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Abstract
Capture–recapture (CRC) is widely used to estimate the size (N ) of hidden human popula-
tions (e.g., the homeless) from the overlap of sample units between two or more repeated
samples or lists (a.k.a., capture occasions). There is growing interest in deriving CRC data
from social-network data. The current paper hence explored if self-reported social networks
(lists of social ties) submitted by participants from the target population could function as dis-
tinct capture occasions. We particularly considered the application of zero-truncated count
distribution modelling to this type of data. A case study and follow-up simulation study
focused on two methodological issues: (1) that a participant cannot be named in their own
self-reported social network and hence cannot be named as many times as non-participants;
and (2) positive dependence between being a participant and being named by (a social tie
of) other participants. Regarding the latter, a further motivation of the simulation study was
to consider the impact of using respondent-driven sampling to select participants, because
all non-seed RDS participants are recruited as a social tie of another participant. Exponen-
tial random graph modelling was used to generate the simulation study’s target populations.
Early comparison was also made to estimates of N from Successive Sampling.

Keywords Capture–recapture · Hidden populations · Population size estimation ·
Zero-truncated modelling · Social networks · Exponential random graph modelling ·
Respondent-driven sampling

1 Introduction

Capture–recapture (CRC) analysis is widely used to estimate the size of hidden human pop-
ulations, who may stay under the radar because of societal stigma or lack of exhaustive
recording. Estimating their size can help governments make informed funding/policy deci-
sions and be useful for sociological or medical research. Examples include estimating the
number of people who inject drugs (PWID) (e.g., [16, 23, 47]), female sex-workers (FSW)
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(e.g., [23, 42, 46]), men who have sex with men (MSM) (e.g., [23, 46]), the homeless (e.g.,
[19, 20]) and cases during the recent Covid-19 pandemic (e.g., [13, 50]).

CRC estimates population size from the overlap of sample units between two or more
capture occasions (repeated samples of the target population). The presence of a sample unit
at a capture occasion is called a ‘capture’, so if present at three capture occasions we would
say it is ‘captured’ three times. The often-stigmatised nature of hidden human populations
makes it hard to obtain capture occasions via direct sampling, so various indirect approaches
have been devised. For example, a register from an external organisation (such as a subscriber
list) is often used as a capture occasion (e.g., [19, 47]).

Exploration continues into ways to source CRC data of human populations. The current
paper considers a novel pairing of CRC data derived from self-reported social networks
of participants and a CRC analytical technique called ‘zero-truncated count distribution
modelling’. In the current paper’s approach, a sample group of participants from the target
population each submit a list of individuals they know from that population. Each of these
self-reported social networks is treated as a distinct capture occasion. Because participants
cannot be named in their own list, we also consider if being a participant can be treated as
an extra capture occasion.

Treating each participant’s self-reported social network as a distinct capture occasion
means many capture occasions can be obtained from a single sample of participants. Pairing
this with the zero-truncatedmodelling approachmakes use of this strength, as it is particularly
suited for analysing overlap between many capture occasions.

1.1 Advantages of using three or more capture occasions

Anadvantage of using three ormore capture occasions is that otherwiseCRC is heavily reliant
on the assumed independence between capture occasions. Positive dependence between cap-
ture occasions is known to lead to underestimates of population size and vice versa, which
can be severe when only using two capture occasions because estimation is limited to the
Lincoln–Petersen estimator or equivalent [41]. Sensitivity to the independence assumption
increases sensitivity to other CRC assumptions that play into it. For example, false matches
of individuals between capture occasions can cause negative dependence whereas unequal
catchability of individuals can cause positive dependence because some individuals are more
likely to be captured multiple times.

Obtaining three or more capture occasions enables more nuanced methods of estimating
population size with less sensitivity to the independence assumption. Examples include: log
linear modelling, which can consider dependencies between three or more capture occasions
(e.g., [3, 19, 20, 47, 53]); Bayesian latent class modelling (e.g., [23, 42, 44]); the ‘ratio plot’
diagnostic tool in zero-truncated modelling [5, 9]; and continuous time CRC modelling that,
when using many capture occasions over time, can allow for a delayed onset of behaviours
relating to being repeatedly captured [25].

There is hence great interest in exploring ways to source three or more capture occasions.
Examples include: using a single external register of repeated entries, such as a hospital
admissions register (e.g., [8, 35, 54]); selecting a sample of participants from the target
population as a third capture occasion in combination with two external registers (e.g., [47,
53]); and a 3-capture-occasion adaptation of the Unique-object Multiplier method (e.g., [23,
42, 44]).
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1.2 Utilising social networks in capture–recapture

Several of the above approaches involve selecting a (theoretically) representative sample
from the target population as a capture occasion. In the absence of a sample frame, these
approaches often utilise the social ties between members of the target population to perform
respondent-driven sampling (RDS), which is thought to approach a somewhat representative
sample [34].

While it is hence not uncommon for participants’ social networks to be used in CRC
to expand the reach of sampling, their use as capture occasions is less explored. However,
interest in this area is growing. One approach by Dombrowski et al. [22] derives two capture
occasions, where the first capture is being a participant and the second is being named in
at least one other participant’s self-reported social network. In a more recent example in
Buchanan et al. [16], the first capture was being a participant and the second was being
named in at least one other participant’s self-reported social network who did not appear in
one’s own. Recent advances in population size estimation using PrivatisedNetwork Sampling
have extended the Dombrowski et al. [22] approach with more nuanced population-size
estimators [26, 37]. Two of these from Fellows [26], the ‘cross-alter’ and ‘cross-network’
estimators, considered the overlap of non-participants and participants between participants’
self-reported social networks, which was found to produce better estimates due to increasing
the number of individuals in the data [26]. The latter was a promising sign that participants’
self-reported social networks could function as a viable source of captures of participants
and non-participants. Besides CRC, other methods that use social-network data from a target
population to estimate its size include the Snowball method [20, 27], the Network Scale-up
method (e.g., [24]), Successive Sampling [32, 33] and CRC Successive Sampling [38].

Whilemethods likeSuccessiveSampling ask participants howmany individuals they know
from the target population, the current paper’s approach instead asks them to list individuals.
This increases data sensitivity, particularly as CRC is often used on stigmatised populations.
However, a number of studies have demonstrated ways for participants to submit anonymised
or pseudo-anonymised lists of social ties, showing it can be practicable [16, 22, 26, 37].

We initially present a case study, using real-world data, that attempts to estimate a known
target population size. Methodology is outlined in Sect. 2, initial inspection of data is in Sect.
3.1, model fitting is in Sect. 3.2 and estimation of population size is in Sect. 3.3. A follow-up
simulation study is described in Sect. 4 and further discussion is in Sect. 5.

2 Methods

2.1 Zero-truncated count distributionmodelling

‘Zero-truncated count distribution modelling’ has long been used to estimate population size
from CRC data. See Böhning et al. [11] for an introduction on its application to human
populations. The method uses aggregate-level data of how many sample units are captured
exactly 1 time ( f1), exactly 2 times ( f2), exactly 3 times ( f3), etc. across several capture
occasions. This is summarised into a frequency distribution of discrete counts (Table 1). The
number of sample units captured at least once is referred to as the observed population (n).
The number of uncaptured sample units is f0. Hence, the total size of the target population
is N = f0 + n.

123



M. E. Piatek, D. Böhning

Table 1 Underlying structure of CRC data when summarised into a frequency distribution

Number of times captured (x) 0 1 2 3 4 5 ... m n

Frequency ( fx ) ? ( f0) f1 f2 f3 f4 f5 ... fm
∑m

x=1 fx

Fig. 1 Graphical display demonstrating zero-truncated modelling approach

To estimate the size (N ) of the target population, the method assumes that the observed
data ( f1 to fm) follow the same shape/profile as f0 to fm . Hence, it assumes that the shape
of f1 to fm can be projected further to the left to estimate f0. To approximate the shape of
f1 to fm , a zero-truncated (ZT) probability distribution is used (e.g., ZT Poisson). Based
on estimated parameters from that ZT distribution, f0 (and subsequently N ) is estimated as
though f0 to fm follow the untruncated version of that ZT distribution.

Several ZT distributions can be considered to see which is most consistent with the data.
For example, in Fig. 1, the data is closer to ZT distribution B than ZT distribution A, sug-
gesting estimates of N should be based on B rather than A. While a variety of distributions
can theoretically be considered, the current literature tends to focus on a small number of
distributions stemming from the ZT Poisson and ZT geometric, described further in Sect.
2.2.

The approach tends to involve choosing one or two ZT distributions as starting points and
then using model-fitting diagnostic tests, like the chi-square goodness of fit (GoF) test, to
check for inconsistency with the observed data. A conceptual drawback is that, by testing
for inconsistency, ZT distributions can be deemed consistent with the data via acceptance of
the null hypothesis. For this reason, the use of the GoF test here only tends to provide partial
evidence of consistency between a ZT distribution and the observed data rather than a more
conclusive finding. However, the ‘ratio plot’ diagnostic tool (described in Sect. 2.3) can help
inform the results from these tests by providing a more granular inspection of how consistent
the ZT distributions are to the data.

Asmore generally with CRC analysis, this rests on some key assumptions: firstly, that cap-
ture occasions are independent; secondly, that all members of the target population (sample
units) are equally catchable (i.e., have a homogeneous probability of being captured) at any
capture occasion; thirdly, that individuals are accurately matched between capture occasions;
and fourthly, that the target population is closed/static across all capture occasions.

2.2 Zero-truncated distributions considered

As f1 to fm are non-negative integers, theZTPoisson tends to be a starting point formodelling
them. However, with ZT Poisson the mean and variance are assumed equal, which is often
not true because heterogeneity (unequal capture probabilities among sample units) can cause
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over-or-underdispersion of variance. Hence, other commonly used distributions include the
ZT geometric and various mixing distributions of the ZT Poisson, such as the Poisson-
gamma and the Conway–Maxwell Poisson (CMP). In the current paper, the ZT Poisson and
ZT geometric were used as starting points, as their popularity has led to the development of
population-size estimators with robustness to heterogeneity. Also considered were the zero-
truncated one-inflated (ZTOI) Poisson and ZTOI geometric, as they can factor in an overly
large f1.

The untruncated Poisson has a probability mass function (pmf) of: px = exp (−θ)θ x/x !
for x = 0, 1, . . . ,m where θ̂MLE = x̄ . The ZT Poisson has pmf: px = θ x/((exp (θ) − 1)x !)
for x = 1, 2, . . . ,m. Although θ̂MLE cannot be given in closed form for the ZT Poisson,
it can be derived from the untruncated Poisson using the E-M algorithm [11, 21]. This
oscillates between two steps, using an arbitrary initial value (e.g., 0.5) for θ̂ . In Step 1,
f̂0 = n × exp (−θ̂ )/(1 − exp (−θ̂ )) and, in Step 2, θ̂ = S/(n + f̂0) where S = ∑m

x=1 x fx
and n = ∑m

x=1 fx . The ZTOI Poisson has pmf:

p1+x =
⎧
⎨

⎩

w + (1 − w) λ
exp (λ)−1 . . . if x = 1

(1 − w) λx

(exp (λ)−1)x ! . . . if x > 1

⎫
⎬

⎭

for x = 1, 2, . . . ,m wherew is a weight parameter. For the ZTOI Poisson, λ̂MLE and ŵMLE

cannot be given in closed form and were hence iteratively calculated using an E-M algorithm
approach from Godwin and Böhning [28]. This cycled through the following steps. In step
1, we assigned arbitrary initial values (e.g., 0.5) for N̂ and δ̂1. (The δ̂1 is the number of
unobservable inflated 1s.) In step 2, we estimated ŵ via ŵ = δ̂1/n. In step 3, we estimated λ̂

via λ̂ = (
∑N̂

i=1 xi − δ̂1)/(N̂ (1− ŵ))where
∑N̂

i=1 xi ≡ ∑m
x=1 x fx . In step 4, we estimated δ̂1

via δ̂1 = f1×ŵ(1−exp (−λ̂))/
(
ŵ(1−exp (−λ̂))+(1−ŵ)λ̂ exp (−λ̂)

)
. In step 5,we repeated

steps 2-4 until δ̂1 converged. Then, in step 6, we re-estimated N̂ via N̂ = n/(1− exp (−λ̂)).
We repeated steps 2-6 until N̂ converged, at which point λ̂MLE and ŵMLE would also have
converged.

The untruncated geometric has pmf: px = (1− θ)xθ for x = 0, 1, . . . ,m where θ̂MLE =
1/(x̄ + 1). The ZT geometric has pmf: px = (1 − θ)(x−1)θ for x = 1, 2, . . . ,m where
θ̂MLE = 1/x̄ = 1/(S/n). The ZTOI geometric has pmf:

p1+x =
{

w(1 − θ)xθ/(1 − wθ) . . . if x > 1(
(1 − w) + w(1 − θ)xθ

)
/(1 − wθ) . . . if x = 1

}

for x = 1, 2, . . . ,m where w is a weight parameter; 0 ≤ w ≤ 1. For the ZTOI geometric,
θ̂MLE and ŵMLE cannot be given in closed form and were hence calculated via the nested
E-M algorithm approach from Kaskasamkul and Böhning [36]. This oscillates between the
following two steps, using arbitrary initial values (e.g., 0.5) for θ̂ and ŵ. In Step 1, f̂0 =
n×ŵ×θ̂/(1−ŵ×θ̂ ) and N̂ = n+ f̂0. InStep 2, ŵ = 1−( f1/N̂ )(1−ŵ)/

(
(1−ŵ)+ŵ(1−θ̂ )θ̂

)

and

θ̂ = N̂ − f1(1 − ŵ)/((1 − ŵ) + ŵ(1 − θ̂ )θ̂ )

N̂ + ∑N̂
i=1 xi − 2 f1(1 − ŵ)/

(
(1 − ŵ) + ŵ(1 − θ̂ )θ̂

)

where
∑N̂

i=1 xi ≡ ∑m
x=1 x fx .
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2.3 The ratio plot

The ‘ratio plot’ diagnostic tool [9] was used to help inform model-fitting diagnostics. This
is a graph in which horizontality of data-points indicates the level of consistency between a
given ZT distribution and observed data.

The tool is based on the power series density px (θ) = axθ x/
∑∞

x=0{axθ x } where∑∞
x=0{axθ x } is a normalising constant that converts px (θ) into proportions that sum to

1. If ax is set to ax = 1/x !, the power series density becomes the Poisson density:
px (θ) = (θ x/x !)/∑∞

x=0{θ x/x !}. If ax is set to ax = 1, the power series density becomes
the geometric density: px (θ�) = θ�x/

∑∞
x=0{θ�x } where θ� = 1 − θ . Although outside the

scope of the current paper, it can also model a binomial density by setting ax = (
T
x

)
for

x = 0, . . . T where T are positive integers and where ax = 0 when x > T [5].
A property of the power series density is that the ratio of px+1(θ)ax to px (θ)ax+1 is

always equal to θ , which is a constant. That is, rx = px+1(θ)ax/(px (θ)ax+1) = θ . This
means rx should also be a constant. Hence, to check for consistency between a set of observed
data ( f1 to fm) and a specific power series density (e.g., Poisson), the observed data can be
combined with ax to produce rx and the level of constancy in rx can be inspected.

Although px (θ) is unknown, fx/N can be used instead as a non-parametric estimate;
the quantity of N is unknown but cancels out in the ratio. Hence, rx can be estimated as
r̂x = (ax/ax+1) × ( fx+1/ fx ) where fx+1/ fx is the ratio of each adjacent pair of counts in
the observed data and ax/ax+1 is the inverse of their respective coefficients from the power
series distribution. In the Poisson case, ax/ax+1 = x + 1 and hence r̂x = (x + 1) fx+1/ fx .
In the geometric case, ax/ax+1 = 1 and hence r̂x = fx+1/ fx .

If r̂x is a constant then a horizontal series of data-points should occurwhen plotting log (r̂x )
against x . From this, the consistency between a given ZT distribution and the observed data
can be visually appraised by inspecting the gradient of a linear regression line plotted between
x and log (r̂x ). A more horizontal line provides some evidence that the ZT distribution under
consideration is consistent with the observed data [9]. Care needs to be taken, however, as
heterogeneity (unequal catchability among sample units) can also contribute to causing a
slope in the linear regression line.

Rocchetti et al. [49] advise using weighted linear regression to reduce the impact of
heteroskedasticity in the ratio plot, using weights (Wi ) derived from diagonal components of
(cov(Y ))−1:

W =
⎡

⎢
⎣

1
f1

+ 1
f2

. . . . . .

. . . 1
fi

+ 1
fi+1

. . .

. . . . . . 1
fm−1

+ 1
fm

⎤

⎥
⎦

−1

=
⎡

⎣
f1 + f2 . . . . . .

. . . fi + fi+1 . . .

. . . . . . fm−1 + fm

⎤

⎦

These weights (Wi = fi + fi+1) are the same for both the ZT Poisson and ZT
geometric. For example, to calculate weighted regression in the Poisson case, we take
β̂ = (XTW X)−1XTWY where

Y =

⎛

⎜
⎜
⎜
⎝

log (2 f2/ f1)
log (3 f3/ f2)

...

log (m fm/ fm−1)

⎞

⎟
⎟
⎟
⎠

, X =

⎛

⎜
⎜
⎜
⎝

1 1
1 2
...

...

1 m − 1

⎞

⎟
⎟
⎟
⎠

,W =

⎛

⎜
⎜
⎜
⎝

f1 + f2
f2 + f3

...

fm−1 + fm

⎞

⎟
⎟
⎟
⎠

A useful property of the power series density (and hence the ratio plot) is that it is the
same when untruncated or zero-truncated. This brings an added utility to ratio plots, as the
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Fig. 2 Graphs demonstrating concept of ratio plot under the null.Left panel: demonstration of high consistency.
Central panel: demonstration of worse consistency. Right panel: demonstration of overall consistency apart
from one ratio

intercept of the weighted linear regression line can extrapolate the ratio plot to where x = 0.
From this can be derived the Weighted Least Squares (WLS) estimator of population size
[5].

2.4 The ratio plot under the null

Because the ratio plot (r̂x ) is the same for both the untruncated and zero-truncated versions
of a given distribution, a 95% confidence interval can be displayed pertaining to the null
hypothesis that f1 to fm are consistent with the untruncated version of the ZT distribution
being tested. This ‘ratio plot under the null’ is demonstrated in Fig. 2 using dummy data. See
the accompanying supplementary material (Online Resources 3–4) for examples in R code.

While the null hypothesis holds in both the left and central panels of Fig. 2, evidence
of consistency is stronger in the left panel because the weighted regression line is nearly
horizontal and all ratios are well within the null hypothesis region. We might hence choose
the ZT distribution that was being tested in the left panel over that of the centre panel. In
the right panel, the weighted regression line is nearly horizontal but the ratio of f2 to f3
is outside the null hypothesis region. The latter gives some evidence of overall consistency
apart from f2 and/or f3, prompting consideration of other ZT distributions.

Null hypothesis regions for the ratio plots were calculated using methodology from Böhn-
ing and Punyapornwithaya [7]. In both the Poisson and geometric cases, thesewere calculated
as log r̂x ± 1.96 × √

var(log r̂x ).
The null hypothesis in the geometric case is that f1 to fm are consistent with the untrun-

cated geometric distribution (i.e., consistent with the power series density when ax = 1).
Setting ax = 1 makes the power series density become px (θ�) from the geometric density,
where θ� = 1 − θ . Because we are using the log scale in our ratio plot, the null hypothesis
region is calculated around log (1 − θ̂ ). Using an approximated variance term for var(log r̂x ),
the null hypothesis region in the geometric case is hence

log (1 − θ̂ ) ± 1.96 ×
√

1

n(1 − θ̂ )x+1θ̂
+ 1

n(1 − θ̂ )x θ̂

where θ̂ is θ̂MLE from the ZT geometric. This is given in closed form as: θ̂MLE = 1/x̄ =
1/(S/n) where S = ∑m

x=1 x fx and n = ∑m
x=1 fx .

The null hypothesis in the Poisson case is that f1 to fm are consistent with the untruncated
Poisson (i.e., consistent with the power series density when ax = 1/x !). Becausewe are using
the log scale in our ratio plot, the null hypothesis region is calculated around log θ̂ . Using an
approximated variance term for var(log r̂x ), the null hypothesis region in the Poisson case
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is hence

log θ̂ ± 1.96 ×
√

1

n × exp (−θ̂ )θ̂ x+1/(x + 1)! + 1

n × exp (−θ̂ )θ̂ x/x !

where θ̂ is θ̂MLE from the ZT Poisson. However, as θ̂MLE cannot be given in closed form
from the ZT Poisson, it is iteratively calculated from the untruncated Poisson using the E-M
algorithm (see Sect. 2.2).

2.5 Estimators of population size

Several estimators of population size (N ) are available, specific to each ZT distribution (see
e.g., [11]). Some give equal weight to the whole of f1 to fm , such as the Turing [29] and
MLE estimators. Other estimators give more importance to f1 and f2, as they are typically
larger than f3 to fm and hence less impacted by fluctuation caused by heterogeneity (unequal
catchability of sample units). This gives the latter some robustness to heterogeneity.A popular
example is the Chao estimator [18]. A bias-corrected Chao (BC Chao) is also available for
small populations [10], and both the Chao and BC Chao have been adapted for one-inflated
data [12]. The WLS estimator (mentioned at the end of Sect. 2.3) is similarly robust, as it
gives more weight to f1 and f2 [5]. The current paper hence prioritised using BC Chao and
WLS.

The BC Chao estimator is: N̂ = n + f1( f1 − 1)/(2 f2 + 2) for ZT Poisson, N̂ = n +
f1( f1−1)/( f2+1) for ZT geometric, N̂ = n+2×( f 32 −3 f 22 +2 f2)/(9×( f3+1)×( f3+2))
for ZTOI Poisson and N̂ = n+ ( f 32 −3 f 22 +2 f2)/(( f3+1)× ( f3+2)) for ZTOI geometric.
The WLS estimator is N̂ = n + f1 × exp (−β̂0) where β̂0 is the intercept of the weighted
linear regression line of the ratio plot. This meant the WLS estimator was only available for
the ZT Poisson and ZT geometric in the current paper. See Online Resource 1 for worked
examples.

2.6 Confidence intervals for population-size estimators

In the case study, 95%confidence intervals for estimators of N were calculated via the imputed
bootstrap approach. Methodology was sourced from Anan et al. [1] which had earlier roots
in Buckland and Garthwaite [17], Norris and Pollock [43] and Zwane and Van der Heijden
[56]. In this approach, the point-estimate of N̂ and f̂0 are used to estimate probabilities

of f0 to fm as p̂i =
{

f̂0
N̂

,
f1
N̂

,
f2
N̂

,
f3
N̂

, . . . ,
fm
N̂

}
. These are entered as the ‘prob’

parameter of the ‘rmultinom’ function in R statistical software [48], with ‘size’ set to N̂
and the ‘n’ parameter set to the desired number of bootstrap samples. Hence, each bootstrap
sample is a multinomially distributed random vector in which N̂ is split across f0 to fm .
The same point-estimate of N̂ is then calculated from each bootstrap sample, producing a
bell-curve around the original point-estimate. The 97.5th and 2.5th percentiles become the
95% confidence interval.

Anan et al. [1] advise a bootstrap approach as it avoids needing to assume estimators of N
are normally distributed. There would be more reliance on this assumption if instead basing
confidence intervals on variance estimators, as these are known to be impacted by skewness
of N in CRC [18]. Nevertheless, a slight bias can enter the estimated probabilities ( p̂i ) of
xi when drawing bootstrap samples if the point-estimate of N̂ is an over-or under-estimate.
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Table 2 General structure of how captures were recorded, using dummy data

Person Participant∗ Nominated by. . .∗ Number of times captured. . .

A B C D E Nom. and Par.a Nom.b

Person A 1 0 1 0 0 0 2 1

Person B 1 1 0 0 0 0 2 1

Person C 0 1 1 0 1 0 3 3

Person D 1 0 0 0 0 0 1 0

Person E 0 0 1 0 1 0 2 2

*1 = yes, 0 = no
a at nomination and participation capture occasions
b at nomination capture occasions

While Anan et al. [1] suggest only needing N̂ number of bootstrap samples, the use of R
software meant thousands could be drawn.

In the follow-up simulation study, confidence intervals were instead the 2.5th and 97.5th
percentiles of N̂ across many simulated target populations.

2.7 Case study target population and sampling approach

The target population in the case studywas a cohort of 182 students on a university course. As
this was an experimental setting, a participation invite was sent across the target population
and a sample group of participants was formed by voluntary participation. Invites were sent
at the same time, helping ensure the population was closed. Participants were asked to submit
their self-reported social network (list of social ties) independently. The non-sensitive nature
of the population, and its small size, meant full names were able to function as unique
identifiers.

2.8 Case study derivation of capture–recapture data

In the case study, participants’ self-reported social networks were treated as distinct capture
occasions (referred to as ‘nomination capture occasions’). For each unique individual (partic-
ipant or non-participant) named in at least one self-reported social network, we counted how
many they were named in (i.e., how many nomination capture occasions they were captured
at). Out of K self-reported social networks, non-participants could be named up to K times.
However, participants could only be named up to K − 1 times because they could not be
named in their own social network. As this violated the assumed equal catchability of sample
units at all capture occasions, we considered if being a participant could be an extra capture
to make the maximum number of captures equal (referred to as the ‘participation capture
occasion’).

The structure of how captures were recorded is shown in Table 2. In this demonstration
table, persons A, B and D are participants whereas persons C and E are non-participants.
Hence, the columns ‘Nominated by C’ and ‘Nominated by E’ contain only 0s. The two
right-hand columns show the total number of times each person was captured when either
including or excluding the participation capture occasion. Data from either of the right-hand
columns could then be summarised into a frequency distribution ( f1 to fm) of how many
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Table 3 Number of individuals captured x number of times at nomination and participation capture occasions,
by whether participant

Number of times captured (x) 0 1 2 3 4 5 6 7 8 Observed population (n)

Frequency ( fx ) ?(121) 29 9 11 8 0 1 2 1 61

of which. . .

Participants 0 1 3 5 3 0 1 2 1 16

Non-participants ?(121) 28 6 6 5 0 0 0 0 45

Table 4 Number of individuals captured x number of times at nomination capture occasions, by whether
participant

Number of times captured (x) 0 1 2 3 4 5 6 7 8 Observed population (n)

Frequency ( fx ) ?(122) 31 11 9 5 1 2 1 0 60

of which. . .

Participants 1 3 5 3 0 1 2 1 0 15

Non-participants ?(121) 28 6 6 5 0 0 0 0 45

Table 5 Nomination and participation captures collapsed into two capture occasions

Nominated by one or more participants

Yes No

Participant Yes 15 1 16

No 45 121 166

60 122 182

individuals were captured exactly 1 time, exactly 2 times, exactly 3 times, etc. when either
including or excluding the participation capture occasion.

3 Case study results

3.1 Case study results from data-collection

16 participants took part in the study, each submitting a self-reported social network. As
described above, captures were summarised into a frequency distribution ( f1 to fm) of the
number of individuals captured x number of times. Two versions of the dataset were derived
that either included or excluded the participation capture occasion, shown in Tables 3 and 4
respectively.

In Table 3, 61 individuals were captured at least once, of which 29 were captured exactly
1 time, 9 were captured exactly 2 times, 11 exactly 3 times, etc. The number of uncaptured
individuals ( f0) would ordinarily be unknown but in this case was known to be 121 in Table 3
and 122 in Table 4. The inclusion of the participation capture occasion increased the number
of times each participant was captured by 1, which meant the ‘Participants’ row was shifted
right in Table 3 compared to in Table 4.

Collapsing the data into two binary capture occasions (Table 5) showed there was strong
positive dependence between participation and nomination. 15 out of 16 participants were
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Fig. 3 Number of individuals captured x number of times. Left panel: from nomination and participation
capture occasions. Right panel: from nomination capture occasions

Fig. 4 Observed data ( f1 to fm ) vs expected values from ZT Poisson and ZT geometric. Left panel: from
nomination and participation capture occasions. Centre panel: from nomination capture occasions. Right
panel: from captures of just non-participants

nominated at least once. Positive dependence between capture occasions is known to pro-
duce underestimates of population size [14]. Hence, while an argument for including the
participation capture occasion was that it would make the maximum number of captures
equal between participants and non-participants, a counter-argument was that excluding it
could be a way to effectively deflate captures of participants by 1 to help counter-balance the
positive dependence that had been found.

As sample units are assumed to have equal probabilities of capture, f1 to fm should
theoretically have a similar shape/profile across all sub-sections of the observed popu-
lation. However, the shape/profile was found to substantially differ for participants and
non-participants, even when only considering nomination capture occasions (Fig. 3). This
suggested that estimates of population size (N ) could potentially be more accurate if f1
to fm only included captures of non-participants, as this would have a more homogeneous
shape/profile and be easier to fit with a ZT distribution. The number of participants would
need to be added on to any such estimates of N afterwards because the exclusion of partic-
ipants from the CRC data would mean treating participants as outside the target population
during the calculation of estimators.

To summarise, initial inspection of the case study data suggested three possible ways of
deriving CRC data ( f1 to fm) with which to estimate N . These were: (a) as captures from
nomination and participation capture occasions (total row from Table 3); (b) as captures
from nomination capture occasions (total row from Table 4); or (c) as captures of just non-
participants (from either Table 3 or 4). Model-fitting and population-size estimation was
performed on all three versions to see how they compared.

3.2 Case study results frommodel-fitting

Visual appraisal of observed vs expected values (Fig. 4) suggested that, for all three versions
of the observed data ( f1 to fm) under consideration, the data was more consistent with the
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Fig. 5 Ratio plots under the null in Poisson and geometric cases. Left panels contain only 4 ratios because
f5 = 0, which meant f5 to f8 were collapsed into f5 so there was no gap in the ratio plots. As the x-axis starts
at 1, the intercept of the weighted regression line is not displayed. Intercepts were: −0.586 (top left panel);
−0.5102 (top centre); −1.7566 (top right); −0.9957 (bottom left); −0.9747 (bottom centre); and −2.1106
(bottom right)

ZT geometric than the ZT Poisson. MLE parameter values (θ̂MLE ) were used for expected
values as per Sect. 2.2.

Ratio plots under the null are shown in Fig. 5. For all three versions of f1 to fm , the
weighted regression line was more horizontal in the geometric case. This again gave some
evidence that the ZT geometric was more consistent with f1 to fm . In the Poisson case, the
left-most ratio (that of f1 to f2) fell outside the null hypothesis region, indicating that f1
and/or f2 were inconsistent with the untruncated Poisson. There was thus a particular risk of
bias entering population-size estimators from the ZT Poisson that prioritise f1 and/or f2.

To test if the observed data were inconsistent with the ZT Poisson or ZT geometric,
the chi-square goodness-of-fit statistic, χ2 = ∑m−1

x=1 {(log r̂x − log r̄x )2/v̂ar(log r̂x )}, was
used on the ratio-plot data where v̂ar(log r̂x ) = 1/ fx+1 + 1/ fx [5, 9, 49]. The mean ratio
(r̄x ) was used as the expected r̂x value which, as described in Sect. 2.3, is expected to be
a constant. The mean ratio is r̄x = ∑m−1

x=1 {(x + 1) fx+1}/∑m−1
x=1 fx in the Poisson case

and r̄x = ∑m−1
x=1 fx+1/

∑m−1
x=1 fx in the geometric case. A significant p-value (< 0.05)

meant rejecting the null hypothesis that f1 to fm were consistent with the ZT distribution
being tested. Results are shown in Table 6. There was not enough evidence to reject the
null hypothesis in the geometric case, which was partial evidence of consistency with ZT
geometric. While a non-significant p-value occurred in the Poisson case when only using
nomination capture occasions (p = 0.13), this was outweighed by the earlier finding in the
Poisson ratio-plots that the ratio of f1 to f2 was outside the null hypothesis region because
of the particular importance of fitting f1 and f2.

For all three versions of f1 to fm , a sizeable jump between f2 and f1 suggested possible
consistency with a one-inflated distribution. We therefore considered if the ZTOI geometric
or ZTOI Poisson offered a closer fit than their ZT counterparts. In each case, the likelihood
ratio test (LRT) was used with α = 0.05. This test is calculated as LRT = −2× (l0(0, θ̃ ) −
lA(ŵ, θ̂ )) where l0 and lA are the log likelihoods under the null and alternative hypotheses
respectively. In the null hypothesis case, θ̃ was the θ̂MLE from the ZT distribution whereas, in
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Table 6 Chi-square goodness of fit test results

CRC data from. . . Distribution χ2 value df p value

Nomination and participation capture occasionsa ZT Poisson 11.653 4 0.02∗
ZT geometric 5.755 4 0.2

Nomination capture occasions ZT Poisson 9.864 6 0.13

ZT geometric 4.183 6 0.65

Captures of just non-participants ZT Poisson 10.585 3 0.01∗∗
ZT geometric 5.75 3 0.11

�Significant at 0.05 level; ∗∗ significant at 0.01 level
aWhen f5 to f8 are collapsed into f5

Table 7 LRT of ZTOI vs ZT geometric and of ZTOI vs ZT Poisson

Capture occasions ZTOI vs ZT geometric ZTOI vs ZT Poisson
lA(ŵ, θ̂ ) l0(0, θ̃ ) LRT lA(ŵ, λ̂) l0(0, λ̃) LRT

Nom. and Par.a −95.534 −95.880 0.692 −94.702 − 101.689 13.975

Nom.b −85.635 −85.886 0.501 −85.219 − 90.206 9.974

Just non-participants −52.692 −53.139 0.893 −51.182 − 54.444 6.525

aCRC data derived from nomination and participation capture occasions
bCRC data derived from nomination capture occasions

the alternative hypothesis case, θ̂ and ŵwere the θ̂MLE and ŵMLE from theZTOI distribution.
All MLEs were calculated as per Sect. 2.2.

In the geometric case, log likelihoodswere calculated as permethodology inKaskasamkul
and Böhning [36] with lA(ŵ, θ̂ ) = f1 log{((1 − ŵ) + ŵ(1 − θ̂ )θ̂ )/(1 − ŵθ̂ )} +∑m

x=2 fx log{ŵ(1 − θ̂ )x θ̂/(1 − ŵθ̂ )}. In the null hypothesis case, w = 1 so hence
l0(0, θ̃ ) = ∑m

x=1 fx log{(1 − θ̃ )x θ̃/(1 − θ̃ )}.
In the Poisson case, log likelihoods were calculated as per methodology in Godwin and

Böhning [28], with lA(ŵ, λ̂) = f1 log{ŵ + (1 − ŵ)λ̂/(exp (λ̂) − 1)} + ∑m
x=2 fx log{(1 −

ŵ)λ̂x/((exp (λ̂) − 1)x !)}. In the null hypothesis case, w = 0 so hence l0(0, λ̃) =∑m
x=1 fx log{λ̃x/((exp (λ̃) − 1)x !)}.
See also Böhning and van der Heijden [6] for a simplified LRT approach that uses the

‘zero-one truncated’ likelihood instead of the ZTOI likelihood, as this can act as an equivalent
and is more straightforward to calculate.

As the LRT approximates a two-tailed χ2 test with 1 degree of freedom, a critical value of
2.706 was used (α = 0.05). Results are shown in Table 7. For all three versions of f1 to fm ,
the LRT in the geometric case was less than 2.706, indicating there was not enough evidence
to say the ZTOI geometric was a closer fit than ZT geometric. However, in the Poisson case
the LRT was larger than 2.706, indicating the ZTOI Poisson was a closer fit than ZT Poisson.

In summary, for all three versions of f1 to fm , model-fitting diagnostics showed partial
evidence of consistency with the ZT geometric as well as the ZTOI Poisson. Hence, estimates
of N in Sect. 3.3 were based on both.

3.3 Case study results from population size estimation

Estimates of population size (N ) are shown in Table 8. When the CRC data only contained
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Table 8 Estimated size of the case study population (N̂ with 95% confidence intervals)

Nom. and Par.a Nom.b Just non-participants

N 182 182 182

Observed population (n) 61 (34% of N ) 60 (33% of N ) 45 (27% of (N − 16))

ZT geometric BC Chao 142 (88, 281) 138 (87, 261) 169 (95, 401)c

ZT geometric WLS 139 (83, 286)d 142 (90, 290) 292 (112, 1,221)c

ZTOI Poisson BC Chao 62 (59, 68) 62 (58, 77) 61 (61, 69)c

aCRC data derived from nomination and participation capture occasions
bCRC data derived from nomination capture occasions
cWhen based on non-participant captures, N̂ was increased by 16 to factor in participants
dHere f5 to f8 were collapsed into f5

captures of non-participants (right column), the number of participants (16) was added on
to estimators of N because excluding participants from the data meant they were treated as
outside the target population during the calculation of estimators.

N was consistently underestimated when participants were included in the CRC data (left
and centre columns of Table 8). This was as expected due to the positive dependence found
between participation and nomination. When instead excluding participants (right column of
Table 8), underestimation was less severe in the ZT geometric’s BC Chao estimator and there
was in fact overestimation in the ZT geometric’s WLS estimator. However, excluding the
participants reduced the size of the observed population (n) (i.e., the number of individuals
captured at least once in the data) from 61 to 45, leading towider confidence-intervals for both
the ZT geometric’s estimators. A guide to theminimum required size of n relative to N (a.k.a.,
theminimum capture proportion) is given in Xi et al. [55] which advises that n be at least 58%
of N when N = 200. This was used as a rough guide of the required n when N = 182. This
was not satisfied by any of the three versions of the CRC data, as the capture proportion was
only 34% (61/182) when the data included nomination and participation capture occasions,
33% (60/182) when just including nomination capture occasions and 27% (45/(182 − 16))
when just including captures of non-participants. In the latter case, the capture proportionwas
calculated as n/(N−number of participants) because excluding participants from the CRC
data meant treating participants as outside the target population when calculating estimators
of N . The ZTOI Poisson’s BC Chao estimator produced a particularly low underestimate of
N with all three versions of the CRC data, suggesting it had heavy reliance on a sufficient
capture proportion.

4 Follow-up simulation study

To help inform the case study, the approach was next performed on thousands of simulated
target populationswhere N was 182 or 500. In each case, we simulated a target population as a
complete social network, drew a sample of participants from it and derived a CRC dataset ( f1
to fm) from the overlap of participants’ alters (social ties). Each participant’s network of alters
(which could include other participants and/or non-participants) was treated as equivalent
to a nomination capture occasion from the case study. For example, being an alter of three
participants meant being captured three times via nomination. Like in the case study, being
a participant was also considered as a possible extra capture occasion to make the maximum
captures equal.
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A further motivation was to consider the impact of using respondent-driven sampling
(RDS) to select participants. In real-world settings, the often-elusive nature of target pop-
ulations may often necessitate using a multi-wave sampling method like RDS to select
participants. However, RDS poses a difficulty for the current paper’s approach because all
non-seed participants are recruited via being an alter of another participant (described in
Sect. 4.2), hence creating positive dependence between participation and nomination. We
therefore derived CRC datasets from participants selected via either RDS or simple random
sampling (SRS) to see how estimates of N would compare.

4.1 Simulation study target populations

Each simulated target population was a complete undirected social network, of either 182
or 500 actors, simulated by an exponential random graph model (ERGM). In this method, a
network of actors (182 or 500 in this case) is simulated via a probability function that cycles
through random pairs of actors (with replacement), each time generating a binary outcome
of whether they are tied (1 = tie; 0 = no tie) (see e.g., [40, 52]). The probability function
can include several parameterised terms that each make 1 or 0 more likely. While similar
to logistic regression, a key difference is that the probability function often uses terms that
cause partial dependence between binary outcomes.

The current study’s ERGM used four terms: ‘edges’, ‘k-star’, ‘k-triangle’ and ‘k-2path’.
This has been advised as an effective baseline for modelling social networks [39, 52], partic-
ularly for modelling heterogeneity of degree size and transitivity (a clustering effect wherein
ties are more likely between actors who share mutual ties). Further description is given in
Online Resource 1.

Parameter values for edges, k-star, k-triangle and k-2path were set to −4, 0.2, 1 and
−0.2 respectively, each with effect size (λ) = 2. These values were sourced from Pattison
et al. [45], who found they were in line with findings from empirical datasets. These were
thus treated as somewhat representative of typical social networks. Simulation was via R
statistical software [48], using the ‘ergm’ package [31] from the ‘statnet’ suite. In the ergm
package, the k-triangle and k-2path terms are substituted with the ‘geometrically weighted
edgewise shared partners’ (GWESP) and ‘geometrically weighted dyadwise shared partners’
(GWDSP) terms respectively, which are equivalent terms but use λ = log (2) = 0.693 [52].
This combination of terms produced an average degree size of 3.13 in networks of 182 actors
and 4.88 in networks of 500 actors.

As the ERGM’s probability function proceeds, it forms a Markov Chain Monte Carlo
(MCMC) process wherein, after a suitable burn-in period, social network characteristics
should reach convergence and settle into a regular pattern. Snapshots of complete social
networks can thenbe taken,which is referred to as ‘sampling the graph’ [40].Weused sampled
graphs as simulated target populations of either 182 or 500 actors. A wide gap between
sampled graphs protected against autocorrelation. Like Pattison et al. [45], we sampled every
100,000th graph with a burn-in of 1,000,000. For example, to generate 1000 simulated target
populations of 182 actors, the ERGM was specified as:
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Fig. 6 Average number of individuals captured x times from CRC datasets where participant selection was
via RDS, the number of participants = 60 and N = 182. Left panel: nomination and participation capture
occasions. Right panel: nomination capture occasions

simulate(˜edges + altkstar(lambda=2,T) + gwesp(decay=0.693,
T) + gwdsp(decay=0.693,T), coef = c(-4, 0.2, 1, -0.2),
nsim = 1000, basis = network(x = 182, directed = FALSE),
control = control.simulate.formula.ergm(MCMC.burnin =
1000000, MCMC.interval = 100000))

4.2 Simulation study sampling approach

When selecting participants via RDS, this began by randomly selecting five seed participants
(without replacement) from the target population. From each participant’s alters, two further
participants were randomly selected where possible from among those who were not already
sampled. From this new wave of participants was selected a further wave of participants in
the same way, and so on across several waves until the desired number of total participants
was reached. This almost always resulted in four waves and a partial fifth wave.

When instead selecting participants via SRS, a random number generator was used to
select the desired number of participants (without replacement) from the target population
in just one sampling wave.

4.3 Simulation study derivation of capture–recapture data

As mentioned near the beginning of Sect. 4, a particular challenge when using RDS was that
all non-seed participants were recruited via being an alter of another participant and were
hence captured at least once via nomination. Moreover, the average shape/profile of f1 to
fm showed that participants had a higher probability of being captured multiple times than
non-participants (Fig. 6). Therefore, like in the case study, three ways of deriving f1 to fm
were considered: (a) as captures from nomination and participation capture occasions; (b)
as captures from nomination capture occasions; or (c) as captures of just non-participants.
Option ‘b’ would include participants in the CRC data but effectively deflate their captures
by not counting participation as an extra capture, partially offsetting positive dependence.
Option ‘c’ would remove more positive dependence by removing all captures of participants,
though at the cost of reducing the size of n.Meanwhile, when using SRS to select participants,
only option ‘a’ was used because participation was independent of being nominated by (an
alter of) others.
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Table 9 Estimated size of simulated populations (mean N̂ ) where participant selection was via SRS and CRC
datasets were derived from nomination and participation capture occasions in all columns

Total CRC datasets 10,000 10,000 10,000

N 182 182 500

SRS participants 16 40 50

Observed population (n̄) 56 (31% of N ) 112 (62% of N ) 227 (45% of N )

Datasets where only f1 and f2 were larger than 0

Number of datasets 5045 0 3

ZT Poisson BC Chao 229 (106, 552) n/a 501

ZT geometric BC Chao 402 (163, 1042) n/a 779

Datasets where f1 to fm were consistent with ZT Poisson

Number of datasets 1971 6998 7149

ZT Poisson BC Chao 143 (89, 208) 183 (142, 235) 514 (404, 657)

ZT Poisson WLS 135 (65, 256) 178 (130, 243) 483 (311, 698)

Datasets where f1 to fm were consistent with ZT geometric

Number of datasets 2864 2776 2692

ZT geometric BC Chao 369 (171, 747) 309 (220, 439) 933 (691, 1237)

ZT geometric WLS 1555 (191, 5717) 329 (214, 571) 989 (659, 1610)

Datasets where f1 to fm were consistent with ZTOI Poisson

Number of datasets 228 253 265

ZTOI Poisson BC Chao 57 (48, 70) 130 (109, 157) 292

Datasets where f1 to fm were consistent with ZTOI geometric

Number of datasets 60 5 0

ZTOI geometric BC Chao 61 179 n/a

Datasets where f1 to fm were inconsistent with any of the above

Number of datasets 0 207 155

Confidence intervals are shown when number of datasets > N

4.4 Simulation studymodel-fitting diagnostics

As with the case study, model-fitting diagnostics were used to check how consistent each
CRC dataset was with the ZT/ZTOI Poisson/geometric although only if

∑m
x=3 fx > 0. Any

gaps partway through f1 to fm were removed by collapsing data from further along the
tail. For a dataset to be deemed consistent with the ZT Poisson, it needed a non-significant
χ2 GoF p-value for ZT Poisson, a more horizontal ratio plot in the Poisson case than the
geometric, and a non-significant LRT for ZTOI Poisson. Consistency with ZT geometric was
equivalently assessed. For a dataset to be consistent with ZTOI Poisson or ZTOI geometric,
the LRT needed to be > 2.706. Like the case study, some datasets were consistent with the
ZT version of one distribution and the ZTOI version of the other (e.g., consistent with ZT
geometric and ZTOI Poisson).

4.5 Simulation study results

Table 9 shows mean estimates of N from CRC datasets where participant selection was via
SRS and N was 182. The 2.5th and 97.5th percentiles of N̂ were used as 95% confidence
intervals. As participant selection via SRS was independent of being nominated by (an alter
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of) others, f1 to fm were derived from nomination and participation capture occasions in all
three columns.

The left column of Table 9 was somewhat comparable to the case study, as each dataset
was derived using 16 participants and the number of individuals (participants and non-
participants) captured at least once (n) was, on average, 56. This was similar to the case
study wherein n had been 61. Accuracy of estimators was low in this column, indicating that,
even if there had been independence between nomination and participation, the case study
would have needed more than 16 participants to produce reliable estimates of N .

Using 40 participants (centre column of Table 9) increased n̄ to 112 (62% of N ). This was
now roughly in line with the advised minimum capture proportion in Xi et al. [55], which was
that n be at least 58% of N when N = 200. Estimates of N in this column were somewhat
more accurate overall, but especially when CRC datasets were consistent with ZT Poisson.
This also occurred in the right column of Table 9 wherein N was 500 and each dataset was
derived using 50 participants, producing an n̄ of 227 (45% of 500) that was in line with the
advice in Xi et al. [55] that n be at least 44% of N when N = 500.

Tables 10 and 11 show estimates of N when instead using RDS to select participants,
with N being 182 and 500 respectively. When CRC datasets only contained captures of
non-participants (right column of both tables) the number of participants was added on to
estimators of N because excluding participants from the data meant they were treated as
outside the target population during the calculation of estimators.

In all columns of Tables 10 and 11 apart from the right column of Table 10, the number
of participants was such that n̄ met the advised minimum capture proportion. Exclusion of
participants fromCRCdatasets in the right columnof both tablesmeant the capture proportion
was n̄/(N−number of participants) and, because n only included non-participants, it was
more difficult to meet the advised minimum capture proportion. When N was 500 (right
column of Table 11), 140 participants were used because this produced, on average, 219 non-
participants and hence a capture proportion of 219/(500 − 140) = 61%. This satisfied the
advised minimum proportion (58%) pertaining to N = 200, which was used as the threshold
because 500−140was between 200 and 500. However, when N was 182, the average number
of non-participants did not reach the advised minimum capture proportion no matter how
many participants were used. Instead, for demonstration purposes, the right column of Table
10 used 60 participants, producing a capture proportion of only 51/(182− 60) = 42%. This
was lower than the advised minimum (69%) pertaining to N = 100, which was used as the
threshold because 182 − 60 was between 100 and 200.

Returning to Table 9, there were indications in its centre and right columns that, when
nomination and participation were independent and n was sufficiently large, the current
paper’s approach would more often produce a Poisson shape across f0 to fm . Approximately
70% of CRC datasets in the centre and right columns were consistent with ZT Poisson and
produced accurate average estimates of N fromZTPoisson estimators. Therewas also greater
accuracy from the ZT Poisson’s BC Chao estimator than that of the ZT geometric when only
f1 and f2 were larger than 0. Meanwhile, approximately 28% of datasets in these columns
were consistent with ZT geometric and overestimated N using ZT geometric estimators.
Further work is needed to explore if this would occur outside the current simulation setting
and, if so, how to obtain better estimates from datasets consistent with ZT geometric. For
example, the ZT Conway–Maxwell Poisson (CMP) distribution can function as a mixture of
ZT Poisson and ZT geometric and has its own WLS estimator of N [2, 51].

This suggested a similar trend towards ZT Poisson might occur when using RDS to select
participants and using captures of just non-participants. This was indeed found in the right
column of Table 11, wherein 7479 out of 10,000 datasets were consistent with ZTPoisson and
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Table 12 Successive Sampling population size estimate (SS-PSE) from 1000 simulated populations (mean N̂
with 95% confidence intervals)

N 182 500 500

RDS participants 60 70 140

SS-PSE using low prior 127 (86, 183) 230 (149, 326) 268 (192, 391)

SS-PSE using accurate prior 162 (97, 249) 372 (231, 526) 334 (220, 522)

SS-PSE using high prior 265 (133, 407) 763 (495, 1047) 533 (324, 859)

produced only slight underestimates of N . However, this only occurred when the advised
minimum capture proportion was satisfied, as the same trend was not present in the right
column of Table 10 wherein the advised minimum proportion had not been met.

Further exploration of different sized simulated target populations found that, when using
captures of just non-participants, n could, on average, onlymeet the advisedminimumcapture
proportion when N >= 300 (described in Online Resource 1). Hence, for target populations
where N < 300, it instead seemed optimal to use captures of participants and non-participants
from just nomination capture occasions, which would partially offset positive dependence
between participation and nomination while sustaining a large enough n to feasibly meet
the minimum capture proportion. The centre column of Table 10 showed that, at least in
the current simulation setting, this could lead to relatively accurate estimates of N from the
approximately 70%of datasets consistentwithZTgeometric in that column.Thiswas because
the more general tendency for ZT geometric estimators to overestimate N (seen earlier in
the centre and right columns of Table 9) was somewhat counter-balanced by underestimation
caused by positive dependence in the data.

Using RDS to select participantsmeant the Successive Sampling population size estimator
(SS-PSE) of N could also be performed as a comparison [32, 33]. The SS-PSE is Bayesian
and requires a prior estimate of N . For this, we used high, low or accurate priors based on
those used in a simulation study in Handcock et al. [32]. Each prior was a beta distribution
with a median of either 2 × N in the high case, (N+number of participants)/2 in the low
case or N in the accurate case. The median of the posterior distribution of N̂ was taken as
a point-estimate from each simulated target population. Calculation was via the ‘sspse’ R
package [30]. See Online Resource 7 for an example. While the ‘visibility’ parameter of
‘sspse’ can improve estimates of N by imputing an adjusted degree size that factors in self-
reporting bias, this was set to ‘false’ because participants’ social ties were not self-reported
in this study.

SS-PSEestimates of N are shown inTable 12. The 2.5th and 97.5th percentiles of the point-
estimates from across simulated target populations were used as 95% confidence intervals.
We found that, when themedian of the prior was accurate (i.e., N ), themedian of the posterior
distribution tended to underestimate N . This may have been partly due to either transitivity in
the ERGMmodel that generated the target populations, the relatively small mean degree size
(3.13 when N = 182 and 4.88 when N = 500) and/or using only five seed participants. This
seeming sensitivity of the SS-PSE to one or more of these factors contrasted with the high
level of accuracy we had seen from ZT Poisson estimators in the centre and right columns of
Table 9 and the right column of Table 11, which appeared to be comparatively shielded by
being based on only non-participant data.
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5 Discussion

Results from the case study and simulation study gave a mixed picture of the current paper’s
approach. Selecting participants via RDS in the simulation study and via voluntary partici-
pation in the case study both brought substantial positive dependence between participation
and nomination, leading to deviation from the assumed independence of capture occasions
and the assumed equal catchability of participants and non-participants.

However, the accuracy of ZT Poisson estimators in the right column of Table 11 was a
promising early finding that, when using RDS to select participants, many CRC datasets
produced quite accurate estimates of N when only including captures of non-participants
and having a sufficiently large n after excluding participants. The accuracy of ZT geometric
estimators in the centre column of Table 10 was also a promising finding that, when needing
to include participants in the data to keep n sufficiently large, approximately 70% of CRC
datasets produced relatively accurate estimates of N by including captures of participants
and non-participants from just nomination capture occasions. Nevertheless, further work is
needed to obtain better estimates of N from the remaining 30% of CRC datasets in both of
those columns.

More work is also needed to explore other RDS settings and methodological extensions.
For example, for target populations with more clustering, a system of design weights could
potentially be used to offset clustering in each participant’s list of social ties. The current
paper’s approach also needs a fuller comparison to the SS-PSE [32, 33] and/or Privatised
Network Sampling (PNS) [26, 37], as they can factor in the multi-wave structure of RDS
data.

Simulating target populations via ERGMs opens the door to exploring more varied target
populations that could better reflect real-world settings. For example, while the average
degree size in the current simulation study (3.13 when N = 182 and 4.88 when N = 500)
may have been in line with general human populations, degree size may be smaller among
elusive populations and make one-inflation more prevalent. As another example, an ERGM
simulating a population of drug users could incorporate covariate information, like a metric
of drug use, that could be a major additional source of heterogeneity in individuals’ degree
size and hence their capture-rate.

An advantage of sourcing captures from participants’ self-reported social networks is that
many non-participants can be captured indirectly. Frank and Snijders [27] highlight a similar
advantage in the Snowball Method, noting that it allows time and resources to be devoted to
fewer but longer interviews that may encourage participation from stigmatised populations.

However, self-reported lists of social ties have a known susceptibility to memory-bias
[4, 15]. This could be exacerbated if participants are asked to list individuals using pseudo-
anonymised identifiers derived from several demographic variables, which may be necessary
with stigmatised populations [16, 22, 26, 37]. For example, in Buchanan et al. [16], partici-
pants were asked to list individuals by combining abbreviations of initials, gender, age and
district. Some populationsmight not be familiar enough to know such details about each other
or remember them accurately, potentially leading to false matches. One possible solution is
the Telefunken approach of Dombrowski et al. [22], in which participants are asked to include
the last four digits of peoples’ phone numbers (if known) when compiling unique identifiers.

As the target population in the case study were sitting the same university course, they
could feasibly appear in each other’s social networks. This was necessary to satisfy the
equal-catchability assumption. For a larger or more fragmented target population, a stratified
approach could potentially be used. For example, the ZT Poisson’s BC Chao estimator could
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be performed on M subsections of a target population via N̂ = ∑m
i=1{ni + f1i ( f1i −

1)/(2 f2i + 2)}. Similarly, stratification could be used to factor in a variable (e.g., ethnicity)
if it was suspected to affect the capture-rate of sample units.

6 Conclusion

There has been growing interest in deriving CRC data from self-reported social networks,
and the current paper adds to this by considering a methodology for applying zero-truncated
modelling to this type of data. This included an early exploration of how the approach
could be applied when selecting participants via RDS, which was an important practical
consideration for real-world settings. The approach still needs to be more fully compared to
others, particularly as RDS brings amulti-wave structure to data that methods like Successive
Sampling and Privatised Network Sampling can factor in. Further work is also needed to
explore more varied target populations and key limitations such as task-fatigue, memory-
bias, stratification of large populations and the necessary level of social ties/cohesion in the
target population.
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