joining of the walls to break these symmetries to a single
UðNfÞ group. Here, it remains unclear as to whether the
breaking is explicit or spontaneous.
Having introduced the setup in the linearized approxi-

mation, we then move to the opposite limit where the 3þ 1
dimension mass, M, is infinite except on the domain wall
junction. We show how to solve for the position of the
domain wall in the z–ρ plane and again recover U-shaped
configurations. Interestingly, the equation for these con-
figurations precisely reproduces the action of the D3/probe
D5 D5 system presumably showing that the symmetry
breaking is identical between the two systems.
The quark antiquark operator/source pair that controls

the symmetry breaking, when seen from a UV perspective,
are Wilson lines with a quark on each end (one on each
domain wall)[10]. These are stringy states and as in brane
models not directly accessible. However, in the IR where
the string becomes of zero length, these operators should be
indistinguishable from the 3þ 1d theory’s quark conden-
sate with which they will mix. One would expect the D7
brane embedding solution to display a quark condensate as
the normalizable piece of the UV solution, localized on the
brane. We restrict the equation of motion for the 3þ 1d
probe scalar, that describes this operator/source pair, to the
domain wall locus and then solve. It provides a direct local
measure of the quark condensate, and its phase should play
the role of the Goldstone of the symmetry breaking.
For the case of a D7 probe in pure AdS5, the domain wall

configurations have a single associated scale, the width
separating the two defects, w. We show it sets all scales
including the minimum ρ to which the M ¼ 0 contour
reaches and the “Goldstone” mass. Here, the Goldstone is
not massless, and so we conclude that this system has a bare
(or current) quark mass of 1=w. Given the similarities to the
D3/probe D5 D5 system, it is likely that system does too.
To further investigate chiral symmetry breaking in the

system, we apply a baryon number magnetic field. This is
easily introduced in the D7 probe system via a world-
volume gauge field and enters as an effective dilaton factor
multiplying the action. Magnetic fields are known to induce
dynamical mass generation [11,12], although whether the
dynamics is strong enough to overcome the spatial sepa-
ration of the domain walls on which the participating
fermions reside requires computation. The linearized analy-
sis breaks down in this system because the magnetic field
induces chiral symmetry breaking in the full 3þ 1 dimen-
sions for the light quarks [12]. In the large M limit though,

only the domain walls, where M ¼ 0, feel the IR presence
of the magnetic field. We find that the contour where
M ¼ 0 is pushed to higher scales, but it still remains the
case that there are configurations of large width where the
minimum ρ of the U-shaped domain wall configuration
approaches zero. The magnetic field renormalizes the bare
mass but does not induce spontaneous symmetry breaking.
Again, the U shapes we find are precisely those of the D3/
probe D5 D5 system in a magnetic field, and so that system
is expected to also not show dynamical symmetry breaking.
Inspired by the magnetic field case, we try phenomeno-

logical choices of a multiplying dilaton factor in the action
that blow up more strongly as ρ → 0. Here, for suitable
choices, we show that there is a minimum value of ρ to
which the U-shaped configurations reach even as the width
between the domain walls diverges. This signals chiral
symmetry breaking. Turning to the solutions of the holo-
graphic fields on the domain wall, we also find that chiral
symmetry breaking is now triggered consistently. We show
a Gell-Mann-Oakes-Renner relation [13] with the
Goldstone mass proportional to the square root of the
UV quark mass.
To show the dynamics in a more rigorous setting, we

investigate the domain walls on a D7 brane in a dilaton flow
geometry [14]. The geometry is a solution of the super-
gravity equations of motion with a dilaton growing into the
IR. The geometry has an IR pole. It is unclear whether it can
be sensibly resolved in string theory, but it does provide a
backreacted hard wall in the geometry. Such geometries are
known to induce chiral symmetry breaking for the D7 probe
theory in 3þ 1 dimensions [15,16], and that dynamics is, at
least, away from the singularity. Again, in the largeM limit,
the domain wall setup only sees the IR geometry along the
M ¼ 0 defect, so only the lower dimensional theory is
affected. We again show that the U-shaped domain wall
configurations reach down to only a minimum value of ρ
(above the singularity scale) and that the holographic fields
on the domain wall consistently describe chiral symmetry
breaking and a Gell-Mann-Oakes-Renner relation.
We also discuss Witten’s multitrace prescription [17] (see

[18] for its application in the D3/probe D7 system) which
implies that any vacuum configuration with a source present
can be reinterpreted as a system with no source but a higher
dimension operator causing condensation. In the case of a
quark mass, one imagines a Nambu-Jona-Lasinio (NJL) four
fermion term [19] is present causing a quark condensate. The
combination of the condensate and four fermion operator
then dynamically generates a boundary quark mass term. In
this case, one must adjust the boundary conditions on
fluctuations since the quark mass itself must fluctuate with
the quark condensate. In the domain wall models under these
conditions, the Goldstone indeed becomes massless reflect-
ing the dynamical symmetry breaking by the NJL term.
Finally, we briefly overview 1þ 1 dimensional domain

walls that can be generated in the D3/probe D5 system.
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The 1þ 1 dimensional fermions are expected to be chiral.
Here, in the large mass limit, the equation for the domain
wall locus matches that of a D3 probe in AdS5. The behavior
of this system is in other respects the same as the D3/probe
D7 domain walls we have discussed in detail. The paper
is organized as follows: in Sec. II, we briefly overview
U-shaped configurations in the D3/probe D5 D5 system that
we use as a comparator system through the paper. In Sec. III,
we review the domain wall fermion mechanism. In Sec. IV,
we enact domain walls in the D3/probe D7 system, first at
the level of the linearized equations of motion and then in the
large mass limit; we discuss the Goldstone boson’s nature
and mass relations. In Sec. V, we include a magnetic field
and dilaton profiles and show the conditions necessary
for dynamical symmetry breaking. In Sec. VI, we discuss
Witten’s multitrace prescription in this setting. In Sec. VII,
we briefly summarize the D3/probe D5 system and 1þ 1
dimensional domain wall systems. We summarize and
conclude in Sec. VIII.

II. D3/PROBE D5 D5 COMPARATOR SYSTEM

We investigate a domain wall theory that consists of two
2þ 1d domain walls with massless fermionic fields that
condense in the IR due to gauge interactions in the bulk. We
can realize a very similar system using a D3/probe D5 D5
system [8,9]. We make comparisons to this system in our
analysis, so we review it first.
The gravity dual of N ¼ 4 SYM theory, the theory on

the surface of a stack of Nc D3 branes, is described by the
near horizon AdS5 × S5 geometry [2],

ds2 ¼ r2

R2
dx23þ1 þ

R2

r2
ðdρ2 þ ρ2dΩ2

2 þ du21 þ du22 þ du23Þ;
ð1Þ

where R is the anti–de Sitter (AdS) radius and
r2 ¼ ρ2 þPi u

2
i .

The probe D5 branes are arranged as

0 1 2 3 4 5 6 7 8 9

D3 − − − − • • • • • •
D5=D5 − − − • − − − • • •

ð2Þ

with the D5 and D5 separated in the 3 direction (z). The
matter content on each of the 2þ 1d defects are two two-
component fermions plus scalar superpartners interacting
with the bulk N ¼ 4 gauge theory. Interactions occur
between the fermions on the domain walls leading the
D5 and D5 to join [9]. The action is

SD5 ¼ −T5

Z
d6ξ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− detP½GMN þ 2πα0FMN �

p
; ð3Þ

which gives for FMN ¼ 0,

SD5 ≈
Z

dρρ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ρ4z02

q
: ð4Þ

Note we have rescaled x3þ1 by a factor of R2 to effectively
set R2 ¼ 1. This means all momenta and masses below are
strictly R4k2; R4M2. There is a conserved quantity, so

ρ6z0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ρ4z02

p ¼ ρ4min; ð5Þ

with a U-shaped configuration solution,

zðρÞ ¼ �Re

�
i
ρ 2F1

�
−
1

8
;
1

2
;
7

8
;

�
ρ

ρmin

�
8
��

: ð6Þ

The minimum ρ value the U shape reaches to, ρmin,
determines the IR mass gap. The theory has only the width
of the U shape, w, as a UV parameter, and the mass gap is
given by

rmin ¼
0.675
w

: ð7Þ

We can also switch on a B field [20] (absorbing factors of
2πα0 and R) in the D3/probe D5 system in either of the 2,3
spatial directions. The action is then

SD5 ≈
Z

dρ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ B2

ðρ2 þ L2Þ2

s
ρ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ρ4z02

q
: ð8Þ

The magnetic field prefactor pushes ρmin of the U-shaped
configurations to higher values for a given width, but ρmin
still approaches zero as the width of the U increases to
infinity.
We use this system as a comparator for domain wall

theories, returning to it in plots and the discussion below.

III. DOMAIN WALL FERMIONS

In this section, we briefly review the theory of domain
wall fermions [1] concentrating on the particular case of a
3þ 1 dimensional theory dimensionally reduced to 2þ 1
dimensions. Note the domain wall approach is usually used
to reduce an odd dimensional theory (e.g., 4þ 1d) to an
even dimensional theory (e.g., 3þ 1d), where the domain
wall fermions are chiral. In our case, where the domain wall
is of an odd dimension (emerging from an even dimension
theory), there is no chirality projector, but the higher
dimension Dirac spinor is still split into two pieces, each
of which can be isolated on a separate brane. We are happy
with this as an example of the principle.
Consider the Dirac equation for a 3þ 1 dimensional free

fermion with a mass that depends on x3,
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½−iγμ∂μ − iγ3∂3 þMðx3Þ�Ψ ¼ 0; ð9Þ

where μ ¼ 0, 1, 2. Under dimensional reduction, Ψ will
become two 2þ 1 dimensional two-component spinors
which can be extracted from Ψ by using the projectors,

P� ¼ 1

2
ð1� iγ3Þ: ð10Þ

Note in the Dirac basis

γ0 ¼

0
BBB@

1 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 −1

1
CCCA; γ1 ¼

0
BBB@

0 0 0 1

0 0 1 0

0 −1 0 0

−1 0 0 0

1
CCCA;

γ2 ¼

0
BBB@

0 0 0 −i
0 0 i 0

0 i 0 0

−i 0 0 0

1
CCCA; γ3 ¼

0
BBB@

0 0 1 0

0 0 0 −1
−1 0 0 0

0 1 0 0

1
CCCA:

ð11Þ

If we write (� corresponds to the static energy eigenvalue)

Ψ ¼

0
BBB@

ψþ
1

ψþ
2

ψ−
1

ψ−
2

1
CCCA; ð12Þ

then the two distinct spinors, each with the information of a
2-spinor, are

P�Ψ ¼ 1

2

0
BBB@

ψþ
1 � iψ−

1

ψþ
2 ∓ iψ−

2

−iðψþ
1 � iψ−

1 Þ
iðψþ

2 ∓ iψ−
2 Þ

1
CCCA: ð13Þ

Now consider the cases where

Mðx3Þ ¼ −M; x3 < 0; Mðx3Þ ¼ M; x3 > 0: ð14Þ

To seek a massless mode solution of (9), we decompose Ψ
in terms of a product in the x3 and xμ directions,

Ψ ¼ ½aðx3ÞPþ þ bðx3ÞP−�ψ0ðxμÞ; ð15Þ

where we assume the massless eigenstate satisfies

iγμ∂μψ0ðxμÞ ¼ 0: ð16Þ

Since fγμ; γ3g ¼ 0, we have γμPþ ¼ P−γμ and
γμP− ¼ Pþγμ, and we may drop the first term in (9) as
a result of (16) for the zero mode.
Now we use ðγ3Þ2¼−1, so that iγ3Pþ¼Pþ and iγ3P−¼

−P−. The coefficients of P� give the two equations

ð∂3þMðx3ÞÞaðx3Þ¼0 ð−∂3þMðx3ÞÞbðx3Þ¼0: ð17Þ

The first equation [remember Mðx3Þ switches sign at the
origin] has the normalizable solution,

aðx3Þ ¼ Ne−Mjx3j: ð18Þ

The solution for b which has a positive sign in the
exponential is not normalizable, so it is unphysical.
Thus, a single one of the two 2þ 1 dimensional 2-spinors
is massless at the discontinuity. If we have a second
discontinuity with the opposite sign switch in Mðx3Þ, then
the second 2þ 1d spinor will be localized there.
Note that a condensate between the two 2-spinors ψ̄1ψ2

with the 2þ 1d γ0 ¼ σ3 is the same combination of
operators as the 3þ 1d condensate Ψ̄Ψ.
At weak coupling, there is expected to be a quark mass

controlled by the overlap of the wave functions, so it will
fall off as an exponential of the gap between two adjacent
discontinuities [formally as expð−MwÞ with w the sepa-
ration between the defects]. It is not clear that the same
decoupling will happen if the separated quarks are inter-
acting strongly; indeed, we find that the mass in the
holographic setting falls off only as the power law
∼1=w. Our goal for the rest of the paper is to realize this
domain wall setup in holography at strong coupling in part
to investigate such questions.

IV. THE D3/PROBE-D7 SYSTEM
AND DOMAIN WALLS

For this section, we rewrite the metric of the gravity dual
of N ¼ 4 SYM theory as

ds2 ¼ r2

R2
dx23þ1 þ

R2

r2
ðdρ2 þ ρ2dΩ2

3 þ du21 þ du22Þ; ð19Þ

where R is the AdS radius and r2 ¼ ρ2 þPi u
2
i .

We introduce a probe N ¼ 2 quark hypermultiplet into
the N ¼ 4 SYM theory described by (19) by including a
D7 brane in the configuration [3],

0 1 2 3 4 5 6 7 8 9

D3 − − − − • • • • • •
D7 − − − − − − − − • •

ð20Þ

The Dirac-Born-Infeld (DBI) action for the probe D7 is
given by
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SD7 ¼ −T7

Z
d8ξ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− detP½GMN �

p
; ð21Þ

which gives up to constants

SD7 ≈
Z

d4xdρρ3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð∂ρuiÞ2 þ

R4

ðρ2 þ u2i Þ2
ð∂xuiÞ2

s
;

ð22Þ

where ui; i ¼ 1, 2 are the position of the brane in the two
transverse directions. The rotational symmetry allows us to
assume the vacuum embedding lies in the u1 direction. x are
generically the 3þ 1d Minkowski coordinates. Note it is
helpful again to rescale x3þ1 by a factor of R2 to effectively
set R2 ¼ 1. This means all momenta and masses below are
strictly R4k2; R4M2.

A. Mass terms in the linearized system

A supersymmetry preserving, x-independent mass can
be included by the solution u1 ¼ m with mq ¼ m=2πα0.
The meson spectrum for this case has been computed in [4].
Here, we are interested in z (i.e., x3)-dependent mass

terms. To allow, in principle, a generic z dependence, we
write the mass term as a Fourier series in terms of sine and
cosine waves in the z direction. Initially, we apply the mass
as a perturbation to the massless theory, working in the
linearized equation of motion approximation (keeping only
terms to quadratic order in the action). That is we have

∂ρðρ3∂ρu1Þ þ
1

ρ
ð∂2

zu1Þ ¼ 0; ð23Þ

and we seek solutions

u1 ¼ fkðρÞ cos kz: ð24Þ

Since there is no scale in the AdS geometry, the solutions
for fkðρÞ are ill behaved in the IR. We resolve this by
including a hardwall regulator at ρ ¼ 1; we shoot from
ρ ¼ 1 with u01ð1Þ ¼ 0. In practice, this means that any
structure we see in AdS can only be trusted for ρ ≫ 1.
The numerical solutions asymptotes to a constant value

in the UV (the UV form of the solution is u1 ∼mþ c=ρ2).
We then normalize the solutions so that

fkðρ → ∞Þ ¼ 1: ð25Þ

Note that in the linearized regime the solutions are
independent of the normalization, and hence, the physics
is independent of the maximum mass value. We plot some
example fk in Fig. 1. We see that higher k modes are less
supported at small ρ as one would expect since UV physics
is irrelevant in the IR.

B. A periodic domain wall configuration

We now want to construct a configuration of two
interacting domain walls. For simplicity, we use the
following periodic example which is simple to Fourier
expand. The configuration is 3L periodic, with a sharp wall
at z0 and another at 3L − z0. The defect is centred half way
along the 3L interval and is of width w ¼ 3L − 2z0. Thus,

u1 ¼ 1; 0 ≤ z ≤ z0;

u1 ¼ −1; z ≤ z ≤ 3L − z0;

u1 ¼ 1; 3L − z0 ≤ z ≤ 3L: ð26Þ

For z0 > L, the walls are reasonably close but well
separated from the next recurrence of the configuration;
we do not take z0 > L therefore in what follows.
The Fourier expansion for this even function is

fðzÞ ¼ a0
2
þ
X∞
n¼1

an cos
2πnz
3L

;

a0 ¼
8z0
3L

− 2;

an ¼
2

πn

�
sin

2πnz0
3L

− sin
2πnð3L − z0Þ

3L

�
: ð27Þ

In Fig. 2, we plot an example configuration showing the
Fourier approximation taking the first 100 terms.
This solution provides the UV boundary data for the

holographic field u1. It is now straightforward to plot the
configuration into the interior of AdS. We simply use our
solutions fkðρÞ as a multiplier on each Fourier mode,

u1ðρ; zÞ ¼
a0
2
f0ðρÞ þ

X∞
n¼1

anf2πnðρÞ cos
2πnz
3L

: ð28Þ

We plot an example solution in Fig. 3. The high k modes
die away as one moves to smaller ρ, and the well

20 40 60 80 100

0.2

0.4

0.6

0.8

1.0

f( ,k)

FIG. 1. The solutions for fkðρÞ in pure AdS with a hardwall at
ρ ¼ 1 for k ¼ 1ðblueÞ; 10ðorangeÞ; 30ðgreenÞ.
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configuration begins to decay. The key question is where
are the contours where u1 ¼ 0; this is where the 2þ 1d
fermions will be isolated. We plot this in Fig. 4.

The two domain walls in the UV are well separated. but
they join together in the IR. The behavior of two domain
walls joining is very familiar from probe brane embeddings
(for example, that in Sec. II). As first introduced in the
Sakai-Sugimoto model [7], when branes join in this
fashion, it indicates condensation of the fermions on the
two boundaries. The minimum ρ value of the configuration
ρmin is the mass gap of the theory (formally ρmin=2πα0). We
make the same interpretation here. The two initially
separated 2þ 1d 2-spinors have a symmetry breaking
interaction together. What is not yet clear is whether the
symmetry breaking is intrinsic through a mass term or due
to spontaneous symmetry breaking.
Of course, strictly the gauge invariant operator that

condenses is a path ordered Wilson line stretched between
the UV domain walls [10],

O ¼ q̄1e
i
R

Aμdxμq2; ð29Þ

but in the IR at the condensation scale the theory can no
longer “see” the separation (the domain walls have joined),
and the operator will mix freely with the local operator
q̄1q2. One would expect their vevs to be proportional. We
can extract the local 3þ 1d quark condensate from the
subleading behavior of our solution at the boundary (again
it falls off as u1 ∼mþ c=ρ2 with c proportional to the
quark condensate). We plot this in Fig. 5 where we see the
condensate is localized at the defects and becomes more so
as one increases the number of Fourier terms. However,
note that the solutions have c ¼ 0 at the domain wall’s
center with two peaks, one positive and one negative, to
either side that are moving into the domain wall as we
increase the number of Fourier modes. Presumably, they
eventually merge with the true condensate being the sum
of the peaks (which could be zero), but this is very hard
to compute at the 3þ 1d level. Below, we restrict our

–3 –2 –1 1 2 3
z

– 1.0

– 0.5

0.5

1.0

f(z)

FIG. 2. The Fourier representation of the even periodic mass
function we use (100 Fourier terms are used), in each period it has
two domain walls separated by a width w.

FIG. 3. The full ρ − x3 dependence of a domain wall pair as
represented by (28).

20 40 60 80 100

1.45

1.50

1.55

z

FIG. 4. The contours in the ρ–x3 plane where M ¼ 0. The
examples given are a numerical solution (orange) and a second
narrower numerical case (blue), with D5 embeddings from (6) of
matching width overlaid in black and red, respectively. Note the
imperfections are due to truncating the Fourier series.

1.2 1.4 1.6 1.8 2
z

–0.0005

0.0005

c

FIG. 5. The quark condensate parameter c plotted against x3
across the domain walls for a configuration of width ¼ 0.37 and
reaching to a depth of ρmin ¼ 1.27. First 40 (red), 100 (cyan),
300 (black) Fourier modes included.
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computation to the M ¼ 0 locus which gives us a
better understanding.
ρmin is the most easily extracted quantity, and we can test

its dependence on the separation of the domain walls. We
show this in Fig. 6. We can fit to the functional form

ρmin ¼
C
wp : ð30Þ

For small widths, where the configurations lie well above
the IR cutoff at ρ ¼ 1, the numerical fit is c ¼ 0.59,
p ¼ 0.96. As one expects, the relation is governed by
dimensional analysis with the separation of the domain
walls the only dimensionful parameter in the theory,
i.e., p ¼ 1.
At this point, it is worth making a harder comparison

between these domain wall solutions and the vacuum
configuration of the D3/probe D5 D5 system of Sec. II.
In Fig. 4, we have also plotted U-shaped D5 embeddings of
the same width as configurations; they lie very close. In
Fig. 6, we plot ρmin against the width of the U shape also.
As the domain wall results become more trusted away from
the domain wall at ρ ¼ 1, the two solutions converge. It
seems likely from this that the deviations are artifacts of our
IR wall. We prove their equivalence for large quark mass in
the next section. In the field theory, this equality presum-
ably follows from both systems consisting of massless
fermions on the domain walls interacting by the same
N ¼ 4 dynamics. The mass gap and self-energies of the
quarks as a function of energy scale must be the same in
each system.

C. The large mass limit

To move away from the Fourier analysis approximations
and numerics, we can instead consider two isolated domain
walls where the background spatially dependent mass is
infinite (or M ≫ 1=w). That is, the mass is strictly zero on
the domain wall but infinite elsewhere. In this limit, we can

derive the contour in the ρ–z plane where the domain
wall sits.
Our solution for ∂ρu1 in (22) is a delta function on a

contour where some ρðzÞ vanishes, where M ¼ 0, multi-
plied by some very large number, N. Keeping just the
leading terms in ∂ρu1 leaves

SD7≈
Z

d4xdρρ3ð∂ρuiÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1

ðρ2þu2i Þ2
ð∂zρðzÞÞ2

s
: ð31Þ

We must be careful though with the treatment of the metric
by the delta function in ð∂ρuiÞ; in particular, a delta
function reduces the action to that on a subspace, and so
we must correctly adjust the

ffiffiffiffiffiffi−gp
factor to that on the line

ρðzÞ by including a Jacobian factor. We find it instructive
here to consider the problem in a flat 2-plane space where
the action would be just

S ≈
Z

dzdρð∂ρuiÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð∂zρðzÞÞ2

q
: ð32Þ

We must set

∂ρui ¼
1

∂zρ
δðz − z0Þ ð33Þ

in order to obtain

S ≈
Z

dρ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð∂ρzÞ2

q
; ð34Þ

which is the line element on zðρÞ. In a curved space, this
naturally becomes

∂ρui ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

gρρð∂zρÞ2
q δðz − z0Þ

������
locus

;

¼ ρ

∂zρ
δðz − z0Þ: ð35Þ

Note both sides of this equation are correctly dimension-
less. Equally, the prefactor of the delta function on the right
has dimension of inverse energy so correctly reduces the
dimension of the action by one as we move down one in
spatial dimension.
The action (22) reduces in dimension by one, and writing

just the coefficient of the large N gives

S ¼
Z

d2xdρρ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ρ4ð∂ρzÞ2

q
: ð36Þ

The action for z is precisely that of the D3/probe D5 D5
system (4) with solution (6). Again, we see that the

0 1 2 3 4 5 6 min0.0

0.1

0.2

0.3

0.4

0.5
w

FIG. 6. The minimum value of ρ an M ¼ 0 contour reaches
as a function of width between the two domain walls. The D7
domain wall solution is in blue. The gray is the D3/probe D5
system from Sec. VI.
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dynamics of the systems, mass gaps, and so forth are,
remarkably, precisely the same.

D. Fluctuations on the domain wall

We now assume that the M → ∞ limit action (36) sets
the M ¼ 0 contour to that of (6), and any dynamics in the
2þ 1d theory is a perturbation on this contour (u ≪ M).
We can then understand the quark condensate in the system
as follows. We start again from the action for u1 (22) but
impose the dynamics we have found by requiring the
solution to only lie on the locus in (6) by including by hand
a delta function of the form in (35). This gives

L ≈ ρ4ð∂ρzÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þAð∂ρuiÞ2 þ

ð∂x2þ1
uiÞ2

ðρ2 þ u2i Þ2
;

s
ð37Þ

with

A ¼ 1þ 1

ð∂ρzÞ2ðρ2 þ u2i Þ2
; ð38Þ

where from (5) we know

∂ρz ¼
ρ4minffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ρ12 − ρ8minρ
4

q : ð39Þ

Note that our theory diverges from the D3/probe D5 D5
system because the number of scalar fluctuations (i ¼ 1, 2)
originates from the D7 probe action. In the field theory,
this reflects the fact that there is a single 3þ 1d four-
component spinor reduced to a single two-component
spinor on each defect.
If we consider the vacuum of the theory where there is no

x2þ1 dependence [i.e., u1ðρÞ], we can see by inspection
that (37) is minimized by ∂ρu1 ¼ 0 or u1 ¼ a constant.
Equivalently, we can see this solution satisfies the equation
of motion,

∂ρ

0
B@ ρ4Að∂ρzÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þAð∂ρu1Þ2
q ð∂ρu1Þ

1
CA

þ 2

ðρ2 þ u21Þ3
ρ4A

ð∂ρzÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þAð∂ρu1Þ2

q ð∂ρu1Þ2u1 ¼ 0:

ð40Þ

We conclude that for consistency we must fix this
constant to be rmin ¼ 0.675=w, the IR mass gap. That
mass is then the same at all RG scales, and there is no
condensate in the system. The system simply describes a
massive quark state in a conformal gauge background.

The u2 field is interesting because it plays the role of the
Goldstone boson in systems with chiral symmetry break-
ing. Here, where there is no dynamical chiral symmetry
breaking so far, we do not expect to see Goldstone
dynamics. We can write the linearized equation of motion
for u2ðρ; xÞ on the locus in the background of u1 (thus
setting ∂ρu1 ¼ 0),

∂ρðρ4Að∂ρzÞð∂ρu2ÞÞ þM2
u2

ρ4ð∂ρzÞ
ðρ2 þ u21Þ2

u2 ¼ 0: ð41Þ

By rescaling z; u2; ρ;Mu2 we can set ρmin ¼ 1 in the
equation, and therefore, for a generic rmin: Mu2 ¼
Mρmin¼1=ρmin. Numerically, we find [by shooting from
u02ð0Þ ¼ 0 and requiring that u2 vanishes in the UV] that
R2Mρmin¼1 ¼ 7.8.
That this 2þ 1d state is not massless means it is not a

Goldstone boson. One has to again conclude, since the
theory has a single scale set by the width w, that there is a
bare quark mass ρmin in the system. Then, all bound states
naturally have mass proportional to ρmin. The joining of the
branes is therefore a reflection of the presence of a hard
quark mass in this case.
That the basic domain wall setup has a (nonlocal) quark

mass of 0.675=w even in the infinite 3þ 1d mass, M, limit
should be compared to the weak coupling domain wall
system where the mass is strictly zero in this limit. The
extra ingredient is presumably the strong coupling gauge
dynamics.
In the next section, we introduce a magnetic field

background that is known in some systems to trigger
dynamical chiral symmetry breaking, and this leads us
to chiral symmetry breaking constructions.

V. DYNAMICAL SYMMETRY BREAKING

The domain wall system we have constructed so far
simply describes isolated two-component quarks each on a
separate 2þ 1d domain wall. There is a (nonlocal) mass
term linking the quarks of order 1=w where w is the
separation between the domain walls. In this section, we
add in dynamics associated with the N ¼ 4 gauge fields
that cause chiral symmetry breaking. In fact, this system,
presumably because the fermions are isolated from each
other, is more difficult to condense than those on the usual
single probe brane constructions as we see.
The expected cause and effect are well known from other

systems. If the core of the bulk geometry becomes repulsive
to the domain wall (due to a factor growing in the metric as
some power of 1=ρ), then the domain wall will be restricted
to lie above some minimum ρ value, ρc. ρc is then
interpreted as the chiral symmetry breaking scale, and
crucially, as the UV quark mass falls (or equally the
separation of the domain wall grows in this case), this
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scale should remain fixed. We explore example systems
that both realize and fail to realize this phenomena below.
To begin to explore these issues let us consider the effects

of an applied magnetic field which is usually a well
controlled source of chiral symmetry breaking.

A. Applied magnetic field/dilaton profile

To include an explicit possible source of dynamical
symmetry breaking into the domain wall configuration, we
include a magnetic field in the z or x3 direction. Magnetic
fields are known to generate chiral symmetry breaking both
in field theory [11] and holographic settings [12]. Our
magnetic field enters as the 1,2 components of FMN in the
DBI action for the probe D7,

SD7 ¼ −T7

Z
d8ξ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−detP½GMN þ 2πα0FMN �

p
; ð42Þ

which gives an overall prefactor on the Lagrangian,

LD7 ≈ hðrÞρ3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð∂ρuiÞ2 þ

R4

ðρ2 þ u2i Þ2
ð∂xuiÞ2

s
; ð43Þ

with

h ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ B2R4

ðρ2 þ u2i Þ2
:

s
ð44Þ

We can effectively set R ¼ 1 by rescaling x3þ1 and B.
The magnetic field naturally acts to generate chiral

symmetry breaking on the probe D7 brane itself [12].
This effect destabilizes the linearized discussion in the
previous section; the Fourier modes fðkÞ now satisfy

∂ρðhðρÞρ3∂ρu1Þ − hðρÞ k
2

ρ
u1 þ

2B2

hðρÞρ3 u1 ¼ 0: ð45Þ

The low k modes are unstable and tend to rise to large
values on the IR wall. This is not the instability we are
hoping to see; we want to watch dynamics in the domain
wall theory. To avoid this issue, we therefore move to the
large M limit. A very massive quark is insensitive to the IR
B field, so in theM → ∞ limit only the domain wall 2þ 1d
locus where M ¼ 0 will be affected by the magnetic field.
We therefore start from (43) and take the large M limit

with ∂zM proportional to the delta function in (35). We also
assume ui ¼ 0, that is, that it is much less than M. We
arrive at the equation for the locus where M ¼ 0,

S ¼
Z

d2xdρhðρÞρ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ρ4ð∂ρzÞ2

q
: ð46Þ

There is still a conserved quantity, and we obtain

∂ρz ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

c2hðρÞ2ρ12 − ρ4
p ; ð47Þ

where c is the integration constant. The minimum value of
ρ a U-shaped configuration reaches is given when the
denominator vanishes. If we more generically imagine a
function,

h2 ¼ 1þ 1

ρq
; ð48Þ

then the vanishing of the denominator in (47) becomes the
solution of the polynomial equation

c2h2ρ8 − 1 ¼ 0: ð49Þ

For q ≤ 8, the polynomial has positive powers of ρ only
and vanishes at some ρmin controlled by the constant c.
By choosing c, one can place the zero at any ρ. These
configurations are U shaped with the infinite separation
case corresponding to ρmin → 0. Such cases therefore do
not display a fixed minimum, ρc, mass gap as the quark
mass falls to zero. They do not describe chiral symmetry
breaking. Of course, the B field case falls into this category
and so does not generate chiral symmetry breaking for the
fermions separated on the domain walls.
In contrast to the B-field case, where q > 8 in (48),

then the polynomial where the denominator of (47)
vanishes diverges at both large ρ and as ρ → 0. Between
these limits, there is a minimum. For appropriate choices of
the constant c, the largest ρ root corresponds to the h ¼ 1
limit. However, as we move in toward smaller ρ, eventually,
the minimum of the function lifts off from zero, and at some
fixed c or ρc, there cease to be further solutions. Here, we
find U-shaped configurations which, as they widen, satu-
rate to falling in no further than ρc. This is the chiral
symmetry breaking effect we were looking for. Clearly, we
need a rapidly diverging h factor to provide a powerful
enough dynamic to trigger chiral symmetry breaking.
Given that these forms for h (which occurs in the

position of the dilaton e−ϕ in the action) do trigger chiral
symmetry breaking, we briefly study the model with
q ¼ 10 in (48). It is not a system we know how to generate
in a top-down model but is an interesting toy with a
phenomenologically imposed (unbackreacted) dilaton pro-
file. In Fig. 7, we show the U-shaped loci where M ¼ 0
for this model displaying the pile up at a fixed ρc IR mass
scale for widely separated domain walls (with small UV
quark mass).
Again, we can determine the behavior of the subleading

ui fields from (43) with (48) after restricting the dynamics
to the loci in Fig. 7 by including by hand a delta function of
the form in (35). This gives
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L ≈ hðrÞρ4ð∂ρzÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ F ð∂ρuiÞ2 þ

ð∂x2þ1
uiÞ2

ðρ2 þ u2i Þ2
;

s
ð50Þ

with

F ¼ 1þ 1

ð∂ρzÞ2ðρ2 þ u2i Þ2
; ð51Þ

where ∂ρz is given in (47).
The u1 vacuum equation is

∂ρ

0
B@ hρ4F ð∂ρzÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ F ð∂ρu1Þ2
q ð∂ρu1Þ

1
CA

þ 2

ðρ2 þ u21Þ3
hρ4

ð∂ρzÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ F ð∂ρu1Þ2

q ð∂ρu1Þ2u1

− 2
∂h
∂r2 ρ

4ð∂ρzÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ F ð∂ρu1Þ2

q
u1 ¼ 0: ð52Þ

The extra term relative to (40), due to h, if sufficiently large,
can cause condensation. Note the mechanism here is the
same as discussed for D7 probe examples in [21]. The final
term can be considered a running mass for u1, and if it
violates the Breitenlohner Freedman (BF) bound [22] at
some ρ, then the u1 ¼ 0 solution becomes unstable.
We solve (49) to set c for a given ρmin (this involves more

fine tuning the closer the U shape approaches ρmin and the
separation of the domain walls goes to zero). We then solve
(52) subject to u1ðρminÞ ¼ ρmin and u01ðρminÞ ¼ 0 for differ-
ent ρmin. The results are shown in Fig. 8. They show clear
chiral symmetry breaking behavior with the IR mass
becoming independent of the UV mass at small UV mass.
Note we have also checked examples where q < 8.

There the extra term in the equation of motion for u1 does
not violate the BF bound, and the IR mass approaches zero
with the UV mass. This is self-consistent with the loci

shape in these theories which do not show chiral
symmetry breaking.
Finally, we can write the linearized equation of motion

for x-dependent u2 fluctuations in the u1 background,

∂ρ

0
B@ hρ4F ð∂ρzÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ F ð∂ρu1Þ2
q ð∂ρu2Þ

1
CA

þM2
u2

hρ4ð∂ρzÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ F ð∂ρu1Þ2

q
ðρ2 þ u21Þ2

u2

þ 2

ðρ2 þ u21Þ3
hρ4

ð∂ρzÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ F ð∂ρu1Þ2

q ð∂ρu1Þ2u2

− 2
∂h
∂r2 ρ

4ð∂ρzÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ F ð∂ρu1Þ2

q
u2 ¼ 0; ð53Þ

which can be solved subject to boundary conditions
u02ðρminÞ ¼ 0 and in the UV u2 ¼ 0 (so the fluctuation is
only of the operator and not the source). In the case where
the UV solution for u1 asymptotes to zero, we can
immediately see that this “pion” is massless; if we setM2 ¼
0 in (53), then there is the solution u2 ∝ u1 since then (53)
becomes precisely (52). Since this solution falls to zero in
the UV, it is appropriate for the massless pion state. At other
values of UV quark mass, we must solve numerically, and
we plot, as the points in Fig. 9, this field’s mass squared
against the UV quark mass extracted from the solutions in
Fig. 8. We also provide a linear line to guide the eye. At
small mq, the data reasonably suggest a linear Gell-Mann-
Oakes-Renner relation; the state is the Goldstone boson
(pion) of the symmetry breaking. At larger mq, the relation
returns to the expected M2

π ∝ m2
q.

0 1 2 3 4 5 6

0.2
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0.6

0.8

u1( )

FIG. 8. The vacuum functions u1ðρÞ for the theory with q ¼ 10
in (47) showing chiral symmetry breaking behavior. Note the
solutions begin at ρmin in the IR.
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FIG. 7. U-shaped loci of the domain wall in the z–ρ plane in the
theory with q ¼ 10 in (47). Note the solutions with large widths
pile up at ρc ¼ 0.867.
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B. Dilaton flow geometries

As another example of a chiral symmetry breaking
mechanism, we turn to a backreacted hard wall model.
The simplest example is a case of a dilaton flow deforma-
tion of AdS. First, let us consider the metric from [14]
(it generates chiral symmetry breaking in the massless
D3/probe D7 system as described in [15]). In Einstein
frame, the metric can be written as [15]

ds2 ¼ Gxdx24 þGrðdρ2 þ ρ2Ω2
3 þ du21 þ du22Þ; ð54Þ

where

Gx ¼ H−1=2
�
r4 þ b4

r4 − b4

�
δ=4

ð55Þ

and

Gr ¼ H1=2

�
r4 þ b4

r4 − b4

�ð2−δÞ=4 r4 − b4

r4
; ð56Þ

with

H ¼
�
r4 þ b4

r4 − b4

�
δ

− 1: ð57Þ

Here, Δ2 þ δ2 ¼ 10 and δ ¼ L2=2. The dilaton is given by

e2ϕ ¼ e2ϕ0

�
r4 þ b4

r4 − b4

�Δ
: ð58Þ

Note here again the radial directions are r2 ¼ ρ2 þ u21 þ u22.
The geometry has a running coupling growing into the IR
but also a singularity at b which is not clear how to resolve
in the full string theory. Nevertheless, the singularity is
repulsive to probe branes and triggers chiral symmetry

breaking in the D3/probe D7 system [15]. We use this
geometry to trigger chiral symmetry breaking on the
domain walls assuming it captures some aspects of a more
complete system. Note that for numerical work one can
rescale ρ; ui to set b ¼ 1; it sets the energy scale of the
geometry/dual.
The probe D7 Lagrangian in this geometry is given by

LD7 ¼ eϕG2
xG2

rρ
3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð∂ρuiÞ2 þ

Gr

Gx
ð∂xuiÞ2

s
: ð59Þ

If the 3þ 1d theory’s quark mass is set to be less than or of
order of the scale b, then the background D7 probe bends
off axis and breaks chiral symmetry in the 3þ 1d theory
[15]. We therefore again take the M → ∞ limit so that the
3þ 1d theory does not have spontaneous breaking but
allow domain walls where M ¼ 0. Thus, we impose that
the mass vanishes on a contour zðρÞ by setting

∂ρu1 ¼ N
G−1=2

r

∂zρ

����
z¼z0

δðz − z0Þ ð60Þ

and keeping the terms leading in N. We obtain the
Lagrangian for the locus zðρÞ,

LD7 ¼ eϕG3=2
x G2

rρ
3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þGx

Gr
ð∂ρzÞ2

s
: ð61Þ

Note a good cross check on this result is that it matches the
embedding action for a 6-brane placed in the 0-2,ρ, and Ω3

directions with some profile zðρÞ.
There remains a conserved quantity, so we find

∂ρz ¼
G1=2

r

G1=2
x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2e2ϕG4

xG3
rρ

6 − 1
p : ð62Þ

The denominator factor in the square root blows up as
ρ → ∞, and thus. if c is too large. there are no roots. This
means the U-shaped embeddings end at a fixed c or ρmin
which is consistent with chiral symmetry breaking as in our
previous example shown in Fig. 7.
The fluctuations on the brane are described, after the

imposition of a delta function to restrict their behavior to
the locus zðρÞ by

LD7 ¼ eϕG2
xG2

rðrÞGrðρÞ−1=2
ρ3

∂zρ

×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ F ð∂ρuiÞ2 þ

Gr

Gx
ð∂xuiÞ2

s
ð63Þ

F ¼
�
1þ Gr

Gxð∂ρzÞ2
�
: ð64Þ
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FIG. 9. For the vacuum solutions in Fig. 8 the pion (u2) mass
squared against the quark mass (extracted from the UVof Fig. 8).
Computed data points are shown as well as a guiding linear
function. A Gell-Mann Oakes Renner relation is reproduced at
small mq, but the system returns to M2

π ∼m2
q at larger mq.
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It is worth stressing here that the factors of GuðρÞ come
from (60); in (60) and the analysis below, we fixed the loci
of the M ¼ 0 domain wall assuming ui ¼ 0. Here, we
enforce that contour before solving for ui.
The equations of motion for the vacuum for u1 and

fluctuations about that vacuum for u2 again follow straight-
forwardly. For the vacuum,

∂ρ

0
B@eϕ

G2
xG2

rffiffiffiffiffiffiffiffiffiffiffiffi
GrðρÞ

p ρ3∂ρz
F∂ρu1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ F ð∂ρu1Þ2
q

1
CA

−

 
2ρ3∂ρzffiffiffiffiffiffiffiffiffiffiffiffi
GrðρÞ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ F ð∂ρu1Þ2

q
·
∂ðeϕG2

xG2
rÞ

∂ðr2Þ · u1

!

−

0
B@ρ3∂ρz

eϕG2
xG2

rð∂ρu1Þ2ffiffiffiffiffiffiffiffiffiffiffiffi
GrðρÞ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ F ð∂ρu1Þ2

q ·
∂F
∂r2 · u1

1
CA ¼ 0;

ð65Þ

and for the fluctuation,

∂ρ

0
B@eϕ

G2
xG2

rffiffiffiffiffiffiffiffiffiffiffiffi
GrðρÞ

p ρ3∂ρz
F∂ρu2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ F ð∂ρu1Þ2
q

1
CA

−

 
2ρ3∂ρzffiffiffiffiffiffiffiffiffiffiffiffi
GrðρÞ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ F ð∂ρu1Þ2

q
·
∂ðeϕG2

xG2
rÞ

∂ðr2Þ · u2

!

−

0
B@ρ3∂ρz

eϕG2
xG2

rð∂ρu1Þ2ffiffiffiffiffiffiffiffiffiffiffiffi
GrðρÞ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ F ð∂ρu1Þ2

q ·
∂F
∂r2 · u2

1
CA

þ eϕ
GxG3

rffiffiffiffiffiffiffiffiffiffiffiffi
GrðρÞ

p ρ3∂ρz
M2

u2u2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ F ð∂ρu1Þ2

q ¼ 0: ð66Þ

In Fig. 10, we plot the vacuum solutions which again
show chiral symmetry breaking as we saw in the case
above. In Fig. 11, we plot the pion mass squared against the
quark mass extracted from the solutions in Fig. 10 to again
show Gell-Mann-Oakes-Renner behavior. The backreacted
dilaton flow therefore shares the behavior of the previously
considered unbackreacted example.
We note that there is an alternative dilaton flow geometry

presented in [23] which is (in string frame),

ds210 ¼ eϕ=2
�
r2

R2
A2ðrÞημνdxμdxν

þ R2

r2
ðdρ2 þ ρ2dΩ2

3 þ dX2
8 þ dX2

9Þ
�
; ð67Þ

with

AðrÞ ¼
�
1 −

�
r0
r

�
8
�

1=4
ð68Þ

eϕ ¼
�ðr=r0Þ4 þ 1

ðr=r0Þ4 − 1

� ffiffiffiffiffiffi
3=2

p
: ð69Þ

Again, for a massless D7, the 3þ 1d theory displays chiral
symmetry breaking [16]. The probe D7 Lagrangian in this
geometry is given by

LD7 ¼ eϕA4ρ3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð∂ρuiÞ2 þ

1

A2r4
ð∂xuiÞ2

r
: ð70Þ

We take the M → ∞ limit so that the 3þ 1d theory does
not have spontaneous breaking but allow domain walls
whereM ¼ 0. Thus, we impose that the mass vanishes on a
contour zðρÞ by setting

1 2 3 4 5 6

0.2

0.4

0.6

0.8

1.0

1.2

u5( )

FIG. 10. The vacuum functions u1ðρÞ for the theory with a
dilaton flow in (54)–(58) showing chiral symmetry breaking
behavior. Note the solutions begin at ρmin in the IR.
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FIG. 11. For the vacuum solutions in Fig. 10, the pion (u2)
mass squared against the quark mass (extracted from the UV
of Fig. 10). Computed data points are shown as well as a
guiding linear function. A Gell-Mann Oakes Renner relation
is reproduced at small mq, but the system returns to M2

π ∼m2
q

at larger mq.
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∂ρu1 ¼ N
e−ϕ=4ρ
∂zρjz¼z0

δðz − z0Þ ð71Þ

and keeping the terms leading in N. We obtain the
Lagrangian for the locus zðρÞ,

L ¼ e3ϕ=4A3ρ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ A2ρ4ð∂ρzÞ2

q
: ð72Þ

The conserved quantity leads to

∂ρz ¼
1

Aρ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2e3ϕ=2A8ρ8 − 1

p : ð73Þ

Here though, the factor in the denominator does not lead to
pile up behavior, and we do not find chiral symmetry
breaking. The reason for this distinction is unclear, and we
do not have a good field theoretic understanding, although
presumably this singularity is simply not strong enough to
overcome the separation of the chiral fermions to cause
condensation.

VI. NAMBU-JONA-LASINIO INTERACTIONS

It is worth visiting Witten’s multitrace prescription [17] in
this context. The prescription is that any vacuum configu-
ration with a source present has a second interpretation. The
source is viewed as not being intrinsic (or a bare Lagrangian
term) but resulting from the condensation of the associated
operator and the presence of, say, a double trace operator.
This mechanism has been explored for Nambu-Jona-Lasinio
operators [19] in the D3/probe D7 system in [18].
In these domain wall setups, we have a UV mass when

the domain walls are only separated by a finite distance.
Again, we assume any nonlocal operators mix with the
local operators described on the domain wall. Here, we can
also consider the UV mass to be due to the condensation of
O ¼ hq̄1q2i and the presence of the NJL operator,

ΔL ¼ g2

Λ2
UV

ŌO →
g2

Λ2
UV

hŌiO ¼ mO: ð74Þ

In this case, the boundary conditions for fluctuations
such as the u2 pion should be changed to allow fluctuations
in the effective mass term (since it is a reflection of the
operator, which can fluctuate). In particular, since the mass
generation is entirely dynamical, one expects a Goldstone
mode with M2 ¼ 0; the Uð1Þ × Uð1Þ symmetry on the two
2þ 1d quarks is broken to the vector U(1).
For example, in the case of the unbackreacted dilaton

profile section above, one interprets the UV mass in the u1
vacuum solutions of (52) in Fig. 8 to be due to the NJL
interaction, reading off the constants m, c in the UVallows
one to compute the NJL coupling (g2 ¼ Λ2

UVm=c). Further,
we can see that if we setM2 ¼ 0 in the pion’s equation (53),

then there is a solution where u2 is proportional to the
vacuum u1 solution; this follows because with these
substitutions (53) is identical to (52). That solution for
u2, by default, asymptotes to the same UV boundarym, c as
the u1 background and hence is consistent with the back-
ground’s NJL interaction g2. The same logic follows for
the backreacted dilaton profile where in the M2 ¼ 0 and
u2 ∝ u1 limit (66) becomes degenerate with (65).
This logic can also be followed in the basic domain wall

example in pure AdS without chiral symmetry breaking,
but since those solutions have just u1 ¼ ρmin, a constant,
c ¼ 0 and g2 → ∞. This is similar to the 3þ 1d super-
symmetric D7 probe configuration with an NJL term as
described in [18].
As an aside here, we note that 10 years or so ago there

was some discussion in the literature [24,25] as to whether
the Sakai Sugimoto construction, with nonantipodal D8
branes on the compact direction of the geometry there,
described a massive or a NJL-induced mass configuration.
In the light of the discussion here, we now see that this
dispute was simply semantics; a vacuum configuration
describes both possibilities with the difference simply due
to which boundary conditions are imposed on the possible
Goldstone mode.

VII. DOMAIN WALLS ON D5 PROBES

Here, we briefly note that we could have presented an
equivalent discussion to that above but starting with a
single D5 brane probe in the supersymmetric configuration
of Sec. II. Here, we do not mean the U-shaped configu-
rations of (6) but instead just the flat embedding ui ¼
constant that are solutions following from the action

SD5 ≈
Z

d4xdρρ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð∂ρuiÞ2 þ

R4

ðρ2 þ u2i Þ2
ð∂xuiÞ2

s
;

ð75Þ

here i ¼ 1…3 associated with the x7, x8, x9 directions.
These solutions (which asymptote to mþ c=ρ) describe a
single 2þ 1d defect with N ¼ 2 quark multiplets.
One can now introduce domain walls that have M ¼ 0

on a 1þ 1d slice. Here, the expectation is that 1þ 1d truly
chiral fermions are localized at the domain wall boundaries.
In the large mass limit, we set again

∂ρu1 ¼ N
ρ

ð∂zρjz0Þ
δðz − z0Þ; ð76Þ

so the action reduces in dimension by one, and writing just
the coefficient of the large N gives

S ¼
Z

d2xdρρ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ρ4ð∂ρzÞ2

q
: ð77Þ
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This is precisely the action of a D3 probe in the
configuration

0 1 2 3 4 5 6 7 8 9

D3 − − − − • • • • • •
D3 − − • • − − • • • •

ð78Þ

There are again U-shaped domain wall configurations
consistent with a UVmass that scales as 1=wwhere w is the
separation of the domain walls. One can again introduce a
dilaton factor

h2 ¼ 1þ 1

ρq
ð79Þ

to induce chiral symmetry breaking, and the equivalent
of (49) is

c2h2r6 − 1 ¼ 0: ð80Þ

Here, one needs q > 6 to see chiral symmetry breaking,
so again an applied baryon number magnetic field does not
cause chiral symmetry breaking. The chiral symmetry
breaking behaviors for the cases q > 6 or for the dilaton
flow geometry are simple to compute and follow our
analysis above. There is no new behavior, so we do not
reproduce this case in detail.

VIII. CONCLUSIONS

We have explored the localization of fermions on lower
dimension domain wall defects in a holographic frame-
work. In the D3/D7 system, a step function in the quark
mass localizes 2þ 1 dimensional spinors on the domain
wall. We have explored the condensation between these
fermions as a result of bulk dynamics. The linearized
approximation is useful to understand that theM ¼ 0 locus
forms a U-shaped system as the two domain walls merge in
the interior of AdS. In the large mass limit, we have solved
for this locus and shown it is the same that D5 probes in
AdS form. By restricting the D7 fields to the large mass
locus, we have realized an explicit description of the mass/
chiral condensate operator/source pair. When the domain
walls are in pure AdS, the allowed configurations are
consistent with the system having a bare UV quark mass
that scales as the inverse of the domain walls separation.
We have then attempted to trigger chiral symmetry

breaking in the system. An applied baryon number mag-
netic field, via the D7 world volume gauge field, turns out
to not trigger chiral symmetry breaking. In a normal
fermionic system, a magnetic field is known to cause
condensation, so this is a surprise. However, the magnetic
field does generate an effective growing dilaton in the IR as
would be needed for condensation, but it simply turns out
to not be quite strong enough. The extra ingredient is

presumably the separation of the domain walls with the
distance between the two-component fermions adding an
extra barrier to condensation.
Inspired by the effective unbackreacted dilaton prefactor

that the magnetic field generates in the probe action, we
have found bottom-up profiles where the IR repulsion of
the geometry is stronger and that then do have condensa-
tion. We exhibited the IR mass gap formation and showed
that the Goldstone boson/pion of the system satisfies a
Gell-Mann-Oakes-Renner relation. We have also studied
the domain wall system in a background geometry with a
backreacted dilaton flow. While the geometry has a
singularity which cannot be clearly lifted in string theory,
it does provide a backreacted hard wall geometry that
triggers chiral symmetry breaking on the domain walls.
Technically, the examples we have provided here do not

constitute a fully top-down realization of chiral symmetry
breaking between the domain wall fermions; either we have
used a phenomenological dilaton profile or a background
geometry with an unresolved singularity. The examples we
have given do though form an instructive set with insight
into the mechanisms at play. A natural choice for a regular
geometry that would be expected to cause condensation is a
confining gauge geometry such as that in the Sakai-
Sugimoto model [7]. Here, the IR of the geometry is
smoothly capped, and the domain wall locus will not be
able to enter the deep IR. We leave the exploration of such
cases for a future publication [26] because they necessarily
involve more complicated UV dynamics rather than
asymptoting to AdS5 where we have good intuition.
This paper has therefore been a first exploration of these

ideas, providing some first rigorous examples of domain
wall fermion dynamics without condensation and guidance
as to how condensation might be introduced. We have
concentrated on the case of a single probe brane, but if
multiple coincident branes are used, then the U(1) sym-
metries will be raised to UðNfÞ chiral symmetries. If the
flavors are degenerate, then the scalar flavor multiplets
masses just follow from the U(1) case. In the future, we
hope to construct a holographic domain wall model of
QCD which would have these explicit non-Abelian chiral
symmetries [26]. Beyond that, we hope to find holographic
duals of more complex chiral theories that cannot currently
be constructed. The domain wall trick seems like it will be a
useful holographic tool for the construction of gauge
theories.
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