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Abstract. Calculating aerodynamic loads around an aircraft using computational

fluid dynamics is a user’s and computer-intensive task. An attractive alternative is to

leverage neural networks bypassing the need of solving the governing fluid equations

at all flight conditions of interest. Neural networks have the ability to infer highly

nonlinear predictions if a reference dataset is available. This work presents a geometric

deep learning based multi-mesh autoencoder framework for steady-state transonic

aerodynamics. The framework builds on graph neural networks which are designed

for irregular and unstructured spatial discretisations, embedded in a multi-resolution

algorithm for dimensionality reduction. The test case is for the NASA Common

Research Model wing/body aircraft configuration. Thorough studies are presented

discussing the model predictions in terms of vector fields, pressure and shear-stress

coefficients, and scalar fields, total force and moment coefficients, for a range of

nonlinear conditions involving shock waves and flow separation. We note that the

cost of the model prediction is minimal having used an existing database.
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AE = Autoencoder

CFD = Computational Fluid Dynamics

CNN = Convolutional Neural Network

COO = Coordinate List

CRM = Common Research Model

DNN = Dense Neural Network

GCN = Graph Convolutional Network

GDL = Geometric Deep Learning

GNN = Graph Neural Network
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MM = Multi Mesh

ML = Machine Learning

MSE = Mean Squared Error

NN = Neural Network

POD = Proper Orthogonal Decomposition

PReLU = Parametric Rectified Linear Unit

ROM = Reduced Order Model

α = angle of attack

A, Aij = adjacency matrix

Â, Âij = adjacency matrix with self loops

b = constant term

β = slope of the PReLU function

c = reference chord

CD = drag coefficient

Cf = skin friction coefficient

cl = number of output channels in a layer

CL = lift coefficient

CMy = pitching moment coefficient

CP = pressure coefficient

Cτ = wall shear-stress coefficients

D̂ = diagonal degree matrix

e = edge weight in a graph

ε [%] = relative error

ϕ = shape functions

I = identity matrix

I = interpolation matrix

M = Mach number

m = batch size

n = number of grid points in a mesh

p(x) = polynomial basis function

p(i) = probability function

Re = Reynolds number

S = reference surface

S = surface mesh nodes

s = network input vector

τw = wall shear-stress components

θ,W = model parameters

w = weight function

x = grid-point position in a graph

Y i = model prediction on the graph vertices

y = generic variable

Subscripts:
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r = coarse mesh level

e = element edges

i = target node index

j = source node index

l = layer

mml = multi-mesh level

n = fine mesh level

∞ = freestream condition

1. Introduction

A
erodynamic analyses in many engineering sectors, from aerospace to automotive,

remain computationally expensive with high-fidelity computational fluid dynamics

(CFD). The need to provide physical insights at very small scales around a complex

geometry with limited resources contrasts with the ever pressing project deadlines. This

motivates the investigation of reduced order models (ROM) for accurate approximations

of the physical system via numerical techniques of reduced computational complexity.

The recent breakthrough in machine learning (ML) has prompted the development of

new methodologies particularly suited for ROMs. Modern, sophisticated ML algorithms

are attractive for approximating highly complex and nonlinear systems from data. For

example, Massegur et al [1] leveraged ML to predict the formation of ice on a wing

section and the resulting aerodynamic degradation across a range of freezing conditions.

Furthermore, Massegur et al [2] developed a ML based aerodynamic model coupled with

a structural model for aeroelastic and flutter search analyses.

Herein, we focus on three-dimensional (3D) geometries and we address the added

complexities compared to two-dimensional (2D) cases, which are around ten times more

frequent in the literature. Regarding the physics, 3D problems present more abundant

nonlinear flow features and interactions [3, 4], which include cross-flow interactions,

wing-tip vortices and separation bubbles, among others. ROM approaches developed

for 2D problems [2], featuring direct prediction of aerodynamic forces, are questionable

to address the additional intricacies that arise in 3D problems. To this goal, we use

deep learning neural networks (NN) [5] to model distributed aerodynamic quantities on

the aircraft surface.

The primary challenge in reduced-order modelling of 3D aerodynamic fields is the

large dimensional space, reflecting the numerical discretisation of the computational

domain [6]. Common nonlinear ROM approaches, including Kriging [7] and dense neural

networks (DNN) [8, 9] result ill-suited. To address the problem of poor scalability,

convolutional neural networks (CNN) are better suited for flow-field analyses because

they are designed to extract spatial features from digital images [10–12]. The problem is

that CNNs are not directly suitable for unstructured meshes typical of CFD applications

because of their limitation to Euclidean domains (cartesian grids). Interpolating data

to a regular grid is essential, but it can lead to additional errors and loss of resolution in
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refined regions. Alternatively, CNN kernels of size 1 can be used as these are applicable

to any mesh arrangement, as implemented by Immordino et al [13] or Sabater et al [14].

The issue with this approach is that the mesh connectivity is unused, resulting in simpler

cloud-point modelling. The absence of propagation of information across the mesh limits

the capability to capture coherent flow features and reconstruct continuous solutions. To

leverage connectivity throughout the mesh, geometric deep learning [15] offers a range

of convolutional methods, known as graph neural networks (GNN). GNNs are capable

of processing graphs or manifold-unstructured meshes, which makes them a better fit

for CFD applications that deal with non-Euclidean data [16]. Examples of GNNs for

steady-state aerodynamics are not abundant. Ogoke et al [17] addressed aerodynamic

solution of a 2D aerofoil rather than a more relevant test case. Baque et al [18] projected

the 3D geometry to a simpler prismatic graph to contain the computational burden. On

the other hand, comprehensive message-passing methods, as adopted by Hines et all [19]

or Han et al [20], which feature dedicated learnable weights for each edge and node of

the mesh, can lead to excessive memory requirements.

To maximise ROM computational efficiency when dealing with large spatial

domains, dimensionality reduction to compress the domain size is crucial. The classical

proper orthogonal decomposition (POD) [21, 22] is only limited to linear projections

of the data onto the compressed space, causing general loss of information in highly

complex physics. Autoencoders (AE) [23–26], which are the neural-network alternative

to the POD, are a better alternative allowing a nonlinear compression and recovery. This

work contributes generally to the question of dimensionality reduction of large datasets

defined on irregular spatial domains. To this aim, an autoencoder approach embedded in

the graph-based convolutional framework is sought. We solved this challenge by devising

a multi-resolution scheme, inspired by the common multi-grid methods to solve partial

differential equations [27]. While the methodology applies naturally to other fields and

disciplines, we demonstrate the applicability on a 3D aerodynamic problem.

We propose a graph-convolutional multi-mesh autoencoder tailored for predicting

distributed aerodynamic loads around a full-scale air vehicle. Unique contributions

of this work are the applicability to non-Euclidean domains and a unique multi-

resolution embedding for dimensionality reduction and modelling efficiency purposes.

Furthermore, a building-block implementation, consisting of composition of separate

NN units, facilitates evaluation of different model architectures to address the task. We

have chosen the wing/body configuration of the NASA common research model (CRM)

for demonstration, predicting steady-state transonic aerodynamic loads across a range

of Mach numbers and angles of attack.

The paper continues in Section 2 with a description of the problem we solved

and the identification of nonlinear features to be retained in the model outputs. The

methodology for steady-state problems is explained in Section 3. Then, Section 4

summarises the main results. Finally, conclusions and an outlook on future work are

given in Section 5.



Graph Convolutional Multi-Mesh Autoencoder for Steady Transonic Aircraft Aerodynamics5

Figure 1: Surface mesh representation of the Common Research Model.

2. NASA Common Research Model Wing/Body Configuration

The test case is for the NASA Common Research Model (CRM) wing/body

configuration, which is representative of a transonic transport aircraft designed to fly

at a cruise Mach number of 0.8 [28, 29]. The CRM is shown in Figure 1. The reference

geometric chord is c = 0.1412 m, the surface area is S = 0.0727 m2, and the pitch moment

is taken around xa/c = 0.5049.

The CFD dataset was taken from Immordino et al [13], where SU2 7.5 solver was

used. The surface mesh shown in Figure 1 features around 78,000 grid points in an

unstructured triangular topology with adapted discretisation density around the edges.

The volume mesh consists of over 15 million cells, with a prism-layer mesh to promote

y+< 1 near the wall, denoting the non-dimensional height of the first cell normal to

the boundary. The y+ ensures an adequate resolution of the boundary layer. The

Spalart-Allmaras turbulence model was chosen. For good convergence, the JST scheme

with added dissipation was adopted to discretise the convective term, Green Gauss

was chosen to compute the discretised gradients and the biconjugate gradient with ILU

preconditioner was applied to solve the linear solver.

In this work, we are interested in the steady-state prediction of the pressure

coefficient:

CP =
p − p∞
1
2
ρ∞ U2

∞
(1)

with p∞, ρ∞ and U∞ the freestream pressure, density and velocity, respectively. The
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Figure 2: Dataset samples across the operating envelope of the CRM model. Circles

correspond to training samples and triangles, validation cases. Lettered labels indicate

selected samples to showcase the different physics across the envelope, Figures 4 and 5.

shear-stress coefficient components:

Cτ =
τw

1
2
ρ∞ U2

∞
(2)

with τw = [τx, τy, τz], on the surface mesh of the CFD model across an envelope of Mach

numbers M∞ and angles of attack α∞.

2.1. Reference Dataset

We used the available database of aerodynamic solutions to generate and validate our

steady-state predictive model. The database contains 70 CFD calculations in the range

ofM∞∈ [0.70, 0.84] and α∞∈ [0.0, 5.0] deg, at Reynolds number Re = 5·106 and freestream

temperature T∞ = 311 K. The range of freestream conditions was chosen to have diverse

nonlinear flow phenomena to be predicted by our model. The sampled conditions are

shown in Figure 2, of which 40 were used for training (represented with circles) and the

remaining 30 for validation (triangles). Latin Hypercube technique was used to define

this limited number of samples for the preliminary envelope scan. The resulting sampling

distribution did not include points on the boundaries and occasionally left large gaps

between samples. Therefore, these experiments are useful to assess the performance of

our framework in under-sampled spaces.

First, we delve into the variation of lift and drag coefficients, CL and CD,

respectively, with the freestream conditions shown in Figure 3. These were obtained by

integrating the pressure coefficient CP and shear-stress Cτ fields of the reference CFD

solutions. Inspecting the colormaps, the lift coefficient correlates predominantly with
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(a) Lift coefficient. (b) Drag coefficient.

Figure 3: Integrated aerodynamic force coefficients of the NASA CRM wing/body

configuration for the reference dataset, classified by training (circles) and validation

(triangles) samples.

the angle of attack. The variation of the drag coefficient indicates an equal correlation to

α∞ and M∞. Both the angle of attack and the shock-induced boundary-layer separation

contribute to the drag increase.

Then, we extracted few sample points from the database for further demonstration

of the complexity of our problem. Figure 4 shows the pressure coefficient for selected

conditions, and Figure 5 is for the skin friction coefficient, defined as the shear-stress

norm Cf = ||Cτ ||2. These Figures are arranged into four Panels, placed to reflect the

location of the samples labelled in Figure 2, with low α∞ on the bottom Panels and

high M∞ on the right Panels. The pressure distribution, Figure 4, significantly differs

depending on the freestream conditions. Inspecting the lower and the upper left Panels,

the location of the shock wave moves towards the leading edge and the shock intensity

increases with angle of attack at lower Mach numbers. This transition appears to

be nonlinear for α∞ higher than 3 deg. With increasing Mach number, the pressure

distribution becomes gradually smoother and the shock wave becomes stronger. As a

result, at the highest M∞, right Panels, the peak CP values are lower. On the contrary,

at these M∞ conditions, the location of the shock wave remains similar with increasing

angle of attack, bottom to top of the right Panels.

Similarly, the skin friction coefficient distributions, in Figure 5, indicate the

boundary-layer separation regions (darker blue) induced by the shock wave. At low

Mach number, left Panels, the separation line moves towards the leading edge with

increasing angle of attack. Furthermore, in Panel (a) a separation bubble is visible. On

the contrary, above M∞ = 0.8, the location of the separation line remains similar across
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(a) M∞ = 0.71, α∞ = 4.72 deg. (b) M∞ = 0.83, α∞ = 4.90 deg.

(c) M∞ = 0.71, α∞ = 0.57 deg. (d) M∞ = 0.83, α∞ = 0.25 deg.

Figure 4: Pressure coefficient distribution, CP , at the 4 sample points of Figure 2.

(a) M∞ = 0.71, α∞ = 4.72 deg. (b) M∞ = 0.83, α∞ = 4.90 deg.

(c) M∞ = 0.71, α∞ = 0.57 deg. (d) M∞ = 0.83, α∞ = 0.25 deg.

Figure 5: Skin friction coefficient distribution, Cf , at the 4 sample points of Figure 2.
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the α∞ range, as seen in the right Panels.

This brief overview sets the background problem for our ROM. The diverse

nonlinear flow characteristics cannot be captured by simple direct modelling of the

scalar loads, such as CL and CD. On the other hand, the task of predicting distributed

quantities at each condition, such as CP , is more challenging than scalar targets but

is more useful from a design standpoint. This motivates our choice to devise a GDL

based framework for prediction of the surface aerodynamic fields across the operating

envelope.

3. Methodology

In a steady-state formulation, the aerodynamic response is considered dependent on the

input conditions only, and any time dependence is neglected. A neural-network function

fNN is sought which maps specific user-defined inputs s to desired target fields Y i on

the surface mesh S:
Y i = fNN (s,xi) ∀ i∈S (3)

with i denoting a node in S. The grid point coordinates xi are also embedded. We

devise an architecture for fNN by leveraging GDL and dimensionality reduction for

unstructurally meshed manifolds. From GDL, we resort to graph neural networks

(GNN), which involve the convolution operation on graphs [16, 30].

3.1. Graph Representation

In a GNN approach, the surface mesh is represented as a graph where the vertices (or

nodes) contain the position coordinates xi and variable fields yi (features). The graph

edges connecting the grid points are determined by the mesh connectivity. Figure 6

illustrates a representation of a graph where a target node i is connected to j ∈ S
surrounding grid points. Features yi and weights eij are assigned, respectively, to each

node and edge. The edges defining the graph connectivity and chosen weights are

arranged to form the adjacency matrix [16]:

A = eij for i, j = 1, ..., n (4)

This is an n× n matrix containing the edge weights, and n is the total number of grid

points in S. The subscript ij denotes the j-th source node connected to a given node

i. We assign the weights as the inverse of the distance between the two nodes forming

the edge:

eij =
1

||xi − xj||2
(5)

We then normalise the edge weights to be ∈ (0, 1], where the upper end is inclusive

because self loops, i.e. eii = 1, are inserted by adding the identity matrix to the adjacency

matrix: Â =A + I. In addition, we choose the edge weights to be non-directional, i.e.

eij = eji, which results in a symmetric adjacency matrix, Â = Â
T
.
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Figure 6: CRM mesh represented as a graph with node features and edge weights.

Note that Â is largely sparse as each row contains only a few non-zero elements.

Consequently, it is more memory-efficient to arrange the adjacency matrix in coordinate

list (COO) format. This format consists of two vectors: the edge-index and the edge-

weight vectors. The edge-index vector contains the pair of node indices [i, j] for each

edge, of size ne × 2 and ne the number of edges. The edge-weight vector contains the

assigned weight edges eij Eq. (5), with size ne × 1. In the CRM test case, the surface

mesh consists of n = 78, 829 points and ne = 472, 404 edges.

3.2. Graph Convolutional Network

From the family of GNN architectures, we leverage the graph convolutional

network (GCN) by Kipf et al. [31]. The GCN operator at a given target node is defined

as:

g(y) = θT D̂
− 1

2 Â D̂
− 1

2 y + b (6)

with θ a layer-specific trainable weight vector, b a constant term and y the node-based

input vector at each node of the mesh S. D̂ = diag
(∑

j ̸=i eij + 1
)
∀ i contains the sum

of the edge weights connected to each node i, known as the diagonal degree matrix.

At each layer l, the GCN operation, Eq. (6), is executed on the output from the

previous layer yl−1, followed by a nonlinear activation function h:

yl = h
(
g(yl−1)

)
(7)

We adopted for h the parametric rectified linear unit (PReLU) [32]:

h(y) =

{
y if y ≥ 0

βy if y < 0
(8)

with β another learnable parameter.
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Figure 7: Autoencoder concept, involving the embedding of GCN blocks in the reduction

(encoder) and reconstruction (decoder) of the field data.

Note how the GCN operator Eq. (6) takes the convolutional analogy of the CNN

for Euclidean domains [33] but with a single-parameter filter swept across each row of

the adjacency matrix. In fact, if we set set eij = 0 for i̸=j, the standard CNN layer with

kernel size 1 is obtained, as Immordino et al [13] opted.

3.3. GCN-based Autoencoder

From Eq. (6) we realise that successive GCN executions are required to exert influence

between far-away grid points. For instance, with kl GCN layers in succession, only kl
neighbourhoods around target node i are influenced. Consequently, the propagation

of information across the mesh is slow. This leads to two issues. The first is that

a deep network with an excessive number of layers would be necessary to propagate

the information in refined regions. The second issue relates to the memory size of the

network becoming computationally unmanageable in large spatial domains and high

number of features. To alleviate these issues, as introduced in Section 1, we adopted an

autoencoder approach for the compression of the spatial domain.

The autoencoder involves the projection of the states from the original domain onto

a compressed space, operation known as encoder. Then, these latent states are recovered

back onto the original domain in an inverse operation, known as decoder. Embedding

NNs in this process makes the autoencoders more attractive than POD as nonlinear

projections are possible [23]. Figure 7 lays out the autoencoder process embedded with

GCNs.

3.4. Multi-Mesh Scheme

Autoencoders for discretised domains entail a multi-resolution scheme, which involves

gradual coarsening operations and a subsequent refining of the grid. Reduction

techniques in cartesian arrangements are trivial, including, for example, pooling

operations [11]. In contrast, coarsening of unstructured meshes is a more difficult task.

One of the primary challenges is that the adjacency matrix needs to be regenerated

at every coarsening step. A second challenge relates to reliable transfer of information

between the various grid resolutions.

To solve these challenges, we present a novel hierarchical multi-mesh (MM) scheme

for the autoencoder. In the encoder process, the mesh is coarsened between blocks of
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Figure 8: The 2-level multi-mesh scheme for the CRM test case, showcasing the resulting

pressure reconstruction from one mesh coarsening-refining cycle.

GCN layers, intended for extraction and compression of crucial flow-field features. The

latent states on the coarsened mesh are decoded in a recovery operation interleaved with

additional GCN blocks, to reconstruct the solution onto the original domain. Figure 8

illustrates the coarsening and recovery operations of the proposed 2-level multi-mesh

cycle for the CRM model. This method is reminiscent of the common multi-grid V-cycle

algorithms to solve partial differential equations [27, 34]. Operating on a MM cycle is

advantageous for: 1) reducing the computing memory size, given the compressed spatial

domain; 2) extracting features of different spatial scales by means of the different mesh

resolutions; and 3) enabling direct information exchange among distant nodes, avoiding

the need for a deep network to spread influence across the grid, which results in a

significantly smaller model.

The coarsening operation in the encoder involves the removal of grid points from

the original mesh. The strategy taken to coarsen the mesh is crucial to prevent loss

of essential information. For instance, a uniform random selection should preserve the

original mesh topology, in terms of relative cell sizes, on the reduced mesh. However,

there is risk of insufficient resolution left in regions where the initial node density was

already low. On the other hand, excessive removal of nodes on originally refined regions

could lead to inappropriate reconstructions where the solution is likely to present larger

gradients.

For adequate representation of the distinct spatial regions at the coarse level, a

balanced node selection is essential. We achieved this by selecting the nodes according

to a probability function based on the corresponding face area:

p(i) = 1 +
1− e−2 i

n

1− e−2
(p1 − pn) + p1 for i = 1...n with ai−1 < ai (9)



Graph Convolutional Multi-Mesh Autoencoder for Steady Transonic Aircraft Aerodynamics13

Figure 9: Probability density function to select the grid points in the mesh coarsening

operation. Grid points ordered by face area in ascending order.

Table 1: Surface mesh sizes (number of nodes) of the two multi-mesh levels for the CRM

case.

(level 0) (level 1)

Original Coarsened Compression

mesh size Sn mesh size Sr ratio Sn

Sr

78,829 5,000 15.8

Figure 10: Graph coarsening procedure and connectivity regeneration as part of the

dimensionality reduction algorithm.

with i the index of the grid points sorted by their face area ai in ascending order, and n

the total node count. We chose p1 = 0.2 and pn = 1 for the smallest and largest elements,

respectively. The resulting distribution is demonstrated in Figure 9. Probability of

being selected is higher in nodes with larger face areas, likely in unrefined regions, as

opposed to nodes found in dense discretisations. The coarsened mesh resulting from

this selection probability is illustrated at the bottom of Figure 8. The mesh size (node

count) in the various multi-resolution levels is reported in Table 1 for the CRM test

case. Note how a compression ratio of 16 was adopted.

Upon selection of the grid points to be kept in the coarse mesh, the graph

connectivity was regenerated by reconnecting remaining nodes that shared connections

with discarded ones. Figure 10 demonstrates the process of restoring graph connectivity

following a coarsening operation, with new edges shown in orange.
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3.5. Weighted Moving Least Squares for Grid Interpolation

As shown in Figure 8, information must be transferred across multiple grids. In the

reduction step of the encoder, the original field data must be interpolated onto the

compressed mesh. In the decoder, the recovery of the latent states onto the fine grid

entails an inverse interpolation. These are critical operations in the MM cycle. The

interpolation consists of a functional ISn→Sr : Rnn → Rnr to map a spatial field yi from

a source grid Sn, which contains nn nodes, to a target grid Sr, with nr nodes, where

both grids discretise the same spatial domain:

yj = ISn→Sr yi j∈Sr,∀ i∈Sn (10)

with ISn→Sr the interpolation matrix from the source to the target mesh, and yj the

interpolated field data.

The following properties are desirable for an adequate interpolation [35]: 1)

interpolated values at the source nodes should match the original data; 2) integrated

resultants should be conserved; and 3) interpolated fields should be continuous.

Consequently, directly recasting the data across coincident points and nearest-neighbour

interpolation, as Han et al [20] proposed, result inappropriate because conservation and

continuity properties are not satisfied.

There is multitude of multi-grid algorithms, often devised to accelerating the

solution of finite-volume discretisation of partial differential equations, as proposed for

example by Smith et al [34]. However, we chose a different approach which is particularly

suited for fluid-structure interaction problems, where satisfying the above properties is

crucial for adequate transfer of loads and deflections across models. In particular, we

implemented a weighted moving least squares (WMLS) scheme [35, 36]. The idea is to

generate a shape function u(x) to approximate the input data yi at source nodes i∈Sn

with coordinates xi by least-square-error minimisation:

min
a

L =
∑
i∈Sn

(u(xi)− yi)
2 w(||x− xi||) (11)

where the weight w(||x−xi||) is a function of the distance between the source and the

target points. We specify u(x) as a polynomial combination:

u(x) = pT(x)a (12)

with p(x) = [1, x, y, z, x2, y2, z2, xy, xz, yz]T the second-order polynomial basis function,

and a the vector of respective coefficients. The analytical solution of the least square

minimisation can be shown to yield the resulting approximation at every node j∈Sr of

the target grid:

u(xj) = ϕ(xj)yi j∈Sr,∀ i∈Sn (13)

with the shape functions defined as:

ϕ(xj) = pT(xj)
(
P TWP

)−1
P TW (14)
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and

P =


pT(x1)

pT(x2)
...

pT(xnn)

 (15)

W =


w(||xj − x1||) 0 . . . 0

0 w(||xj − x2||) . . . 0
...

0 0 . . . w(||xj − xnn||)

 (16)

Therefore, the interpolation matrix ISn→Sr is:

ISn→Sr =


ϕ(x1)

ϕ(x2)
...

ϕ(xnr)

 (17)

The least squares approximation, Equation (14), must be computed for each target

grid point, resulting in computationally intractable matrix operations when dealing

with large meshes. To reduce the computing burden, we adopt a moving interpolation

consisting of limiting each target node to be influenced only by the kn closest source

points:

w(||xj − xi||) =

{
1 for ||xj − xi|| < ||xj − xi+1|| with i = 1...kn and i∈Sn

0 otherwise

(18)

In this work, we found kn = 10 a good compromise between interpolation accuracy and

computational efficiency. Note that ISn→Sr is a largely sparse and non-square matrix of

size nr×nn, each row containing just kn non-zero values. This matrix is not invertible

and two different interpolation matrices must be generated for the encoder and decoder

operations, ISn→Sr and ISr→Sn , respectively. Figure 8 illustrates the dual interpolation

process. We observe how the resulting pressure reconstruction (right) after execution of

the MM cycle matches well the original field (left).

3.6. Steady-state Prediction Framework

We now complete the construction of the predictive model architecture, here referred to

as steady-state GCN-MM-AE. For the CRM use case, the target fields are the pressure

coefficient and the shear stress components, Y = [CP , Cτx , Cτy , Cτz ], across the input

envelope of Mach numbers and angles of attack, s = [M∞, α∞]. The architecture of the

final steady-state GCN-MM-AE model is shown in Figure 11. The scalar inputs s are

casted to each node of the graph, concatenated to the grid-point coordinates xi ∀ i∈Sn.

The input vectors are processed by the encoder, involving the coarsening step of the MM
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Figure 11: Steady-state GCN-MM-AE model architecture for aerodynamic predictions

of the CRM test case.

cycle and two GCN blocks. Subsequently, the decoder comprises the recovery operation

of the MM embedded in two additional GCN blocks. The network ramifies at the end

into separate blocks for each field quantity to predict. This architecture defines fNN in

Eq. (3).

To the best of our knowledge, this framework is novel on several fronts: 1)

GDL based autoencoder framework for spatial predictions on large and unstructured

discretisations, applied to an aerospace problem; 2) multi-resolution scheme embedded

in the nonlinear autoencoder for dimensionality reduction of unstructured manifolds,

aimed at capturing different spatial scales, promoting influence across the grid and

maximising ROM computational efficiency; and 3) building-block functionality to

address distinct tasks within the same framework: multi-resolution reconstructions,

steady-state predictions and extension to dynamic simulations. This framework was

implemented using PyTorch 1.11, an optimised deep-learning library in Python, and

PyTorch Geometric, an open-source graph neural-network package built upon PyTorch.

4. Results

This Section is organised in two parts. The first part focuses on the prediction of

scalar quantities - in our case, the integrated force and moment coefficients. The

second part is related to the model prediction of the distributed fields - the pressure

and the shear-stress coefficient distributions. The Appendix contains more background

information, including the steady-state GCN-MM-AE architecture from Figure 11 and

the model optimisation procedure. Comparison between our WMLS scheme and the

multi-grid method by Smith et al [34] for the two-way interpolation of the MM cycle

was also investigated. To complete the framework set-up, sensitivity assessments to key
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hyperparameters, such as the training set size, the model weights and the MM cycle

set-up, are also reported. Worth noting that at each sample point the model prediction

outputs CP andCτ distributions, from which the resulting force and moment coefficients

were obtained by integration.

4.1. Integrated Loads

Figure 12 presents the analysis for the integrated lift coefficient CL, drag coefficient CD

and pitching moment coefficient CMy . The left Panels show the prediction error on the

dataset samples, with training samples in circles and validation in triangles. The error

is defined as:

εCy [%] =
|CyROM − CyCFD|

|CyCFD|
· 100 (19)

with y = [L,D,My]. The errors are classified by a traffic-light color scheme: green

corresponds to prediction errors below 4%, amber between 4% and 10%, and red above

10%. For convenience, the percent error is reported above each sample point. Best

and worst predictions are highlighted as A and B, respectively. The prediction error

is generally small throughout for the CL predictions, where the error is below 2.2%.

Additionally, the worst prediction (B) was found at M∞ = 0.76, α∞ = 4.42 deg, with

pitching moment error of 24.3%. This point stands out for not including training samples

within a wide surrounding. The model found more difficult learning this region of the

envelope. An adaptive sampling method to include training samples in under-sampled

regions would be convenient for improved model accuracy. However, this is beyond the

scope of this work. We also found the CMy prediction accuracy degrades slightly towards

high angles of attack, where nonlinear aerodynamic response occurs. Nevertheless, the

accuracy of the model is overall high.

Table 2 provides a statistical summary of the prediction errors. The average error,

standard deviation and the worst prediction for each aerodynamic coefficient across the

complete dataset and the validation dataset are reported. The statistics are similar

between datasets. This suggests that there is no over-fitting and the model performs

well to new conditions. In addition, the low standard deviations indicate good model

precision. The average errors were also found low, with CL the best predicted quantity.

The errors for the CD and CMy tend to be skewed by the reference values being an order

of magnitude smaller than the lift values. Last, the worst statistics are for the CMy ,

consequence of the larger errors at high angles of attack. Small errors on the shock-wave

location around the reference axis can contribute to a magnified error too.

The adoption of the traffic-light system for the error plots in Figure 12 is convenient

to judge the adequacy of the model for design purposes. The low error obtained for

the lift is essential because this is regarded the most important design parameter. In

contrast, larger errors for the drag and pitching moments are acceptable due to the

smaller magnitudes. In general, errors lower than 4-5% (green) are within typical

simulation tolerance and, therefore, acceptable. For errors between 5 and 10-15%
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(a) CL percent error, εCL
, whole dataset. (b) CL, full envelope.

(c) CD percent error, εCD
, whole dataset. (d) CD, full envelope.

(e) CMy percent error, εCMy
, whole dataset. (f) CMy , full envelope.

Figure 12: Aerodynamic coefficient predictions with the steady-state GCN-MM-AE

model for the CRM test case. Error plots on the left are classified by training (circles)

and validation (triangles) samples; percent error below 4% in green, amber between 4%

and 10%, and red larger than 10%.
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Table 2: Statistical summary of the prediction error for the CRM test case and various

datasets.

εCL
[%] εCD

[%] εCMy
[%]

mean std dev worst mean std dev worst mean std dev worst

Full dataset 0.6 0.5 3.3 0.7 0.8 5.2 2.4 3.6 24.3

Validation set 0.8 0.7 3.3 1.0 1.1 5.2 3.5 5.0 24.3

(amber), engineering judgement should take consideration of the discrepancies. Larger

errors (red) could cause wrong aerodynamic design directions. Action should be taken to

improve the model, by iteratively including new training experiments and regenerating

the model until acceptable error is achieved. In practice, however, the error tolerance

is determined by application. For example, multiphysics simulations (e.g. aeroelastic

analyses) require stricter modelling tolerances from each separate model than single

physics simulations (e.g. common aerodynamic responses). Nevertheless, there is no

risk of unpredicted structural failures as safety factors are enforced to be over 200%.

4.2. Predicted Distributions

Figures 13 and 14 analyse the predicted pressure coefficient field for the two labelled

conditions in Figure 12. The contour plots illustrate the reference CP solution from CFD

(left), the prediction by our model (middle) and the error (right). Panel (d) compares

the CP distributions at the cross sections specified in the right contour. We observe that

in sample e the prediction is in good agreement over the whole surface, Figure 13. For

sample f, the model is overall correct except for a small discrepancy on the shock-wave

location, predicted slightly further downstream from 30% of the span, Figure 14.

Figures 15 and 16 provide a similar comparison for the skin friction coefficient Cf .

The shear-stress field is also found correct in the first condition. In the second case, we

observe that the boundary-layer separation is slightly delayed. This is in line with the

predicted location of the shock wave shown in the previous Figure. Remarkably, this

result indicates that our proposed framework appears to understand the relationship

between the physical quantities. This demonstrates the reason for developing a single

model for multiple target fields.

4.3. Full Envelope Prediction

The implemented ROM is convenient to efficiently interrogate the complete operating

envelope. The right Panels in Figure 12 present the resulting aerodynamic maps. The 3D

contour plots were built by integrating the surface field predictions of 30 × 30 samples

uniformly distributed. The CL correlates with α∞ as expected, with the nonlinear

CL slope at high angles of attack also well captured by the model. In addition, a

shallow valley along the diagonal is visible. This seems to be caused by the shock
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(a) CP from CFD reference. (b) Predicted CP . (c) CP error (difference).

(d) CP distribution at different cross sections for the ROM prediction (red squares) and the

CFD reference (black curve).

Figure 13: Pressure coefficient CP comparison of our steady-state GCN-MM-AE model

against CFD reference at M∞ = 0.70 and α∞ = 3.87 deg (sample e in Figure 12);

prediction error εCL
= 0.1%, εCD

= 0.7% and εCMy
= 1.3%.

(a) CP from CFD reference. (b) Predicted CP . (c) CP error (difference).

(d) CP distribution at different cross sections for the ROM prediction (red squares) and the

CFD reference (black curve).

Figure 14: Pressure coefficient CP comparison of our steady-state GCN-MM-AE model

against CFD reference at M∞ = 0.76 and α∞ = 4.42 deg (sample f in Figure 12);

prediction error εCL
= 3.3%, εCD

= 2.1% and εCMy
= 24.3%.
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(a) Cf from CFD reference. (b) Predicted Cf . (c) Cf error (difference).

(d) Cf distribution at different cross sections for the ROM prediction (red squares) against

CFD reference (black curve).

Figure 15: Skin friction Cf comparison of our steady-state GCN-MM-AE model and

CFD reference at M∞ = 0.70 and α∞ = 3.87 deg (sample e); prediction error εCL
= 0.1%,

εCD
= 0.7% and εCMy

= 1.3%.

(a) Cf from CFD reference. (b) Predicted Cf . (c) Cf error (difference).

(d) Cf distribution at different cross sections for the ROM prediction (red squares) and the

CFD reference (black curve).

Figure 16: Skin friction Cf comparison of our steady-state GCN-MM-AE model against

CFD reference at M∞ = 0.76 and α∞ = 4.42 deg (sample f ); prediction error εCL
= 3.3%,

εCD
= 2.1% and εCMy

= 24.3%.
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Table 3: Computing costs for steady-state modelling of the CRM test case.

Computing Task Cost

1 steady-state CFD run: ∼400 CPU-h

Training dataset of 40 CFD run: ∼16, 000 CPU-h

ROM training execution: ∼2.5 GPU-h

1 steady-state ROM prediction: ∼0.00014 GPU-h

Full-envelope of 900 ROM prediction: ∼0.1 GPU-h

wave intensifying while the peak pressure gradually decreases. The isocontours on

the CD envelope reveal a nonlinear behaviour along the α∞ axis, which resembles the

expected quadratic dependence, especially at lowM∞. The drag increase at higher Mach

numbers is related to the boundary-layer separation induced by the shock wave. Last,

the CMy envelope reveals highly nonlinear phenomena. The pitching moment decreases

(in magnitude) with α∞ caused by the shock wave intensifying and moving upstream.

By contrast, CMy is largest at low α∞ and M∞∼ 0.81 consequence of the downstream

location of the shock wave. The small spike observed at high α∞ is likely consequence

of the lack of sampling in that region.

4.4. Note on Computing Costs

A summary of the computing costs involved in the deployment of the framework and

the significant saving compared to high-fidelity simulations is reported in Table 3.

The steady-state CFD conditions by Immordino et al [13] were solved with a 120-

core HPC, totalling up to 16, 000 CPU-h for the 40 training CFD samples. The ROM

was generated with a 6GB GPU and the training process required around 2.5 GPU-h.

New aerodynamic predictions are completed in less than a second, rather than almost

3 hours in CFD, i.e. a speed-up of well over 99.9%. As a result, the 30 × 30 samples

to construct the 3D envelopes in the right Panels of Figure 12 were completed within

minutes, whereas it would be impractical using only CFD. Furthermore, to address

a typical aerodynamic characterisation campaign [37], comprising 10 points along the

angle-of-attack axis and a Mach-number resolution of 0.02, the overall computing gain,

including the generation of the training dataset in CFD, would still be up to 50%.

5. Conclusions

The flow analysis around a three-dimensional aircraft remains an expensive task despite

access to larger and more performing computing services than ever before. This

limitation takes on an even higher criticality when the designer is tasked with delivering

the performance of the system across a range of relevant flow conditions. In engineering,

the loads experienced by a reentry vehicle passing through the Earth’s atmosphere, the

stability and control characteristics of a transport aircraft across the flight envelope
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or the aerodynamic map of a racing car are examples of common tasks. To overcome

the computational burden associated with running a multitude of computational fluid

dynamics analyses, whose number is at the designer’s discretion to obtain data in time

for pressing deadlines, the use of reduced order models is a viable alternative. However,

these models still present a number of challenging decisions. The most critical decision

one has to make is the choice of the mathematical structure for the reduced-order model.

We developed a geometric deep-learning autoencoder framework to achieve a cost-

effective predictive model of output quantities of interest defined on a large spatial

domain with an unstructured, irregular discretisation. The framework dealt with over

300 thousand outputs and about 80 thousand grid points distributed on a three-

dimensional discretisation of a wing/body aircraft configuration. We faced specific

challenges that required the development of a novel approach, which can be taken to

other disciplines with immediate applicability. The first challenge is represented by

the large set of points used for the spatial discretisation. We created a dedicated

multi-resolution autoencoder for extracting multi-scale features from the data field,

transferring influence across the domain and for memory efficiency. The second challenge

is related to the unstructured and irregular point discretisation. We made use of graph

convolutional networks that enable the convolutional operation on irregular domains

using the mesh connectivity, very attractive to emulate high-fidelity computational

engineering analyses. The resulting predictive framework offers a novel approach when

data are defined on large three-dimensional unstructured manifolds, which is the case for

any realistic problem. Nonetheless, the framework keeps the ability to use the simpler

cases of structured domains when available.

It is worth noting that the steady-state framework builds on one single model

that outputs multiple vector fields distributed on an unstructured domain. For our

application to aircraft aerodynamic loads, the predicted pressure and shear-stress

coefficient distributions were integrated in space to calculate the total force and moment

coefficients. This operation not only mimics the way integrated loads are obtained in a

computational fluid dynamics solver, but there are advantages too. First, the generation,

training and validation of one single model is noticeably cheaper and easier than doing

it for two separate and distinct models. Then, it avoids having two independent models

that may be best fit for their specific outputs but do not recover the actual relationship

among the distinct outputs, i.e. integration in space for our aerodynamic problem.

Finally, a physically sound distribution of flow quantities obtained from one single model

leads to a sound interpretation of aerodynamic loads.

The NASA Common Research Model wing/body aircraft configuration was used

for demonstration. We used an existing database of 70 pre-computed cases to generate

and validate the predictive model. In the reference study that provided us the database,

sample points were placed across the flight envelope using a Latin Hypercube method,

which is not receptive of any feature learned during the design space exploration. The

model predictions achieved a good match to reference data across the flight envelope.

It is expected that further improvements in model predictions are obtained using an
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adaptive design of experiments where sample points are placed at strategic locations

of the design space. Once the model is generated, load predictions across the whole

flight envelope of angle of attack and Mach number is possible within minutes. A

thorough study demonstrated that the model captured the various nonlinear effects

throughout the envelope, including variations of shock wave strength and position with

the angle of attack and Mach number, and the appearance of shock-induced boundary-

layer separation at certain flow conditions.

Today, there is an abundance of data from calculations and measurements. Our

choice of using an existing database reflects this situation. Cost-wise, model predictions

are obtained at a minimal cost, 0.1%, compared to running the computational fluid

dynamics solver. In design applications, the issue of database generation is still actual.

To minimise the preliminary data requirements, a combined data-driven with physics-

knowledge implementation could be thought by embedding physics-informed loss terms

during training. However, application of physics terms on the surface of a complex

geometry is not trivial and proper consideration is sought as the fluid dynamics equations

are formulated for the fluid volume. We believe the generalisation to variable shapes is

attractive to further expand the applicability of our model. Since our model is designed

to include the coordinates of the mesh nodes as inputs, the current implementation may

be adapted to wing deflections for static, three-dimensional aeroelastic analysis and for

aerodynamic shape design and optimisation.
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GCN layer, except at the model output. The dimension of the tensor for each layer is

indicated, arranged in m×nmml× cl, with m the batch size, nmml the grid size from the

corresponding MM level and cl the number of layer output channels. The kernel size

(number of learnable parameters) in each layer is also indicated.

Table 1: GCN-MM-AE model architecture for steady-state aerodynamic prediction of

the CRM case. Refer to diagram in Figure 11 of the main article.

Layer Dimension Operation Kernel

Input: [M∞, α∞], xi, Â0 m× 78829× 5

Encoder:

GCN Enc0.1 m× 78829× 72 Eq. (6) 5× 72 + 72

PReLU Enc0.1 m× 78829× 72 Eq. (8) 72

GCN Enc0.2 m× 78829× 144 Eq. (6) 72× 144 + 144

PReLU Enc0.2 m× 78829× 144 Eq. (8) 144

MM Â0 Â1 m× 5000× 144 Eq. (10)

GCN Enc1.1 m× 5000× 144 Eq. (6) 144× 144 + 144

PReLU Enc1.1 m× 5000× 144 Eq. (8) 144

GCN Enc1.2 m× 5000× 288 Eq. (6) 144× 288 + 288

PReLU Enc1.2 m× 5000× 288 Eq. (8) 288

Decoder:

GCN Dec1.1 m× 5000× 144 Eq. (6) 288× 144 + 144

PReLU Dec1.1 m× 5000× 144 Eq. (8) 144

GCN Dec1.2 m× 5000× 144 Eq. (6) 144× 144 + 144

PReLU Dec1.2 m× 5000× 144 Eq. (8) 144

MM Â1 Â0 m× 78829× 144 Eq. (10)

GCN Dec0.1 m× 78829× 72 Eq. (6) 144× 72 + 72

PReLU Dec0.1 m× 78829× 72 Eq. (8) 72

GCN Dec0.2 m× 78829× 72 Eq. (6) 72× 72 + 72

PReLU Dec0.2 m× 78829× 72 Eq. (6) 72

Repeat: yi [yi,yi,yi,yi] m× 78829× 72× 4

GCN Dec0.3 m× 78829× 72× 4 Eq. (6) 72× 72× 4 + 72× 4

PReLU Dec0.3 m× 78829× 72× 4 Eq. (6) 72× 4

GCN Dec0.4 m× 78829× 1× 4 Eq. (6) 72× 1× 4 + 1× 4

Output: [CP i, Cτ xi, Cτ yi
, Cτ zi] m× 78829× 4 Eq. (3)

To complete the description of the model generation, Table 2 provides details of

the optimisation strategy adopted to generate the ROM. In brief, we chose the Adam

gradient-based algorithm [38] as optimiser and the mean squared error (MSE) as loss

function [39]. The input data was standardised and normalised using the the field mean

and standard deviation, respectively, which is a common practice for a more successful

training outcome. The minimisation history of the mean squared error is shown in
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Table 2: Training strategy for the generation of the steady-state GCN-MM-AE model.

Parameter Value

Trainable parameters 174, 460

Dataset samples 70

Training set (58%) 40

Batch size 1

Training epochs 800

Loss function MSE

Optimiser Adam

Start learning rate 0.0009

Learning rate decay 0.333 / 300 epochs

GPU machine NVIDIA GeForce RTX 2060

Training time 2.5 h

Figure 1: Mean squared error (loss function) history during model weights optimisation

for the training and validation sets.

Figure 1 for both the training and validations sets. The final MSE values between sets

are similar, which indicates that the model is not over-fitting.

Appendix .2. Multi-Mesh Interpolation Comparison

Various interpolation methods can be thought for the coarsening and recovery steps of

Multi-Mesh scheme. To demonstrate the adequacy of our proposed WMLS method, the

multi-grid scheme by Smith et al [34], adapted to our surface-mesh task, was considered



REFERENCES 30

Table 3: Prediction error for each MM interpolation method.

εCL
[%] εCD

[%] εCMy
[%]

MM cycle mean std dev worst mean std dev worst mean std dev worst

WMLS 0.8 0.7 3.3 1.0 1.1 5.2 3.5 5.0 24.3

MG Smith 0.8 0.5 2.2 1.2 1.1 4.3 4.6 8.4 48.9

as an alternative option. In brief, Smith et al adopted a volume-averaged solution of the

fine cells embedded to each coarse cell, for the reduction step; and a direct re-casting of

the solution on the fine grid from each associated coarse cell, for the recovery operation.

Table 3 reports the summary of the prediction error obtained with each interpolation

method. Both options were found similar with regards to the prediction of the CL and

CD. However, our WMLS approach provided marginally improved CMy results.

As a result of the interpolation, differences on the solution fields can be expected.

Therefore, we analysed the solutions predicted by each MM method. Figure 2 illustrates

a comparison on the predicted CP (upper panels) and the error against the CFD

reference (lower panels) on the worst validation case (sample f in Figure 12 of the

main text). Our WMLS is in the middle panels while Smith’s alternative is in the

right panels. We observe a noisier output solution with Smith’s method, therefore, less

physically representative. This issue could be solved with additional GCN blocks after

the recovery step, but at the expense of a larger computational burden. By contrast,

smoother solutions are obtained with our WMLS scheme. Nonetheless, the error is

visibly larger with Smith’s method in this particular sample. These results demonstrate

our proposed WMLS scheme for the MM cycle is an appropriate choice for the transonic

aerodynamics task.

Appendix .3. Sensitivity to Model Architecture Hyperparameters

The influence from the various key hyperparameters of the proposed model architecture

is analysed here. In particular, we are interested in assessing the sensitivity of the model

performance to the training set size, the number of model weights or the multi-mesh

cycle reduction.

Sensitivity to MM compression rate: Table 4 reports the prediction error summary

for various mesh compression rates adopted in the MM cycle. Different models were

generated for mesh coarsenings to 10,000, 5,000 and 2,500 grid points, respectively. A

compression ratio larger than 30 was not pursued. The final mesh coarsening choice

adopted in the Results section is highlighted in bold. We observe that the prediction

error statistics are similar among the various MM compressions. Despite the prediction

error is expected to worsen with coarser meshes, the results suggest that the various

GCN blocks are able to compensate for this. The model performance remains acceptable

even on significantly large mesh reductions.
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Table 4: Prediction error comparison for various MM compression ratios on the CRM

validation dataset.

Coarse mesh size εCL
[%] εCD

[%] εCMy
[%]

(Compress. ratio) mean std dev worst mean std dev worst mean std dev worst

10,000 (7.9) 0.5 0.4 1.7 0.8 0.9 3.3 4.7 6.2 30.7

5,000 (15.8) 0.8 0.7 3.3 1.0 1.1 5.2 3.5 5.0 24.3

2,500 (31.6) 0.7 0.5 2.0 0.6 0.6 2.6 3.4 4.2 19.1

Table 5: Prediction error comparison for different MM cycle levels on the CRM

validation dataset.

εCL
[%] εCD

[%] εCMy
[%]

MM cycle mean std dev worst mean std dev worst mean std dev worst

2 levels 0.8 0.7 3.3 1.0 1.1 5.2 3.5 5.0 24.3

3 levels 0.8 0.7 2.6 1.1 0.8 3.4 3.9 4.3 17.1

4 levels 0.8 0.9 4.1 1.3 1.8 9.1 3.7 7.0 38.5

Table 6: Prediction error comparison for different training dataset sizes on the CRM

validation dataset.

εCL
[%] εCD

[%] εCMy
[%]

Training set mean std dev worst mean std dev worst mean std dev worst

40 samples 0.8 0.7 3.3 1.0 1.1 5.2 3.5 5.0 24.3

20 samples 1.3 1.2 5.6 2.0 2.5 13.9 5.8 7.3 41.6

Table 7: Prediction error comparison for different model sizes on the CRM validation

dataset.

εCL
[%] εCD

[%] εCMy
[%]

Model weights mean std dev worst mean std dev worst mean std dev worst

174,460 0.8 0.7 3.3 1.0 1.1 5.2 3.5 5.0 24.3

98,770 0.6 0.5 2.1 0.5 0.3 1.6 4.7 5.6 26.9

44,464 1.0 1.0 5.0 1.0 0.9 5.0 5.6 6.3 34.1
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(a) CP CFD reference. (b) Predicted CP , MM WMLS. (c) Predicted CP , MM Smith.

(e) CP error, MM WMLS. (f) CP error, MM Smith.

Figure 2: CP comparison between the two interpolation methods in the MM cycle

against CFD reference at sample f in Figure 12.

Sensitivity to MM cycle levels: The sensitivity to the number of MM reduction layers

is assessed in Table 5. Results are reported for MM cycles of 2 (final choice highlighted

in bold), 3 and 4 levels. The 3-level MM cycle was constructed by first reducing to

20,000 nodes and subsequently reducing to 5,000, assigning the same node count as

for the 2-level case. The 4-level scheme was achieved by reducing to 40,000, 20,000

and 5,000. GCN blocks were embedded between mesh levels, for a total of 174,460,

352,156 and 436,252 model weights, respectively. The statistics are similar among the

various MM cycles. By contrast, the computational cost involved in the 3-level and the

4-level schemes was found, respectively, 32% and 81% larger compared to the 2-level

implementation. This motivated our choice of the 2-level reduction as a more efficient

implementation in terms of model memory requirements.

A quantification of the prediction confidence for each multi-mesh cycle is illustrated

in Figure 3. Inter-quartile range plots for the three different MM levels and the various

performance metrics, CL error, CD error and CMy error. The uncertainty intervals are

based on predictions of the validation dataset. The error for each validation sample

is also illustrated in triangles. We observe that the 3-level option was found with the

marginally lowest variability. Nevertheless, the uncertainty is similar for the various

MM levels, which provides confidence on the final choice of the 2-level MM cycle.

Sensitivity to training dataset size: We now analyse how the prediction performance is

affected with a smaller training dataset. In particular, the number of training samples

was halved, i.e. using 20 samples to generate the model as opposed to the original 40.

Minimising the amount of data requirements is interesting to reduce the computiional
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(a) CL error. (b) CD error. (c) CMy
error.

Figure 3: Box-and-whisker plots for the prediction error among the various MM levels.

The error of each validation sample is also shown in triangles.

cost involved with running the CFD simulations. The prediction error summary for the

various load coefficients is reported in Table 6, with the original dataset highlighted

in bold. A degradation of the performance is observed with the reduced training set.

However, the error values remain still reasonably good considering the small number of

preliminary samples to generate the model.

Sensitivity to model size: The performance of the model for smaller number of weights

is assessed here. Evaluating different model sizes is useful to identify potential over-

fitting issues and reduce GPU memory requirements. In this study, the model size

is reduced by halving the number of weights in two successive steps, for a total of

98,770 and 44,464 parameters, respectively. The results are reported in Table 7. A

gradual degradation of the performance is observed with reducing the size of the model.

Nevertheless, the degradation is fairly low. We conclude that there is no data over-

fitting with the largest model. And the smallest model still showcases good capacity to

learn the physics of the system adequately.
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