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Abstract
Calculating aerodynamic loads around an aircraft using computational fluid dynamics is a user’s
and computer-intensive task. An attractive alternative is to leverage neural networks (NNs)
bypassing the need of solving the governing fluid equations at all flight conditions of interest. NNs
have the ability to infer highly nonlinear predictions if a reference dataset is available. This work
presents a geometric deep learning based multi-mesh autoencoder framework for steady-state
transonic aerodynamics. The framework builds on graph NNs which are designed for irregular and
unstructured spatial discretisations, embedded in a multi-resolution algorithm for dimensionality
reduction. The test case is for the NASA common research model wing/body aircraft configuration.
Thorough studies are presented discussing the model predictions in terms of vector fields, pressure
and shear-stress coefficients, and scalar fields, total force and moment coefficients, for a range of
nonlinear conditions involving shock waves and flow separation. We note that the cost of the
model prediction is minimal having used an existing database.

Nomenclature

AE autoencoder
CFD computational fluid dynamics
CNN convolutional neural network
COO coordinate list
CRM common research model
DNN dense neural network
GCN graph convolutional network
GDL geometric deep learning
GNN graph neural network
MM multi mesh
ML machine learning
MSE mean squared error
NN neural network
POD proper orthogonal decomposition
PReLU parametric rectified linear unit
ROM reduced order model
α angle of attack
A, Aij adjacency matrix
Â, Âij adjacency matrix with self loops
b constant term
β slope of the PReLU function
c reference chord
CD drag coefficient
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Cf skin friction coefficient
cl number of output channels in a layer
CL lift coefficient
CMy pitching moment coefficient
CP pressure coefficient
Cτ wall shear-stress coefficients
D̂ diagonal degree matrix
e edge weight in a graph
ε [%] relative error
ϕ shape functions
I identity matrix
I interpolation matrix
M Mach number
m batch size
n number of grid points in a mesh
p(x) polynomial basis function
p(i) probability function
Re Reynolds number
S reference surface
S surface mesh nodes
s network input vector
τw wall shear-stress components
θ,W model parameters
w weight function
x grid-point position in a graph
Y i model prediction on the graph vertices
y generic variable

Subscripts

r coarse mesh level
e element edges
i target node index
j source node index
l layer
mml multi-mesh level
n fine mesh level
∞ freestream condition

1. Introduction

Aerodynamic analyses in many engineering sectors, from aerospace to automotive, remain computationally
expensive with high-fidelity CFD. The need to provide physical insights at very small scales around a
complex geometry with limited resources contrasts with the ever pressing project deadlines. This motivates
the investigation of ROMs for accurate approximations of the physical system via numerical techniques of
reduced computational complexity. The recent breakthrough in ML has prompted the development of new
methodologies particularly suited for ROMs. Modern, sophisticated ML algorithms are attractive for
approximating highly complex and nonlinear systems from data. For example, Massegur et al [1] leveraged
ML to predict the formation of ice on a wing section and the resulting aerodynamic degradation across a
range of freezing conditions. Furthermore, Massegur et al [2] developed an ML based aerodynamic model
coupled with a structural model for aeroelastic and flutter search analyses.

Herein, we focus on three-dimensional (3D) geometries and we address the added complexities
compared to two-dimensional (2D) cases, which are around ten times more frequent in the literature.
Regarding the physics, 3D problems present more abundant nonlinear flow features and interactions [3, 4],
which include cross-flow interactions, wing–tip vortices and separation bubbles, among others. ROM
approaches developed for 2D problems [2], featuring direct prediction of aerodynamic forces, are
questionable to address the additional intricacies that arise in 3D problems. To this goal, we use deep
learning NNs [5] to model distributed aerodynamic quantities on the aircraft surface.

The primary challenge in reduced-order modelling of 3D aerodynamic fields is the large dimensional
space, reflecting the numerical discretisation of the computational domain [6]. Common nonlinear ROM
approaches, including Kriging [7] and DNNs [8, 9] result ill-suited. To address the problem of poor
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scalability, CNNs are better suited for flow-field analyses because they are designed to extract spatial features
from digital images [10–12]. The problem is that CNNs are not directly suitable for unstructured meshes
typical of CFD applications because of their limitation to Euclidean domains (Cartesian grids). Interpolating
data to a regular grid is essential, but it can lead to additional errors and loss of resolution in refined regions.
Alternatively, CNN kernels of size 1 can be used as these are applicable to any mesh arrangement, as
implemented by Immordino et al [13] or Sabater et al [14]. The issue with this approach is that the mesh
connectivity is unused, resulting in simpler cloud-point modelling. The absence of propagation of
information across the mesh limits the capability to capture coherent flow features and reconstruct
continuous solutions. To leverage connectivity throughout the mesh, geometric deep learning [15] offers a
range of convolutional methods, known as GNNs. GNNs are capable of processing graphs or
manifold-unstructured meshes, which makes them a better fit for CFD applications that deal with
non-Euclidean data [16]. Examples of GNNs for steady-state aerodynamics are not abundant. Ogoke
et al [17] addressed aerodynamic solution of a 2D aerofoil rather than a more relevant test case. Baqué
et al [18] projected the 3D geometry to a simpler prismatic graph to contain the computational burden. On
the other hand, comprehensive message-passing methods, as adopted by Hines and Bekemeyer [19] or Han
et al [20], which feature dedicated learnable weights for each edge and node of the mesh, can lead to excessive
memory requirements.

To maximise ROM computational efficiency when dealing with large spatial domains, dimensionality
reduction to compress the domain size is crucial. The classical POD [21, 22] is only limited to linear
projections of the data onto the compressed space, causing general loss of information in highly complex
physics. AEs [23–26], which are the NN alternative to the POD, are a better alternative allowing a nonlinear
compression and recovery. This work contributes generally to the question of dimensionality reduction of
large datasets defined on irregular spatial domains. To this aim, an AE approach embedded in the
graph-based convolutional framework is sought. We solved this challenge by devising a multi-resolution
scheme, inspired by the common multi-grid methods to solve partial differential equations [27]. While the
methodology applies naturally to other fields and disciplines, we demonstrate the applicability on a 3D
aerodynamic problem.

We propose a graph-convolutional MM AE tailored for predicting distributed aerodynamic loads around
a full-scale air vehicle. Unique contributions of this work are the applicability to non-Euclidean domains and
a unique multi-resolution embedding for dimensionality reduction and modelling efficiency purposes.
Furthermore, a building-block implementation, consisting of composition of separate NN units, facilitates
evaluation of different model architectures to address the task. We have chosen the wing/body configuration
of the NASA CRM for demonstration, predicting steady-state transonic aerodynamic loads across a range of
Mach numbers and angles of attack.

The paper continues in section 2 with a description of the problem we solved and the identification of
nonlinear features to be retained in the model outputs. The methodology for steady-state problems is
explained in section 3. Then, section 4 summarises the main results. Finally, conclusions and an outlook on
future work are given in section 5.

2. NASA CRMwing/body configuration

The test case is for the NASA CRM wing/body configuration, which is representative of a transonic transport
aircraft designed to fly at a cruise Mach number of 0.8 [28, 29]. The CRM is shown in figure 1. The reference
geometric chord is c= 0.1412m, the surface area is S= 0.0727m2, and the pitch moment is taken around
xa/c= 0.5049.

The CFD dataset was taken from Immordino et al [13], where SU2 7.5 solver was used. The surface
mesh shown in figure 1 features around 78 000 grid points in an unstructured triangular topology with
adapted discretisation density around the edges. The volume mesh consists of over 15million cells, with a
prism-layer mesh to promote y+ < 1 near the wall, denoting the non-dimensional height of the first cell
normal to the boundary. The y+ ensures an adequate resolution of the boundary layer. The Spalart–Allmaras
turbulence model was chosen. For good convergence, the JST scheme with added dissipation was adopted to
discretise the convective term, Green Gauss was chosen to compute the discretised gradients and the
biconjugate gradient with ILU preconditioner was applied to solve the linear solver.

In this work, we are interested in the steady-state prediction of the pressure coefficient:

CP =
p − p∞
1
2 ρ∞U2

∞
(1)
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Figure 1. Surface mesh representation of the common research model.

with p∞, ρ∞ and U∞ the freestream pressure, density and velocity, respectively. The shear-stress coefficient
components:

Cτ =
τw

1
2 ρ∞U2

∞
(2)

with τw = [τx, τy, τz], on the surface mesh of the CFD model across an envelope of Mach numbersM∞ and
angles of attack α∞.

2.1. Reference dataset
We used the available database of aerodynamic solutions to generate and validate our steady-state predictive
model. The database contains 70 CFD calculations in the range ofM∞ ∈ [0.70,0.84] and α∞ ∈ [0.0,5.0] deg,
at Reynolds number Re= 5 · 106 and freestream temperature T∞ = 311K. The range of freestream
conditions was chosen to have diverse nonlinear flow phenomena to be predicted by our model. The sampled
conditions are shown in figure 2, of which 40 were used for training (represented with circles) and the
remaining 30 for validation (triangles). Latin hypercube technique was used to define this limited number of
samples for the preliminary envelope scan. The resulting sampling distribution did not include points on the
boundaries and occasionally left large gaps between samples. Therefore, these experiments are useful to
assess the performance of our framework in under-sampled spaces.

First, we delve into the variation of lift and drag coefficients, CL and CD, respectively, with the freestream
conditions shown in figure 3. These were obtained by integrating the pressure coefficient CP and shear-stress
Cτ fields of the reference CFD solutions. Inspecting the colormaps, the lift coefficient correlates
predominantly with the angle of attack. The variation of the drag coefficient indicates an equal correlation to
α∞ andM∞. Both the angle of attack and the shock-induced boundary–layer separation contribute to the
drag increase.

Then, we extracted few sample points from the database for further demonstration of the complexity of
our problem. Figure 4 shows the pressure coefficient for selected conditions, and figure 5 is for the skin
friction coefficient, defined as the shear-stress norm Cf = ||Cτ ||2. These figures are arranged into four panels,
placed to reflect the location of the samples labelled in figure 2, with low α∞ on the bottom panels and high
M∞ on the right panels. The pressure distribution, figure 4, significantly differs depending on the freestream
conditions. Inspecting the lower and the upper left panels, the location of the shock wave moves towards the
leading edge and the shock intensity increases with angle of attack at lower Mach numbers. This transition
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Figure 2. Dataset samples across the operating envelope of the CRMmodel. Circles correspond to training samples and triangles,
validation cases. Lettered labels indicate selected samples to showcase the different physics across the envelope, figures 4 and 5.

Figure 3. Integrated aerodynamic force coefficients of the NASA CRM wing/body configuration for the reference dataset,
classified by training (circles) and validation (triangles) samples.

appears to be nonlinear for α∞ higher than 3 deg. With increasing Mach number, the pressure distribution
becomes gradually smoother and the shock wave becomes stronger. As a result, at the highestM∞, right
panels, the peak CP values are lower. On the contrary, at theseM∞ conditions, the location of the shock wave
remains similar with increasing angle of attack, bottom to top of the right panels.

Similarly, the skin friction coefficient distributions, in figure 5, indicate the boundary–layer separation
regions (darker blue) induced by the shock wave. At low Mach number, left panels, the separation line moves
towards the leading edge with increasing angle of attack. Furthermore, in panel (a) a separation bubble is
visible. On the contrary, aboveM∞ = 0.8, the location of the separation line remains similar across the α∞
range, as seen in the right panels.

This brief overview sets the background problem for our ROM. The diverse nonlinear flow
characteristics cannot be captured by simple direct modelling of the scalar loads, such as CL and CD. On the
other hand, the task of predicting distributed quantities at each condition, such as CP, is more challenging
than scalar targets but is more useful from a design standpoint. This motivates our choice to devise a GDL
based framework for prediction of the surface aerodynamic fields across the operating envelope.
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Figure 4. Pressure coefficient distribution, CP, at the four sample points of figure 2.

Figure 5. Skin friction coefficient distribution, Cf, at the four sample points of figure 2.
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Figure 6. CRMmesh represented as a graph with node features and edge weights.

3. Methodology

In a steady-state formulation, the aerodynamic response is considered dependent on the input conditions
only, and any time dependence is neglected. An NN function fNN is sought which maps specific user-defined
inputs s to desired target fields Y i on the surface mesh S :

Yi = fNN (s,xi ) ∀ i ∈ S (3)

with i denoting a node in S . The grid point coordinates xi are also embedded. We devise an architecture for
fNN by leveraging GDL and dimensionality reduction for unstructurally meshed manifolds. From GDL, we
resort to GNNs, which involve the convolution operation on graphs [16, 30].

3.1. Graph representation
In a GNN approach, the surface mesh is represented as a graph where the vertices (or nodes) contain the
position coordinates xi and variable fields yi (features). The graph edges connecting the grid points are
determined by the mesh connectivity. Figure 6 illustrates a representation of a graph where a target node i is
connected to j ∈ S surrounding grid points. Features yi and weights eij are assigned, respectively, to each
node and edge. The edges defining the graph connectivity and chosen weights are arranged to form the
adjacency matrix [16]:

A= eij for i, j = 1, . . .,n. (4)

This is an n× nmatrix containing the edge weights, and n is the total number of grid points in S . The
subscript ij denotes the jth source node connected to a given node i. We assign the weights as the inverse of
the distance between the two nodes forming the edge:

eij =
1

||xi − xj||2
. (5)

We then normalise the edge weights to be ∈ (0,1], where the upper end is inclusive because self loops, i.e.
eii = 1, are inserted by adding the identity matrix to the adjacency matrix: Â= A+ I. In addition, we choose

the edge weights to be non-directional, i.e. eij = eji, which results in a symmetric adjacency matrix, Â= Â
T
.

Note that Â is largely sparse as each row contains only a few non-zero elements. Consequently, it is more
memory-efficient to arrange the adjacency matrix in COO format. This format consists of two vectors: the
edge-index and the edge-weight vectors. The edge-index vector contains the pair of node indices [i, j] for each
edge, of size ne × 2 and ne the number of edges. The edge-weight vector contains the assigned weight edges eij
equation (5), with size ne × 1. In the CRM test case, the surface mesh consists of n= 78829 points and
ne = 472404 edges.
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Figure 7. Autoencoder concept, involving the embedding of GCN blocks in the reduction (encoder) and reconstruction (decoder)
of the field data.

3.2. GCN
From the family of GNN architectures, we leverage the GCN by Kipf and Welling [31]. The GCN operator at
a given target node is defined as:

g(y) = θT D̂
− 1

2 Â D̂
− 1

2 y+ b (6)

with θ a layer-specific trainable weight vector, b a constant term and y the node-based input vector at each
node of the mesh S . D̂= diag

(∑
j ̸=i eij + 1

)
∀ i contains the sum of the edge weights connected to each node

i, known as the diagonal degree matrix.
At each layer l, the GCN operation, equation (6), is executed on the output from the previous layer yl−1,

followed by a nonlinear activation function h:

yl = h
(
g
(
yl−1

))
(7)

We adopted for h the PReLU [32]:

h(y) =

{
y if y⩾ 0
βy if y< 0

(8)

with β another learnable parameter.
Note how the GCN operator equation (6) takes the convolutional analogy of the CNN for Euclidean

domains [33] but with a single-parameter filter swept across each row of the adjacency matrix. In fact, if we
set set eij = 0 for i ̸= j, the standard CNN layer with kernel size 1 is obtained, as Immordino et al [13] opted.

3.3. GCN-based AE
From equation (6) we realise that successive GCN executions are required to exert influence between far-away
grid points. For instance, with kl GCN layers in succession, only kl neighbourhoods around target node i are
influenced. Consequently, the propagation of information across the mesh is slow. This leads to two issues.
The first is that a deep network with an excessive number of layers would be necessary to propagate the
information in refined regions. The second issue relates to the memory size of the network becoming
computationally unmanageable in large spatial domains and high number of features. To alleviate these
issues, as introduced in section 1, we adopted an AE approach for the compression of the spatial domain.

The AE involves the projection of the states from the original domain onto a compressed space, operation
known as encoder. Then, these latent states are recovered back onto the original domain in an inverse
operation, known as decoder. Embedding NNs in this process makes the AEs more attractive than POD as
nonlinear projections are possible [23]. Figure 7 lays out the AE process embedded with GCNs.

3.4. MM scheme
AEs for discretised domains entail a multi-resolution scheme, which involves gradual coarsening operations
and a subsequent refining of the grid. Reduction techniques in Cartesian arrangements are trivial, including,
for example, pooling operations [11]. In contrast, coarsening of unstructured meshes is a more difficult task.
One of the primary challenges is that the adjacency matrix needs to be regenerated at every coarsening step.
A second challenge relates to reliable transfer of information between the various grid resolutions.

To solve these challenges, we present a novel hierarchical MM scheme for the AE. In the encoder process,
the mesh is coarsened between blocks of GCN layers, intended for extraction and compression of crucial
flow-field features. The latent states on the coarsened mesh are decoded in a recovery operation interleaved
with additional GCN blocks, to reconstruct the solution onto the original domain. Figure 8 illustrates the
coarsening and recovery operations of the proposed 2-level multi-mesh cycle for the CRMmodel. This
method is reminiscent of the common multi-grid V-cycle algorithms to solve partial differential
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Figure 8. The two-level multi-mesh scheme for the CRM test case, showcasing the resulting pressure reconstruction from one
mesh coarsening-refining cycle.

Figure 9. Probability density function to select the grid points in the mesh coarsening operation. Grid points ordered by face area
in ascending order.

equations [27, 34]. Operating on an MM cycle is advantageous for: (1) reducing the computing memory size,
given the compressed spatial domain; (2) extracting features of different spatial scales by means of the
different mesh resolutions; and (3) enabling direct information exchange among distant nodes, avoiding the
need for a deep network to spread influence across the grid, which results in a significantly smaller model.

The coarsening operation in the encoder involves the removal of grid points from the original mesh. The
strategy taken to coarsen the mesh is crucial to prevent loss of essential information. For instance, a uniform
random selection should preserve the original mesh topology, in terms of relative cell sizes, on the reduced
mesh. However, there is risk of insufficient resolution left in regions where the initial node density was
already low. On the other hand, excessive removal of nodes on originally refined regions could lead to
inappropriate reconstructions where the solution is likely to present larger gradients.

For adequate representation of the distinct spatial regions at the coarse level, a balanced node selection is
essential. We achieved this by selecting the nodes according to a probability function based on the
corresponding face area:

p(i) = 1+
1− e−2 i

n

1− e−2
(p1 − pn)+ p1 for i = 1. . .n with ai−1 < ai (9)

with i the index of the grid points sorted by their face area ai in ascending order, and n the total node count.
We chose p1 = 0.2 and pn = 1 for the smallest and largest elements, respectively. The resulting distribution is
demonstrated in figure 9. Probability of being selected is higher in nodes with larger face areas, likely in
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Table 1. Surface mesh sizes (number of nodes) of the two multi-mesh levels for the CRM case.

(Level 0) (Level 1)
Original mesh size Sn Coarsened mesh size Sr Compression ratio Sn

Sr

78 829 5000 15.8

Figure 10. Graph coarsening procedure and connectivity regeneration as part of the dimensionality reduction algorithm.

unrefined regions, as opposed to nodes found in dense discretisations. The coarsened mesh resulting from
this selection probability is illustrated at the bottom of figure 8. The mesh size (node count) in the various
multi-resolution levels is reported in table 1 for the CRM test case. Note how a compression ratio of 16 was
adopted.

Upon selection of the grid points to be kept in the coarse mesh, the graph connectivity was regenerated
by reconnecting remaining nodes that shared connections with discarded ones. Figure 10 demonstrates the
process of restoring graph connectivity following a coarsening operation, with new edges shown in orange.

3.5. Weighted moving least squares for grid interpolation
As shown in figure 8, information must be transferred across multiple grids. In the reduction step of the
encoder, the original field data must be interpolated onto the compressed mesh. In the decoder, the recovery
of the latent states onto the fine grid entails an inverse interpolation. These are critical operations in the MM
cycle. The interpolation consists of a functional ISn→Sr : Rnn → Rnr to map a spatial field yi from a source
grid Sn, which contains nn nodes, to a target grid Sr, with nr nodes, where both grids discretise the same
spatial domain:

yj = ISn→Sr yi j ∈ Sr,∀ i ∈ Sn (10)

with ISn→Sr the interpolation matrix from the source to the target mesh, and yj the interpolated field data.
The following properties are desirable for an adequate interpolation [35]: (1) interpolated values at the

source nodes should match the original data; (2) integrated resultants should be conserved; and (3)
interpolated fields should be continuous. Consequently, directly recasting the data across coincident points
and nearest-neighbour interpolation, as Han et al [20] proposed, result inappropriate because conservation
and continuity properties are not satisfied.

There is multitude of multi-grid algorithms, often devised to accelerating the solution of finite-volume
discretisation of partial differential equations, as proposed for example by Smith [34]. However, we chose a
different approach which is particularly suited for fluid-structure interaction problems, where satisfying the
above properties is crucial for adequate transfer of loads and deflections across models. In particular, we
implemented a weighted moving least squares (WMLS) scheme [35, 36]. The idea is to generate a shape
function u(x) to approximate the input data yi at source nodes i ∈ Sn with coordinates xi by
least-square-error minimisation:

min
a

L=
∑
i∈Sn

(u(xi)− yi )
2 w(||x− xi||) (11)

where the weight w(||x− xi||) is a function of the distance between the source and the target points. We
specify u(x) as a polynomial combination:

u(x) = pT (x) a (12)

with p(x) = [1,x,y,z,x2,y2,z2,xy,xz,yz]T the second-order polynomial basis function, and a the vector of
respective coefficients. The analytical solution of the least square minimisation can be shown to yield the
resulting approximation at every node j ∈ Sr of the target grid:

10
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u
(
xj
)
= ϕ

(
xj
)
yi j ∈ Sr,∀ i ∈ Sn (13)

with the shape functions defined as:

ϕ
(
xj
)
= pT

(
xj
)(
PTWP

)−1
PTW (14)

and

P=


pT (x1)
pT (x2)

...
pT (xnn)

 (15)

W=


w
(
||xj − x1||

)
0 . . . 0

0 w
(
||xj − x2||

)
. . . 0

...
0 0 . . . w

(
||xj − xnn ||

)
 . (16)

Therefore, the interpolation matrix ISn→Sr is:

ISn→Sr =


ϕ(x1)
ϕ(x2)

...
ϕ(xnr)

 (17)

The least squares approximation, equation (14), must be computed for each target grid point, resulting
in computationally intractable matrix operations when dealing with large meshes. To reduce the computing
burden, we adopt a moving interpolation consisting of limiting each target node to be influenced only by the
kn closest source points:

w
(
||xj − xi||

)
=

{
1 for ||xj − xi||< ||xj − xi+1|| with i = 1. . .kn and i ∈ Sn

0 otherwise
(18)

In this work, we found kn = 10 a good compromise between interpolation accuracy and computational
efficiency. Note that ISn→Sr is a largely sparse and non-square matrix of size nr × nn, each row containing
just kn non-zero values. This matrix is not invertible and two different interpolation matrices must be
generated for the encoder and decoder operations, ISn→Sr and ISr→Sn , respectively. Figure 8 illustrates the
dual interpolation process. We observe how the resulting pressure reconstruction (right) after execution of
the MM cycle matches well the original field (left).

3.6. Steady-state prediction framework
We now complete the construction of the predictive model architecture, here referred to as steady-state
GCN-MM-AE. For the CRM use case, the target fields are the pressure coefficient and the shear stress
components, Y= [CP,Cτx ,Cτy ,Cτz ], across the input envelope of Mach numbers and angles of attack,
s= [M∞,α∞]. The architecture of the final steady-state GCN-MM-AE model is shown in figure 11. The
scalar inputs s are cast to each node of the graph, concatenated to the grid-point coordinates xi ∀ i ∈ Sn. The
input vectors are processed by the encoder, involving the coarsening step of the MM cycle and two GCN
blocks. Subsequently, the decoder comprises the recovery operation of the MM embedded in two additional
GCN blocks. The network ramifies at the end into separate blocks for each field quantity to predict. This
architecture defines fNN in equation (3).

To the best of our knowledge, this framework is novel on several fronts: (1) GDL based AE framework for
spatial predictions on large and unstructured discretisations, applied to an aerospace problem; (2)
multi-resolution scheme embedded in the nonlinear AE for dimensionality reduction of unstructured
manifolds, aimed at capturing different spatial scales, promoting influence across the grid and maximising
ROM computational efficiency; and (3) building-block functionality to address distinct tasks within the
same framework: multi-resolution reconstructions, steady-state predictions and extension to dynamic
simulations. This framework was implemented using PyTorch 1.11, an optimised deep-learning library in
Python, and PyTorch Geometric, an open-source GNN package built upon PyTorch.
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Figure 11. Steady-state GCN-MM-AE model architecture for aerodynamic predictions of the CRM test case.

4. Results

This section is organised in two parts. The first part focuses on the prediction of scalar quantities—in our
case, the integrated force and moment coefficients. The second part is related to the model prediction of the
distributed fields—the pressure and the shear-stress coefficient distributions. The appendix contains more
background information, including the steady-state GCN-MM-AE architecture from figure 11 and the model
optimisation procedure. Comparison between our WMLS scheme and the multi-grid method by Smith [34]
for the two-way interpolation of the MM cycle was also investigated. To complete the framework set-up,
sensitivity assessments to key hyperparameters, such as the training set size, the model weights and the MM
cycle set-up, are also reported. Worth noting that at each sample point the model prediction outputs CP and
Cτ distributions, from which the resulting force and moment coefficients were obtained by integration.

4.1. Integrated loads
Figure 12 presents the analysis for the integrated lift coefficient CL, drag coefficient CD and pitching moment
coefficient CMy . The left panels show the prediction error on the dataset samples, with training samples in
circles and validation in triangles. The error is defined as:

εCy [%] =
|CyROM −CyCFD|

|CyCFD|
· 100 (19)

with y= [L,D,My]. The errors are classified by a traffic-light colour scheme: green corresponds to prediction
errors below 4%, amber between 4% and 10%, and red above 10%. For convenience, the percent error is
reported above each sample point. Best and worst predictions are highlighted as A and B, respectively. The
prediction error is generally small throughout for the CL predictions, where the error is below 2.2%.
Additionally, the worst prediction (B) was found atM∞ = 0.76, α∞ = 4.42 deg, with pitching moment error
of 24.3%. This point stands out for not including training samples within a wide surrounding. The model
found more difficult learning this region of the envelope. An adaptive sampling method to include training
samples in under-sampled regions would be convenient for improved model accuracy. However, this is
beyond the scope of this work. We also found the CMy prediction accuracy degrades slightly towards high
angles of attack, where nonlinear aerodynamic response occurs. Nevertheless, the accuracy of the model is
overall high.

Table 2 provides a statistical summary of the prediction errors. The average error, standard deviation and
the worst prediction for each aerodynamic coefficient across the complete dataset and the validation dataset
are reported. The statistics are similar between datasets. This suggests that there is no over-fitting and the
model performs well to new conditions. In addition, the low standard deviations indicate good model
precision. The average errors were also found low, with CL the best predicted quantity. The errors for the CD

and CMy tend to be skewed by the reference values being an order of magnitude smaller than the lift values.
Last, the worst statistics are for the CMy , consequence of the larger errors at high angles of attack. Small errors
on the shock-wave location around the reference axis can contribute to a magnified error too.

The adoption of the traffic-light system for the error plots in figure 12 is convenient to judge the
adequacy of the model for design purposes. The low error obtained for the lift is essential because this is
regarded the most important design parameter. In contrast, larger errors for the drag and pitching moments
are acceptable due to the smaller magnitudes. In general, errors lower than 4%–5% (green) are within typical
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Figure 12. Aerodynamic coefficient predictions with the steady-state GCN-MM-AE model for the CRM test case. Error plots on
the left are classified by training (circles) and validation (triangles) samples; percent error below 4% in green, amber between 4%
and 10%, and red larger than 10%.

Table 2. Statistical summary of the prediction error for the CRM test case and various datasets.

εCL [%] εCD [%] εCMy
[%]

mean std dev worst mean std dev worst mean std dev worst

Full dataset 0.6 0.5 3.3 0.7 0.8 5.2 2.4 3.6 24.3
Validation set 0.8 0.7 3.3 1.0 1.1 5.2 3.5 5.0 24.3
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Figure 13. Pressure coefficient CP comparison of our steady-state GCN-MM-AE model against CFD reference atM∞ = 0.70 and
α∞ = 3.87 deg (sample e in figure 12); prediction error εCL = 0.1%, εCD = 0.7% and εCMy

= 1.3%.

Figure 14. Pressure coefficient CP comparison of our steady-state GCN-MM-AE model against CFD reference atM∞ = 0.76 and
α∞ = 4.42 deg (sample f in figure 12); prediction error εCL = 3.3%, εCD = 2.1% and εCMy

= 24.3%.

simulation tolerance and, therefore, acceptable. For errors between 5% and 10%–15% (amber), engineering
judgement should take consideration of the discrepancies. Larger errors (red) could cause wrong
aerodynamic design directions. Action should be taken to improve the model, by iteratively including new
training experiments and regenerating the model until acceptable error is achieved. In practice, however, the
error tolerance is determined by application. For example, multiphysics simulations (e.g. aeroelastic
analyses) require stricter modelling tolerances from each separate model than single physics simulations (e.g.
common aerodynamic responses). Nevertheless, there is no risk of unpredicted structural failures as safety
factors are enforced to be over 200%.

4.2. Predicted distributions
Figures 13 and 14 analyse the predicted pressure coefficient field for the two labelled conditions in figure 12.
The contour plots illustrate the reference CP solution from CFD (left), the prediction by our model (middle)

14



Mach. Learn.: Sci. Technol. 5 (2024) 025006 D Massegur and A Da Ronch

Figure 15. Skin friction Cf comparison of our steady-state GCN-MM-AE model and CFD reference atM∞ = 0.70 and
α∞ = 3.87 deg (sample e); prediction error εCL = 0.1%, εCD = 0.7% and εCMy

= 1.3%.

Figure 16. Skin friction Cf comparison of our steady-state GCN-MM-AE model against CFD reference atM∞ = 0.76 and
α∞ = 4.42 deg (sample f ); prediction error εCL = 3.3%, εCD = 2.1% and εCMy

= 24.3%.

and the error (right). Panel (d) compares the CP distributions at the cross sections specified in the right
contour. We observe that in sample e the prediction is in good agreement over the whole surface, figure 13.
For sample f, the model is overall correct except for a small discrepancy on the shock-wave location,
predicted slightly further downstream from 30% of the span, figure 14.

Figures 15 and 16 provide a similar comparison for the skin friction coefficient Cf. The shear-stress field
is also found correct in the first condition. In the second case, we observe that the boundary–layer separation
is slightly delayed. This is in line with the predicted location of the shock wave shown in the previous figure.
Remarkably, this result indicates that our proposed framework appears to understand the relationship
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Table 3. Computing costs for steady-state modelling of the CRM test case.

Computing Task Cost

1 steady-state CFD run: ∼400 CPU-h
Training dataset of 40 CFD run: ∼16000 CPU-h
ROM training execution: ∼2.5 GPU-h
1 steady-state ROM prediction: ∼0.00014 GPU-h
Full-envelope of 900 ROM prediction: ∼0.1 GPU-h

between the physical quantities. This demonstrates the reason for developing a single model for multiple
target fields.

4.3. Full envelope prediction
The implemented ROM is convenient to efficiently interrogate the complete operating envelope. The right
panels in figure 12 present the resulting aerodynamic maps. The 3D contour plots were built by integrating
the surface field predictions of 30× 30 samples uniformly distributed. The CL correlates with α∞ as
expected, with the nonlinear CL slope at high angles of attack also well captured by the model. In addition, a
shallow valley along the diagonal is visible. This seems to be caused by the shock wave intensifying while the
peak pressure gradually decreases. The isocontours on the CD envelope reveal a nonlinear behaviour along
the α∞ axis, which resembles the expected quadratic dependence, especially at lowM∞. The drag increase at
higher Mach numbers is related to the boundary-layer separation induced by the shock wave. Last, the CMy

envelope reveals highly nonlinear phenomena. The pitching moment decreases (in magnitude) with α∞
caused by the shock wave intensifying and moving upstream. By contrast, CMy is largest at low α∞ and
M∞ ∼ 0.81 consequence of the downstream location of the shock wave. The small spike observed at high
α∞ is likely consequence of the lack of sampling in that region.

4.4. Note on computing costs
A summary of the computing costs involved in the deployment of the framework and the significant saving
compared to high-fidelity simulations is reported in table 3. The steady-state CFD conditions by Immordino
et al [13] were solved with a 120 core HPC, totalling up to 16000 CPU-h for the 40 training CFD samples.
The ROM was generated with a 6GB GPU and the training process required around 2.5 GPU-h. New
aerodynamic predictions are completed in less than a second, rather than almost 3 h in CFD, i.e. a speed-up
of well over 99.9%. As a result, the 30× 30 samples to construct the 3D envelopes in the right Panels of
figure 12 were completed within minutes, whereas it would be impractical using only CFD. Furthermore, to
address a typical aerodynamic characterisation campaign [37], comprising ten points along the
angle-of-attack axis and a Mach-number resolution of 0.02, the overall computing gain, including the
generation of the training dataset in CFD, would still be up to 50%.

5. Conclusions

The flow analysis around a 3D aircraft remains an expensive task despite access to larger and more
performing computing services than ever before. This limitation takes on an even higher criticality when the
designer is tasked with delivering the performance of the system across a range of relevant flow conditions. In
engineering, the loads experienced by a reentry vehicle passing through the Earth’s atmosphere, the stability
and control characteristics of a transport aircraft across the flight envelope or the aerodynamic map of a
racing car are examples of common tasks. To overcome the computational burden associated with running a
multitude of CFD analyses, whose number is at the designer’s discretion to obtain data in time for pressing
deadlines, the use of ROMs is a viable alternative. However, these models still present a number of
challenging decisions. The most critical decision one has to make is the choice of the mathematical structure
for the ROM.

We developed a geometric deep-learning AE framework to achieve a cost-effective predictive model of
output quantities of interest defined on a large spatial domain with an unstructured, irregular discretisation.
The framework dealt with over 300 thousand outputs and about 80 thousand grid points distributed on a 3D
discretisation of a wing/body aircraft configuration. We faced specific challenges that required the
development of a novel approach, which can be taken to other disciplines with immediate applicability. The
first challenge is represented by the large set of points used for the spatial discretisation. We created a
dedicated multi-resolution AE for extracting multi-scale features from the data field, transferring influence
across the domain and for memory efficiency. The second challenge is related to the unstructured and
irregular point discretisation. We made use of GCNs that enable the convolutional operation on irregular
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domains using the mesh connectivity, very attractive to emulate high-fidelity computational engineering
analyses. The resulting predictive framework offers a novel approach when data are defined on large 3D
unstructured manifolds, which is the case for any realistic problem. Nonetheless, the framework keeps the
ability to use the simpler cases of structured domains when available.

It is worth noting that the steady-state framework builds on one single model that outputs multiple
vector fields distributed on an unstructured domain. For our application to aircraft aerodynamic loads, the
predicted pressure and shear-stress coefficient distributions were integrated in space to calculate the total
force and moment coefficients. This operation not only mimics the way integrated loads are obtained in a
CFD solver, but there are advantages too. First, the generation, training and validation of one single model is
noticeably cheaper and easier than doing it for two separate and distinct models. Then, it avoids having two
independent models that may be best fit for their specific outputs but do not recover the actual relationship
among the distinct outputs, i.e. integration in space for our aerodynamic problem. Finally, a physically sound
distribution of flow quantities obtained from one single model leads to a sound interpretation of
aerodynamic loads.

The NASA CRM wing/body aircraft configuration was used for demonstration. We used an existing
database of 70 pre-computed cases to generate and validate the predictive model. In the reference study that
provided us the database, sample points were placed across the flight envelope using a latin hypercube
method, which is not receptive of any feature learned during the design space exploration. The model
predictions achieved a good match to reference data across the flight envelope. It is expected that further
improvements in model predictions are obtained using an adaptive design of experiments where sample
points are placed at strategic locations of the design space. Once the model is generated, load predictions
across the whole flight envelope of angle of attack and Mach number is possible within minutes. A thorough
study demonstrated that the model captured the various nonlinear effects throughout the envelope,
including variations of shock wave strength and position with the angle of attack and Mach number, and the
appearance of shock-induced boundary–layer separation at certain flow conditions.

Today, there is an abundance of data from calculations and measurements. Our choice of using an
existing database reflects this situation. Cost-wise, model predictions are obtained at a minimal cost, 0.1%,
compared to running the computational fluid dynamics solver. In design applications, the issue of database
generation is still actual. To minimise the preliminary data requirements, a combined data-driven with
physics-knowledge implementation could be thought by embedding physics-informed loss terms during
training. However, application of physics terms on the surface of a complex geometry is not trivial and
proper consideration is sought as the fluid dynamics equations are formulated for the fluid volume. We
believe the generalisation to variable shapes is attractive to further expand the applicability of our model.
Since our model is designed to include the coordinates of the mesh nodes as inputs, the current
implementation may be adapted to wing deflections for static, 3D aeroelastic analysis and for aerodynamic
shape design and optimisation.
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Appendix

A.1. Model architecture & optimisation procedure
Table A1 reports the model architecture developed for the steady-state aerodynamic simulations. A diagram
of the model architecture is reported in figure 11 of the main article. Details of the GCN and MM layers in
the encoder and the decoder blocks are provided. The PReLU activation function to introduce nonlinearities
was added to each GCN layer, except at the model output. The dimension of the tensor for each layer is
indicated, arranged inm× nmml × cl, withm the batch size, nmml the grid size from the corresponding MM
level and cl the number of layer output channels. The kernel size (number of learnable parameters) in each
layer is also indicated.

To complete the description of the model generation, table A2 provides details of the optimisation
strategy adopted to generate the ROM. In brief, we chose the Adam gradient-based algorithm [38] as
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Table A1. GCN-MM-AE model architecture for steady-state aerodynamic prediction of the CRM case. Refer to diagram in figure 11 of
the main article.

Layer Dimension Operation Kernel

Input: [M∞,α∞], xi, Â0 m× 78829× 5
Encoder:
GCN Enc0.1 m× 78829× 72 Equation (6) 5× 72+ 72
PReLU Enc0.1 m× 78829× 72 Equation (8) 72
GCN Enc0.2 m× 78829× 144 Equation (6) 72× 144+ 144
PReLU Enc0.2 m× 78829× 144 Equation (8) 144
MM Â0 → Â1 m× 5000× 144 Equation (10)
GCN Enc1.1 m× 5000× 144 Equation (6) 144× 144+ 144
PReLU Enc1.1 m× 5000× 144 Equation (8) 144
GCN Enc1.2 m× 5000× 288 Equation (6) 144× 288+ 288
PReLU Enc1.2 m× 5000× 288 Equation (8) 288

Decoder:
GCN Dec1.1 m× 5000× 144 Equation (6) 288× 144+ 144
PReLU Dec1.1 m× 5000× 144 Equation (8) 144
GCN Dec1.2 m× 5000× 144 Equation (6) 144× 144+ 144
PReLU Dec1.2 m× 5000× 144 Equation (8) 144
MM Â1 → Â0 m× 78829× 144 Equation (10)
GCN Dec0.1 m× 78829× 72 Equation (6) 144× 72+ 72
PReLU Dec0.1 m× 78829× 72 Equation (8) 72
GCN Dec0.2 m× 78829× 72 Equation (6) 72× 72+ 72
PReLU Dec0.2 m× 78829× 72 Equation (6) 72
Repeat: yi → [yi,yi,yi,yi] m× 78829× 72× 4
GCN Dec0.3 m× 78829× 72× 4 Equation (6) 72× 72× 4+ 72× 4
PReLU Dec0.3 m× 78829× 72× 4 Equation (6) 72× 4
GCN Dec0.4 m× 78829× 1× 4 Equation (6) 72× 1× 4+ 1× 4
Output: [CPi, Cτ xi, Cτ yi

, Cτ zi] m× 78829× 4 Equation (3)

Table A2. Training strategy for the generation of the steady-state GCN-MM-AE model.

Parameter Value

Trainable parameters 174460
Dataset samples 70
Training set (58%) 40
Batch size 1
Training epochs 800
Loss function MSE
Optimiser Adam
Start learning rate 0.0009
Learning rate decay 0.333/300 epochs
GPU machine NVIDIA GeForce RTX 2060
Training time 2.5 h

optimiser and the mean squared error (MSE) as loss function [39]. The input data was standardised and
normalised using the the field mean and standard deviation, respectively, which is a common practice for a
more successful training outcome. The minimisation history of the MSE is shown in figure A1 for both the
training and validations sets. The final MSE values between sets are similar, which indicates that the model is
not over-fitting.

A.2. Multi-mesh interpolation comparison
Various interpolation methods can be thought for the coarsening and recovery steps of multi-mesh scheme.
To demonstrate the adequacy of our proposed WMLS method, the multi-grid scheme by Smith [34], adapted
to our surface-mesh task, was considered as an alternative option. In brief, Smith et al adopted a
volume-averaged solution of the fine cells embedded to each coarse cell, for the reduction step; and a direct
re-casting of the solution on the fine grid from each associated coarse cell, for the recovery operation.
Table A3 reports the summary of the prediction error obtained with each interpolation method. Both
options were found similar with regards to the prediction of the CL and CD. However, our WMLS (final
choice in bold) approach provided marginally improved CMy results.
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Figure A1.Mean squared error (loss function) history during model weights optimisation for the training and validation sets.

Table A3. Prediction error for each MM interpolation method.

εCL [%] εCD [%] εCMy
[%]

MM cycle mean std dev worst mean std dev worst mean std dev worst

WMLS 0.8 0.7 3.3 1.0 1.1 5.2 3.5 5.0 24.3
MG Smith 0.8 0.5 2.2 1.2 1.1 4.3 4.6 8.4 48.9

Figure A2. CP comparison between the two interpolation methods in the MM cycle against CFD reference at sample f in figure 12.

As a result of the interpolation, differences on the solution fields can be expected. Therefore, we analysed
the solutions predicted by each MMmethod. Figure A2 illustrates a comparison on the predicted CP (upper
panels) and the error against the CFD reference (lower panels) on the worst validation case (sample f in
figure 12 of the main text). Our WMLS is in the middle panels while Smith’s alternative is in the right panels.
We observe a noisier output solution with Smith’s method, therefore, less physically representative. This issue
could be solved with additional GCN blocks after the recovery step, but at the expense of a larger
computational burden. By contrast, smoother solutions are obtained with our WMLS scheme. Nonetheless,
the error is visibly larger with Smith’s method in this particular sample. These results demonstrate our
proposed WMLS scheme for the MM cycle is an appropriate choice for the transonic aerodynamics task.
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Table A4. Prediction error comparison for various MM compression ratios on the CRM validation dataset.

Coarse mesh size εCL [%] εCD [%] εCMy
[%]

(Compress. ratio) mean std dev worst mean std dev worst mean std dev worst

10 000 (7.9) 0.5 0.4 1.7 0.8 0.9 3.3 4.7 6.2 30.7
5000 (15.8) 0.8 0.7 3.3 1.0 1.1 5.2 3.5 5.0 24.3
2500 (31.6) 0.7 0.5 2.0 0.6 0.6 2.6 3.4 4.2 19.1

Table A5. Prediction error comparison for different MM cycle levels on the CRM validation dataset.

εCL [%] εCD [%] εCMy
[%]

MM cycle mean std dev worst mean std dev worst mean std dev worst

2 levels 0.8 0.7 3.3 1.0 1.1 5.2 3.5 5.0 24.3
3 levels 0.8 0.7 2.6 1.1 0.8 3.4 3.9 4.3 17.1
4 levels 0.8 0.9 4.1 1.3 1.8 9.1 3.7 7.0 38.5

A.3. Sensitivity to model architecture hyperparameters
The influence from the various key hyperparameters of the proposed model architecture is analysed here. In
particular, we are interested in assessing the sensitivity of the model performance to the training set size, the
number of model weights or the multi-mesh cycle reduction.

A.3.1. Sensitivity to MM compression rate
Table A4 reports the prediction error summary for various mesh compression rates adopted in the MM cycle.
Different models were generated for mesh coarsenings to 10 000, 5000 and 2500 grid points, respectively. A
compression ratio larger than 30 was not pursued. The final mesh coarsening choice adopted in the Results
section is highlighted in bold. We observe that the prediction error statistics are similar among the various
MM compressions. Despite the prediction error is expected to worsen with coarser meshes, the results
suggest that the various GCN blocks are able to compensate for this. The model performance remains
acceptable even on significantly large mesh reductions.

A.3.2. Sensitivity to MM cycle levels
The sensitivity to the number of MM reduction layers is assessed in table A5. Results are reported for MM
cycles of 2 (final choice highlighted in bold), 3 and 4 levels. The three-level MM cycle was constructed by first
reducing to 20 000 nodes and subsequently reducing to 5000, assigning the same node count as for the
two-level case. The four-level scheme was achieved by reducing to 40 000, 20 000 and 5000. GCN blocks were
embedded between mesh levels, for a total of 174 460, 352 156 and 436 252 model weights, respectively. The
statistics are similar among the various MM cycles. By contrast, the computational cost involved in the
three-level and the four-level schemes was found, respectively, 32% and 81% larger compared to the
two-level implementation. This motivated our choice of the two-level reduction as a more efficient
implementation in terms of model memory requirements.

A quantification of the prediction confidence for each multi-mesh cycle is illustrated in figure A3.
Inter-quartile range plots for the three different MM levels and the various performance metrics, CL error,
CD error and CMy error. The uncertainty intervals are based on predictions of the validation dataset. The
error for each validation sample is also illustrated in triangles. We observe that the three-level option was
found with the marginally lowest variability. Nevertheless, the uncertainty is similar for the various MM
levels, which provides confidence on the final choice of the two-level MM cycle.

A.3.3. Sensitivity to training dataset size
We now analyse how the prediction performance is affected with a smaller training dataset. In particular, the
number of training samples was halved, i.e. using 20 samples to generate the model as opposed to the
original 40. Minimising the amount of data requirements is interesting to reduce the computational cost
involved with running the CFD simulations. The prediction error summary for the various load coefficients
is reported in table A6, with the original dataset highlighted in bold. A degradation of the performance is
observed with the reduced training set. However, the error values remain still reasonably good considering
the small number of preliminary samples to generate the model.
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Table A6. Prediction error comparison for different training dataset sizes on the CRM validation dataset.

εCL [%] εCD [%] εCMy
[%]

Training set mean std dev worst mean std dev worst mean std dev worst

40 samples 0.8 0.7 3.3 1.0 1.1 5.2 3.5 5.0 24.3
20 samples 1.3 1.2 5.6 2.0 2.5 13.9 5.8 7.3 41.6

Table A7. Prediction error comparison for different model sizes on the CRM validation dataset.

εCL [%] εCD [%] εCMy
[%]

Model weights mean std dev worst mean std dev worst mean std dev worst

174 460 0.8 0.7 3.3 1.0 1.1 5.2 3.5 5.0 24.3
98 770 0.6 0.5 2.1 0.5 0.3 1.6 4.7 5.6 26.9
44 464 1.0 1.0 5.0 1.0 0.9 5.0 5.6 6.3 34.1

Figure A3. Box-and-whisker plots for the prediction error among the various MM levels. The error of each validation sample is
also shown in triangles.

A.3.4. Sensitivity to model size
The performance of the model for smaller number of weights is assessed here. Evaluating different model
sizes is useful to identify potential over-fitting issues and reduce GPU memory requirements. In this study,
the model size is reduced by halving the number of weights in two successive steps, for a total of 98 770 and
44 464 parameters, respectively. The results are reported in table A7, with the final model size choice in bold.
A gradual degradation of the performance is observed with reducing the size of the model. Nevertheless, the
degradation is fairly low. We conclude that there is no data over-fitting with the largest model. And the
smallest model still showcases good capacity to learn the physics of the system adequately.
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