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Micromagnetic simulations of helimagnetic nanostructures 

by Martin Lang 

Complex magnetic materials hosting topologically non-trivial, particle-like objects such as 
skyrmions or Bloch points are under intensive research and could fundamentally change 
the way we store and process data. One important class of materials in which such chiral 
magnetisation configurations can be found are helimagnetic materials with Dzyaloshinskii-
Moriya interaction. Recently, it was demonstrated that nanodisks consisting of two layers 
with opposite material chirality can host a single stable Bloch point—a point singularity in the 
magnetisation configuration—of two different types at the layer interface. 

In this work, we use finite-difference micromagnetic simulations to study static and dynamic 
properties of Bloch points in the two-layer system. To conduct the simulations, we use a Python 
package called Ubermag, which defines a domain-specific language to express micromagnetic 
problems and provides a high-level interface to existing micromagnetic calculation packages 
such as OOMMF. Its functionality and capabilities have been significantly enhanced and 
extended as part of this work. 

In the first part of the work, we focus on the static properties of Bloch points in rectangular 
two-layer FeGe nanostrips. We find that multiple Bloch points in any possible combination 
of the two different types can coexist—a crucial prerequisite for potential applications. The 
number of Bloch points in stable configurations depends on the strip geometry. We can 
predict suitable geometries for a given Bloch-point number, which we demonstrate for an 
80-Bloch-point configuration. 

In the second part of the work, we study the dynamics of the stable Bloch points when an 
electric current is applied, which couples to the magnetisation via the spin-transfer torque. 
We demonstrate that the Bloch points move in the current direction without deflection. Con-
strictions in a nanostrip can be used to control the motion: at lower current densities, Bloch 
points are trapped at the constrictions; at higher current densities, they can move past them. 
This can be exploited to move arrays of Bloch points in a controlled manner. Finally, we 
demonstrate that Bloch points in more complex geometries with multiple possible paths, such 
as the T-shaped geometry studied in this work, can move along the different paths if current is 
applied in suitable directions. 

http://www.southampton.ac.uk
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1 

Chapter 1 

Introduction 

Our society is highly dependent on modern technology, which plays a crucial role in all 
aspects of our lives. While our reliance on technology has increased significantly in recent 
decades, fundamental changes have always been linked to technological advances. Most of 
these advances are the result of extensive fundamental and applied research. The substantial 
recent changes are primarily related to digitisation due to the proliferation of computers and 
embedded devices connected via the Internet and the massive increase in computing power 
over the past decades. These changes have been made possible by significant advances in 
semiconductor technology and magnetism, among others. 

Ongoing advances still make it possible to double memory capacity and computing power 
roughly every two years, as described by Moore’s law (Moore, 1965, 1975). However, this trend 
is coming to an end. The miniaturisation of magnetic storage has nearly reached physical 
limits (Richter, 2009; Tannous & Comstock, 2017). Likewise, increases in computing power 
can now be achieved mostly through improved parallelisation, especially GPU computing (Baji, 
2018), and improved device designs, while the miniaturisation and clock speeds of modern 
processors have also almost reached physical limits (Markov, 2014; Waldrop, 2016). 

Furthermore, improving energy efficiency has become a key issue for a number of reasons. 
First, data centres and cloud services consume huge amounts of electricity, which is more and 
more evolving into an environmental problem. Second, low power consumption and hence 
long battery life are important for many mobile and IoT (Internet of Things) applications. 
Third, heat generation and the difficulty of cooling chips effectively is one of the fundamental 
issues for increasing computing power. 

To address these issues and further advance digital technology, fundamentally new concepts 
for novel types of logic and storage devices are required, both in terms of how these devices 
operate and what computing paradigms they are based on. New types of magnetic materials 
show promising features and have the potential to play an important role in future devices. 
One possible new type of fast, non-volatile data storage is magnetic racetrack memory. This 
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new concept could allow for the realisation of truly three-dimensional magnetic storage 
devices and thus significantly increased storage capacities compared to current, effectively 
two-dimensional, hard disks. In racetrack memory, data is stored in nanowires and can be 
moved to fixed read and write elements. This design avoids mechanically moving read and 
write elements and could therefore substantially decrease access times. Furthermore, the 
absence of mechanically moving elements can help reduce energy consumption. In their initial 
proposal, Parkin et al. (2008) have suggested to use domain walls in nanostrips as information 
carriers. Based on the initial idea, other types of particle-like magnetisation configurations 
such as skyrmions have also been proposed (Fert et al., 2013). Actual realisation still faces 
many problems. One difficulty is that the aforementioned designs rely on the presence or 
absence of a single type of magnetic object, and the data is hence encoded in the distance 
of these objects that needs to be preserved to avoid data loss. Suggestions have been made 
to overcome this design limitation by using particles of different types (Zhu et al., 2020) or 
multiple lanes (Müller, 2017). 

More generally, magnetic materials are complex systems with numerous physical properties, 
often exhibiting complex behaviour. As such, they form a vibrant field of fundamental research. 
A fundamental feature of magnetic materials is the competition between different interactions. 
Ferromagnetic materials are dominated by exchange interaction, which favours aligned mag-
netic moments. In addition, magnetocrystalline anisotropy, demagnetisation, and Zeeman 
interaction (with external magnetic fields) play an important role. In bulk systems, these 
interactions typically lead to the formation of large uniform domains separated by narrow 
regions of non-collinear magnetisation called domain walls. 

1.1 Helimagnetic materials 

In the late 1950s, a new type of interaction was predicted for low-symmetry materials, the so-
called Dzyaloshinskii–Moriya interaction (DMI) (Dzyaloshinsky, 1958; Moriya, 1960). DMI fa-
vours perpendicular alignment of neighbouring magnetic moments. The competition between 
exchange interaction and DMI can lead to the formation of helical magnetic configurations 
(Fig. 1.1). Materials that feature DMI are referred to as helimagnetic materials. Under suitable 

Figure 1.1: Magnetic helix. 
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Figure 1.2: A Bloch point can occur in different configurations: (a) diverging configuration,
(b) circulating configuration, and (c) spiralling configuration. Configurations (b) and (c) can
be obtained from configuration (a) by rotating all magnetic moments by 𝜋/2 and 𝜋 around
the 𝑧 axis, respectively. The spheres are semi-transparent to also show cones on the rear.

Visualisation adapted from Im et al. (2019, Fig. 1).

conditions, e.g. with an applied magnetic field, the competition between DMI and exchange
interaction can also lead to twisted, vortex-like magnetic configurations called skyrmions,
which were first predicted in particle physics (Skyrme, 1962). Skyrmions show interesting
features such as topological protection.

A different intriguing configuration is the so-called Bloch point, a point of vanishing mag-
netisation (Feldtkeller, 1965; Döring, 1968). A Bloch point is characterised by the fact that
the magnetisation configuration on any closed surface surrounding the Bloch point spans
the entire solid angle. Hence, Bloch points also have a non-trivial topology. Bloch points
exist in different configurations. Figure 1.2 shows examples for a diverging, a circulating, and
a spiralling Bloch point. The existence of Bloch points could be experimentally verified in
several systems (Kabanov et al., 1989; Thiaville & Miltat, 1994; Da Col et al., 2014). Various
theoretical works indicate the importance of Bloch points during dynamical processes of
other magnetisation textures such as magnetisation reversal of domain walls (Hillebrands &
Thiaville, 2006) and switching of vortices (Hertel et al., 2007) and skyrmions (Beg et al., 2015).
Bloch points do not only emerge in dynamical processes, some systems can also host static
Bloch points (Malozemoff & Slonczewski, 1979; Kanazawa et al., 2011; Rybakov et al., 2015).

A new system that can host a single stable Bloch point has recently been predicted by Beg et al.
(2019). The authors have micromagnetically studied helimagnetic nanodisks consisting of
two FeGe layers with opposite material chirality. They observe the formation of a stable Bloch
point in two different realisations and demonstrate switching between the two types with an
external magnetic field. The present thesis is based on this work and studies the two-layer
system in more detail.

We use finite-difference micromagnetic simulations to study Bloch points in a two-layer FeGe
system with layers of opposite material chirality. In the majority of the work, we focus on
rectangular nanostrips. We show that such nanostrips can host multiple Bloch points and
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that arbitrary combinations of the two different types can exist. Furthermore, we study the
dynamics of Bloch points when applying a spin current and find collective motion of arrays of
Bloch points. We show that geometrical variations can be used to control the movement. All
simulations are performed using a Python package called Ubermag (Beg et al., 2022).

1.2 Thesis structure

In Chapter 2 we introduce the micromagnetic model and give an overview of different topolo-
gical magnetisation configurations. We describe how static and dynamic systems are studied
within the micromagnetic framework and explain the most relevant contributions to the energy
and dynamics equation. We discuss the effects of spin currents on the magnetisation and the
concept of emergent electrodynamics, an effective model for the description of an electron
traversing a magnetisation structure. The latter is closely related to the concept of topological
charge, which is also explained in this chapter. Lastly, we give an overview of existing literature
on domain walls, vortices, skyrmion, and Bloch points.

In Chapter 3 we discuss Ubermag, the software used to perform all simulations in this work.
Ubermag is an interface to existing micromagnetic calculators and defines a domain-specific
language to formulate micromagnetic problems in a machine-readable format. Its aim is to
simplify running micromagnetic simulations and analysing the resulting data. We first discuss
a typical workflow in micromagnetics and the importance of reproducibility, which motivate
the Ubermag Python software. To introduce Ubermag, we first explain its use in a simple
example and then discuss the overall design. During the present work, I have significantly
extended and modified Ubermag. The most important changes as well as some more general
software engineering practices are discussed in the last part of this chapter.

In Chapter 4 we present the results for multiple stable Bloch points in nanostrips, published
in Lang et al. (2023a). In this chapter, we show that multiple stable Bloch points can coexist in
the two-layer nanostrips. We find that different combinations of the two different types can be
stabilised and compare their properties and the effects of different strip sizes. We observe the
formation of additional antivortices between Bloch points of the same type. Furthermore, we
find simple rules to predict strip geometries (length and width) for arbitrary numbers of Bloch
points and put these to a test for a larger system.

In Chapter 5 we focus on manipulating Bloch points using spin currents, published in Lang
et al. (2023b, currently under review). First, we study the motion of a single Bloch point and
a pair of Bloch points in rectangular nanostrips. Then, we study the effect of constrictions
in the geometry. We find that Bloch points can get trapped at constrictions for lower current
densities. This can be exploited to divide a long nanostrip into multiple storage areas and move
arrays of Bloch points through this structure in a controlled manner. Short strong current
pulses are used to push Bloch points from one storage area to the next. Finally, we study the
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motion of a single Bloch point in a T-shaped geometry. Depending on the direction of the
applied current, the Bloch point can move along different paths in the structure.

In Chapter 6 we summarise the new results obtained in this work. We discuss their implications
and outline possible future work.
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Chapter 2

Micromagnetism

Preface

Parts of the discussion of the Bloch point in the two-layer system in Sec. 2.8.4 have been published in Lang
et al. (2023a).

In this chapter, we introduce the framework of micromagnetism, which provides a powerful
description of microscopic magnetic systems. Section 2.1 introduces the prerequisites and basic
assumptions of the micromagnetic model. In Section 2.2 we focus on static micromagnetism.
Static configurations can be obtained solely based on the energy equation of the system. In
Section 2.3 we discuss important energy contributions for ferromagnetic and helimagnetic
materials. In Section 2.4 we focus on the description of the dynamics of magnetic systems
based on the Landau-Lifshitz-Gilbert equation. In Section 2.5 the influence of spin currents
on the magnetisation is discussed. In Section 2.6 we discuss the effects of non-collinear
magnetisation on the conduction electrons and the connection to the topological charge of
magnetic structures. In Sec. 2.7 we briefly discuss numerical methods used for micromagnetic
simulations. In Section 2.8 we discuss several magnetisation configurations that can form
in ferromagnetic and helimagnetic materials, namely domain walls in Sec. 2.8.1, vortices in
Sec. 2.8.2, skyrmions in Sec. 2.8.3, and Bloch points in Sec. 2.8.4.

2.1 Introduction

Each electron carries a magnetic moment consisting of two parts, orbital magnetic moment
and spin. The orbital magnetic moment depends on the atomic orbital of the electron. To some
extent, this can be explained as the quantised microscopic movement of a charged particle,
in analogy to the macroscopic picture (Krishnan, 2016). The spin is an intrinsic property of
an electron. A macroscopic analogue would be a spinning charged particle, which however
cannot quantitatively explain the spin. The electron’s spin can only be fully explained within
relativistic quantum mechanics.
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Different approaches are available to model the physics of a solid magnetic structure. Import-
ant numerical methods are ab-initio methods, spin models, and the micromagnetic model.
The different models can resolve the ferromagnet on different levels and come at different
computational cost. The most detailed description is provided by ab-initio methods, which
can resolve the electron wave functions. However, this method is also computationally most
demanding and only applicable to small systems with a limited number of atoms. Spin-models
provide the first level of approximation. Here, each magnetic atom is represented by a single
magnetic dipole. This description is well suited to study e.g. finite-temperature effects, effects
of rough interfaces, or anti-ferromagnets.

The micromagnetic model (Brown, 1963) provides a reliable description for magnetisation
processes on larger length scales, typically in the range of tens of nanometres to micrometres,
using an effectively classical framework. Effective energy terms are used to include relevant
quantum effects into the classical model. The most important quantum effect is the exchange
interaction, which is of fundamental importance for the formation of ferromagnetism. Micro-
magnetics can be used to resolve the internal structure of magnetic configurations such as
domain walls or skyrmions. It does not treat all spins individually. Instead, it assumes that
the individual spins are effectively parallel on a small length scale 𝜆 much larger than the
lattice constant 𝑎 (Abert, 2019). Hence, micromagnetics is only applicable to ordered systems
with strong ordering forces, such as strong exchange interaction. In the micromagnetic model
individual spins are approximated with a continuous vector field M(r), the magnetisation. The
condition 𝜆 ≫ 𝑎 is a prerequisite for this description as it justifies neglecting local variations
of the spin density resulting from the crystal structure and effects from the crystal field in the
averaged magnetisation. The model’s assumption is then to have a homogeneous spin density
in arbitrary volumes larger than 𝜆3 . A consequence of the homogeneous spin density is that
the norm of the magnetisation does not vary spatially. The magnetisation can therefore be
divided into a unit vector field m(r) and the spontaneous magnetisation 𝑀s:

M(r) = 𝑀sm(r), (2.1)

|m(r)| ≡ 𝑚(r) = 1. (2.2)

At zero temperature, the only case considered in this work, 𝑀s is the saturation magneti-
sation of the magnetic material, a material constant. At non-zero temperature below the
ordering temperature thermal fluctuations decrease the value compared to the saturation
magnetisation. (Abert, 2019)

2.2 Static micromagnetism

Static magnetic structures can be studied using only the system’s energy equation. Equilibrium
configurations are characterised by local minima of the total free energy 𝐸 of the system.
Individual contributions to the total energy will be discussed in the next section. In the
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continuum description, variational calculus can be used to obtain minima of the total free
energy 𝐸 with respect to the magnetisation m. Here, the normalisation condition |m| = 1
must be taken into account. It can be included in the variational formalism using a Lagrange
multiplier technique.

A necessary condition for a local energy minimum is a vanishing functional differential of the
energy (Abert, 2019):

d 𝐸(m + 𝜖v) − 𝐸m𝛿𝐸(m, v) = d𝜖𝐸(m + 𝜖v) = lim
𝜖→0 𝜖 

= 0 ∀ v ∈ 𝑉𝑚, (2.3)

where v is an arbitrary test function and 𝑉𝑚 the function space of the magnetisation m. The
right-hand side of Eq. 2.3 can be expressed in terms of the functional derivative 𝛿𝐸/𝛿m and an
additional boundary term B(m). Furthermore, the condition of constant magnetisation can
be taken into account using Lagrange multipliers 𝜆 and 𝜇 that enforce constant magnetisation
inside the magnetic volume 𝑉 and on the surface 𝜕𝑉 (Abert, 2019):

𝛿𝐸 𝛿𝐸({m, 𝜆, 𝜇}, v) = ∫ dr ⋅ v +∫ ds B ⋅ v + 2∫ dr 𝜆m ⋅ v + 2∫ ds 𝜇m ⋅ v. (2.4)𝛿m𝑉 𝜕𝑉 𝑉 𝜕𝑉 

Analytic expressions for 𝛿𝐸/𝛿m and B(m) can be derived for individual terms of the energy
equation as well as combinations of multiple energy terms, details can be found in Abert
(2019). To find more complicated micromagnetic structures, which cannot easily be expressed
with closed expressions, numerical treatment is required.

2.3 Energy equation

In the following, we discuss important contributions to the total free energy of a ferromagnet.
In general, the total energy is given as (Liu et al., 2017):

𝐸tot = 𝐸ex + 𝐸K + 𝐸d + 𝐸DMI + 𝐸Z, (2.5)

where 𝐸ex is exchange energy, 𝐸K magnetocrystalline anisotropy energy, 𝐸d demagnetisation
energy, 𝐸DMI Dzyaloshinskii-Moriya interaction energy, and 𝐸Z Zeeman energy. For some
systems additional energy contributions originating from other types of interactions, such as
RKKY interaction (Ruderman & Kittel, 1954; Kasuya, 1956; Yosida, 1957), which describes
long-range coupling of magnetic moments mediated by the conduction electrons, or mag-
netostriction (Ekreem et al., 2007), shape deformation in an applied magnetic field, can be
observed.

Depending on the material in question, the contribution of the individual energy terms to the
total energy varies. In many materials some contributions are completely absent. The different
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contributions are discussed in the following subsections based on the book by Liu, Zhang, and
Zhao (2017) and the review paper by Abert (2019).

2.3.1 Exchange energy

Exchange interaction is the most important energy contribution for ferromagnets. It is the
cause for the non-zero net magnetisation in the absence of an external field. It originates
from quantum mechanics and cannot be explained classically. Exchange interaction is a
consequence of the Coulomb interaction. It can lead to both parallel (ferromagnetic) and
antiparallel (antiferromagnetic) spin alignment. Exchange interaction can be very strong,
resulting in Curie temperatures up to around 1000 K in some materials (Mohn & Wohlfarth,
1987).

The origin of exchange interaction can be intuitively understood by considering a two-electron
system. As an example, we consider the ferromagnetic case. We assume that the two electrons
are in orthogonal orbitals, and we neglect spin-orbit interaction. The total wave function
for this system consists of an orbital and a spin part, which are decoupled. The total wave
function has to be antisymmetric for the fermionic system. Hence, for the product of orbital
and spin part to be antisymmetric, one of the two must be symmetric while the other is
antisymmetric. For an antisymmetric orbital part of the wave function the probability density
between the two sites is reduced compared to the symmetric orbital part. This in turn reduces
the energy contribution of the Coulomb interaction, which depends on the overlap of the
individual electron wave functions. Therefore, the spin part of the ground-state wave function
is symmetric, hence parallel alignment (spin triplet) is preferred over antiparallel alignment
(spin singlet). However, the two-electron model only provides a simplified picture indicating
the type of mechanism behind exchange energy. The situation is much more complex in full
many-body systems with more than two electrons.

In a semi-classical picture, the exchange energy between two localised electrons with spins S1 

and S2 is expressed by the Heisenberg model:

𝐸ex = −𝐽𝑖𝑗 S1 ⋅ S2, (2.6)

where 𝐽 is the exchange integral obtained from the full quantum-mechanical description. In a
many-body system we obtain:

𝐸ex = −2
1 ∑𝐽𝑖𝑗 S1 ⋅ S2, (2.7)

𝑖,𝑗 

where the pre-factor compensates double counting in the sum. In most systems exchange
interaction only has a short range. In an isotropic system with only nearest-neighbour exchange
interaction and constant coupling between all neighbouring pairs, the energy can be written
as:

𝐸ex = −𝐽 ∑ S𝑖 ⋅ S𝑗, (2.8)
⟨𝑖𝑗⟩ 
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where ⟨𝑖𝑗⟩ denotes the sum over nearest neighbours. In ferromagnetic materials (𝐽 > 0)
parallel alignment of neighbouring spins minimises the exchange energy. In antiferromagnetic
materials (𝐽 < 0) the exchange energy causes neighbouring spins to align antiparallel.

In the continuum limit, for 𝐽 > 0, exchange energy can be written as:

𝐸ex = 𝐴∫ d𝑉 [(∇𝑚𝑥)
2 + (∇𝑚𝑦)

2 + (∇𝑚𝑧)
2] , (2.9)

where 𝐴 = 𝐽𝑆2𝑧/𝑎 is the exchange stiffness, with 𝑧 the number of sites per unit cell (e.g. 𝑧 = 1
for simple cubic lattices), and 𝑎 the nearest-neighbour distance. The continuum form can be
derived from a Taylor expansion of Eq. 2.8. A full derivation is e.g. given by Abert (2019). The
continuum description, derived for localised spins, can also be used to accurately describe
band magnets and anisotropic materials (Abert, 2019).

2.3.2 Dzyaloshinskii-Moriya energy

In certain materials with broken inversion symmetry an additional antisymmetric exchange
interaction is present. This so-called Dzyaloshinskii-Moriya interaction (Dzyaloshinsky, 1958;
Moriya, 1960) causes neighbouring spins to align perpendicular. It arises from spin-orbit
coupling, typically via a third non-magnetic atom.

The antisymmetric exchange energy between two spins S𝑖 and S𝑗 is given as (Moriya, 1960):

𝐸DMI = d𝑖𝑗 ⋅ (S𝑖 × S𝑗), (2.10)

where d𝑖𝑗 is the DMI vector that depends on the crystal structure and symmetry. Moriya (1960)
has derived a set of rules that determine the existence or absence as well as the direction of
the vector d𝑖𝑗 depending on the crystal symmetry. DMI can exist both in bulk systems and at
the interface between a ferromagnet and a heavy metal.

In bulk systems with broken inversion symmetry, crystal classes T and O, the vector d𝑖𝑗 takes
the form (Abert, 2019):

d𝑖𝑗 = −𝑑e𝑖𝑗, (2.11)

where e𝑖𝑗 is a unit vector pointing from spin S𝑖 to spin S𝑗. The discrete form can be converted
into the continuum form using Taylor expansion of the magnetisation around position 𝑖, details
can e.g. be found in Abert (2019). Bulk DMI is then obtained as:

𝐸DMI = 𝐷∫ d𝑉 m ⋅ (∇ × m). (2.12)

The scalar coupling constant 𝐷 depends both on the coupling constant 𝑑 and the lattice spacing.
Bulk DMI can give rise to the formation of Bloch skyrmions, shown in Fig. 2.6b.
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Eq. 2.12 can also be expressed in terms of Lifshitz invariants:

ℒ(𝑘)
𝑖𝑗 = 𝑚𝑖𝜕𝑘𝑚𝑗 − 𝑚𝑗𝜕𝑘𝑚𝑖, (2.13)

based on which the energy density takes the form (Ado et al., 2020):

𝑒 = 𝐷 (ℒ(𝑥) + ℒ(𝑦) + ℒ(𝑧)
DMI   

   𝑧𝑦  𝑥𝑧 𝑦𝑥 ) . (2.14)

The equivalence of the two equations can be directly seen by expanding the scalar and cross
product in Eq. 2.12. Based on the form of the Lifshitz invariants present in the energy equation
we qualitatively know types of magnetisation configurations that likely occur. For a Lifshitz
invariant with three different indices, the magnetisation tends to form a helix propagating in
𝑘 direction with the rotation of the magnetisation in the 𝑖𝑗 plane. For bulk DMI the propagation
direction is normal to the plane of rotation.

Another common form of DMI is called interfacial DMI and occurs at the interface between
a magnet and a non-magnetic heavy metal, where the latter has strong spin-orbit coupling.
The interaction of two magnetic moments is mediated via a non-magnetic atom in the heavy-
metal layer. For the interface normal pointing along 𝑧 direction, the energy density takes the
form (Ado et al., 2020):

𝑒 = 𝐷 (ℒ(𝑥)
𝑥𝑧 + ℒ(𝑦) 

DMI,i 𝑦𝑧 ) , (2.15)

or equivalently, the total energy is given as (Abert, 2019):

𝐸DMI = 𝐷∫ d𝑉 m ⋅ ∇𝑚𝑧 − 𝑚𝑧∇ ⋅ m. (2.16)

Here, the Lifshitz invariants describe helices where the propagation direction lies in the plane
of rotation. Interfacial DMI can give rise to Néel skyrmions, shown in Fig. 2.6a.

2.3.3 Zeeman energy

Zeeman energy describes the interaction with an external magnetic field Hext. It is known
from classical electromagnetism and can be expressed as:

𝐸Z = −𝜇0 ∫ d𝑉 M ⋅ Hext, (2.17)

where 𝜇0 is the vacuum permeability. The Zeeman energy is minimal when magnetic moments
are aligned parallel to the external field. Strong external fields can dominate most other energy
contributions, leading to a fully saturated sample.
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2.3.4 Demagnetisation energy

The dipole-dipole interaction of the spins is in micromagnetics described by the demagnetisa-
tion energy, also referred to as magnetostatic or stray-field energy. Dipole-dipole interaction is
a comparatively weak, long-range interaction. It causes the magnetisation to form closed loops
and minimise surface and volume charges, i.e. magnetisation at the sample surface aligns
parallel to the surface. In ferromagnets, it is responsible for the formation of magnetic domains.
In a microscopic sample, the combination of exchange interaction and demagnetisation can
stabilise magnetic vortices, discussed in Sec. 2.8.2.

Demagnetisation can be described as the interaction of the magnetic moments with the
demagnetisation field Hd generated by the sample itself. The energy contribution from the
stray field is (Hubert & Schäfer, 1998):

1𝐸d = − ∫ d𝑉 H2 d ⋅ M, (2.18)

where the factor 1/2 accounts for double counting. For individual magnetic dipoles S𝑗 = S(r𝑗)
located at position r𝑗, the demagnetisation field is given as a sum of all individual dipole
fields (Exl et al., 2020):

1 (S𝑗 ⋅ r𝑖𝑗)r) = 𝑖𝑗 S
𝐻 𝑗 
d(r𝑖  ∑ (3 − ) , (2.19)4𝜋 𝑟5 𝑟3𝑗≠𝑖 𝑖𝑗 𝑖𝑗 

where 𝑟𝑖𝑗 = |r𝑖𝑗| = |r𝑗 − r𝑖| is the distance between spins S𝑖 and S𝑗.

In the continuum limit, the demagnetisation field Hd can be derived from the macroscopic
Maxwell equations. Here, we outline the important steps, the full derivation is e.g. given in
Abert (2019) or Hubert and Schäfer (1998). In the absence of electric currents and external
fields, Maxwell’s equations describing magnetic fields have the form:

∇ ⋅ B = 0, (2.20)

∇ × Hd = 0. (2.21)

According to Eq. 2.21, the demagnetisation field is nonrotational. Hence, Hd can be defined
via a magnetic scalar potential 𝑢:

Hd = −∇𝑢. (2.22)

With the magnetic flux B proportional to the sum of the magnetisation M and the demagnet-
isation field Hd, we obtain:

∇ ⋅ (−∇𝑢 + M) = 0, (2.23)

from which the scalar potential 𝑢 can be obtained:

1 𝜌(r′′  ) ′ 𝜎(r′ )𝑢(r) = [∫ dr +∫′ ds , (2.24)4𝜋 |x − x | |x −  ′ ]  |𝑉 𝜕𝑉 x
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where 𝜌(r) = −∇ ⋅ M(r) is the magnetic volume charge and 𝜎(r) = M(r) ⋅ n is the magnetic
surface charge. Based on Eq. 2.24, the demagnetisation field and the demagnetisation energy
can be obtained using Eq. 2.22 and Eq. 2.18, respectively.

2.3.5 Magnetocrystalline anisotropy energy

Magnetocrystalline anisotropy favours alignment of the magnetisation parallel to certain
crystallographic directions. The electronic orbitals in a material depend on the local crystal
field and have an effect on the magnetisation via spin-orbit coupling. Two different types
of favourable directions can be distinguished: easy axes and easy planes. A crystallographic
direction is called easy axis if the total energy of the system is minimal when the magnetisation
points along that axis. If magnetisation pointing along a crystallographic direction increases
the total energy, the direction is called hard axis and the crystal has an associated easy plane
perpendicular to that axis. The number and orientation of the easy/hard axes depends on the
crystal structure. Easy/hard axes are undirected (Abert, 2019):

𝐸ani(m) = 𝐸ani(−m). (2.25)

Magnetocrystalline anisotropy is expressed in series expansions with empirical material con-
stants. In the case of uniaxial anisotropy, present in hexagonal and tetragonal crystals, the
energy density takes the form (Cullity & Graham, 2009):

𝑒u = 𝐾u0 + 𝐾u1 sin2 𝜃 + 𝐾u2 sin4 𝜃 + 𝒪(sin6 𝜃), (2.26)ani 

where 𝐾u0, 𝐾u1 and 𝐾u2 are material constants and 𝜃 defines angle between the magnetisation
direction and the easy/hard axis. Depending on the sign of 𝐾u1 and 𝐾u2 easy axis, easy plane,
or “intermediate” easy cone magnetisation can be observed.

Materials with cubic crystal class have three orthogonal distinguished axes. The cubic aniso-
tropy energy density is (Liu et al., 2017):

𝑒c = 𝐾c0 + 𝐾c1 (𝑚𝑥
2𝑚2

𝑦 +𝑚𝑥
2𝑚2

𝑧 +𝑚𝑦
2𝑚2

𝑧) + 𝑜 (𝑚6 (2.27)ani 𝑖 ) .

The sign of the material constant 𝐾c1 determines the easy directions. For 𝐾c1 > 0 the system
has three easy axes along the ⟨100⟩ directions. For 𝐾c1 < 0 the system has four easy axes along
the ⟨111⟩ directions and the ⟨100⟩ directions are hard axes.

The anisotropy can take different forms for other crystal classes, at the surface of thin films, or
at the interface to a different material. Furthermore, lattice defects or lattice deformations can
also contribute to the anisotropy. Magnetocrystalline anisotropy is important for the formation
of domain walls (Sec. 2.8.1).
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2.4 Dynamic micromagnetism: Landau-Lifshitz-Gilbert equa-
tion

The dynamics of magnetic structures is described by the Landau-Lifshitz-Gilbert (LLG) equa-
tion (Landau & Lifshitz, 1935; Gilbert, 1955; Gilbert, 2004). It describes the dynamics of the
magnetisation in an effective field:

1 𝜕𝐸 Heff = − . (2.28)𝜇0𝑀s 𝜕m

The magnetisation dynamics is then in implicit form given as:

𝜕m 𝜕m= −𝛾m × Heff + 𝛼m × (2.29)𝜕𝑡 𝜕𝑡 , 

where 𝛾 = 𝜇0𝛾e ≈ 2.2128 × 105 m/As is the reduced gyromagnetic ratio and 𝛼 is the dimen-
sionless Gilbert damping constant. In most materials 𝛼 ≪ 1. Eq. 2.29 can be rewritten to an
explicit form:

𝜕m 𝛾 𝛼𝛾 = − (2.30)𝜕𝑡 1 + 𝛼2 m × Heff − 1 + 𝛼2 m × (m × Heff) .

The LLG equation can be derived from classical Lagrangian mechanics, a detailed derivation
can e.g. be found in Abert (2019) or Wegrowe and Ciornei (2012).

The effects of the two terms in the LLG equation on a single magnetic moment are shown in
Fig. 2.1. The first term in Eq. 2.30 describes a stationary precession of the magnetisation around
the effective field. This can be easily seen from the equation: the change of the magnetisation
is proportional to m × Heff, which describes a vector perpendicular to both m and Heff. Hence,
the term describes a torque on the magnetisation that causes the magnetisation to rotate
around the effective field. The second term describes dissipative (damped) motion of the
magnetisation towards the effective field. Again, this can be seen from the equation: first, the
change in magnetisation is perpendicular to m × Heff, i.e. lies in the plane containing m and
Heff. Second, the change in magnetisation is perpendicular to the magnetisation m and from
the order of cross products and the additional minus sign we can see that it points towards
the effective field Heff. Under the influence of both terms, the magnetisation m performs a
damped precessional motion around the effective field Heff. The speed of convergence towards
parallel alignment with the effective field depends on the strength of the damping parameter 𝛼.

The LLG equation fulfils the requirement of constant magnetisation |m| = 1 (Abert, 2019).
Intuitively, this can be understood from the fact that both the damping and the precession
term contribute changes 𝜕𝑡m that are perpendicular to m, i.e. act as torques, and hence only
affect the direction of the magnetisation but not its magnitude.
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Figure 2.1: Effects of the damping and precession term in the LLG equation on the magneti-
sation direction.

2.5 Spin currents

Manipulation of the magnetisation with external parameters is of central importance for
experiments and potential applications. So far, we have only discussed the effects of an
external magnetic field on the magnetisation, the Zeeman energy. Interactions between the
spins of conduction electrons and the local magnetic moments are a second possibility to
manipulate the magnetic configuration. Depending on the current strength and polarisation,
an applied spin current can lead to reduced damping, steady precession, or magnetisation
switching. This type of all-electric manipulation is particularly appealing for applications, and
is summarised under the term spintronics (Abert, 2019).

The effects of the interaction between spin currents and the magnetisation m can be incorpor-
ated into the LLG equation by adding a torque term T (Abert, 2019):

𝜕m 𝜕m= −𝛾m × Heff + 𝛼m × (2.31)𝜕𝑡 𝜕𝑡 + T.

The additional torque term can have different microscopic origins. Depending on its origin, we
can distinguish between spin-orbit torques and spin-transfer torques. We give a brief overview
of the different mechanisms and how they are included into the LLG equation. An in-depth
discussion of spin-transfer torques can e.g. be found in Ralph and Stiles (2008), an in-depth
discussion of spin-orbit torques in Gambardella and Miron (2011) or Manchon et al. (2019). In
the simulations carried out in this work, we only consider spin-transfer torques in a magnetic
sample with non-uniform magnetisation as described by the Zhang-Li model, see below.

Spin-transfer torque arises from current flowing through magnetic samples. If the conduction
electron spin and the magnetisation are not collinear, the magnetic moments exert a torque on
the electron spin. A similar torque of opposite sign is exerted on the magnetic moments, which
is called spin-transfer torque (Ralph & Stiles, 2008). It can arise in two different set-ups: first,
when electric current flows through a magnetic material with non-collinear magnetisation;
second, in a multi-layer stack consisting of magnetic and non-magnetic layers when current
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flows perpendicular to the stack. More general methods not limited to one specific set-up are
also available (Abert, 2019).

The first set-up, in which the torque originates from current flowing through a single magnetic
sample, is described by the Zhang-Li model (Zhang & Li, 2004; Bazaliy et al., 1998; Thiaville
et al., 2005):

T = −m × [m × (u ⋅ ∇)m] − 𝛽m × (u ⋅ ∇)m, (2.32)

where
𝑃𝜇B𝑔 

u = (2.33)
2𝑒𝑀S(1 + 𝛽2) je 

is the spin-drift velocity. Here, je is the electric current density, 𝑃 is the polarisation, 𝜇B the Bohr
magneton, 𝑔 the electron g-factor, 𝑒 the elementary charge, and 𝛽 the non-adiabatic parameter.
While the electron traverses the sample, its spin picks up the local magnetisation direction
and carries it in current direction. If the magnetisation along this direction is noncollinear,
the current flow will exert a spin-transfer torque. This can result in a movement of the whole
magnetisation texture, and can e.g. be observed for domain walls (Freitas & Berger, 1985; Parkin
et al., 2008) and skyrmions (Sampaio et al., 2013; Kang et al., 2016). The description within
the Zhang-Li model is purely local and therefore not suitable for multi-layer systems (Abert,
2019).

Spin-transfer torques can also arise in multi-layer systems. In the typical case, two ferromag-
netic layers are separated by a non-magnetic layer, and an electric current flows perpendicular
to the layers, i.e. through the multi-layer stack. In this set-up, the first ferromagnetic layer acts
as a spin filter and produces a spin-polarised current incident on the second layer. This current
then exerts a torque on the second ferromagnetic layer. The effects in the second layer are
described by the Slonczewski model (Slonczewski, 1996; Berger, 1996), in which the torque T
takes the form:

T = 𝜏FLm × p + 𝜏DLm × (m × p). (2.34)

Here, p is the polarisation of the current. The coefficients 𝜏FL,TL are given as (Abert, 2019):

𝛾ℏ
𝜏FL = 𝜂FL(𝜃) 

𝑗e (2.35)2𝑒𝜇0𝑀s 
𝛾ℏ

𝜏DL = 𝜂DL(𝜃) 
𝑗e , (2.36)2𝑒𝜇0𝑀s 

where 𝜃 is the angle between m and p, 𝑗e is the electric current density, and 𝜂FL and 𝜂DL are
dimensionless functions that describe the angular dependence of the torque and depend on
the geometry and materials of the multi-layer stack. The first term in Eq. 2.34 is commonly
referred to as field-like term, because the torque results in a precession of the magnetisation
around the polarisation direction similar to an effective field. The effect of the second term is
called damping-like. Its effect is similar to the damping term in the LLG equation and aligns
the magnetisation to the current polarisation.
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Spin-orbit torques arise from current flowing through a non-magnetic layer with spin-orbit
coupling adjacent to a ferromagnetic layer. Two different effects can contribute to the torque.
First, a current flowing through the non-magnetic layer can result in a perpendicular spin
current towards the interface via the spin Hall effect (Sinova et al., 2015). In the spin Hall
effect, the spin-orbit coupling leads to a deflection of electrons with opposite spin and therefore
a spin current perpendicular to the electric current. This spin current exerts a torque on the
ferromagnetic layer. Second, current flowing parallel to an interface with broken inversion
symmetry can lead to a spin-polarisation of the electrons at the interface. The electron spins
can exert a torque on the ferromagnetic layer via exchange coupling (Manchon & Zhang, 2008).
The resulting torque term in the LLG takes the same form as Eq. 2.34. For a more in-depth
discussion, refer to Gambardella and Miron (2011) or Manchon et al. (2019).

2.6 Emergent electrodynamics and topological charge

In the previous section, we discussed the effects of spin currents on the local magnetic moments.
Here, we discuss the effects on the electrons in more detail. We consider an adiabatic movement,
i.e. the spin of the electron constantly adjusts to the direction of the local magnetisation while
the electron traverses the magnetic structure. Under these conditions, the electron picks up
a Berry phase (Berry, 1984; Onoda et al., 2004). We can easily understand the effects of the
Berry phase by describing the electron movement in a different system (Everschor-Sitte & Sitte,
2014): we assume that the electron moves in a uniform background and additionally “feels” an
emergent magnetic field Be and an emergent electric field Ee. The effects of the emergent fields
resemble the influence of the Berry phase, which the electron picks up in the real system. The
fields depend on the normalised local magnetisation m (Zhang & Zhang, 2009; Volovik, 1987;
Bruno et al., 2004):

ℏ 𝜕m𝐵𝑖
e = 2 𝜖𝑖𝑗𝑘m ⋅ (𝜕m × ) , (2.37)𝜕𝑟𝑗 𝜕𝑟𝑘 

= ℏm ⋅ (𝜕m 𝜕m𝐸𝑖
e × (2.38)𝜕𝑟𝑖 𝜕𝑡 ) , 

where 𝜖𝑖𝑗𝑘 is the totally antisymmetric tensor. A full derivation of the emergent fields starting
from the Berry phase can be found in Zhang and Zhang (2009). We can see that an emergent
electric field can only occur if the magnetisation is time dependent, e.g. in a moving domain
wall or skyrmion. An emergent magnetic field only occurs when the magnetisation is non-
collinear in at least two directions, e.g. in a magnetic vortex or magnetic skyrmion. This
condition is equivalent to the magnetisation having a non-trivial topological charge density,
see below.

The emergent fields lead to Lorentz forces acting on the electrons that can be measured in ex-
periments. The effects of the emergent electric field can e.g. be observed as electromotive force
induced by domain wall motion (Yang et al., 2009) and in the dynamics of skyrmions (Zhang &
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Zhang, 2009; Schulz et al., 2012). The emergent magnetic field leads to additional contributions
to the anomalous Hall effect—sometimes also referred to as geometrical Hall effect or topolo-
gical Hall effect—observed for various systems hosting skyrmions (Lee et al., 2009; Neubauer
et al., 2009; Li et al., 2013; Hamamoto et al., 2015; Maccariello et al., 2018), colossal magnetores-
istance manganites (Ye et al., 1999), geometrically frustrated ferromagnets (Taguchi et al.,
2001), and magnetic hopfions (Göbel et al., 2020), amongst others. Note, that non-adiabatic
processes, band structure effects, etc., have to be taken into account to quantitatively correctly
describe the experimental results. The strength of the emergent magnetic field is in many
materials on the order of several Tesla, thus comparable to externally applied magnetic fields,
e.g. 2.5 T in MnSi (Schulz et al., 2012). In systems with very small skyrmions the emergent
magnetic field can reach values up to several thousand Tesla, leading to a quantised topological
Hall effect (Hamamoto et al., 2015; Göbel et al., 2017).

The emergent magnetic field is closely related to the topological charge 𝑆 of the magnetisation
structure, also called winding number, which can be used to classify e.g. skyrmions. The
topological charge is defined as integral of the solid angle span by the magnetisation m (Kotiuga,
1989):

𝑆 = 4𝜋
1 ∬ d2𝑟 m ⋅ (𝜕𝑥m × 𝜕𝑦m) , (2.39)

where we have picked the 𝑥𝑦 plane as an example. It counts how many times the magneti-
sation m wraps around the unit sphere. Comparing Eqs. 2.37 and 2.39, we can see that the
topological charge 𝑆 is equivalent to the flux of the emergent magnetic field Be through the
integration plane. Hence, for magnetic objects with discrete topological charge, e.g. skyrmions,
the flux of the emergent magnetic field is quantised and depends on the topological charge.

2.7 Numerical micromagnetism

Computational micromagnetism plays a central role in fundamental research and device
development. The micromagnetic model, described in the previous sections, can only be
solved analytically for some simple edge cases. More complicated solutions require numerical
treatment, both, for the description of equilibrium states, i.e. configurations in local energy
minima, and for the description of magnetisation dynamics expressed by the LLG equation.

Most numerical methods require a discretisation of the problem, both in space and time. The
most popular mesh-based spatial discretisations are finite differences and finite elements, the
former is used in this work. In finite differences (Fidler & Schrefl, 2000; Suess et al., 2006),
space is divided into small cuboids on a regular grid. The cells are magnetised uniformly and
one magnetic moment can be associated with each discretisation cell. In the equations, partial
derivatives are replaced with finite difference quotients. This converts the partial differential
equation into a set of algebraic equations. For complicated geometries, the discretisation
with cuboids on a regular grid is not very well suited because it cannot well resemble curved
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geometries. The finite-element method (Fidler & Schrefl, 2000; Suess et al., 2006) is better
suited to model complex geometries. Here, space is divided into irregular elements, commonly
tetrahedrons in three dimensions, which can model arbitrary geometries. A set of basis
functions is then defined on these elements. The solution of the partial differential equation
can be expressed as a superposition of these basis functions. This turns the partial differential
equation into a set of linear equations, which can be solved using standard linear algebra
techniques. The main drawback of the finite-element method is the complicated mathematical
background and hence increased complexity of the numerical code. Additional difficulties
can arise from the mesh generation.

When discretising space, the cell size has to fulfil certain conditions, independent of the
method. First, magnetisation is assumed to be uniformly distributed in micromagnetics.
Therefore, the discretisation size must be significantly larger than the crystal lattice to ensure
that the locally varying crystal field averages out and lattice effects do not affect the averaged
effective magnetisation. Second, micromagnetics assumes that the angle of the magnetic
moments of neighbouring cells is small, i.e. the magnetisation changes gradually. Therefore,
the discretisation cell size must be much shorter that typical length scales in the system, such
as exchange length, domain wall width, and helix length. The different length scales arise
from the competition of different contributions to the total energy. They are a measure for the
relative strength of the different energy contributions.

The exchange length, defined as (Exl et al., 2020):

𝐴 𝑙ex = , (2.40)
√𝜇0𝑀2 

s 

is a measure for the competition between exchange and demagnetisation energy. On suffi-
ciently small length scales, the exchange interaction dominates the magnetisation and all
magnetic moments align parallel.

The domain wall width, for Bloch walls defined as (Exl et al., 2020):

𝐴 𝑙K = ,√ (2.41)𝐾 

determines the width of the transition region between two magnetic domains. It arises from
the competition between exchange and anisotropy energy.

The helical length (Wilhelm et al., 2012):

4𝜋𝐴 𝑙𝐷 = (2.42)|𝐷| 

describes the effect of exchange and Dzyaloshinskii-Moriya interaction. It determines the
periodicity of magnetic helices or cones forming in helimagnetic systems.
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2.8 Topological objects

A number of different magnetic configurations can form as a result of the competition between
the different contributions to the total energy. In many systems some interactions are not
present or can be neglected because their contribution is minor and irrelevant. Starting from a
ferromagnetic system with only exchange interaction where all magnetic moments are aligned,
many new configurations can be obtained by adding additional interactions. Examples are
domain walls, vortices, skyrmions, and Bloch points, shown in Fig. 2.2.

In the following sections, we discuss these different objects. The main focus of this thesis
is on Bloch points, hence we will provide the most details here. Domain walls, vortices,
and skyrmions have been studied extensively, and only a basic explanation of these objects,
some central features, and references to relevant literature and reviews can be given. A more
comprehensive overview would go beyond the scope of this thesis.

Figure 2.2: Selected magnetic configurations: (a) domain wall of Néel type, (b) out-of-plane
vortex, (c) Bloch skyrmion, and (d) diverging or hedgehog Bloch point.

2.8.1 Domain wall

On small length scales, ferromagnetic materials are dominated by the exchange interaction,
which causes uniform alignment of magnetic moments. However, exchange is a short-range
interaction. On larger lengths, roughly starting on the micrometre length scale, the effects of
demagnetisation energy gain importance. Magnetic moments on these larger length scales
tend to form closed flux lines to avoid magnetic bulk or surface charges. This leads to the
formation of magnetic domains. Each domain has a uniform magnetisation, resulting from
the strong exchange interaction. The magnetisation of different domains is oriented along
different directions, minimising the demagnetisation energy. The orientation of the different
domains is commonly determined by the system’s anisotropy. The region in between two
domains is called domain wall. Here, the magnetisation gradually rotates from the orientation
in one domain to the orientation in the other domain. Domain walls can occur in different
types, such as Bloch walls, Néel walls, vortex walls, or cross-tie walls. Detailed reviews can e.g.
be found in Malozemoff and Slonczewski (1979), Hubert and Schäfer (1998), Thiaville and
Nakatani (2014), Thiaville and Miltat (2018) and Okuno (2020).
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The internal structure of a domain wall depends on a number of parameters. Material paramet-
ers such as exchange and anisotropy, which together can stabilise the domain wall, determine
the wall width and are important for its internal structure. The wall width depends on the
relative strength of the two contributions (see also Eq. 2.41). Exchange interaction prefers
aligned moments, hence thick walls with a gradual rotation and small misalignment between
neighbouring moments. Anisotropy favours alignment along certain crystallographic dir-
ections. The magnetic domains align with these preferred directions. Inside the wall, the
moments are not aligned with the preferred crystal directions. This additional anisotropy en-
ergy contribution decreases with decreasing wall width, hence anisotropy prefers narrow walls.
The shape of the magnetic sample also affects the type of domain wall via the demagnetisation
field.

The two simplest domain-wall configurations are shown in Fig. 2.3. Figure 2.3a shows the
magnetisation of a Bloch domain wall. The figure shows two different cross-sections in the
𝑥𝑦 and 𝑥𝑧 plane. For simplicity, only a single layer of magnetic moments is shown in the
𝑧 direction. Two domains at 𝑥 ≪ 0 with m = (0, −1, 0) and 𝑥 ≫ 0 with m = (0, 1, 0) are
separated by a domain wall centred at 𝑥 = 0, extending through the sample in 𝑦 and 𝑧 direction.
In a Bloch wall, the magnetisation rotates in the plane of the domain wall, here the 𝑦𝑧 plane.
In the centre of the domain wall, at 𝑥 = 0, the moments point along m = (0, 0, 1). Bloch walls
are commonly observed in bulk systems (Liu et al., 2017).

In thin films, Néel walls have a lower energy than Bloch walls (Liu et al., 2017). The mag-
netisation in a Néel wall (Fig. 2.3b) rotates in a plane perpendicular to the domain wall. In
the figure, the domains are again oriented along m𝑥≪0 = (0, −1, 0) and m𝑥≫0 = (0, 1, 0) and
the magnetisation near 𝑥 = 0 rotates in the 𝑥𝑦 plane. At 𝑥 = 0, the moments point along
m = (1, 0, 0). Compared to the Bloch wall, the surface charge of the Néel wall is reduced
because no moments point out of the 𝑥𝑦 plane.
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Figure 2.3: Magnetisation configuration of a Bloch wall (a) and a Néel wall (b). Two different
cross-sections in the 𝑥𝑦 plane and 𝑥𝑧 plane are shown for each configurations.
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Domain walls are important for the macroscopic properties of magnetic materials (Hubert
& Schäfer, 1998). In particular, they can affect hysteresis behaviour, which is of crucial
importance for many applications. On the nanoscale, domain walls have been proposed
for logic devices (Allwood et al., 2005) and a novel type of data storage, so-called racetrack
memory (Parkin et al., 2008; Bläsing et al., 2020). In the racetrack setup, a nanowire contains a
number of domain walls that can be moved along the wire using spin currents. The racetrack
has fixed read and write elements to which the data is moved with these currents. Racetrack
memory would allow for dense three-dimensional storage devices with fast access time and
non-volatile storage. Racetrack memory requires the spacing between the domain walls
to stay constant because the length of the individual domains encodes the number of bits.
Consequently, changes in spacing lead to data loss. This fixed spacing is one of the major
experimental challenges. A second difficulty for domain-wall based applications is the fact that
the maximum achievable speed of domain walls is limited by the Walker breakdown (Schryer &
Walker, 1974; Nakatani et al., 2003): above a certain velocity, typically on the order of hundreds
of metres per second, the domain wall speed decreases significantly because the domain wall
starts to oscillate while moving. Circular geometries have been proposed to prevent the Walker
breakdown (Yan et al., 2011; Hertel, 2016). Experimental realisation (Wartelle et al., 2019)
showed a more complex behaviour including creation of Bloch points.

2.8.2 Vortex

A vortex is a two-dimensional magnetisation configuration where the magnetic moments
rotate around a single point, the vortex core. The magnetic moments near the vortex core
point out of the plane, all other moments lie in the vortex plane. The magnetic moments of a
vortex span a solid angle of 2𝜋. Hence, a vortex has a topological charge 𝑆 = ±1/2. A vortex
can have two different polarisations (core orientations) 𝑝 = ±1 and two different circularities
𝑐 = ±1. In total, four different configurations exist. Vortices can be stabilised solely through
the competition between exchange and demagnetisation energy, magnetocrystalline anisotropy
is not required. Due to the absence of chiral energy terms such as DMI, the vortex has no
energetically preferred chirality. Without external magnetic field all four configurations have
equal energy. (Liu et al., 2017)

A second similar object with topological charge 𝑆 = ±1/2 is the antivortex. Vortex and
antivortex have a different symmetry: ignoring the crystal symmetry, the vortex is rotationally
symmetric; the antivortex has a two-fold symmetry. This is a result of the opposite sense of
rotation of the magnetic moments on a circle around the vortex or antivortex core. When we
express the orientation of the magnetic moments of the vortex and antivortex (centred at the
origin) in cylindrical coordinates, we obtain for the angular component (Behncke et al., 2018):

𝑚Φ(𝜙) = ±𝜙 + 𝑐𝜋2 , (2.43)
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Figure 2.4: Magnetisation configuration and topological charge density of a vortex (a) and
an antivortex (b). A larger sample containing vortex and antivortex, as indicated with the

grey lines, would be topologically trivial.

where 𝑐 is the circularity, and 𝜙 the angular component of the position vector of the magnetic
moments. The positive solution corresponds to vortices, the negative solution to antivortices.
For the vortex only two values 𝑐 = ±1 are allowed and determine the circularity of the vortex,
as mentioned above. For the antivortex any value 𝑐 ∈ [−2, 2) is allowed and determines the
orientation of the antivortex. For an in-depth review of vortices and antivortices we refer to
Behncke et al. (2018) and Pues and Meier (2018), respectively.

Figure 2.4a shows an example for a vortex with polarisation 𝑝 = +1 and circularity 𝑐 = +1.
The left plot shows the magnetisation in the 𝑥𝑦 plane containing the vortex, the right plot
shows the corresponding topological charge density. The main contributions to the total
topological charge 𝑆 = 1/2 come from the magnetisation near the vortex core, located at 𝑥 = 0
and 𝑦 = 0, where the misalignment of neighbouring moments is largest. Figure 2.4b shows
the corresponding antivortex with 𝑝 = +1 and 𝑐 = +1. The topological charge density is again
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concentrated near the core, its sign is reversed. The total topological charge of the antivortex
is 𝑆 = −1/2.

Combining a vortex and an antivortex in a system can result in a topologically trivial configur-
ation with 𝑆 = 0. An example is indicated with the grey lines connecting Fig. 2.4a and b. We
assume to have a rectangular nanostrip with the vortex and antivortex shown in the two subfig-
ures, separated by Δ𝑦 = 100 nm. Starting from this configuration, we can continuously deform
the vector field to annihilate the vortex-antivortex pair by, in a thought experiment, moving
vortex and antivortex towards each other. We end up with a ferromagnetic configuration with
moments pointing in −𝑥 direction.

Vortices and antivortices have initially been studied in the context of domain walls (Hubert
& Schäfer, 1998). In addition to the simple Bloch and Néel wall discussed in the previous
section, one or multiple vortices can also occur in the internal wall structure. Examples are
cross-tie walls (Huber et al., 1958; Middelhoek, 1963) consisting of a series of vortices and
antivortices or vortex walls (Thiaville et al., 2005; Nakatani et al., 2005) containing a single
vortex, which can occur in nanowires. More recently, isolated vortices and antivortices have
been studied more extensively (Shinjo et al., 2000; Wachowiak et al., 2002; Kamionka et al.,
2010; Martens et al., 2012; Haldar & Buchanan, 2013; Pues et al., 2014). Vortices have been
proposed for a number of applications, such as spin-torque oscillators (Lebrun et al., 2015,
2017), (anti)vortex based random access memory (Bohlens et al., 2008; Drews et al., 2009),
spin wave emitters (Wintz et al., 2016), and even applications in cancer treatment (Kim et al.,
2010).

2.8.3 Skyrmion

A magnetic skyrmion is a two-dimensional, swirl-like configuration. Magnetic moments in
the skyrmion core and in the periphery point in opposite direction. In between, magnetisation
gradually rotates from one towards the other direction. Skyrmions have a non-trivial topological
charge. In three-dimensional systems, they form so-called skyrmion tubes, i.e. the 2D skyrmion
is trivially extended in the third dimension.

Skyrmions were initially predicted in the context of particle physics (Skyrme & Schonland,
1961; Skyrme, 1962). Since then, they have been found in many systems, e.g. quantum Hall
systems (Sondhi et al., 1993), Bose-Einstein condensates (Al Khawaja & Stoof, 2001), liquid
crystals (Fukuda & Žumer, 2011), and magnetism (Bogdanov & Yablonskiui, 1989; Mühlbauer
et al., 2009). Magnetic skyrmions can exist as isolated particles (Yu et al., 2010) or form
lattices (Mühlbauer et al., 2009). Since their experimental discovery, magnetic skyrmions have
been studied extensively. Details can be found in one of the many reviews, e.g. Nagaosa and
Tokura (2013), Finocchio et al. (2016), Wiesendanger (2016), Kang et al. (2016), Han (2017),
Fert et al. (2017), Garst et al. (2017), Jiang et al. (2017b), Everschor-Sitte et al. (2018), Bogdanov
and Panagopoulos (2020), Göbel et al. (2021), Li et al. (2021) and Wang et al. (2022b).
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Figure 2.5: The magnetisation configuration of a Néel skyrmion can be obtained by projecting
a hedgehog magnetisation on a sphere (left) onto a plane (right).

Magnetic skyrmions can form in helimagnetic materials due to the competition between
exchange interaction and DMI. Without external magnetic fields, these materials usually have
a helical or conical background and skyrmions are meta-stable configurations. The skyrmion
phase can be stabilised by applying an external magnetic field (Yu et al., 2011). Skyrmions can
also be the ground state without external field if the sample has a finite size (Beg et al., 2015).

Skyrmions are characterised by a non-trivial, quantised topological charge 𝑆 = ±1. This implies
that the magnetisation wraps the unit sphere exactly once. Understanding this connection is
straight-forward: the magnetisation configuration of a skyrmion can be obtained by projecting
the magnetisation on a sphere onto a plane. Figure 2.5 demonstrates this for a Néel skyrmion,
which we obtain when starting from a hedgehog.

The magnetisation of a skyrmion can be approximated with the following simplified equa-
tion (Göbel et al., 2021):

cos(𝑚𝜙 + 𝛾) sin(𝜋𝑟/𝑟0)⎛ ⎞
m(r) = ⎜⎜sin(𝑚𝜙 + 𝛾) sin(𝜋𝑟/𝑟0)⎟⎟ 

0 < 𝑟 < 𝑟0, (2.44)

⎝ 𝑝 cos(𝜋𝑟/𝑟0) ⎠

where 𝑚 is the vorticity, 𝛾 is the helicity, and 𝑟0 the skyrmion radius. The position r of the
magnetic moments is expressed in polar coordinates:

𝑟 = |r| = √𝑥2 + 𝑦2 (2.45)
𝑦 

tan(𝜙) = (2.46)𝑥. 

The true radial dependence of the out-of-plane component of the magnetisation in Eq. 2.44 is
approximated with a simple cosine dependency. In a realistic system, the radial profile depends
on the interaction parameters, the sample geometry, defects, and other quasiparticles (Göbel
et al., 2021). The helicity 𝛾 defines the angle between the in-plane component of the mag-
netisation and the 𝑥 direction. It determines the plane of rotation of the magnetisation when
moving from the skyrmion core to the periphery. For 𝛾 = 0 magnetic moments at 𝑚𝑧 = 0
point in radial direction, for 𝛾 = 𝜋/2 magnetic moments at 𝑚𝑧 = 0 are perpendicular to
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Figure 2.6: Different skyrmion configurations based on Eq. 2.44: (a) Néel skyrmion, (b) Bloch
skyrmion, (c)mixed-helicity skyrmion, (d) anti-skyrmion, (e) higher-order skyrmion, (f) target
skyrmion. The figure shows the magnetisation configuration, the topological charge density,

and the topological charge.

the radial direction. The vorticity 𝑚 describes the circulation of the magnetisation around
the skyrmion core. It counts the number of 2𝜋 rotations of the in-plane component of the
magnetisation, when moving around the skyrmion core on a closed circle (e.g. at 𝑚𝑧 = 0). The
sign determines the direction of rotation of the magnetisation.

Figure 2.6 shows skyrmion profiles for different values of vorticity 𝑚 and helicity 𝛾. In the
figure, we fix the core polarisation to 𝑝 = −1 and the radius 𝑟0 = 40 nm, except for Fig. 2.6f
where we use 𝑟0 = 24 nm. For each configuration we show the magnetisation profile and the
corresponding topological charge density.

The first solution, obtained for 𝑚 = 1 and 𝛾 = 0, is called Néel skyrmion (Fig. 2.6a). The
magnetisation in a Néel skyrmion rotates in a plane parallel to the radial direction, similar to a
Néel domain wall. The topological charge density is comparatively large inside the skyrmion
and approaches zero for 𝑟 → 𝑟0. Importantly, we see a non-zero topological charge density in
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the entire area covered by the skyrmion. This is qualitatively different from a vortex where we
only obtain non-zero contributions near the vortex core. The integrated topological charge is
𝑆 = −1, the sign is a result of the negative polarisation. Néel skyrmions can be obtained in
systems with interfacial DMI, such as Fe/Ir(111) (Heinze et al., 2011).

A second type of skyrmion is the Bloch skyrmion (Fig. 2.6b), obtained for 𝑚 = 1 and 𝛾 = 𝜋/2.
Here, the magnetisation rotates in a plane perpendicular to the radial direction, similar to a
Bloch domain wall. The topological charge density and topological charge are identical to the
Néel skyrmion. Bloch skyrmions can be found in systems with bulk DMI, e.g. FeGe (Yu et al.,
2011).

Figure 2.6c shows a mixed-helicity skyrmion, obtained for 𝑚 = 1 and 𝛾 = 𝜋/4. It is a mixture
of Néel and Bloch skyrmion. Again, its topological charge is 𝑆 = −1 and the topological charge
distribution matches that of the Néel and the Bloch skyrmion.

Fig. 2.6d shows an anti-skyrmion, obtained for 𝑚 = −1 and 𝛾 = 0. The anti-skyrmion has the
opposite topological charge of the skyrmion, here 𝑆 = +1 because of the negative polarisation.
Due to the negative vorticity, the anti-skyrmion has a two-fold symmetry (in a continuous
model). This is different from the skyrmions discussed in Fig. 2.6a–c, which are rotationally
symmetric. Anti-skyrmions can e.g. be observed in materials with crystal class 𝐷2𝑑 (Jena et al.,
2020).

Higher-order skyrmions have a vorticity 𝑚 = 𝑘 with |𝑘| > 1, i.e. the magnetisation on a circle
around the core rotates 𝑘 times as we move around the core once. Figure 2.6e shows the
simplest case for 𝑘 = 2 and 𝛾 = 0. The topological charge is equivalent to the total winding
determined by 𝑘, in the example 𝑆 = −2. (Göbel et al., 2021)

Target skyrmions are characterised by multiple 𝜋 rotations of the out-of-plane component
between the skyrmion core and the periphery. Figure 2.6f shows an example for a total winding
of 2𝜋, i.e. the magnetisation in the skyrmion core and the periphery points in the same direction.
Here, the two nested skyrmions have the opposite topological charge density and the overall
topological charge cancels out, 𝑆 = 0. This specific configuration is also sometimes called
skyrmionium (Everschor-Sitte et al., 2018).

Magnetic skyrmions are under extensive scrutiny both as interesting objects for fundamental re-
search and for potential applications. Skyrmions can be manipulated using external fields (Moutafis
et al., 2009; Büttner et al., 2015), spin torques (Jiang et al., 2015; Woo et al., 2016; Litzius et al.,
2017; Jiang et al., 2017a; Wang et al., 2022a), or temperature gradients (Mochizuki et al., 2014;
Pinna et al., 2018; Zázvorka et al., 2019; Wang et al., 2020). They are investigated as an alternat-
ive realisation of racetrack memory (Fert et al., 2013; Tomasello et al., 2014; Zhang et al., 2015b;
Müller, 2016; Chen & Roy, 2017; Müller, 2017; Suess et al., 2018). Skyrmions could be used for
novel for spintronic logic devices (Zhang et al., 2015a; Xing et al., 2016; He et al., 2017; Luo
et al., 2018), probabilistic computing (Pinna et al., 2018; Zázvorka et al., 2019), neuromorphic
computing (Grollier et al., 2016; Huang et al., 2017), and reservoir computing (Prychynenko
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et al., 2018; Bourianoff et al., 2018). Beyond computing or storage applications, skyrmions
have been proposed for use in radio-frequency emitters (Carpentieri et al., 2015), microwave
detectors (Finocchio et al., 2015), and magnonic crystals (Ma et al., 2015).

2.8.4 Bloch point

A Bloch point is a single discontinuous point in the magnetisation configuration where the
magnetisation vanishes (Feldtkeller, 1965; Döring, 1968). Characterising property of the Bloch
point is that the magnetic moments on any closed surface enclosing the Bloch point span
the entire solid angle. Hence, the surrounding magnetisation structure has a non-trivial to-
pology (Mermin, 1979; Kotiuga, 1989; Zou et al., 2020; Tejo et al., 2021). The magnetisation
around a Bloch point can have infinitely many different topologically equivalent configura-
tions (Malozemoff & Slonczewski, 1979). We discuss some common configurations later in this
section. Bloch points can also be found in other systems such as liquid crystals (Chandrasekhar
& Ranganath, 1986).

We note the following on the use of the word Bloch point in this thesis. Technically, the
Bloch point is just the point of vanishing magnetisation. When discussing properties of a
magnetisation configuration containing a Bloch point, we are however interested in the Bloch
point and its larger surrounding. Therefore, we use the term Bloch point to refer to the point
singularity and the surrounding magnetisation. This can be done because the Bloch point
affects the surrounding magnetisation at arbitrary distance due to its topology (Malozemoff
& Slonczewski, 1979), given that there are no other particle-like objects in the considered
volume.

Computationally, the internal structure of Bloch points has been studied in detail using both
micromagnetic (Thiaville et al., 2003) and atomistic simulations (Andreas et al., 2014). Andreas
et al. (2014) have used a combined atomistic and micromagnetic code, where the atomistic
model is used in the vicinity of the Bloch point where the magnetisation changes rapidly.
Both types of simulations produce similar results for the static Bloch-point structure (Jourdan,
2008). The Bloch-point energy depends on the location of the Bloch point in the non-uniform
lattice potential, which leads to pinning of the Bloch point in the lattice potential. This pinning
can directly be seen in atomistic simulations (Kim & Tchernyshyov, 2013; Hertel & Andreas,
2015). In a continuous micromagnetic model no pinning would occur. In micromagnetic
simulations, the pinning is re-introduced through the discretisation (Thiaville et al., 2003; Im
et al., 2019; Gong et al., 2021). However, the pinning in micromagnetic simulations depends
on the discretisation cell size.

Elías and Verga (2011) analytically derived the magnetisation structure around a Bloch point
in a system with exchange, demagnetisation and Landau terms. They showed that such a
system can host two types of Bloch points, diverging and circulating Bloch points, and that
the latter has a lower energy. Pylypovskyi et al. (2012) analytically derived the twist angle of
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the circulating Bloch point and obtained a value of 105°, which is in good agreement with
micromagnetic simulations.

Theoretical and numerical methods generally work at 𝑇 = 0, where the saturation magnetisa-
tion 𝑀s is fixed. At elevated temperatures, the magnitude of the magnetisation can vary locally
and in the close vicinity of the Bloch point decreases compared to the average magnetisation.
The effects on the Bloch point have been studied theoretically (Khodenkov, 2010) and with
micromagnetic simulations at elevated temperatures using the Landau-Lifshitz-Bloch equa-
tion (Lebecki et al., 2012). The reduction of the magnetisation around the Bloch point lowers
its total energy and makes thermal nucleation more likely (Khodenkov, 2010).

Experimentally, the internal structure of static Bloch points was measured recently using X-ray
nanotomography (Donnelly et al., 2017; Hierro-Rodriguez et al., 2020; Donnelly et al., 2021;
Rana et al., 2023; Hermosa et al., 2023). In the experiments, a resolution of 25 nm and 10 nm
was achieved in Donnelly et al. (2017) and Rana et al. (2023), respectively. Im et al. (2019)
measured Bloch-point dynamics using time-resolved transmission X-ray microscopy. They
studied Bloch points embedded in magnetic vortices in asymmetric permalloy disks. They
observed motion of the Bloch point when applying a magnetic field and found that the Bloch
point affects the motion of the whole vortex structure in which the Bloch point is embedded.

Bloch points can exist both as stable configurations and as transient objects mediating several
magnetisation reversal processes. They have initially been studied in the context of magnetic
bubbles (Slonczewski, 1975; Hasegawa, 1975; Malozemoff & Slonczewski, 1979; Kufaev &
Sonin, 1989; Masseboeuf et al., 2009), where Bloch points can occur in Bloch lines inside
domain walls. Their existence and dynamic properties inside domain walls have been studied
experimentally since the 1980s (Jantz et al., 1981; Zubov et al., 1988; Kabanov et al., 1989;
Zubov et al., 1990; Thiaville & Miltat, 1994), the internal structure however could not be
resolved in these experiments. Bloch points play an important role in vortex domain walls
in cylindrical nanowires in which they have been studied theoretically (Wieser et al., 2004;
Piao et al., 2013; Jamet et al., 2015; Hertel, 2016; Askey et al., 2022; Moreno et al., 2022; Caso
et al., 2023) and experimentally (Da Col et al., 2014). Sáez et al. (2022a, 2022b) showed that
thickness modulations of the nanowire can be used to control the location of the Bloch point
and stabilise it against external fields. Bloch points can also exist as metastable states in
nanospheres (Pylypovskyi et al., 2012). Interaction between Bloch points in nanospheres via
their stray field is investigated in Zambrano-Rabanal et al. (2023), where the authors find
that a Bloch point in a nanosphere creates a quadrupole magnetic field. Depending on their
relative orientation, the resulting interaction between two Bloch points, each in a nanosphere,
can be attractive or repulsive. Two systems combining skyrmions and Bloch points are chiral
bobbers (Rybakov et al., 2015; Zheng et al., 2018; Ahmed et al., 2018; Birch et al., 2020) and
dipole strings (Müller et al., 2020; Savchenko et al., 2022). The former is a skyrmion tube
starting on a material surface that ends in a Bloch point, the latter can be understood as a short
skyrmion tube that starts and ends in a Bloch point. Beg et al. (2019) recently predicted the
existence of a stable Bloch point in two-layer nanodisks, where the two layers have opposite
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material chirality. In this system, the Bloch point forms at the layer interface and is stabilised
through the material’s chirality. As a result, the energy of the Bloch-point configuration is
lower than that of a simpler vortex extending throughout the whole system, which would
be the ground state in a single-layer nanodisk of similar size. Different from Bloch points
forming in long nanocylinders, the demagnetisation energy in the two-layer system would not
be strong enough to stabilise the Bloch-point configuration. Charilaou (2020) studied a Bloch
point embedded between two chiral bobbers in chiral nanocuboids and numerically showed
that the location of the Bloch point can be controlled with an externally applied magnetic
field.

Periodic lattices of Bloch points with alternating opposite topological charge, referred to as
Bloch points and anti-Bloch points, have been measured experimentally in MnGe (Kanazawa
et al., 2011, 2012; Tanigaki et al., 2015; Kanazawa et al., 2017, 2020) and MnSi𝑥Ge1−𝑥 (Fujishiro
et al., 2019; Aji et al., 2023). The Bloch-point crystals can form in two different configurations, a
tetrahedral 4𝑞 lattice and a cubic 3𝑞 lattice. Possible stability mechanisms and the microscopic
origin of the different lattices have theoretically been studied in Okumura et al. (2020), Shimizu
et al. (2021), Paradezhenko et al. (2022) and Kato and Motome (2023). Fujishiro et al. (2020)
summarises many of the results and discusses ways of manipulating these systems. Okumura
et al. (2020) have also studied motion of Bloch points in the Bloch point crystal when applying
an external magnetic field using Monte-Carlo simulations. They find that the Bloch points
move in an applied field and observe repulsion and pair annihilation depending on the field
strength.

The simplest dynamical process involving the formation of Bloch points is the reversal process
of a uniformly magnetised ferromagnetic cylinder (Hertel & Kirschner, 2004). During the
reversal process, Bloch points are generated on the central axis of the cylinder and mediate
the reversal of the magnetisation on the central axis. The authors observed Bloch-point pair
creation and annihilation in their simulations. The occurrence of Bloch points has been
observed in the magnetisation reversal of domain walls (Hillebrands & Thiaville, 2006; Piao
et al., 2013; Vazquez, 2015; Hertel, 2016; Wartelle et al., 2019). Bloch points are of central
importance for vortex core reversal (Thiaville et al., 2003; Niedoba & Labrune, 2005; Van
Waeyenberge et al., 2006; Hertel et al., 2007; Vila et al., 2009; Wohlhüter et al., 2015; Noske
et al., 2015; Pylypovskyi et al., 2015), antivortex core reversal (Xing et al., 2008) and vortex-
antivortex annihilation (Hertel & Schneider, 2006). Bloch points are also involved in skyrmion
dynamics such as switching of skyrmions (Schütte & Rosch, 2014; Beg et al., 2015; Liu et al.,
2015) and skyrmion creation and annihilation (Li et al., 2020).

The two-layer system proposed by Beg et al. (2019) is studied in more detail in this thesis. The
concept of a Bloch point in the two-layer system is explained in Fig. 2.7, where we start from
vortex configurations in single-layer materials and then stack them on top of each other to
obtain the Bloch-point configuration of the magnetisation field. Figure 2.7a schematically
shows the four possible vortex configurations that we can find in a thin layer of ferromagnetic
material due to the competition between ferromagnetic exchange and demagnetisation energy,
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as discussed in Sec. 2.8.2. The vortex core with polarisation 𝑃, pointing in the out-of-plane
direction, can either point along +𝑧 for 𝑃 = +1 or along −𝑧 for 𝑃 = −1, and, independently,
the circularity 𝑐 of the magnetisation around the vortex core can either be clockwise (𝑐 = −1)
or anticlockwise (𝑐 = +1). The product of polarisation and circularity can be defined as vortex
chirality. In a simple ferromagnet, all four configurations are energetically equivalent. By
adding DMI to the system, the relation between polarisation and circularity is fixed through
the material chirality, i.e. the sign of the DMI constant 𝐷: for a given 𝐷 only two of the four
vortex realisations are energetically favourable.

Figures 2.7b and c show how a Bloch-point configuration can be realised by stacking vortex
configurations with the same circularity and opposite polarisation on top of each other. The
Bloch point emerges at the interface between the two vortex cores of opposite polarisation.
The exchange coupling across the comparatively large interface enforces the same circularity
in both layers. In layers with opposite material chirality, the vortices therefore have opposite
polarisation and the Bloch point can be stable despite the high exchange energy density near
the singularity. Two different Bloch-point types can be realised. When the magnetisation of
the vortex cores point toward each other, we obtain a head-to-head Bloch point (HH), shown
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Figure 2.7: (a) In a single layer of magnetic material, four different vortices, with polarisation
𝑃 = ±1 and circularity 𝑐 = ±1, can form as a consequence of the competition between
exchange energy and demagnetisation. Adding DMI couples circularity and polarisation.
(b, c) By stacking two layers with opposite sign of the DM energy constant 𝐷, a Bloch point can
be stabilised. The Bloch point can be of type head-to-head (b) or tail-to-tail (c). In the figure,
the two layers are, for better clarity, separated in 𝑧 direction as indicated by the grey dashed
lines. (d, e) Simulation result for a single head-to-head (d) and tail-to-tail (e) Bloch point. The
isosurfaces (of paraboloidal-like shape) near the centre show 𝑚𝑧 = ±0.9, colour indicates the
𝑧 component. They are convenient to locate the Bloch point that is situated between them.
The insets show three isosurfaces for 𝑚𝑥 = 0, 𝑚𝑦 = 0, and 𝑚𝑧 = 0, respectively. The Bloch
point is located at the intersection of the three isosurfaces where the magnetisation vanishes.
The cones in the insets indicate the magnetisation directions in the eight discretisation cells
surrounding the Bloch point. The magnetisation around the Bloch point is show in more
details in (f, h) for the HH configuration and in (g, i) for the TT configuration. See the main

text for additional details. (Figure, including caption, taken from Lang et al., 2023a)
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in Fig. 2.7b. When the magnetic moments point away from each other, we obtain a tail-to-tail
Bloch point (TT), shown in Fig. 2.7c.

Figure 2.7d shows the magnetisation vector field for a single head-to-head Bloch point obtained
from a micromagnetic simulation. Figure 2.7e shows the corresponding plot for a tail-to-tail
Bloch point. Colour represents the 𝑚𝑧 component of the magnetisation, the paraboloidal-
like isosurfaces show 𝑚𝑧 = ±0.9. The Bloch points are located between these structures,
as indicated in the insets. In the simulations, the Bloch points form in the centre of eight
discretisation cells. The insets show the magnetisation of these discretisation cells with cones.
Additionally, they show three isosurfaces for 𝑚𝑥,𝑦,𝑧 = 0. The Bloch points are located at the
intersection of the three isosurfaces, where the magnetisation vanishes. Figure 2.7f and h and
Fig. 2.7g and i show the magnetisation around the two Bloch points in more detail. Only the
eight discretisation cells around the Bloch point are included. The magnetisation of the cells is
interpolated onto the cell nodes. Here, we can clearly see that the moments above and below
the Bloch points point in opposite direction. Furthermore, from the moments located in the
𝑥𝑦 plane around the Bloch point, we can see the circulating nature of the two Bloch points.

Similar to skyrmions and vortices, Bloch points can be classified using their topological charge.
To compute the topological charge of a Bloch point, we can use a modified version of Eq. 2.39:

1𝑆BP = ds ⋅ Be, (2.47)4𝜋ℏ ∫ 
𝒮 

which reflects the 3D nature of the magnetisation configuration surrounding the Bloch point
(Im et al., 2019). The integration in Eq. 2.47 is taken over an arbitrary closed surface 𝒮 enclosing
the Bloch point, Be is the emergent magnetic field, and ds is a surface element. Bloch points
have a topological charge 𝑆BP = ±1, depending on their type. Eq. 2.47 describes the flux of
the emergent magnetic field through a closed surface surrounding the Bloch point, which is
therefore quantised. We can re-write Eq. 2.47 using the divergence theorem and obtain:

1𝑆BP = = ±1, (2.48)4𝜋ℏ ∫ d𝑉 div Be 

where 𝑉 is the volume enclosed by surface 𝒮. We can see that Bloch points act as sources and
sinks of the emergent magnetic field and can therefore be interpreted as emergent magnetic
monopoles and antimonopoles (Milde et al., 2013).

As an example, we can compute the emergent magnetic field and the topological charge of a
Bloch point using an analytic expression for the normalised magnetisation around the Bloch
point. For a diverging Bloch point, the magnetisation is given as:

r m(r) = (2.49)𝑟 . 
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Figure 2.8: (a) Magnetisation around a diverging Bloch point; (b) resulting emergent
magnetic field.

For the emergent magnetic field, we obtain:

Be r 
BP = ℏ . (2.50)𝑟3 

We can then compute the divergence of the emergent magnetic field and find:

div Be = 4𝜋ℏ𝛿(3)BP (r). (2.51)

Hence, for the topological charge we obtain:

1𝑆 e (3)
BP = ∫ d𝑉 div BBP = ∫ d𝑉𝛿 (r) = 1. (2.52)4𝜋ℏ 

Figure 2.8 shows numerical calculations for the diverging Bloch point defined in Eq. 2.49.
We discretise the problem into 10 × 10 × 10 discretisation cells and use a finite-difference
approximation for the calculation of the derivatives. Figure 2.8a shows the magnetisation
field around the Bloch point, which is located in the centre of the cube. In the figure, we have
reduced the number of cones to 4×4×4 to improve visibility. Figure 2.8b shows the emergent
magnetic field, colour encodes the field strength. We can see the strong field localisation
around the Bloch point, pointing radially away from the Bloch point. The diverging Bloch
point acts as a source of the emergent magnetic field. Apart from the direct vicinity of the
Bloch point, the magnetisation is almost collinear and hence only produces a much weaker
emergent magnetic field.
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Figure 2.9: (a) Divergence of the emergent magnetic field in a layer of cells located above the
Bloch point. (b) Influence of decreasing cell size on the numerical approximation of Eq. 2.51

in a line of cells located near the Bloch point.

Figure 2.9a shows div Be 
BP on a cut-plane in 𝑥𝑦 for the discretisation cells located above the

Bloch point. We can see a numerical approximation of the sharp 𝛿 peak obtained from
Eq. 2.51. For the topological charge, we numerically obtain 𝑆BP ≈ 0.993 which is in good
agreement with the analytic value 𝑆BP = 1 despite the coarse discretisation used in this example.
With decreasing discretisation cell size, the numerical accuracy increases: for 20 × 20 × 20
discretisation cells, we obtain 𝑆BP ≈ 0.999 and for 40 × 40 × 40 discretisation cells, we obtain
𝑆 e
BP ≈ 0.9996. Figure 2.9b shows line cuts for div B  

BP for the different cell sizes. The cuts are
always taken in the layer above the Bloch point. In the plot, we can see that div Be 

BP converges
towards a sharp peak with decreasing discretisation cell size.

In the micromagnetic simulations carried out in this work, we use div Be 
BP to detect and locate

Bloch points and determine their type (depending on the sign of 𝑆BP). We numerically evaluate
Eqs. 2.37 and 2.48 using a finite-differences approximation. For skyrmions, a numerically more
accurate scheme (Berg & Lüscher, 1981; Kim & Mulkers, 2020) is commonly used to evaluate
Eq. 2.39. This scheme could be directly generalised to three dimensions in order to compute
the emergent magnetic field. In the present work, numerically evaluating the derivatives is
sufficient as Bloch points have to have an integer-valued topological charge because of their
point-like nature. Deviations from integer values are caused by the discretisation (see Sec. 4.5
for more details). The situation is different for skyrmions, where also non-integer valued
skyrmions can exist (Beg et al., 2015).

Further difficulties in detecting Bloch points based on the emergent magnetic field occur in
systems containing multiple Bloch points because of the fact that the sign of the topological
charge of a Bloch point depends on its type. Hence, contributions from Bloch points of opposite
type can cancel out. More details on how to deal with multiple Bloch points in a sample will
be given in Sec. 4.5. The emergent magnetic field can also be used to locate Bloch points with
sub cell-size accuracy by computing the centre of mass of div Be, see Sec. 5.2.2 for details.
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Chapter 3

Computational tool Ubermag

Preface

Parts of the work on Ubermag have been published as Beg et al. (2022). The work on mag2exp is under
review for publication as: S. J. R. Holt, M. Lang, J. C. Loudon, T. J. Hicken, D. Suess, D. Cortés-Ortuño,
S. A. Pathak, M. Beg and H. Fangohr. “Virtual experiments in computational magnetism: mag2exp” (2023).
An example of the usage of Ubermag for teaching, where I am one of the co-authors, is under review (Lonsky
et al., 2023).

3.1 Introduction

We use and develop a Python package called Ubermag (Beg et al., 2022) for our simulations.
Ubermag provides a high-level interface to existing micromagnetic simulation packages such
as OOMMF (Donahue & Porter, 1999). The work on Ubermag started with its predecessor
JOOMMF (Beg et al., 2017b), a package that was only interfacing OOMMF, as part of the
OpenDreamKit project in 2015.1 Later on, the ideas were generalised in the Ubermag package
collection. Ubermag seemed well suited to support my studies. Therefore, I started using it
and extended its functionality as required.

Ubermag is a human-centred research environment that improves the interface between the
researcher and the numerical simulation and that can help make simulation-based micro-
magnetic research reproducible. Ubermag introduces a domain-specific language to describe
micromagnetic problems in Python. This description is independent of the simulation tool,
such as OOMMF, used to solve the problem. All tool-specific communication with the nu-
merical backend, e.g. writing the omf and mif input files required for OOMMF, and parsing
the output files generated by the numerical backend happens in the background without any
interaction from the researcher.

1https://opendreamkit.org

https://opendreamkit.org
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This chapter is organised as follows. In Sec. 3.2 we give a high-level overview of a typical 
workflow when running (micromagnetic) simulations. We focus on the fundamental steps 
common to most simulation-based research and discuss typical difficulties when working with 
simulation software. We identify a number of possible improvements that motivate the design 
of Ubermag. In Sec. 3.3 we discuss the importance of reproducibility in science and common 
problems in achieving reproducibility in simulations in general. Afterwards, we introduce 
Ubermag by first discuss a small example of using Ubermag in a Jupyter Notebook in Sec. 3.4. 
In Sec. 3.5 we discuss the design ideas behind Ubermag and how it can help improve the 
scientist’s work and reproducible research in more detail. We also give an overview of the 
individual subpackages and their interplay. In Sec. 3.6 the main extensions and modifications 
of the package during the time of my PhD are discussed. Furthermore, we briefly touch 
on some more general concepts and tools for maintaining a small open-source project like 
Ubermag. This section might be of use for similar open-source projects. 

3.2 Computational workflow in micromagnetics 

Computer simulations are a widely used tool to complement experiments and theoretical 
research. Carrying out micromagnetic simulations, like many simulations in other fields, 
commonly can be divided into five major steps, which are discussed below. In this discussion, 
we ignore the option to control simulations through a GUI, which some simulation packages 
provide. The steps are (Beg et al., 2022): 

1. Decide on the physical problem to solve. 

2. Express physics in a language understood by the simulation tool (typically some sort of 
configuration file). 

3. Run the calculation: the simulation software writes data files—the simulation results. 

4. Post-processing of the data files to analyse and visualise the simulation results. 

5. Run multiple similar simulations to gain more insight, e.g. by studying the parameter 
space of a material parameter or the sample geometry. This implies repeating steps 2 
to 4 in some sort of loop while varying one or more parameters. 

In the micromagnetic context, several open-source packages with their main focus on step 3 
are available, e.g. OOMMF (Donahue & Porter, 1999) and Mumax3 (Vansteenkiste et al., 2014). 
In order to use these packages, we have to write configuration files. Each package defines its 
own syntax for these files. They are typically either written in a scripting language used in the 
simulation package, e.g. tcl-based input files for OOMMF, or have a custom syntax inspired 
by the language used to write the simulation software, e.g. go-inspired input files for Mumax3. 
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For post-processing, the packages commonly provide a limited set of additional functionality,
e.g. through a number of (small) additional utility programmes.

The packages’ strong focus on numerically solving the problem in combination with the way
they are used implies several difficulties that can together result in a steep learning curve. First,
the user generally has to learn either a new scripting language, which might not be widely used
(any more), or the tool-specific syntax to write input files. In both cases it can be potentially
difficult to find enough training resources and documentation. Furthermore, writing input
files generally is a mixture of two conceptionally independent steps: (i) defining the physics
of the problem (such as the energy and dynamics equation) in a machine-readable format
and (ii) defining numerically required “details” such as how to discretise the problem. Ideally,
the two steps would be separated: step (i) would be done in a more abstract format that more
closely follows the analytic description of the problem. Afterwards, the user would define
numerical details in step (ii) and the software would automatically translate the high-level
problem description taking these details into account.

Further difficulties arise during the data analysis (step 4). Data files are often written in
custom formats that are not used outside the micromagnetics context. This does not cause
any problems as long as all post-processing can be done using the provided auxiliary tools.
However, research, due to its very nature, often requires the researcher to come up with new
analysis methods. Not only does this imply knowing a (second) language suitable for data
analysis and visualisation, the researcher also has to understand the structure of the data files
and write custom code to parse the data files and convert them into data structures suitable
for further analysis—a time-consuming and potentially error-prone additional task.

Step 5, running multiple similar simulations, is generally not directly supported by the simu-
lation packages. It requires the researcher to write additional code to control the individual
simulations, e.g. by automatically creating suitable input files for each configuration. Again,
this requires knowledge of a separate language. Furthermore, prior experience with some sort
of template mechanism is typically required to generate the individual input files.

The aim of Ubermag is to simplify steps 2, 4, and 5. For that purpose, Ubermag introduces an
abstraction layer, written in Python, sitting above (German “über”) existing micromagnetic
simulation packages. This additional layer introduces a number of simplifications and circum-
vents the problems outlined above. Running micromagnetic simulations through Ubermag
only requires Python knowledge, one of the most popular and widely used programming
languages. Python is deemed to be an easy-to-learn language (Bogdanchikov et al., 2013) and
extensive documentation and plenty of tutorials and video courses can be found online. Many
researchers even have some previous programming experience with Python. The researcher
can use the same language to describe the problem (step 2), for data analysis (step 4), and
to control multiple simulations (step 5). To simplify step 2, Ubermag introduces a machine-
readable high-level syntax to describe the physics of the problem and—separately—numerical
details such as discretisation. Ubermag then converts these into configuration files required by
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the simulation packages. There are similar projects with the goal to simplify using simulation
software in other fields, e.g. the Atomic Simulation Environment (ASE) (Larsen et al., 2017)
and pyiron (Janssen et al., 2019).

3.3 Reproducibility

Confirmation and reproduction of scientific results is a key-element to make research trust-
worthy. The most powerful way to confirm scientific claims is replicability, i.e. a different group
or person performs a similar study using a different method and obtains the same scientific
result. However, replication is not always possible, e.g. due to the required resources (Peng,
2011). An alternative is reproducing the results using the same method. The repeating study
may be conducted by the same researcher or a different person or group. In this work, we
combine both options under the term reproducibility and note that the term is not used con-
sistently across literature. Reproducibility is not only important to confirm scientific claims. It
is also a requirement to conduct further research based on previous findings. Lastly, it can
greatly simplify starting to work in a new field, e.g. as a PhD student.

A recent survey shows that many research results in various scientific fields are not reprodu-
cible (Baker, 2016): in the survey, close to 70% of the participants in the field of physics and
engineering reported that they failed reproducing someone else’s results and over 50% failed
reproducing their own results. Many factors contribute to the lack of reproducibility. Two
of the most commonly perceived problems are the “pressure to publish and selective report-
ing” (Baker, 2016). Making research reproducible requires additional effort and time from the
researcher and is generally not reflected in the metrics used to judge scientific reputation.

Reproducible research is increasingly gaining attention. Several journals by now require data
and protocols to be available and reserve the right to tag publications that are not reproducible.2

Many works in various fields of research aim at making research more reproducible, e.g. by
simplifying the process of recording required information and establishing new standards for
data exchange. Examples can be found in earth observation (Giuliani et al., 2019), molecular
dynamics simulations (Bonomi et al., 2019), neuroscience (Mulugeta et al., 2018), multi-physics
simulations (Tylissanakis & Cotronis, 2009), and computational drug discovery (Schaduangrat
et al., 2020), among others.

Here, we are particularly interested in computer simulations. Many difficulties in making
numerical simulations reproducible can arise (Peng, 2011; Beg et al., 2021): One set of problems
is related to a lack of reported details when publishing results. Commonly missing information
are a full list of simulation parameters, a detailed simulation protocol, or exact versions of
all software packages used (including all libraries or indirect dependencies). One reason for
this is that reporting such simulation details is not enforced by current publication standards.

2https://www.nature.com/nature-portfolio/editorial-policies/reporting-standards, accessed on July 27, 2023

https://www.nature.com/nature-portfolio/editorial-policies/reporting-standards
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Sometimes unawareness of the existence or importance of certain parameters (such as hard-
coded default values of the simulation software) can also contribute. The problem of missing
information on the used software versions is enhanced by a lack of support for recording
such information in many of the tools used to write and compile research software. Further
software-related difficulties can arise even if versions are recorded. Old versions might not
be available any more, in particular for commercially available, closed-source software. Old
versions of open-source software, although probably more easily available, might rely on old
versions of system libraries, which in turn can make it (nearly) impossible to re-compile the
software on more modern operating systems. A third set of problems can arise from inevitable
numerical deviations as a consequence of floating-point inaccuracies and non-deterministic
execution order of parallelised code (Diethelm, 2012). This is a fundamental property of
computer simulations and can only be dealt with by raising awareness for the phenomenon
and providing proper training for end-users of simulation code.

The difficulties of re-creating the same software environment can, at least for open-source
software, for instance, be addressed by archiving and publishing containers containing the full
software stack. Virtualisation in containers such as Docker or Apptainer ensures independence
of the host’s (system) libraries, whereby it simplifies the use of software that relies on old
versions of (system) libraries, which may be incompatible with other software used on the
same system.

One tool that can help to record a detailed simulation protocol and simulation parameters are
Jupyter Notebooks (Kluyver et al., 2016). In recent years, Jupyter notebooks have evolved into
a tool that is widely used in computational research, data science, and many other communit-
ies. The Jupyter Notebook can combine code, data, visualisation, and textual explanations
including equations in a single document. These features allow for expressing computational
narratives in Jupyter Notebooks (Granger & Pérez, 2021). By conducting the whole simulation
in a single notebook, the full simulation input, the order of subsequent simulations, and the
obtained results can be recorded (Beg et al., 2021). The resulting notebooks can easily be
shared or exported to common formats such as static HTML or PDF. Services like Binder3

allow users to re-execute notebooks in the cloud using a software environment defined by the
notebook creator and hence have the potential to be used to reproduce central figures of a
publication. Binder does not require any software installed locally, it fully runs inside a web
browser, and executes the notebook inside a container in the cloud. Standard file formats of
the relevant programming ecosystems are used to define the required software environment
of that container. We note that computational resources on Binder are limited. Hence, it
is not suitable for computationally demanding simulations but may still be used to analyse
pre-computed datasets.

As a consequence of their great flexibility, Jupyter Notebooks are not by default reproducible:
code cells can be executed in arbitrary order, code cells can be removed or modified after
execution, and new cells can be added later on. All these changes potentially break a top-down

3https://mybinder.org/

https://mybinder.org/
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re-execution of the notebook, rendering the notebook not reproducible (Pimentel et al., 2021).
Furthermore, Jupyter Notebooks do not record software versions used when executing the
notebook. This has to be done separately, e.g. using the standards the Binder project relies on.
To circumvent the problems of execution order or modifications post execution, tools have been
developed to identify and warn about potential problems during notebook creation (Pimentel
et al., 2021) or to try reconstructing execution order of an existing notebook (Wang et al.,
2021). Rule et al. (2018) have formulated a set of rules to follow to make research in Jupyter
Notebooks reproducible.

3.4 Example: vortex dynamics

In this section, we demonstrate how to use Ubermag by discussing a simple example: the
dynamics of a magnetic vortex in a ferromagnetic permalloy nanostructure. Ubermag is
a collection of several Python packages, that each address a specific sub-part of running a
micromagnetic simulation and can be related to the individual steps outlined in the Sec. 3.2
(see Sec. 3.5 for a detailed discussion of all sub-packages).

In this introductory example, we only cover three packages. We use micromagneticmodel 
to define the physics of our system, i.e. the energy and the dynamics equation. The simulated
“sample”, i.e. the shape and discretisation of the simulated region and the saturation mag-
netisation, is defined using discretisedfield. We use OOMMF as the backend to solve the
problem numerically. To communicate with OOMMF we use oommfc.

The use of Python as a language for the Ubermag packages makes it possible to control the
simulation from a Jupyter Notebook. Ubermag controls the external micromagnetic solver
used in the background and transfers the results back to the notebook. This allows plotting
and further analysis in the same notebook. Figures 3.1 and 3.2 show the notebook for the
vortex-dynamics example. The notebook is split into two figures because it does not fit onto a
single page. We explain the workflow for this simulation in the remainder of this section.

First, we import the required packages in cell 1 (Fig. 3.1). Additionally, we change the default
figure format to svg to improve the figure rendering inside the notebook.

The whole simulation information is stored inside a so-called system object, defined in cell 2.
We have to provide a system name, which affects where the simulation will be stored on
disk, and which can be used to later access the simulation results. We define the energy
equation and the dynamics equation in cells 3 and 4, respectively. In the notebook, both can be
rendered using LaTeX after they are defined. In this example, we include exchange energy with
𝐴 = 13 pA/m and demagnetisation energy, material parameters are based on permalloy. The
magnetisation dynamics is governed by the Landau-Lifshitz-Gilbert equation and consists of a
precession term with the reduced gyromagnetic ratio 𝛾0 = 2.211 × 105 m/(As), pre-defined in
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Figure 3.1: Part 1 of the example notebook to demonstrate the use of Ubermag. This part
demonstrates the system set-up and the initial energy minimisation. The overlapping labels
in cell 5 are a shortcoming of the simplified visualisation method, see main text for details.
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Figure 3.2: Part 2 of the example notebook to demonstrate the use of Ubermag. This part
demonstrates running additional simulations after the first energy minimisation, changing

terms in the energy equation, and analysing time-resolved data.
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micromagneticmodel, and the Gilbert damping term with 𝛼 = 0.2. The damping constant
is set to an exceptionally large value in order to simplify the dynamics in this example.

The second part of the initialisation is defining the “sample”. This step comprises defining
the size of the simulation region, defining a mesh to discretise this region, and defining the
initial configuration and the saturation magnetisation of the sample on this mesh (stored in
system.m). In cell 5, we define the shape of the sample. We simulate a cuboidal sample with
edge lengths 𝑙𝑥 = 𝑙𝑦 = 100 nm and thickness 𝑙𝑧 = 5 nm, called region in the notebook. This
region is then divided into cells with 5 nm edge length to obtain a finite-difference mesh. We
can plot the region and one cell to visually inspect the mesh and cell size. In the output in cell 5
(generated from mesh.mpl()) we can see the region in blue and the size of one discretisation
cell in orange. We note that while this method is very convenient for quick checks it has some
limitations. In particular, the automatic aspect ratio adjustment does not work well together
with the automatic axis labeling. This leads to a blob of overlapping tick labels for the 𝑧 axis in
cell 5. More custom code would be required to resolve this problem when a high-quality plot
is required.

In cell 6, we define the initial magnetisation. We start from a vortex configuration by initialising
the magnetisation at each point r = (𝑥, 𝑦, 𝑧) in the sample with:

m(r) = (𝑚𝑥, 𝑚𝑦, 𝑚𝑧) ∝ (−𝑐𝑦, 𝑐𝑥, 1), (3.1)

with 𝑐 = 109 m−1 and a saturation magnetisation 𝑀s = 8 × 105 A/m. The 𝑧 component is
chosen to be positive to control the polarisation of the final vortex, its exact value has no effect.
We can express the initial state by defining a Python function (init_m), which will be called
for each cell centre point p (the position r of that cell) in the mesh. By passing a value to the
optional argument norm, Ubermag automatically normalises the magnetisation to 𝑀s when
initialising the Field object system.m.

We now minimise the energy of the initial configuration. In cell 7, we create a MinDriver ob-
ject to communicate with OOMMF. To minimise the energy of the initial configuration, we can
use the drive method of this object. This method automatically generates the required input
for OOMMF based on our definition in the cells above and calls OOMMF in the background.
When the simulation is finished, oommfc will automatically read the results and update the
system object. In the notebook, we can see some status information, such as which calculator
was used and the calculator’s run time.

In cell 8, we plot the new magnetisation configuration obtained from the simulation. In
this example, we create a static plot showing the magnetisation in one cut plane. We could
also create interactive plots (see Fig. 3.5 for an example) or 3D visualisations. We plot the
normalised magnetisation in the 𝑥𝑦 plane centred in the 𝑧 direction. The arrows show the
in-plane m𝑥𝑦 components, and the colour plot shows the out-of-plane 𝑚𝑧 component. We can
see that the initial magnetisation has relaxed into a vortex configuration.
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Now, we can run the next simulation starting from this vortex state. This is shown in the
second half of the notebook in Fig. 3.2. In this example, we run two more simulations. First,
we apply an external Zeeman field in the +𝑥 direction and again minimise the system’s energy
in cell 9. Cell 10 shows the configuration obtained from this energy minimisation. We can
see that the vortex is shifted in the +𝑦 direction. The shift can easily be understood: the shift
of the vortex core results in a larger part of the magnetisation pointing in the +𝑥 direction,
parallel to the external field, minimising the Zeeman energy. However, the external field is
not strong enough to fully saturate the sample and push the vortex out of the system.

In the final step, cell 11, the Zeeman field is removed and the time evolution of the free system
is simulated for 𝑡 = 5 ns. For this simulation, we request that OOMMF saves the magnetisation
and spatially averaged data such as the total energy at 𝑛 = 200 equidistant time steps.

In cell 12, we analyse the results of the last simulation. The system object provides access
to spatially averaged simulation results of the last simulation, e.g. averaged magnetisation
along different spatial directions and total energy. Here, we plot the averaged 𝑚𝑥 and 𝑚𝑦 

components of the normalised magnetisation. We can see that initially (after applying the
external magnetic field) 𝑚𝑥 > 0, i.e. the vortex is shifted in +𝑦 direction and a larger part of
the magnetisation points in +𝑥 direction. Furthermore, 𝑚𝑦 = 0, i.e. the vortex is centred in
𝑥 direction. We have already seen this configuration in the plot in cell 10. As a function of
time, we can see a damped oscillation of the 𝑚𝑥 component back to 𝑚𝑥 = 0, i.e. the vortex
being centred in 𝑦 direction. Additionally, we can also see a damped oscillation of the 𝑚𝑦 

component with a 𝜋/2 phase shift compared to the 𝑚𝑥 component. Overall, this describes
a spiralling movement of the vortex, initially displaced in +𝑦 direction, back to the sample
centre. The final configuration is the same as initial configuration shown in Fig 3.1, cell 8.

A slightly modified version of the notebook discussed in this section is available on the Ubermag
website.4 The notebook on the website can be executed and modified interactively inside a
browser via the Binder service.

3.5 Ubermag design

In the previous section, we have discussed some of the ideas behind Ubermag by looking at an
example notebook that outlines a typical workflow for interactive exploration. In this section,
we will discuss the design of Ubermag on a higher level.

Ubermag consists of eight user-facing subpackages and additional internal utilities. We have
already seen a few of the most commonly used packages in the example discussed in the
previous section. Figure 3.3 gives an overview over all user-facing subpackages and groups
them according to their use case, hence discretisedfield appears twice. The ubermag meta-
package, primarily used to simplify the installation process and guarantee matching versions

4https://ubermag.github.io/demo.html

https://ubermag.github.io/demo.html
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Figure 3.3: Overview of the packages in Ubermag.

of the individual subpackages, is not shown. The individual groups can be related to the
typical steps of a simulation outlined in Sec. 3.2. For easier reference we briefly repeat them
here: (1) select physical problem, (2) express physics in a machine-readable format, (3) run
the simulation, (4) analyse data, and (5) loop over steps 2–4. In the following discussion, we
ignore the more general step 1.

The first part (step 2) is defining the problem in a machine-readable format. In Ubermag the
whole simulation is controlled using the so-called system object, which we have to define
and populate. This consists of two sub-steps: micromagneticmodel is used to define the
physics of the system, i.e. the energy equation and the dynamics equation; discretisedfield 
is used to define the sample (shape and saturation magnetisation) in a finite-difference form
suitable for numerical treatment.

The second part (step 3) is numerically solving the problem. Ubermag converts the system 
object into input files understood by the micromagnetic calculator used in the background.
This is done using the calculator packages oommfc or mumax3c. These calculator packages
also handle communication with the calculators: they trigger the simulation after writing the
required input files and update the system object after the simulation has finished. Multiple
simulations (called drives) can be performed in sequence using the same system object
(potentially using different calculators for the individual simulations). Doing this inside a
single notebook (or script) allows us to record the full simulation workflow and contributes to
simplifying step 5. We will discuss the advantages in more detail later on.

The third part (step 4) is analysing and visualising the simulation results. Ubermag provides
two dedicated packages for this. ubermagtable can read tabular data files written by the
calculators and provide them in a standard format, a pandas.DataFrame. These tables
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contain data such as the averaged magnetisation or total energy for each simulation step.
The micromagneticdata package provides access to (time-resolved) spatially resolved mag-
netisation files written by the calculator. The user can specify some simulation metadata,
which determine the location on disk, to load data of a specific simulation and then gain
convenient access to all simulation results. Individual magnetisation snapshots can be loaded
and are returned as discretisedfield.Field objects. For post-processing and data analysis,
discretisedfield provides a number of different plotting methods for 2D and 3D visualisa-
tion, several pre-defined functions to compute commonly-used quantities such as topological
charge, and support for mathematical operations, ranging from simple operations such as
addition to numeric derivation or integration and Fourier transformation, to compute more
specialised quantities. It is also easily possible to integrate external Python packages, e.g. for
image processing or machine learning, into the analysis process. Combined functionality
from micromagneticdata and discretisedfield allows for analysing time-resolved simu-
lations in interactive plots (using a slider for the time axis) inside Jupyter Notebooks with a
single line of Python code. micromagneticdata also provides direct access to the associated
tabular results provided by the micromagnetictable package. Going beyond pure data
analysis, the package mag2exp can use simulation results (the magnetisation configuration)
to simulate the outcome of a range of experimental techniques, such as Lorentz transmission
electron microscopy, torque magnetometry, or small-angle neutron scattering, among others.
Together, these packages provide flexible and powerful post-processing capabilities that are
easily adaptable and extensible and do not restrict researchers to a limited set of functionality.

In a typical study, we would cycle between the individual steps multiple times (step 5). We
start with a problem definition, solve the problem numerically, and analyse the results. Then
we go back to the problem definition and modify one parameter (e.g. the sample shape or
the strength of an external field), re-run the simulation, and analyse the new data. Ubermag
significantly simplifies this process. First, the whole simulation is controlled using the system 
object. Inside a Jupyter Notebook, we can naturally perform our first simulation and analyse
the results, then modify the system object, and perform the next simulation. We have already
seen this in the example in Sec. 3.4, where we first minimise the energy of our sample (Fig. 3.1,
cells 2–8), subsequently add an external field and minimise the energy (Fig. 3.2, cell 9), and in
the final step remove the external field and simulate a time evolution (Fig. 3.2, cell 11). Second,
defining the whole simulation inside Python makes it straightforward to introduce additional
loops to control parameters of the simulation. To make this clearer, we discuss two different
examples. (i) We can use a loop to e.g. vary the geometry of our sample, create a system 
object for each geometry, and run the same simulation steps for all geometries. (ii) We can
initialise the system once and use it as a starting point for multiple independent subsequent
simulations, where we e.g. use a loop to vary the strength of an applied field and simulate the
time evolution for each field strength starting from the same initial configuration. For more
comprehensive studies, both ideas can be combined and extended arbitrarily.
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import discretisedfield as df
import micromagneticmodel as mm
import oommfc as mc

system = mm.System(name='vortex_dynamics')
system.energy = mm.Exchange(A=13e-12) + mm.Demag()
system.dynamics = (mm.Precession(gamma0=mm.consts.gamma0)

+ mm.Damping(alpha=0.2))

region = df.Region(p1=(-50e-9, -50e-9, -30e-9),
p2=(50e-9, 50e-9, 30e-9))

mesh = df.Mesh(region=region,
cell=(10e-9, 10e-9, 10e-9))

c = 1e9
system.m = df.Field(mesh, dim=3, norm=4e5,

value=lambda p: (-c*p[1], c*p[0], 0.1))

md = mc.MinDriver()
md.drive(system)

Running OOMMF (ExeOOMMFRunner) [2023/06/07 10:00]... (0.5 s)

system.m.orientation.plane('z').mpl()

system.energy += mm.Zeeman(H=(1e4, 0, 0))
md.drive(system)
system.energy.zeeman.H = (0, 0, 0)
td = mc.TimeDriver()
td.drive(system, t=5e-9, n=500)

Running OOMMF (ExeOOMMFRunner) [2023/06/07 10:01]... (0.4 s)
Running OOMMF (ExeOOMMFRunner) [2023/06/07 10:02]... (5.1 s)

system.table.data[['t', 'mx', 'my', 'mz', 'E']]

In  [1]:

In  [2]:

In  [3]:

In  [4]:

In  [5]:

In  [6]:

In  [7]:
Out [7]:

Ubermag example: Vortex dynamics

$ oommf boxsi     \
+fg problem.mif \
-exitondone 1

$ oommf boxsi     \
+fg problem.mif \
-exitondone 1

Researcher Automated
 backend

Figure 3.4: A typical simulation workflow and the abstractions introduced by Ubermag. The
whole simulation can be driven from a single Jupyter Notebook as shown in the central column.
The researcher defines the physical problem (cell 2) and the system to study (cell 3). Both
can be visualised directly inside the notebook as indicated on the left-hand side. Ubermag
internally communicates with a low-level simulation tool (cells 3, 4 and 6) shown as the
autonomous backend in the right column, and returns the simulation results in a high-level
format (cells 5 and 7). Plots of the simulation results and further data analysis are part of the

notebook.
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To better demonstrate how the high-level interface introduced by Ubermag, which separates
researcher and low-level calculators, relates to the use inside a Jupyter Notebook, we repeat
the notebook discussed in Sec. 3.4. Figure 3.4 shows a slightly shortened and modified version
of the notebook: in order to highlight the key ideas of Ubermag, the notebook shown in this
figure has been manually modified and in particular the plots have been rearranged. The
separation of the researcher and the numerical backend through Ubermag is visualised with
a three-column layout. The researcher (left) would define the physics using equations and
can best understand the numerical results using plots. The numerical backend (right) needs
input files in a specific format and returns text or binary files with simulation results. Their
specific format is generally not important to the researcher (hence not readable in the figure).
Ubermag (middle) helps to mediate between the two by introducing a comparatively simple
Python-based intermediate layer that can be used inside a Jupyter Notebook or Python script.

Ubermag as a human-centred framework for micromagnetic simulations can help make simu-
lation studies more reproducible. It is designed to be used inside Jupyter Notebooks, whereby
the whole simulation workflow is recorded. The domain-specific language introduced primar-
ily in micromagneticmodel, which is both human and machine-readable, can serve as a
self-documenting description of the simulation and does not require calculator-specific know-
ledge. Additional textual explanations can be added directly in the notebook to complement
and explain code and figures. The Python ecosystem provides tools to record all software used
to perform a specific study (excluding some of the external calculators used in the background).
When publishing their work, researchers can create an accompanying Binder-enabled Git-
Hub repository that contains notebooks to repeat all simulations and re-create central figures
of the publication. A separate DOI can be assigned to this GitHub repository via research
repositories such as Zenodo. To give a concrete example, we refer to our study of multiple
Bloch points (Lang et al., 2023a), discussed in the next chapter, that is accompanied by such a
repository (Lang et al., 2022).

3.6 Open-source project Ubermag

A part of my time as a PhD student was dedicated to maintaining and extending Ubermag.
I started contributing to Ubermag during my first year as a PhD student and have been the
lead developer of Ubermag since mid 2021. This section gives a short overview over notable
extensions in Ubermag during this time period. Furthermore, we briefly describe useful tools
and best practices for maintaining a small open-source project. This might be a useful reference
for other people working on similar projects.

The main activities in Ubermag during the time of my PhD were improving data analysis
and plotting, a number of comparatively small but very effective performance improvements,
adding support for Mumax3 as a second backend in addition to OOMMF, and integrating a
new package to simulate magnetic experiments.
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Figure 3.5: Interactive visualisation in a Jupyter Notebook.

The central improvement for data analysis was adding new interactive plotting functionality
based on holoviews (Rudiger et al., 2023). The use of a JavaScript-based plotting library
(bokeh) via the high-level interface holoviews makes it possible to create responsive plots.
The new plotting can be used inside Jupyter Notebooks and allows plotting two-dimensional
slices of higher-dimensional data (e.g. a single magnetisation field with three spatial coordin-
ates or a time series of magnetisation fields with three spatial coordinates and one time
coordinate) by automatically creating sliders for all dimensions not shown along the plot axes.

An example of such an interactive plot is shown in Fig. 3.5, where we plot a vortex similar to
the one discussed in the example in Sec. 3.4. Different from the discussion in Sec. 3.4, we here
use a sample with multiple layers in 𝑧 direction in order to better show the interactive controls
provided by holoviews. We plot one step of a time evolution, similar to the simulation in
cell 11 in the notebook shown in Fig. 3.2. The plot shows the 𝑥𝑦 plane, a slider is automatically
generated for the 𝑧 direction. In the example, we look at 𝑧 = −2.5 nm. A second slider is
provided for the time axis, in the example we can see the step 𝑡 = 1.15 ns.

The new plotting functionality was added to discretisedfield and micromagneticdata and
a thin additional wrapper layer provides a simple interface that only requires very few lines of
code to create fully interactive plots. The wrapper layer helps provide a consistent user interface
for all plotting functionality in Ubermag, independent of the underlying library. The code is
structured in a way that facilitates plotting long time evolutions where the total simulation data
would exceed the main memory of the computer. The new interactive plotting functionality
simplifies analysing and understanding magnetisation configurations. Furthermore, it can
significantly speed up visually inspecting long time evolutions. It proved to be very effective
for my simulations.

Ubermag as an additional layer above other packages such as OOMMF introduced some
computational overhead. I could reduce this overhead by re-writing some performance-critical
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parts in discretisedfield that are related to the field initialisation and saving fields to disk,
in order to use them as input for OOMMF, as well as reading OOMMF output. After this
re-write, the overhead introduced by Ubermag is now negligible, independent of the number
of simulation cells. Previously, running large simulations did come with a disproportionately
large overhead.

In a joint work with two postdoctoral researchers in our group, Samuel Holt and Swapneel
Amit Pathak, we have added support for Mumax3 (Vansteenkiste et al., 2014) as a second
backend in addition to OOMMF. While fully implementing support for Mumax3, I have
also improved and generalised the abstractions in micromagneticmodel that describe the
high-level user interface of an external calculator inside Ubermag. This will simplify adding
additional external calculators in the future.

The last major improvement was adding the new package mag2exp, which can simulate
experimental measurement techniques commonly utilised to study magnetism. The initial
version of the code was written by Samuel Holt during his PhD (Holt, 2021). Samuel Holt and I
integrated the code into the Ubermag package collection, making use of existing functionality
of the other packages such as discretisedfield to simplify the code and avoid duplication.
Furthermore, we re-designed the user interface to have a concise and consistent interface that
integrates well with the other packages in Ubermag. My primary contribution was the software
development side of mag2exp, i.e. re-designing the user interface, overall code structure,
ensuring re-use of existing functionality where possible, and packaging the code. I was not
involved in developing any of the measurement-related functionality.

In the remainder of this section we outline infrastructure that can help maintain a small open-
source project such as Ubermag. The two most important aspects for development are version
control and automated testing (generally referred to as continuous integration). We use git for
version control and publicly host the code on GitHub.5 All sub-packages have comprehensive
test suites that are used for continuous integration, i.e. all changes in the code are tested to
avoid regressions and incompatibilities in the code base. GitHub provides infrastructure for
continuous integration (called GitHub Actions), which facilitates automatically testing all
commits.

We use pre-commit hooks for automatic formatting and style checking. This ensures a con-
sistent code style independent of the programmer, which significantly simplifies browsing
through larger parts of the code base. To automate repetitive tasks, such as making releases,
we use command line scripts that are based on a Python library called invoke. The use of
Python for these tasks comes with two benefits. First, it is the same language that is also used
for Ubermag, hence developers are familiar with it. Second, the Python-based approach allows
us to have platform-independent automation scripts that can be used on all operating systems.
We deliberately chose not to use GitHub Actions for these tasks to avoid vendor lock-in.

5https://github.com/ubermag

https://github.com/ubermag
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The choice of Python as a language to implement Ubermag comes with a several of benefits.
Python is very widely used for all sorts of data-analysis, and the community therefore provides
numerous powerful packages. By directly exposing the data from micromagnetic simulations
to this ecosystem, it is straight-forward to make use of libraries such as NumPy (Harris et al.,
2020), SciPy (Virtanen et al., 2020), Xarray (Hoyer & Hamman, 2017), pandas (McKinney,
2010), Matplotlib (Hunter, 2007), HoloViews (Rudiger et al., 2023), or PyVista (Sullivan &
Kaszynski, 2019) for data analysis and visualisation. We use all of these packages for our work,
many are directly integrated into Ubermag. Furthermore, Ubermag integrates well into the
Jupyter ecosystem (Kluyver et al., 2016; Granger & Pérez, 2021), which simplifies research and
can help to improve reproducibility, as explained in the previous section.

We provide packages for the two main package indices relevant for Python-based scientific
computing—PyPI, the Python package index, for the package manager pip, and conda-forge, a
community-based channel for the package manager conda—to easily make Ubermag available
to a wider audience. Furthermore, the releases can help improve reproducibility by (i) making
it possible to precisely record the versions of packages used to carry out a specific study in
a standardised format and (ii) can simplify reproducing the same software environment to
reproduce simulation results of a publication. One example for this, as mentioned before, is our
publication on the stability of multiple Bloch points (Lang et al., 2023a) and the accompanying
repository (Lang et al., 2022). Here, we specify the required conda packages to re-run our
simulations and allow re-executing the notebooks in this environment using Binder.

Key elements to make Ubermag accessible to a wider audience are documentation and com-
munity interaction. The documentation of Ubermag is divided into API reference and Jupyter
Notebooks. The notebooks focus either on a specific set of functionality (e.g. plotting with
Holoviews) or on how to solve a particular research question (e.g. simulating a skyrmion in
a disk). Users can start from an existing notebook and modify it for their needs. To make
the documentation more accessible I have re-created the website of Ubermag. The new web-
site combines the documentation of all individual sub-packages in one central place. This
simplifies browsing the documentation and jumping back and forth between the different
sub-packages. Several users have confirmed that the new website makes the available learning
resources much more accessible. All notebooks shown on the website contain a link to Binder
on which users can execute and modify the notebook inside the browser without installing
any software on their own machine. This provides a good starting point for new users.

The extensive documentation in the form of notebooks and their easy execution on Binder
has also been used for teaching numerical methods as part of the class “Magnetic Materials
and Applications” in the Department of Materials Science and Engineering at the University
of Illinois at Urbana-Champaign (Lonsky et al., 2023). As part of this class, small groups of
students work together on micromagntic problems using Ubermag. The authors report that
the project work seems to facilitate a more in-depth understanding of the course contents. I
was involved in this work via the development of Ubermag, work on the tutorial notebooks
for Ubermag, and maintenance of required configuration for the execution on Binder.
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We use a number of different channels to communicate with Ubermag users. We have a
mailing list to notify users about new releases, and we provide support in a dedicated GitHub
repository and on a public chat instance on Zulip. All channels can also be used to report
bugs or request new features. Support queries are generally open to the public and provide a
valuable additional source of information in addition to the documentation. Several Ubermag
tutorials have been organised to which I contributed.

In hindsight, in particular the use of GitHub issues as a forum works quite well. The public
chat instance has only been used by very few people and the number of subscriptions to the
mailing list is relatively small. In parts, this is probably due to the fact that GitHub issues was
the first communication channel that we have used for community interactions.

As open-source software, Ubermag can be freely used by anyone doing micromagnetic sim-
ulations. The total number of users is difficult to assess and fluctuating. The two papers
describing Ubermag, Beg et al. (2017b, 2022), have been cited 16 times in 2021 and 28 times in
2022 according to Google Scholar. Web of Science reports 9 citations in 2021 and 17 citations
in 2022. The GitHub issues,6 that serve as an archive of user queries, have collected more than
200 different topics.

6https://github.com/ubermag/help/issues

https://github.com/ubermag/help/issues
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Chapter 4

Multiple Bloch points

Preface

The work described in this chapter has been published as Lang et al. (2023a). Compared to the publication,
the introduction is shortened as it would duplicate information given in Sec. 2.8.4. The discussion of the
simulation procedure in Sec. 4.2 and 4.3 and the discussion of the classification of Bloch points in Sec. 4.5
have been extended. All results in this chapter can be reproduced from the accompanying repository (Lang
et al., 2022).

4.1 Introduction

In this chapter, we demonstrate that chiral two-layer nanostrips can host multiple Bloch
points in an arbitrary combination of the two different Bloch-point types. First, we discuss
the two-layer system in Sec. 4.2 and the simulation scheme used to obtain arbitrary numbers
of Bloch points in a controlled fashion in Sec. 4.3. In Sec. 4.4, we explain the two different
configurations containing two Bloch points. We have developed a classification scheme to
automatically detect Bloch points in the simulation results, which we present in Sec. 4.5.
Such a scheme is required to classify the large number of simulations performed in this work.
In Sec. 4.6, we demonstrate that multiple Bloch points can coexist in rectangular two-layer
nanostrips. We find that all possible sequences of head-to-head and tail-to-tail Bloch points
can be realised. Different combinations have different energy densities depending on the
number of neighbouring Bloch points of the same type. We focus on systems containing up to
eight Bloch points initially. Based on these results, we can predict a suitable strip geometry
for an arbitrary number of Bloch points. We conclude with a demonstration of encoding a
10-byte string using 80 Bloch points: we identify one Bloch-point type with the binary “1”
and the other type with the binary “0” to encode and store the equivalent of an 80-bit long
sequence (Sec. 4.7).
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4.2 System

We simulate rectangular two-layer nanostrips with opposite chirality (opposite sign of 𝐷)
in the two layers. We vary strip length 𝑙 and width 𝑤, the thickness of both layers is fixed
(bottom layer: 20 nm, top layer: 10 nm). We focus on up to eight Bloch points and accordingly
choose nanostrips with lengths between 100 nm and 1400 nm, and widths between 100 nm
and 200 nm. The geometry is shown in Fig. 4.1, which we discuss in more detail in the next
section.

The energy equation

𝐸 = ∫ d3𝑟 (𝑤ex + 𝑤dmi + 𝑤d) (4.1)

contains exchange energy density 𝑤ex, bulk Dzyaloshinskii-Moriya energy density 𝑤dmi, and
demagnetisation energy density 𝑤d. The magnetisation dynamics is simulated using the
Landau-Lifshitz-Gilbert equation (Landau & Lifshitz, 1935; Gilbert, 2004), discussed in Sec. 2.4:

𝜕m 𝜕m= −𝛾m × Heff + 𝛼m × (4.2)𝜕𝑡 𝜕𝑡 , 

where 𝛾 is the gyromagnetic ratio, 𝛼 is the Gilbert damping constant, and m the normalised
magnetisation:

M m = . (4.3)𝑀s 

−1 −2Material parameters are based on FeGe (Beg et al., 2015): 𝐴 = 8.87 pJm , 𝐷 = 1.58 mJm ,
𝑀s = 384 kA m−1, and 𝛼 = 0.28 (Beg et al., 2017a). We use finite-difference micromagnetic
simulations to minimise the energy. All simulations are done using Ubermag (Beg et al., 2022)
with OOMMF (Donahue & Porter, 1999) as the computational backend and an extension for
DMI of crystallographic point group T (Cortés-Ortuño et al., 2018b, 2018a).

In a recent work by Winkler et al. (2023), we have compared the Bloch point in the two-
layer system in micromagnetic and atomistic simulations. We could show that both models
produce qualitatively similar results, both for the statics and the dynamics of the Bloch point.
Deviations between the two models are predominantly caused by different discretisation sizes.
The micromagnetic model reproduces the atomistic model when the cell size matches the
atomistic lattice spacing. Hence, the micromagnetic model is suitable to describe systems
containing Bloch points despite the fact that the assumption of slowly varying magnetisation
is not fulfilled in the close vicinity of the singularity.

4.3 Simulation procedure

All simulations in this study follow a three-step initialisation and minimisation scheme: (i) ini-
tialisation, (ii) fixed minimisation, (iii) free minimisation. In the micromagnetic framework
the system is studied at zero temperature, i.e. without thermal fluctuations. Therefore, it is
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Figure 4.1: Subregions used for the initialisation and fixed energy minimisation, and to
define the two-layer geometry with opposite chirality (opposite sign of 𝐷) in the two layers
for a nanostrip that shall contain two Bloch points. The magnetisation inside the subregions
shown with solid lines is kept fixed during the first energy minimisation. Magnetisation in
the top fixed subregions is initialised with reversed 𝑧 component of the magnetisation (see
Fig. 4.2). In the plot the 𝑧 axis is stretched for better visibility. The fixed subregions are located

at the strip boundaries.

only possible to find local minima that are accessible from the initial configuration. Starting
from experimentally feasible initial configurations, such as full saturation, we are able to find
magnetisation configurations containing a single or multiple Bloch points depending on the
strip geometry.

To facilitate the process of studying arbitrary Bloch-point configurations, independent of the
strip geometry, in a systematic way, we have developed a simulation scheme that guarantees a
magnetisation configuration containing a predictable number of Bloch points. We note that
this scheme can probably not be applied directly to an experimental setup. In this section, we
discuss two examples for configurations containing one and two Bloch points, respectively.

For the initialisation, step (i), we start by dividing the nanostrip into equally sized regions (in
the 𝑥 direction), one region per Bloch point. Each region is then divided into four subregions.
Figure 4.1 shows the eight subregions that are used to obtain a configuration containing
two Bloch points. Four subregions are located below 𝑧 = 0 and have a negative DM energy
constant 𝐷, and four above 𝑧 = 0 with positive 𝐷. The four small subregions, shown with solid
lines, are located at the top and bottom sample boundaries. Each of the small subregions is
contained within one surrounding subregions shown with dashed lines. The strip geometry in
Fig. 4.1 is enlarged in the 𝑧 direction for better visibility.

To enforce the formation of a Bloch point, the magnetisation in each region is initialised as
follows: for a head-to-head Bloch point, we initialise the small subregions at the top sample
boundary with m = (0, 0, −1) and all other cells with m = (0, 0, 1). A region hosting a tail-
to-tail Bloch point is initialised with reversed 𝑧 component of the magnetisation. Figure 4.2a
shows an example for a configuration containing a single HH Bloch point. The system geometry
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is 100 nm × 100 nm × (10 + 20) nm. This system only needs four subregions, i.e. one “column”
of subregions in Fig. 4.1 (e.g. only the subregions for 𝑥 < 125 nm).

We then minimise the energy in two steps. During the first energy minimisation, step (ii), we
keep the magnetisation in the small subregions at the sample boundaries, shown with solid
lines in Fig. 4.1 and highlighted in Fig. 4.2b, fixed. This ensures the formation of the Bloch
point at the interface between the two layers in a controlled manner. During the second energy
minimisation, step (iii), magnetisation in all cells can freely change and Bloch points could
move in any direction to further minimise the energy of the configuration. In this step, the
system can find the local energy minimum, leading to the magnetisation shown in Fig. 4.2c.
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Figure 4.2: Initialisation and energy minimsation for a single head-to-head Bloch point
(cross-section at 𝑦 = 50 nm). (a) The magnetisation is initialised with m = (0, 0, 1) with the
exeption of a top subregion where m = (0, 0, −1). (b) During the first energy minimisation,
the magnetisation is kept fixed inside the yellow-highlighted subregions (see Fig. 4.1 for a 3D
plot). The formation of a Bloch point is enforced by the opposite 𝑚𝑧 values in the two fixed
subregions. (c) During the second energy minimisation, magnetisation in all cells can freely

change.

4.4 Two Bloch points

A pair of neighbouring Bloch points in multi-Bloch-point configurations can occur in two
fundamentally different combinations. The Bloch points can either be of the same type, for
example: a head-to-head (HH) Bloch point next to another HH Bloch point (HH-HH) as shown
in the right column of Fig. 4.3. Alternatively, the Bloch points can be of opposite type, for
example a HH Bloch point next to a tail-to-tail (TT) Bloch point (HH-TT) as shown in the left
column of Fig. 4.3.

The topmost row (Fig. 4.3a, b) shows a schematic drawing of the nanostrip highlighting the
two-layer structure and the geometry. Additionally, position and type of the Bloch points
visible in the simulations are indicated with arrows, where the colour of the arrows encodes
the 𝑧 component of the magnetisation (red: +𝑧, blue: −𝑧).

Figure 4.3c and d show 3D renderings of the simulation results. The isosurfaces (as used by
Hertel & Schneider, 2006 to visualise magnetic vortices) show 𝑚𝑧 = ±0.9 (m is the normalised
magnetisation), colour indicates the 𝑧 component. The isosurfaces above/below the Bloch
point have a paraboloidal-like shape pointing towards the Bloch point (similar to the single-
Bloch-point simulation results in Fig. 2.7c, d). The Bloch point itself is not directly visible in
this visualisation. The configuration in Fig. 4.3d additionally contains one antivortex between
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Figure 4.3: Magnetisation profile of the two fundamentally different configurations contain-
ing two Bloch points: opposite-type Bloch points (head-to-head and tail-to-tail, left column)
and same-type Bloch points (head-to-head and head-to-head, right column). The 3D render-
ings in (c) and (d) show isosurfaces for 𝑚𝑧 = ±0.9, colour indicates the 𝑧 component. Several
different cut planes in 𝑥𝑦 and 𝑥𝑧 are shown to reveal the three-dimensional structure of the
Bloch points forming at the interface (𝑧 = 0 nm). For the 𝑥𝑧 plane (subfigures m and n) we
also show enlarged plots around the Bloch point and antivortex position. The cones in (m)
and (n) are coloured according to their 𝑚𝑦 component, as indicated by the small colour bar in

the right bottom corner of the figure.
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the two Bloch points. The 𝑚𝑧 = 0.9 isosurface of the antivortex extends throughout the whole
thickness (𝑧 direction) of the two-layer system. The antivortex core shrinks towards the top
sample boundary.

To reveal the full three-dimensional structure of the magnetisation field surrounding the
Bloch points the magnetisation of each configuration is plotted in five different cut planes
for each column (as indicated in the schematic drawings Fig. 4.3a, b). Four different cut
planes show the magnetisation in the 𝑥𝑦 plane (Fig. 4.3e – l), at the top sample boundary
(𝑧 = 10 nm) in Fig. 4.3e and f, above the interface (𝑧 = 1 nm) in Fig. 4.3g and h, below the
interface (𝑧 = −1 nm) in Fig. 4.3i and j, and at the bottom sample boundary (𝑧 = −20 nm) in
Fig. 4.3k and l. Colour encodes the 𝑧 component of the magnetisation vector field, arrows the
in-plane component.

Figure 4.3m and n show the 𝑧 component of the magnetisation in an 𝑥𝑧 cut plane going
through the Bloch points at 𝑦 = 50 nm. Magnified subplots show the full magnetisation
around the Bloch-point positions and in the centre region between the two Bloch points. The
colour of the cones in the magnified areas encodes the 𝑦 component of the magnetisation
vector field.

The results shown in Fig. 4.3 show that Bloch points form at 𝑥 ≈ 100 nm and 𝑥 ≈ 300 nm in
both cases, i.e. in both columns. Bloch-point pairs of the opposite type (Fig. 4.3, left column)
show opposite circularity of the magnetisation within the 𝑥𝑦 plane around the Bloch-point
cores. In this case, the in-plane magnetisation (𝑥𝑦 component) between the two Bloch points
(from 𝑥 ≈ 100 nm to 𝑥 ≈ 300 nm) shows a smooth transition from one Bloch point to the other.
Focusing only on the top layer (or focusing only on the bottom layer), the configuration can also
be described as a micromagnetic configuration containing two vortices of opposite polarisation
and circularity (most clearly seen in Fig. 4.3e). In contrast, an additional antivortex forms
between two same-type Bloch points (Fig. 4.3, right column) at 𝑥 ≈ 200 nm to mediate between
the incompatible magnetisation configurations that originate from the two same-circularity
vortices. Differing from the magnetisation of the Bloch-point cores, the magnetisation of the
antivortex core (at 𝑥 ≈ 200 nm) does not change significantly along the 𝑧 direction (middle
inset in Fig. 4.3n). This configuration can be described as a micromagnetic configuration
containing a cross-tie domain wall (Huber et al., 1958; Middelhoek, 1963) in each layer. The
cross-tie wall consists of alternating vortices and antivortices, the structure is most clearly
visible in Fig. 4.3f.

4.5 Classification

In the micromagnetic framework, it is not possible to directly observe Bloch points because of
the fixed norm of the magnetisation vector. As discussed in Sec. 2.8.4, a single Bloch point is
characterised by the integral value of the topological charge density over a closed surface 𝒮
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Figure 4.4: Classification of the two configurations containing two Bloch points shown in
Fig. 4.3. The divergence of the emergent magnetic field for the two opposite- and same-type
Bloch points is shown in panels (a) and (b), respectively. The 𝑥𝑦 plane visualised here is
located at 𝑧 = 1 nm, just above the interface. (c, d) The result of the convolution (4.5), which
is used to identify the occurrence of Bloch points and their type due to the steps Δ𝑆 = ±1.

surrounding the Bloch point (Eq. 2.47):

1𝑆 = ds ⋅ Be = ±1, (4.4)4𝜋ℏ ∫ 
𝒮 

where Be is the emergent magnetic field defined in Eq. 2.37. To detect a single Bloch point in a
sample the integral can be computed over the whole sample surface and the exact position of
the Bloch point does not need to be known.

This method is not directly applicable to multiple Bloch points when their positions are
unknown: the sign of the topological charge of a Bloch point depends on its type (HH: 𝑆 = −1,
TT: 𝑆 = +1). Therefore, contributions to the surface integral from Bloch points of opposite
type cancel out. Figure 4.4 shows the divergence of the emergent field ∇ ⋅ Be for a HH and a
TT Bloch point (a) and two HH Bloch points (b), the two configurations discussed in Fig. 4.3.

To classify nanostrips that potentially contain multiple Bloch points, we compute the convolu-
tion of the divergence of the emergent magnetic field with a Heaviside step function:

1𝑆(𝑥) = d3𝑟′ Θ(𝑥 − 𝑥′)∇r ′ ⋅ Be(r ′). (4.5)4𝜋ℏ ∫ 
𝑉 ′

Due to numerical inaccuracies, the result of the integral deviates from integer values. By
translating the surface integral into a volume integral over the divergence of the emergent
magnetic field using divergence theorem the accuracy can be improved by roughly one order
of magnitude.

In our set-up Bloch points are expected to be distributed along 𝑥 following the strip geometry,
which justifies computing 𝑆 as a function of 𝑥. The convolution can be interpreted as computing
a series of integrals over increasing sub-volumes 𝑉′ of the nanostrip starting at the left boundary
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(𝑥 = 0 nm). We round 𝑆(𝑥) to integer values and count steps Δ𝑆 in this function. Rounding to
integer values is justified because deviations from integer values in the integral are a direct
consequence of the limited accuracy due to the discretisation (see below).

Figure 4.4c and d show 𝑆(𝑥) for the two example configurations discussed in Fig. 4.3. A
head-to-head Bloch point is identified by Δ𝑆 = −1, a tail-to-tail Bloch point by Δ𝑆 = +1
corresponding to the topological charge of a Bloch point being 𝑆 = ±1.

To confirm that the rounding to integer values is justified, we compare the deviations of 𝑆(𝑥)
from integer values for different cell sizes. Figure 4.5a shows an example of a configuration
containing eight Bloch points in the pattern TT-HH-TT-TT-TT-TT-HH-TT. We compute 𝑆(𝑥) for
three different cell sizes with cubic cells with edge lengths 𝑙c = 5 nm (Fig. 4.5b), 𝑙c = 2.5 nm
(Fig. 4.5c), and 𝑙c = 1 nm (Fig. 4.5d). For each cell size, we show the integral result (solid
lines) and rounded values (dashed lines). We can see that the difference (i.e. the inaccuracy)
significantly decreases with decreasing cell size. For 𝑙c = 1 nm integral and rounded values
cannot be distinguished visually. We use a cell edge length 𝑙c = 2.5 nm in all simulations.
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Figure 4.5: Accuracy of the classification for a configuration containing eight Bloch points.
(a) shows a cross-section of the magnetisation of configuration TT-HH-TT-TT-TT-TT-HH-TT
in the 𝑥𝑧 plane located at the Bloch-point position (𝑦 = 50 nm). With decreasing cellsize—cell
edge lengths: 5 nm (b), 2.5 nm (c), and 1 nm (d)—the difference between the integral 𝑆(𝑥)

and the corresponding integer values decreases.

4.6 Parameter-space diagram and energy density

The spatially averaged energy density (total energy of the system divided by the system volume)
of a Bloch-point configuration depends on the number of Bloch points, their individual types,
and the strip geometry. Furthermore, different spatial arrangements can be realised, e.g. four
Bloch points on a line, or in the corners of a rectangle or diamond shape. Here, we only
consider magnetisation configurations containing between one and eight Bloch points in a
row, distributed in 𝑥 direction (strip length) and centred in 𝑦 direction (strip width).
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In Fig. 4.3 we have seen the two fundamentally different configurations containing two Bloch
points, head-to-head and tail-to-tail (HH-TT), and head-to-head and head-to-head (HH-HH).
Now, we investigate a system containing three Bloch points. In total, eight configurations can
be realised. Three configurations are fundamentally different, namely HH-HH-HH, HH-HH-
TT, and HH-TT-HH, because they contain distinct numbers of additional antivortices. The
other five configurations are equivalent either because HH and TT swap roles (e.g. TT-TT-TT),
or because of the symmetry of the system geometry along the 𝑥 axis (e.g. TT-HH-HH).

The fundamentally different configurations (HH-HH-HH, HH-HH-TT, HH-TT-HH) are shown
in Fig. 4.6d in a system with strip length 𝑙 = 400 nm. We find one and two additional antivor-
tices (AVs) for configurations HH-HH-TT and HH-HH-HH, respectively. The table in Fig. 4.6
lists all eight configurations and the respective number of antivortices. In different terms, the
three configurations in Fig. 4.6d could also be described as (in each layer) containing one long
cross-tie wall (top), a cross-tie wall and one vortex (middle), and three vortices (bottom).

For each of the three fundamentally different configurations, we compute the spatially averaged
energy density of the micromagnetic configuration and plot the three values in Fig. 4.6a (at
𝑙 = 400 nm).

We find that the micromagnetic configuration containing three Bloch points in the HH-TT-HH
configuration has the lowest energy density and the micromagnetic configuration containing
three Bloch points in the HH-HH-HH configuration the highest energy density. Hereinafter,
we will refer to a micromagnetic configuration containing 𝑛 Bloch points as the 𝑛-Bloch-
point configuration to simplify the text. Note that we always mean the entire micromagnetic
configuration with embedded Bloch points and not isolated Bloch points, e.g. when talking
about the “energy of the Bloch points” (which should be read as “energy of the micromagnetic
configuration containing Bloch points”). It is well-known that the Bloch points “themself”, i.e.
the point singularities, do not affect the energy of the micromagnetic configuration (Feldtkeller,
1965). We will later discuss in more detail how the presence of antivortices between Bloch
points generally increases the energy density of the system. The alternating configuration
HH-TT-HH does not contain any antivortices, as these are only needed to mediate the local
rotation of the magnetisation between neighbouring vortices that enclose Bloch points of the
same type.

The three yellow lines (filled and open diamonds) in Fig. 4.6a show the spatially averaged
energy density for the three different configurations as a function of strip length. Not all
configurations are stable for all strip lengths: for example the HH-HH-TT configuration is only
stable for 𝑙 ≥ 300 nm. If we try to create the three-Bloch-point configuration HH-HH-TT in
a shorter nanostrip, e.g. at 𝑙 = 275 nm, then the configuration is not stable and will change
into a lower-energy configuration, in this case the HH-TT configuration containing only two
Bloch points. In other words, the cross-tie walls enclosing the HH-HH Bloch-point pair are
not stable in too short nanostrips and collapse. This has in detail been studied for cross-tie
walls in single-layer materials (Hertel & Schneider, 2006). We can see that the energy generally
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Figure 4.6: (a) Energy densities for energetically different micromagnetic configurations
containing at most three Bloch points for different strip lengths 𝑙 at a strip width 𝑤 = 100 nm.
Simulations have been performed in steps of 𝛿𝑙 = 25 nm, the solid lines are shown to guide
the eye. (b – d) Magnetisation profiles for the six different configurations shown in (a) at 𝑙 =
400 nm. Isosurfaces show 𝑚𝑧 = ±0.9, colour indicates the z-component. (e) Energy density
for all possible configurations containing three Bloch points. The first three configurations
are show in (d) as indicated with the distinct marker symbols (at a different strip length). The
table in (a) lists all different configuration containing three Bloch points, highlighting the
number and position of the additional antivortices in the different configurations. (f) Energy
densities for all configurations containing eight Bloch points. Energy densities for a fixed
number of antivortices are nearly identical but cause some “smearing” of the marker symbols.
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increases with increasing number of antivortices as mentioned in the previous paragraph.
However, there is a deviation visible for 𝑙 ≤ 225 nm where the HH-HH-HH configuration has
a lower energy density than the HH-TT-HH configuration. This deviation is a result of the
short strip length near the stability limit. We exclude these regions near the minimal stability
strip length in the rest of our discussion.

The blue filled and open squares in Fig. 4.6a show the energy density for a system containing
only two Bloch points. The corresponding magnetisation field for 𝑙 = 400 nm is visualised in
Fig. 4.6c, and in more detail in Fig. 4.3. The green circles in Fig. 4.6a show the energy density
for a configuration containing a single Bloch point and its magnetisation configuration for
𝑙 = 400 nm is shown in Fig. 4.6b.

For a given strip length 𝑙 we describe the configuration with the lowest energy density as
the energetically most favourable configuration: below 𝑙 = 250 nm a single Bloch point
(green circles) has the lowest energy density. (Note that the energy of the micromagnetic
configuration containing one Bloch point is lower than the energy of a vortex expanding
throughout the system because of the two-layer system with opposite chirality in the two
layers.) Two opposite-type Bloch points (blue squares) have the lowest energy density for
250 nm < 𝑙 <= 400 nm and three Bloch points of alternating opposite type (yellow diamonds)
have the lower energy density above 𝑙 = 400 nm.

Figure 4.6e shows a representation of the energy densities for all possible three-Bloch-point
configurations at 𝑙 = 600 nm. As already discussed, there are three fundamentally different
configurations characterised by the number of additional antivortices contained in the config-
uration (as shown in the table in Fig. 4.6). Different realisations of the same configuration
type (swapping HH and TT or using the strip symmetry) exhibit the same energy density.

In Fig. 4.6a we have seen that the number of Bloch points in the energetically most favourable
configuration changes depending on the strip length 𝑙. Figure 4.7 contains a parameter-space
diagram showing the energetically most favourable configuration as a function of the strip
length and strip width, using the Bloch point number as a label. To create Fig. 4.7, we ask for
each strip length 𝑙 and a given strip width 𝑤, which configuration has the lowest energy density.
For example: all data points in Fig. 4.6a are for a width of 𝑤 = 100 nm. Close to 𝑙 ≈ 400 nm,
we see that for 𝑙 ≤ 400 nm the two-Bloch-point configuration HH-TT (blue squares) has the
lowest energy density but that for 𝑙 > 400 nm the three-Bloch-point configuration HH-TT-HH
(yellow diamonds) has the lowest value. Figure 4.7 shows (for 𝑤 = 100 nm on the 𝑦 axis) that
the two-Bloch-point configuration has the lowest energy density up to 𝑙 ≈ 400 nm, and the
three-Bloch-point configuration for larger 𝑙 (up to 𝑙 ≈ 600 nm). All configurations with lowest
energy density are of the alternating Bloch-point type, i.e. left and right neighbours of a HH
Bloch point are always of type TT, and vice versa (see discussion below), and hence do not
contain additional antivortices.

Figure 4.7 shows that with increasing strip length, the number of Bloch points that are present
in the lowest-energy-density configuration (as shown Fig. 4.6a for 𝑙 ≤ 600 nm) increases: for
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Figure 4.7: Parameter-space diagram showing the energetically most favourable Bloch point
number as a function of length 𝑙 and width 𝑤. All configurations contain Bloch points of
alternating opposite type (so the micromagnetic configurations do not contain additional
antivortices). Magnetisation profiles for selected configurations reveal the similarity of the

different configurations, isosurfaces show 𝑚𝑧 = ±0.9.

nanostrips with lengths above 𝑙 ≈ 1300 nm and width 𝑤 = 100 nm, we find eight Bloch points.
Furthermore, Fig. 4.7 shows that increasing the width of the nanostrip leads to a reduced
number of Bloch points in the energetically most favourable configuration.

Figure 4.7 also shows magnetisation profiles for selected configurations revealing the similarit-
ies in the magnetisation profile in different strip geometries. The isosurfaces show 𝑚𝑧 = ±0.9,
colour indicates the 𝑧 component. All configurations shown in Fig. 4.7 contain Bloch points of
alternating opposite type, i.e. all the lowest-energy configurations do not contain antivortices.

In the discussion of the fundamentally different configurations containing three Bloch points,
we have noted that the different configurations can be characterised by the number of additional
antivortices contained in the structure. Figure 4.6f summarises similar findings for eight
Bloch points where configurations can contain between zero antivortices (Bloch points of
alternating opposite type) and seven antivortices (all Bloch points of the same type). In total,
256 configurations can be realised. The plot in Fig. 4.6f shows the data for all configurations
and a linear fit to the data. Different realisations with the same number of antivortices cannot
be distinguished in this plot as their energies are nearly identical, but cause slight vertical shifts
of the blue open circles used to mark the energy densities of the different configurations for
intermediate numbers of antivortices. The energy density increases linearly with the number
of antivortices (or equivalently, the cross-tie wall size).

There is an important difference between three Bloch points (Fig. 4.6e) and eight Bloch points
(Fig. 4.6f). For a fixed number of antivortices, all different three-Bloch-point configurations
are equivalent because of the system’s symmetry (globally replacing HH with TT and vice
versa (and adjusting the antivortex polarisation) or 𝜋 rotations around the 𝑧 direction) and
therefore must have the same energy density. Let us give two examples: we start from the
configuration HH-HH-TT. First, we can obtain an equivalent configuration by swapping HH
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and TT Bloch points, namely the configuration TT-TT-HH. Globally swapping all Bloch-point
types (and adjusting the antivortex polarisation) does not affect the system’s physics in the
context discussed here. Second, we can rotate the system around the 𝑧 direction and obtain
the configuration TT-HH-HH. Again, the two configurations are equivalent. However, for
eight Bloch points we additionally find that different configurations that are not related via
symmetry (globally swapping HH and TT or rotating the system around the 𝑧 direction) also
have the same energy density if they contain the same number of antivortices. For example,
the configurations HH-HH-HH-HH-HH-HH-HH-TT and HH-HH-HH-HH-TT-TT-TT-TT both
contain 6 antivortices (located between neighbouring same-type Bloch points, i.e. HH-HH and
TT-TT pairs) but cannot be transformed into each other by swapping HH and TT or rotating the
system. Yet, they exhibit the same spatially averaged energy density. Our findings suggest that
the energy density of the micromagnetic configuration around the Bloch points is independent
of the configuration around other Bloch points in the system (the Bloch point itself, i.e. the point
singularity, is known to not affect the energy of the micromagnetic configuration containing
it Feldtkeller, 1965). The energy density of any Bloch-point configuration can be obtained
from a configuration containing Bloch points of alternating opposite type with additional
contributions originating from the additional antivortices between neighbouring same-type
Bloch points.

This is the reason for the lowest-energy-density configurations shown in Fig. 4.7 consisting of
pairs of Bloch points of alternating type: for same-type neighbours an antivortex is required to
mediate the magnetisation between the Bloch points of the same type, and the presence of
such antivortices would increase the spatially averaged energy density.

We can make one additional observation in Fig. 4.6a. The energy density of a configuration
changes as a function of strip length 𝑙. All configurations containing two or three Bloch points
have one energy minimum at a certain length that we call the optimal length 𝑙o. For example,
the optimal length for the HH-TT configuration (blue filled squares in Fig. 4.6a) is 𝑙o ≈ 275 nm.

4.7 Predicting strip geometries for larger systems

So far, we have focused on small systems containing at most eight Bloch points. Based on this
information we can predict strip geometries suitable for an arbitrary number of Bloch points.

Figure 4.6a shows that meta-stable configurations containing multiple Bloch points can be real-
ised over a broad range of strip lengths but need a certain minimal strip length. This minimal
length depends on the number of Bloch points and additional antivortices in the configuration.
In our simulations, we also see that a certain maximum strip length cannot be exceeded for
a given configuration. If the strip is too long, the configuration could not be stabilised and
additional Bloch points appear. Furthermore, Fig. 4.6a shows that all configurations have a
minimum in the energy density at a certain optimal length 𝑙o.
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To predict strip geometries suitable for an arbitrary number of Bloch points we focus on
configurations containing up to eight Bloch points of alternating opposite type. We find
that the optimal length 𝑙o increases linearly with the number of Bloch points (Fig. 4.8c)
with the slope defining the optimal Bloch point spacing 𝑠o. Furthermore, we find that 𝑠o 

increases linearly with increasing strip width (Fig. 4.8d). We obtain 𝑠o,𝑤=100 nm ≈ 165 nm and
𝑠o,𝑤=200 nm ≈ 272 nm with an estimated accuracy of 𝛿𝑠o ≈ 3 nm. These observations lead to
our working hypothesis that the ideal Bloch-point spacing 𝑠o is independent of the number of
Bloch points in the system and suitable to predict geometries for more than eight Bloch points.
This prediction can be used for arbitrary configurations not only alternating opposite-type
Bloch points.

As an illustrative example, we simulate one specific configuration containing 80 Bloch points,
encoding the 10-character word Blochpoint in ASCII code (eight bits per letter). We simulate
a strip with the predicted length 𝑙 = 80𝑠o = 13.2 µm at a width of 𝑤 = 100 nm and with
𝑠o = 165 nm.

We minimise the energy of a suitable initial configuration resulting in the 80-bit configuration
as shown in Fig. 4.8a, b. The cross sections show the 𝑥𝑦 plane at 𝑧 = 1 nm (Fig. 4.8a) and the
𝑥𝑧 plane at 𝑦 = 50 nm (Fig. 4.8b). Note that the aspect ratio is not correct in order to improve
visibility. Figure 4.8e shows contour lines for 𝑚𝑧 for a part of the nanostrip (correct aspect
ratio) as indicated in Fig. 4.8a. Bloch points in Fig. 4.8e are located at the small red and blue
dots. The larger red circles (𝑚𝑧 > 0.5) show antivortices between same-type Bloch points.

To test the stability of the 80-Bloch-point configuration, we apply a short magnetic field pulse
in the +𝑦 direction (𝐻 = 25 mT/𝜇0, applied for 𝑡 = 0.5 ns). The modified magnetisation field
configuration at the end of the 0.5 ns period is shown in Fig. 4.8f. Then, we set the applied
field back to zero and let the system evolve freely by carrying out a time integration. We find
that the magnetisation converges back to the initial state: Fig. 4.8g shows the configuration
after 𝑡 = 5 ns of free relaxation.

To understand the robustness of the predicted geometry, we vary the strip length 𝑙 and find
that the desired 80-Bloch-point configuration can be stabilised over a range of strip geometries.
The minimal strip length is around 0.66𝑙o the maximal strip length around 4𝑙o.

Within the range of stability of the 80-bit configuration (0.66𝑙o ≤ 𝑙 ≤ 4𝑙o), we find that the
length 𝑙o is closer to the lower stability boundary (≈ 0.66𝑙o) than to the upper limit (≈ 4𝑙o). This
is consistent with the energy density curve for the HH-TT configuration in Fig. 4.6a (blue filled
squares), where we see that the energy density as a function of the strip length is asymmetric
and that its energy minimum, located at strip length 𝑙o, is located at a comparatively small strip
length within the range of possible strip lengths over which the configuration is meta-stable
(stability limits are not visible in Fig. 4.6a).
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Figure 4.8: (a, b) ASCII encoding of the string Blochpoint using 80 Bloch points, a HH
Bloch point represents a binary “1” and a TT Bloch point represents a binary “0”. Cross
sections show (a) the 𝑥𝑦 plane at 𝑧 = 1 nm and (b) the 𝑥𝑧 plane at 𝑦 = 50 nm. The strip length
is chosen according to the predicted value for a nanostrip with width 𝑤 = 100 nm. Labels
on the 𝑥 axis mark blocks of eight Bloch points, i.e. individual bytes. Note that the aspect
ratio is not correct in order to improve visibility. (c) Optimal lengths 𝑙o for two to eight Bloch
points. The fit is used to predict lengths for more than eight Bloch points. (d) Optimal Bloch
point distance 𝑠o as a function of strip width 𝑤. (e – g) show an enlarged part of the nanostrip
(correct aspect ratio) as highlighted in (a) to demonstrate the stability of the configuration: (e)
initial configuration after energy minimisation; (f) an external magnetic field 𝐻 = 0.25 T/𝜇0
is applied in the +𝑦 direction for 0.5 ns; (g) after removing the external field the system evolves
freely and converges back to the initial state (snapshot after 5 ns). (e – g) show contour lines
of the 𝑚𝑧 component to improve visibility of the disturbance introduced by the external
magnetic field. Bloch points are located at the small red and blue dots, the larger red circles

show the additional antivortices.

4.8 Discussion

Our results show that two-layer FeGe nanostrips can host multiple Bloch points in any com-
bination of head-to-head (HH) and tail-to-tail (TT). The Bloch-point configuration originates
from vortices with identical circularity, but opposite polarisation, which are stabilised through
the DMI of the material, which fixes the core orientation relative to circularity through the
left- or right-handed chirality. The Bloch points form an interesting topological excitation
in a helimagnetic system, which extends the set of well-known magnetic structures such as
domain walls, vortices, and skyrmions. In the geometry described here, the Bloch points are
in equilibrium and can be manipulated (e.g. with external magnetic fields).

We have found remarkable features of multiple interacting Bloch points in two-layer nano-
strips. The two different types—head-to-head (HH) and tail-to-tail (TT)—can be geometrically
arranged in any arbitrary order, and this magnetisation configuration resembles a meta-stable
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configuration (within certain constraints on the strip width and length). The spatially averaged
energy density for a system with 𝑛 Bloch points increases in fixed steps. The number of steps
scales linearly with the number of antivortices in the configuration (or equivalently: the
number of neighbouring same-type Bloch points). We can determine an optimal Bloch-point
spacing 𝑠o between Bloch points within a line of Bloch points (corresponding to a distance over
which a Bloch point extends). Based on this optimal spacing, we can predict strip geometries
suitable for an arbitrary number of Bloch points. We have verified this prediction by studying
a system containing 80 Bloch points.

In the following, we speculate about possible future applications of Bloch points. One key-
feature distinguishing Bloch points from many other particle-like magnetic configurations is
the demonstrated coexistence of Bloch points of two different types in a single sample making
Bloch points an interesting candidate for binary data representation. In the racetrack-like
designs (Parkin et al., 2008; Sampaio et al., 2013), when realised with magnetic excitations
of which only one type exists—such as skyrmions—we need to ensure that skyrmions keep
their relative positions to be able to interpret the presence of a skyrmion as “1” and the
absence of a skyrmion as “0”. The two different types of Bloch points presented here could
be used to encode binary data without the need to rely on fixed spacing of magnetic objects:
a HH configuration could represent “1” and a TT configuration could represent “0”. In the
context of skyrmion-based realisation of the racetrack approach, other ideas to overcome the
fixed-spacing requirement include the use of a combination of skyrmion tubes and chiral
bobbers (Zheng et al., 2018) and the two-lane racetrack memory (Müller, 2017).
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Chapter 5

Controlling stable Bloch points with
electric currents

Preface

The work presented in this chapter has been published as Lang et al. (2023b). Compared to the publication,
the discussion of uniform strips in Sec. 5.3 has been extended significantly in this thesis. All results from the
publication can be reproduced from the accompanying repository (Lang et al., 2023c).

The finite-element simulations for the current density profile in non-rectangular nanostrips, Sec. 5.2.3, have
been performed by Swapneel Amit Pathak.

5.1 Introduction

In this chapter, we study the motion of one or multiple stable Bloch points in the two-layer
system consisting of layers with opposite material chirality under applied spin-transfer torque.
In Sec. 5.2 we discuss the micromagnetic simulation procedure, the method used to locate
individual Bloch points, and the finite-element simulations used to compute the current
density profile in non-rectangular strips. For uniform nanostrips, we find that the Bloch point
moves without any Hall effect in the two-layer geometry (Sec. 5.3.1). Multiple Bloch points
move collectively, independent of their type or arrangement (Sec. 5.3.2), and we study in detail
how the initial Bloch-point distance and their individual type affect details of the motion.
Next, we study the effect of geometry variations of the nanostrip on the Bloch-point motion
by removing the magnetic material in one or multiple notches at the edge of the nanostrip
(Sec. 5.4 and Sec. 5.5). Finally, in Sec. 5.6, we simulate the motion of a Bloch point in a T-shaped
geometry and show that we can control the trajectory of the Bloch point with the applied
current. Depending on the current direction, the Bloch point can move along different paths,
i.e. between arbitrary ends of the structure.



72 Chapter 5. Controlling stable Bloch points with electric currents

5.2 Methods

5.2.1 Micromagnetic simulation procedure

We simulate two-layer nanostrips with opposite chirality, i.e. opposite sign of the Dzyaloshinskii-
Moriya constant 𝐷 in the two layers. We fix the thickness of the two layers to 𝑡b = 20 nm
for the bottom layer and 𝑡t = 10 nm for the top layer. We use a strip width of 𝑤 = 100 nm
unless indicated differently. We choose strip lengths that allow for enough space for the Bloch
points to move and vary the strip length depending on the number of Bloch points. We show
the geometry in Fig. 5.1, the two layers are indicated with dark and light grey. The figure
shows a nanostrip with an additional notch studied in Sec. 5.4. The top surface shows the
corresponding simulated current density.

The energy equation

𝐸 = ∫ d3𝑟 (𝑤ex + 𝑤dmi + 𝑤d) (5.1)

contains exchange energy density 𝑤ex, bulk Dzyaloshinskii-Moriya energy density 𝑤dmi, and
demagnetisation energy density 𝑤d. The magnetisation dynamics is simulated using the
Landau-Lifshitz-Gilbert equation (Landau & Lifshitz, 1935; Gilbert, 2004) with currents mod-
elled with the Zhang-Li model (Zhang & Li, 2004):

𝜕m 𝜕m= −𝛾m × Heff + 𝛼m × 𝜕𝑡 − m × [m × (u ⋅ ∇)m] − 𝛽m × (u ⋅ ∇)m, (5.2)𝜕𝑡 

where 𝛾 = 2.211 × 105 m/As is the gyromagnetic ratio, 𝛼 is the Gilbert damping, and

𝑃𝜇B𝑔 
u = (5.3)

2𝑒𝑀S(1 + 𝛽2) je 

is the spin-drift velocity. Here, je is the electric current density, the vector points along the
direction of the electron flow. 𝑃 is the polarisation, 𝜇B the Bohr magneton, 𝑔 the electron

Figure 5.1: Geometry of the nanostrips studied in this work. All nanostrips consist of two
layers with opposite chirality (light and dark grey), length 𝑙 and width 𝑤 are adjusted as
required. In a later part of this chapter, we also study the effect of notches with width 𝑛𝑥 and
depth 𝑛𝑦 in the strip. They extend throughout the whole sample thickness, as shown here.
The colour and the streamlines on the top surface show the current density and direction in

the nanostrip with a notch.
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g-factor, 𝑒 the elementary charge, and 𝛽 the non-adiabatic parameter (see Sec. 2.5). Material
parameters are based on FeGe (Beg et al., 2015): 𝐴 = 8.87 pJ m−1, 𝐷 = 1.58 mJ m−2, 𝑀s =
384 kA m−1, and 𝛼 = 0.28 (Beg et al., 2017a). We use spatially varying current densities J of
different magnitudes in our simulations and keep the other variables in Eq. 5.3 fixed to 𝑃 = 0.5
and 𝛽 = 2𝛼 = 0.56.

All micromagnetic simulations are performed using Ubermag (Beg et al., 2022) with OOMMF
(Donahue & Porter, 1999) as the computational backend and an extension for DMI for crystallo-
graphic point group T (Cortés-Ortuño et al., 2018b, 2018a). We have generalised the Zhang-Li
OOMMF extension, in order to simulate current flowing in arbitrary directions. The modified
extension is available on GitHub (Lang & Fangohr, 2023).

As a starting point for all simulations, we create rectangular nanostrips containing Bloch points
at the desired positions, following the protocol that we developed for the study of multiple
Bloch points (see Sec. 4.3). For rectangular nanostrips, we can then directly add the Zhang-Li
term with a uniform current density to the dynamics equation and simulate the Bloch point
dynamics. For more complex geometries, we first modify the nanostrip to have the desired
shape and again minimise the energy to start from a relaxed configuration. Then, we add
the Zhang-Li current using the current profile obtained form the finite-elements simulations
outlined in Sec. 5.2.3.

5.2.2 Locating Bloch points

To analyse the Bloch-point motion we need to locate and track the individual Bloch points.
We use a combination of two different methods to precisely locate the Bloch points. Tracking
is then simply done based on the distance of Bloch points in consecutive time steps. In all
simulations, the Bloch points are clearly separated and their number is kept fixed, hence
identifying the individual Bloch points using this simple distance-based method is sufficient.

We first compute the approximate location of the Bloch points (within cell accuracy) based on
the classification mechanism described in Sec. 4.5. We briefly summarise the method here.
Bloch points can be identified as sources and sinks of the emergent magnetic field. To locate
Bloch points along one direction, we compute the flux of the emergent magnetic field through
a series of volumes that we increase along the respective direction. We find quantised jumps
in the total flux whenever the volume includes an additional Bloch point. Based on the sign of
the jump, we can determine the Bloch-point type. The approximate location of the Bloch point
is given by the upper integration boundary. To locate a Bloch point in three dimensions, we
can repeat this calculation along different directions, where we limit the integration volume
along the directions where we have already located the Bloch point. That way we can locate
individual Bloch points in a configuration containing multiple Bloch points.
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To locate a Bloch point with sub cell-size accuracy, we can compute the centre of mass of the
emergent magnetic field Be (Sec. 2.6), defined as:

∫𝑉 d
3𝑟 r div Be 

= . (5.4)rBP ∫𝑉 d3𝑟 div Be 

This method only works if the considered volume contains a single Bloch point. Furthermore,
magnetisation tilts at sample boundaries can affect the result. To get reliable results, we first
compute the approximate location of all Bloch points. Then, we can compute the precise
location of each Bloch point by only considering a small sub-volume 𝑉 around the approximate
position. In the majority of the work we only use the computationally less expensive locating
method with cell-size accuracy.

5.2.3 Current profile

We use Python libraries, which are part of the FEniCSx project (Alnæs et al., 2014; Scroggs
et al., 2022a, 2022b), to numerically compute the current profile in non-rectangular nanostrips.
Additionally, we use Gmsh (Geuzaine & Remacle, 2009) to create the irregular mesh for the
geometry.

For an electric conductor, according to Ohm’s law, the electric current density J is defined via:

J = 𝜎E, (5.5)

where E is the electric field and 𝜎 the electric conductivity. Further, the principle of charge
conservation yields:

∇ ⋅ J = 0. (5.6)

The electric current also induces an Oersted field, which is neglected in this work. According
to Maxwell’s equations, in the absence of a time varying magnetic field, the electric field is
conservative. Hence, it can be expressed in terms of an electric potential as:

E = −∇𝑉. (5.7)

Combining these equations, we obtain:

∇ ⋅ (−𝜎∇𝑉) = 0. (5.8)

Further, we assume as isotropic material, hence the conductivity is a scalar. This gives a
Laplace’s equation:

∇2𝑉 = 0, (5.9)

which we can solve numerically after defining suitable boundary conditions.



755.3. sripUniform st 

Figure 5.1 shows an example for a rectangular nanostrip with a single notch. The calculated
current density profile is shown on the top surface. We will discuss this geometry in detail in
Sec. 5.4, where Fig. 5.8c shows a cut plane of the same geometry. We assume a constant current
flow through the left and right sample boundary with strength 𝐽0 in the +𝑥 direction and no
current flow through any of the other surfaces. Hence, the Neumann boundary conditions
can be expressed as:

⎧−𝐽0/𝜎 if 𝑥 = 0 nm
𝜕𝑉 ⎪

= 𝐽0/𝜎 if 𝑥 = 600 nm . (5.10)𝜕𝑛 ⎨⎪ 0 else⎩ 

In the example we use 𝐽0 = 1012 A/m2 . The streamlines in Fig. 5.1 (and Fig. 5.8c) indicate the
current direction, colour the magnitude of J. We obtain a uniform flux in 𝑥 direction in the
rectangular parts of the nanostrip. Near the notch, the current profile changes as the current
flows around the notch. This leads to a variation in the current density with the maximum at the
tip of the notch. To include the current into the finite-difference micromagnetic simulations,
we interpolate the simulated current profile onto a cuboidal mesh. Visualisations in Fig. 5.8
and Fig. 5.12 are shown on the finite-difference grid used for the micromagnetic simulations.

5.3 Uniform strips

5.3.1 One Bloch point

First, we focus on the motion of a single Bloch point in a uniform strip. We simulate rectangular
nanostrips with length 𝑙 = 1500 nm and width 𝑤 = 100 nm. We begin by relaxing the system
into a state where it contains a single Bloch point near the left sample edge. Then, we apply
current of different strengths in the +𝑥 direction.

Figure 5.2 shows the 𝑚𝑧 component of such a configuration at five different time steps for an
applied current density 𝐽𝑥 = 0.7 × 1012 A/m2 . Initially, at 𝑡 = 0 ns, the Bloch point is located
at 𝑥i ≈ 150 nm and is centred in the 𝑦 direction (Fig. 5.2a). When current is applied, we can
observe a motion of the Bloch point in the +𝑥 direction. The Bloch point does not move
in the 𝑦 direction. Subfigures 5.2b to d show the magnetisation configuration at time steps
𝑡 = 5 ns with the Bloch point located at 𝑥 ≈ 510 nm, 𝑡 = 10 ns with the Bloch point located at
𝑥 ≈ 860 nm, and 𝑡 = 15 ns with the Bloch point located at 𝑥 ≈ 1200 nm. Figure 5.2e shows the
configuration (with applied current) after the Bloch point reaches its final equilibrium position.
The Bloch point is repelled from the sample edge and stops moving at a certain distance from
the edge, which depends on the current strength. For 𝐽𝑥 = 0.7 × 1012 A/m2 the final position
is at 𝑥f ≈ 1400 nm. Further applied current does not affect the Bloch point because edge
repulsion and driving force are in equilibrium. The time step 𝑡 = 20 ns in Fig. 5.2e shows the
final equilibrium configuration several nanoseconds after the Bloch point reaches the right
sample edge.
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Figure 5.2: Movement of a single Bloch point with applied spin current with current density
𝐽𝑥 = 0.7 × 1012 A/m2 . The Bloch point is initialised near the left sample edge (a). When
applying current, the Bloch point moves in the +𝑥 direction, parallel to the current, until it

reaches the right sample edge (e). (b – d) show intermediate time steps.

Summarising these results, we can see that the Bloch point in the two-layer system moves
parallel to the current direction without a Hall effect. We observe the same behaviour for other
current densities above a depinning threshold (see below). We have verified these results for
much wider strips (𝑤 = 600 nm) to ensure that the straight motion is not caused by the edge
repulsion from the edges in the 𝑦 direction in the narrow strip. Our results differ from the Bloch
point in a chiral bobber studied by Gong et al. (2021), where the whole object shows a Hall
effect that changes with the strength of the applied current. This difference can be understood
from the two different system geometries. In the two-layer system studied here, the Bloch
point is enclosed between two vortices located in the top and bottom layer. The vortices have
opposite polarisation and hence would be subject to deflection in opposite direction. Overall,
these effects cancel out and the Bloch point moves in a straight line. Similar suppression of
the gyration has been observed for a Bloch point in a two-layer nanodisk, where the Bloch
point is first displaced with an applied magnetic field and afterwards relaxes freely (Winkler
et al., 2023).

We now study the effect of the current strength on the motion in more detail. Figure 5.3a
shows the position of the Bloch point moving through the nanostrip for different applied
current densities between 𝐽𝑥 = 0.07 × 1012 A/m2 and 𝐽𝑥 = 2.6 × 1012 A/m2 as a function of
time.
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Figure 5.3: Movement of a single Bloch point with applied spin current. (a) Bloch-point 
position in 𝑥 direction as a function of time for different current strengths. (b) Speed of the 
Bloch point depending on the current strength. A linear increase in speed can be observed 
above a certain depinning threshold. (c) Final equilibrium position of the Bloch point near 

the right sample edge at 𝑥 = 1500 nm depending on the current density. 

For large current densities (𝐽𝑥 ≥ 0.3 × 1012 A/m2 for the chosen discretisation size of 2.5 nm) 
we can see that the Bloch point moves through the nanostrip until it reaches the right sample 
edge (the simulation time of 𝑡 = 20 ns shown in the figure is not long enough for Bloch points 
driven with 𝐽𝑥 ≤ 0.4 × 1012 A/m2 to reach the right sample edge). In the inner part of the 
strip, away from the sample edges at 𝑥 = 0 nm and 𝑥 = 1500 nm, the Bloch point moves with 
constant velocity. We use the region between 𝑥 = 500 nm and 𝑥 = 1100 nm, highlighted with 
dashed lines, to compute the average velocity of the Bloch point using a linear fit. The thin 
dotted lines show the fits to the data. In the initial phase of the motion, after the onset of the 
current, we observe a non-linear motion of the Bloch point and a larger Bloch-point speed. 
During this initial phase, the whole micromagnetic structure re-adjusts to the current. 

In the last part of the motion, the Bloch point reaches the right strip edge at 𝑥 = 1500 nm. 
The Bloch point is repelled from the edge as can be seen from the plateaus in the Bloch-point 
position. The final position of the Bloch point as a function of current density is shown in

2Fig. 5.3c. Comparing the results for 𝐽𝑥 = 0.4 × 1012 A/m2 up to 𝐽𝑥 = 2.6 × 1012 A/m , we can 
see that a larger current density pushes the Bloch point closer to the right sample edge, as 
can be expected. The current-dependence of this final position is a result of the varying total 
energy of the system depending on the Bloch-point position (see below). 



78 Chapter 5. Controlling stable Bloch points with electric currents 

For small current densities (𝐽𝑥 = 0.07 × 1012 A/m2 in Fig. 5.3), we observe a pinning of 
the Bloch point in the discretisation lattice and hence no motion. The two simulations for 
𝐽𝑥 = 0.1×1012 A/m2 and 𝐽𝑥 = 0.2×1012 A/m2 are special cases. Here, the current is not strong 
enough to permanently overcome the pinning in the discretisation potential and move the 
Bloch point through the whole nanostrip. However, the system has a comparatively high total 
energy in its initial configuration with the Bloch point near the sample edge at 𝑥 = 0 nm (see 
below). The combination of edge repulsion and applied current can overcome the pinning 
in the discretisation potential, and the Bloch point moves a limited distance until the edge 
repulsion becomes too weak and the Bloch point stops. We do not see any motion of the Bloch 
point for these current densities when starting from a state where the Bloch point is initially 
centred in 𝑥 direction. 

Pinning of the Bloch point in the inhomogeneous potential is a well-know property and 
can be observed in atomistic and micromagnetic simulations as described in Sec. 2.8.4. In 
micromagnetic simulations, the exact value of the depinning threshold density depends on 
the discretisation cell size. In the remainder of this work, we focus on larger current densities 
well above the depinning threshold. 

Figure 5.3b shows the velocity 𝑣𝑥 of the Bloch point in the 𝑥 direction as a function of the 
current density. We can see the pinning for small current densities and then a linear increase in 
speed with increasing current density up to 𝑣 ≈ 300 m/s for 𝐽𝑥 = 2.6 × 1012 A/m2 . Simulations 
for larger current densities (not included in the figure) show that this linear increase in speed 
also holds for larger current densities. For very large current densities, probably not achievable 
in a real material, the current would lead to the creation and annihilation of additional Bloch 
points. 

From the current-dependent stopping positions seen in Fig. 5.3 we can conclude that the 
total energy of the system depends on the position of the Bloch point in the nanostrip. We 
study this in more detail in a shorter strip with 𝑙 = 600 nm. We initialise a Bloch point near 
the left sample edge and then drive the Bloch point with a current 𝐽𝑥 = 1.3 × 1012 A/m2 in 
the +𝑥 direction (Fig. 5.4). The colour in Fig. 5.4a shows the 𝑚𝑧 component of the initial 
configuration with the Bloch point at 𝑥 ≈ 120 nm. For each time step of the simulation, we 
then remove the external current and relax the system to obtain the energy of the equilibrium 
configuration depending on the Bloch-point position. Here, we exploit the pinning in the 
discretisation potential that generally prohibits motion of the Bloch point. The blue line in 
Fig. 5.4a shows the trajectory of the Bloch point with the applied current. The markers indicate 
the rightmost equilibrium positions of the Bloch point with applied current (blue diamond) 
and without applied current (orange square). 

Figure 5.4b shows the position of the Bloch point in the 𝑥 direction as a function of simulation 
time. The blue solid line shows the position with applied current, the orange dashed line the 
position after the free relaxation. We can distinguish two different regimes before and after 
𝑡 = 2.5 ns. In the first regime, the Bloch point is far away from the sample edge, and it does not 
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Figure 5.4: Influence of the Bloch-point position on the system’s total energy for a nano-
strip containing a single Bloch point. (a) System geometry, 𝑚𝑧 component of the initial 
configuration, and trajectory of the Bloch point. The marker symbols indicate the rightmost 
equilibrium position of the Bloch point with applied current (blue diamond) and in the free 
system (orange square). (b) Position of the Bloch point in the 𝑥 direction with applied current 
and after free relaxation as a function of simulation time. (c) Total energy of the system with 
applied current and after free relaxation and (d) energy difference between the configuration 
with and without applied current as a function of simulation time. (e) Total energy with and 

without current as a function of the Bloch-point position. 
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move when we remove the current and minimise the energy of the free system. In the second 
regime, after 𝑡 = 2.5 ns, the Bloch point comes close to the sample edge. With applied current, 
the final position is 𝑥current ≈ 530 nm (blue diamond in Fig. 5.4a). However, the Bloch point in 
the free system without applied current is not stable in this position. Instead, the Bloch point 
moves in the −𝑥 direction, away from the sample edge at 𝑥 = 600 nm, during the relaxation 
and reaches a final position of 𝑥free ≈ 480 nm (orange square in Fig. 5.4a). 

These differences are a result of the change in total energy depending on the Bloch-point 
position. Figure 5.4c shows the total energy for the system with applied current (blue solid line) 
and after free relaxation (orange dashed line) as a function of simulation time, and Fig. 5.4d 
shows the difference of the two energies. Figure 5.4e shows the two energies as a function of 
Bloch-point position. We can see that the total energy has a minimum when the Bloch point is 
located in the centre of the strip at 𝑥 = 300 nm in Fig. 5.4e (and at 𝑡 ≈ 1.3 ns in Fig. 5.4c) and 
monotonically increases when the Bloch point moves closer to the sample boundary. With 
applied current, the whole configuration is in an excited state and has a higher total energy. 
When the Bloch point is far enough away from the sample edges in the 𝑥 direction, in the 
simulation between 𝑡 ≈ 0.4 ns and 𝑡 ≈ 2.6 ns, we can see a constant energy difference Δ𝐸 
(Fig. 5.4d). After 𝑡 ≈ 2.6 ns, the two energies deviate. With applied current, the total energy 
increases further up to 𝑡 ≈ 3.4 ns. During this part of the simulation, the Bloch point still 
moves closer to the boundary. For 𝑡 > 3.4 ns the Bloch point stops moving and hence the 
energy stays constant. In the free system, the total energy stays approximately constant for 
𝑡 > 2.5 ns and the Bloch point moves away from the sample edge during the free relaxation. 
These differences are caused by the pinning in the lattice potential, which is not strong enough 
to compensate the increase in total energy for 𝑥 > 480 nm (𝑡 > 2.6 ns) when the Bloch point 
comes close to the sample edge at 𝑥 = 600 nm. 

In Fig. 5.4c to e we can see additional deviations in the initial phase of the simulations, for 
𝑡 < 0.4 ns. At 𝑡 = 0 ns the configuration is still in its equilibrium state and both energies 
are identical. When we start to apply current, the configuration re-adjusts, including a small 
motion of the Bloch point in the +𝑥 direction, to compensate the adiabatic component of 
the spin current (the Bloch point does not reach a state of steady motion when we set the 
non-adiabatic parameter to 𝛽 = 0). This deformation of the magnetisation configuration leads 
to an additional contribution to the total energy for 𝑡 < 0.4 ns. 

5.3.2 Multiple Bloch points 

Next, we discuss driving multiple Bloch points. We limit this discussion to three different 
configurations containing two Bloch points. Figure 5.5 shows the 𝑚𝑧 component of the initial 
configuration (left part) and final configuration (right part) for the three systems: two Bloch 
points of the same type (head-to-head and head-to-head with an antivortex in between) with 
an initial distance 𝑑i,a ≈ 250 nm of the Bloch points and the antivortex centred between the 
two Bloch points (Fig. 5.5a), two Bloch points of opposite type (tail-to-tail and head-to-head) 
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Figure 5.5: Initial configuration (left part) and final configuration (right part) of systems 
containing two Bloch points that are driven with a spin current. (a) Bloch points in the 
configuration head-to-head and head-to-head with an antivortex in between; (b) Bloch points 
in the configuration tail-to-tail and head-to-head with small initial distance; (c) Bloch points 

in the configuration tail-to-tail and head-to-head with large initial distance. 

with an initial distance 𝑑i,b ≈ 250 nm (Fig. 5.5b), and two Bloch points of opposite type (tail-
to-tail and head-to-head) with an initial distance 𝑑i,c ≈ 665 nm (Fig. 5.5c). We will refer to 
these configurations as a, b, and c. We apply a uniform current with 𝐽𝑥 = 0.7 × 1012 A/m2 in 
the +𝑥 direction for all three simulations. The simulations start from relaxed states with no 
applied current, and the Bloch points are at rest at 𝑡 = 0. The current is applied for the whole 
simulation time. 

We can see that the Bloch points and the antivortex collectively move in current direction 
(right part in Fig. 5.5). The Bloch-point type does not affect the direction of motion. The right 
(head-to-head) Bloch point reaches nearly the same position in all three simulations. The final 
distance of the Bloch points depends on their individual type and the applied current, but it is 
independent of their initial distance. For the same-type Bloch points (configuration a) we find 
a final distance 𝑑f,a ≈ 125 nm. The antivortex is located closer to the right Bloch point (distance 
40 nm). For the two configurations containing Bloch points of opposite type (configurations b 
and c) we obtain the same final distance 𝑑f,b = 𝑑f,c ≈ 160 nm, independent of their initial 
distance. The final distance is a result of the competition between Bloch point-Bloch point 
repulsion and the torque exerted from the driving current. We can see that the antivortex in 
between same-type Bloch points seems to reduce the Bloch point-Bloch point repulsion and 
allows for a smaller final distance. 

Figures 5.6 and 5.7 (discussed in detail in the following) show the position 𝑥, velocity 𝑣𝑥, and 
distance 𝑑𝑥 of the Bloch points and the antivortex for the three configuration as a function 
of simulation time. The time-resolved data reveals the influence of initial position, initial 
distance, and configuration on the motion of the Bloch points. For reference, we also include 
data for a system containing a single Bloch point. 
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Figure 5.6: Motion of two Bloch points in the configurations b and c from Fig. 5.5. (a) Position 
of the Bloch points as a function of simulation time. The subscripts l and r refer to the left and 
right Bloch point of the configuration. The dashed line indicates the final equilibrium position 
of a single Bloch point. (b) Velocity 𝑣𝑥 of the individual Bloch points in the configurations b 
and c, and for a system containing a single Bloch point. (c) Distance between the two Bloch 

points as a function of time. 

First, we focus on configurations b and c, containing Bloch points of opposite type with 
different initial distance (Fig. 5.5b and Fig. 5.5c). Figure 5.6a shows the position of the Bloch 
points in 𝑥 direction, Fig. 5.6b the velocity 𝑣𝑥 of the Bloch points, and Fig. 5.6c the distance 𝑑𝑥 

between the Bloch points. Additionally, Fig. 5.6a indicates the final equilibrium position of a 
configuration containing a single Bloch point (dashed line) and Fig. 5.6b shows velocity data 
for the single Bloch point. 

The pinning in the discretisation potential results in a non-uniform velocity with high-frequency 
oscillations, which depend on the discretisation cell size. We smooth the velocities using two 
consecutive rolling averages over 15 time steps (0.15 ns) with the window centred on the 
current data point, first with a Gaussian profile with standard deviation 4, second with even 
weights. As a sanity check, we integrate the smoothed velocity to confirm that the total trav-
elled distance obtained from the integration matches the distance that the Bloch points have 
actually travelled (based on the position data). As a side effect of this averaging, we do not 
have velocity data for 𝑡 < 0.14 ns and hence cannot study details of the onset of the motion. 

For Bloch points with large initial distance (configuration c), we can see that both Bloch 
points move with nearly the same velocity (Fig. 5.6b), which is comparable to that of a single 
Bloch point. Accordingly, the distance between the Bloch points stays almost constant as 
long as both Bloch points can move freely (Fig. 5.6c, 𝑡 < 12 ns). For the right Bloch point 
we observe a slowdown as it approaches the right sample edge at 𝑡 ≈ 12 ns, and the motion 
stops at 𝑡 ≈ 14 ns, when the Bloch point reaches the equilibrium position of the single Bloch 
point. The second Bloch point continues moving towards the right and also affects the right 
Bloch point, which in turn moves closer towards the right sample edge between 𝑡 ≈ 15 ns 
and 𝑡 ≈ 17 ns. Afterwards, we can observe a slip-stick motion with a few additional spikes 
in the velocity (Fig. 5.6b, broadened due to the smoothing of the velocity data) as the Bloch 
point moves a few cells closer to the right sample edge. The left Bloch point reaches its final 
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position at 𝑡 ≈ 22 ns. We do not observe a decrease in velocity for the second Bloch point as the 
distance between the two Bloch points decreases (excluding the part for 𝑡 > 20 ns where the 
Bloch point reaches its final equilibrium position), which also manifests in a linear decrease 
of the Bloch-point distance (Fig 5.6c, 14 ns < 𝑡 < 22 ns). 

For Bloch points with smaller initial distance (configuration b), we observe qualitatively similar 
behaviour with some differences in the details of the motion. We first focus on the time between 
𝑡 ≈ 1 ns and 𝑡 ≈ 20 ns. During this time frame, both Bloch points move towards the right 
and their motion is only affected by their mutual interaction. In Fig. 5.6b, we can observe 
an increased velocity of the right Bloch point and a decreased velocity of the left Bloch point 
compared to the results for a single Bloch point (and the two Bloch points with large initial 
distance). This also manifests in an increase of the Bloch-point distance over time in Fig. 5.6c. 
With increasing distance, the repulsion becomes weaker and the velocity difference decreases. 

In the initial phase of the motion, roughly up to 𝑡 = 1 ns, we can see a larger initial velocity 
and then a significant velocity decrease in Fig. 5.6b. This feature is more prominent for the left 
Bloch point and results from the edge repulsion of the Bloch points. It is a consequence of 
the initial configuration with the Bloch points close to the sample edge at 𝑥 = 0 nm. It does 
not occur for Bloch points initialised further away from the sample edge, as can be seen for 
configuration c. 

At 𝑡 ≈ 27 ns, the right Bloch point in configuration b reaches its final equilibrium position 
near the right sample edge and stops moving. Its final position is identical to that of the right 
Bloch point in configuration c. Before reaching this position, we can observe a slow-down at 
𝑡 ≈ 20 ns, when the Bloch point passes the equilibrium position of a single Bloch point (without 
stopping completely), and a slip-stick motion for 𝑡 > 23 ns, similar to the right Bloch point in 
configuration c. The left Bloch point in configuration b reaches its final position at 𝑡 ≈ 26 ns. 
Again, the final position is identical to that of the left Bloch point in configuration c. In the 
time frame between 𝑡 ≈ 20 ns and 𝑡 ≈ 26 ns we observe a linear decrease of the Bloch-point 
distance (Fig. 5.6c) without any significant speed reduction for the left Bloch point. 

Figure 5.7 compares the results for configuration a (containing two Bloch points of the same 
type, Fig. 5.5a) and configuration b (containing two Bloch points of opposite type, Fig. 5.5b). 
The Bloch points in both systems are initialised at the same positions, close to the left sample 
edge. We have already discussed the details of the Bloch-point motion for configuration b 
in the previous paragraphs. We find qualitatively similar behaviour for configuration a. The 
presence of the additional antivortex changes some details of the motion. 

In the direct comparison in Fig. 5.7b we can see that the speed of the right Bloch point in 
configuration a is higher and the speed of the left Bloch point in configuration a is lower 
that those of the respective Bloch points in configuration b. This results in a faster increase 
of the distance between the two Bloch points and a larger maximum distance at 𝑡 ≈ 19 ns 
(Fig. 5.7c). In contrast, the final Bloch-point distance after both Bloch points have reached 
their equilibrium position near the right sample edge is smaller in configuration a. 
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Figure 5.7: Motion of two Bloch points in the configurations a and b from Fig. 5.5. (a) Position 
of the Bloch points and the antivortex as a function of simulation time. The subscripts l and r 
refer to the left and right Bloch point of the configuration. The dashed line indicates the final 
equilibrium position of a single Bloch point. (b) Velocity 𝑣𝑥 of the individual Bloch points 
and the antivortex in the configurations a and b, and for a system containing a single Bloch 
point. (c) Distance between the two Bloch points and between the antivortex and each of the 

two Bloch points in configuration a as a function of time. 

Both observations can be attributed to the presence of the additional antivortex between the 
two same-type Bloch points in configuration a. The speed of the antivortex is larger than that 
of a single Bloch point (Fig. 5.7b). This could be a consequence of the additional pinning force 
for a Bloch point, which is absent for the antivortex, or indicate a more effective coupling of 
the spin-transfer torque to the antivortex. The higher antivortex velocity together with the 
repulsion between the antivortex and the Bloch points and the small initial distance of the 
Bloch points leads to an increased velocity of the right Bloch point and a decreased velocity of 
the left Bloch point in configuration a. 

Figure 5.7c also shows the distance between the antivortex and each of the two Bloch points 
and provides further insights. At 𝑡 = 0 ns, the antivortex is centred between the two Bloch 
points. The distance between the left Bloch point and the antivortex stays nearly constant up 
to 𝑡 ≈ 1 ns, whereas the distance between the antivortex and the right Bloch point increases 
rapidly during this time period. This is presumably a result of the edge repulsion of the Bloch 
points that leads to a large initial Bloch-point velocity, whereas we observe a much slower 
acceleration for the antivortex, which reaches a mostly steady velocity only after 𝑡 ≈ 2 ns. After 
this initial phase, we observe an increase of both distances, with a larger slope for the distance 
between the left Bloch point and the antivortex due to the higher antivortex velocity. The 
antivortex pushes the right Bloch point, which therefore has a higher velocity in configuration a 
compared to configuration b. Furthermore, the left Bloch point is slowed down due to the 
overall small distance to the antivortex. Once the Bloch points and the antivortex reach their 
respective final equilibrium positions near the right sample edge, they stop moving and the 
distances decrease. For the right Bloch point we additionally see a slowdown at the equilibrium 
position of a single Bloch point at 𝑡 ≈ 20 ns and a slip-stick motion near the sample edge, as 
seen before. 
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In the final equilibrium configuration, for 𝑡 > 28 ns, we find that the antivortex is much closer 
to the right Bloch point than to the left Bloch point (Fig. 5.7c and also Fig. 5.5a, right). We 
obtain 𝑑𝑥 ≈ 40 nm between the antivortex and the right Bloch point and 𝑑𝑥 ≈ 85 nm between 
the antivortex and the left Bloch point. 

The different distances could indicate that the coupling of the spin-transfer torque to an 
antivortex is more effective than the coupling to a Bloch point. When the antivortex is pushed 
towards the right Bloch point in front of it (which has a fixed position do to the edge repulsion), 
it reaches a final distance 𝑑𝑥 ≈ 40 nm. In contrast, when the left Bloch point is pushed towards 
the antivortex, the minimum achievable distance is 𝑑𝑥 ≈ 85 nm, about twice as much as in 
the opposite case. Hence, the force pushing the antivortex towards the Bloch point seems to 
be stronger that the force pushing the Bloch point towards the antivortex. The final distance 
between the antivortex and the right Bloch point is additionally decreased due the presence of 
the left Bloch point, as can be seen from the motion of the antivortex between 𝑡 ≈ 23 ns and 
𝑡 ≈ 28 ns (Fig. 5.7a). After coming close to the right Bloch point, the antivortex first moves in 
the −𝑥 direction, away from the right Bloch point, and then again in the +𝑥 direction when 
the left Bloch point comes closer. However, the effect of the left Bloch point does not seem to 
be strong enough to explain the difference of factor two of the two distances. We have carried 
out additional simulations where we only move the antivortex or Bloch point and keep the 
other object fixed (by fixing the magnetisation of a few cells in the simulation). Here, we find a 
minimum distance 𝑑𝑥 ≈ 55 nm and final equilibrium distance 𝑑𝑥 ≈ 65 nm when moving the 
antivortex towards the fixed Bloch point and a minimum (final) distance 𝑑𝑥 ≈ 85 nm when 
moving the Bloch point towards the fixed antivortex. We can conclude that the presence of the 
left Bloch point in configuration a leads to a reduction of the distance between the antivortex 
and the right Bloch point between Δ𝑑𝑥 ≈ 15 nm and Δ𝑑𝑥 ≈ 25 nm. 

Let us briefly summarise these results. We have found that multiple Bloch points in a sample 
collectively move under applied current. Bloch points repel each other and are repelled 
from the sample edges and additional vortices present in the configuration. These repulsions 
can affect the speed of the Bloch points and prevent Bloch points from leaving the sample. 
Antivortices have a higher velocity and push Bloch points in front of them. 

5.4 Nanostrip with one notch 

Next, we study the motion of a single Bloch point in a nanostrip with a notch. We simulate 
a strip with 𝑙 = 600 nm with a wedge-shaped notch at 𝑥 = 300 nm, extending through the 
sample in 𝑧 direction (Fig. 5.1). The notch tip is located at 𝑦 = 70 nm (𝑛𝑦 = 30 nm) and 
the opening angle is 90° (𝑛𝑥 = 60 nm). An 𝑥𝑦 cross-section is shown in Fig. 5.8. We use a 
finite-element simulation to compute the non-uniform current density profile in this geometry, 
as discussed in Sec. 5.2.3. The resulting current profile is shown in Fig. 5.8c. Near the notch 
we can observe a variation in the current density with the maximum at the tip of the notch. 
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Figure 5.8: Motion of a Bloch point in a nanostrip (𝑙 = 600 nm, 𝑤 = 100 nm) with a single 
notch under applied current. (a, b) Final configuration and Bloch-point trajectory for two 
different current strengths: (a) the Bloch point can move past the notch for 𝐽𝑥 = 1.6 × 
1012 A/m2; (b) the Bloch point is trapped at the notch for 𝐽𝑥 = 1.4 × 1012 A/m2 . (c) Simulated 
current profile. (d) Position of the Bloch points in (a) and (b) as a function of simulation time. 

The simulated current densities on the order of 1012 A/m2 would lead to a significant temper-
ature increase due to Joule heating. A detailed study (Fangohr et al., 2011) shows that the 
material, pulse duration, and cooling from the substrate play important roles in the control of 
the temperature. In this prototype study we ignore all temperature-related effects and possible 
engineering efforts which would need to be addressed for higher technical readiness levels. 

First, we focus on two current densities 𝐽𝑥,a = 1.6 × 1012 A/m2 and 𝐽𝑥,b = 1.4 × 1012 A/m2. We 
initialise the systems with a Bloch point at 𝑥i ≈ 165 nm. The final configurations with applied 
current are shown in Fig. 5.8a and b for 𝐽𝑥,a and 𝐽𝑥,b, respectively. The solid lines show the 
Bloch-point path from its initial to its final configuration. Figure 5.8d shows the 𝑥 position of 
the Bloch point in the two simulations as a function of simulation time. 

The current density 𝐽𝑥,b (Fig. 5.8b) is not strong enough to push the Bloch point past the notch. 
Instead, the Bloch point gets stuck near the notch at a final position 𝑥f,b ≈ 270 nm, to which it 
moves in a straight line without any deflection in 𝑦 direction. As a function of time (Fig. 5.8d), 
we can see a slow-down as the Bloch point approaches the notch. The motion stops around 
𝑡 = 1 ns: the applied current cannot push the Bloch point further against the restoring force 
from the notch constriction. 

The current density 𝐽𝑥,a (Fig. 5.8a) is strong enough to push the Bloch point past the notch, 
and the Bloch point stops at 𝑥f,a ≈ 550 nm at around 𝑡 = 3 ns due to the edge repulsion of the 
sample at 𝑥 = 600 nm. Near the notch, we can see a small displacement in the −𝑦 direction, 
away from the tip of the notch. In the time-resolved data (Fig. 5.8d), we can see a slow-down 
of the Bloch point in front of the notch, very similar to the results for 𝐽𝑥,a up to 𝑡 ≈ 1 ns. The 
small deviations of the two curves for Bloch-point positions before the notch are caused by 
the slightly different current strengths. However, for the stronger current, the Bloch point 
continues to move towards the notch for 𝑡 > 1 ns. We can see a slight speed increase around 
𝑡 = 1.3 ns, and the Bloch point passes the tip of the notch at around 𝑡 = 1.6 ns (and 𝑥 = 300 nm 
shown as a dashed line in Fig. 5.8). After passing the notch, we can see a strong speed increase 
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Figure 5.9: Final equilibrium position of a Bloch point in a strip with a notch as a function 
of applied current for three different strip widths. (a) The minimum required current density 
to move the Bloch point past the notch at 𝑥 = 300 nm increases with decreasing strip width. 
(b) The Bloch point moves past the notch at a critical total current that is independent of the 
details of the geometry. In both subfigures, we can see that narrower strips compress the 
overall structure and allow the Bloch point to move closer to the notch or sample edge. 

and a fast motion in +𝑥 direction until the Bloch point approaches the right sample boundary, 
where it slows down and eventually stops. 

To better understand the effect of the notch size on the pinning, we simulate strips with three 
different widths 𝑤 = 100 nm, 𝑤 = 125 nm, and 𝑤 = 150 nm for several different current 
densities. We keep the notch size of 𝑛𝑦 = 30 nm used before. Results are shown in Fig. 5.9. 

Figure 5.9a shows the final position of the Bloch point as a function of current density. Final 
positions below the notch tip at 𝑥 = 300 nm, visualised by the grey dashed line, mean that 
the Bloch point cannot move past the notch. Larger final positions mean that the Bloch point 
moves past the notch. We can see that the minimum current density required to move the 
Bloch point past the notch increases with decreasing strip width, as can be expected because the 
fraction by which the overall structure with the embedded Bloch point has to be compressed 
increases with decreasing strip width. 

For large current densities, 𝐽𝑥 ≥ 1.6 × 1012 A/m2, the Bloch point moves past the notch for 
all strip widths. Here, we can see that the Bloch point can move closer to the right sample 
boundary when the strip width decreases. This is presumably a result of the fact that the large-
scale magnetisation configuration around the Bloch point is more compressed in narrower 
strips. It is in agreement with our previous work (Lang et al., 2023a), discussed in Chap. 4, 
where we find that the optimal distance between Bloch points in a configuration containing 
multiple Bloch points also decreases with decreasing strip width. It appears that the large-scale 
configuration around the Bloch point wants to retain its approximately circular shape and 
reduces its radius due to the narrowness (in 𝑦 direction) of the strip. 
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Figure 5.9b shows the final position as a function of total current through the 𝑦𝑧 plane at the 
notch tip, the minimum of the constriction. For similar geometries studied here, i.e. always a 
notch of the same size at the same 𝑥 position, we find that the total current required to move 
the Bloch point past the notch is approximately independent of the strip width. 

5.5 Nanostrip with multiple notches 

Based on the previous results, we can develop a protocol to move one or multiple Bloch points 
past a series of notches in a controlled manner. The overall idea is as follows. For weak current 
strengths, the Bloch point cannot move past a notch. Hence, we can use a weak current to 
move a Bloch point to a defined position close to a notch. Subsequently, we can apply a short, 
strong current pulse that pushes the Bloch point past the notch. Afterwards, we can let the 
system relax (i.e. switch off the current) or use a weak current to move the Bloch point to the 
next notch. 

Figure 5.10 demonstrates this process for a single Bloch point in a strip with length 𝑙 = 1000 nm 
and four notches at 𝑥 = 200 nm, 𝑥 = 400 nm, 𝑥 = 600 nm, and 𝑥 = 800 nm. We initialise the 
system in a configuration containing a single Bloch point between the first two notches at 
𝑥 = 300 nm. Figure 5.10a shows the strip geometry and the path of the Bloch point, Fig. 5.10b 
shows the 𝑥 position of the Bloch point as a function of simulation time 𝑡. 

We use a three-step process to move the Bloch point past a notch. (i) We apply a current 
𝐽𝑥,(i) = 0.7×1012 A/m2 to move the Bloch point to the next notch, where it gets trapped. We use 
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Figure 5.10: Driving a single Bloch point past several notches using a series of current pulses 
of different strength. (a) Strip geometry and trajectory of the Bloch point. (b) Position of the 
Bloch point in 𝑥 direction as a function of simulation time. Dashed and dotted lines indicate 

the locations of the notches and centres of the wide areas in between, respectively. 
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a pulse length Δ𝑡(i) = 2 ns for this alignment of the Bloch point to the left of the notch. From the 
time-resolved data we can see that the Bloch point stops moving after Δ𝑡 ≈ 0.5 ns. The longer 
pulse duration can be useful to ensure that the Bloch point reaches the notch independent 
of its initial position. Applying the pulse for “too long” does not affect the configuration due 
to the trapping at the notch. (ii) We apply a strong pulse with 𝐽𝑥,(ii) = 5.3 × 1012 A/m2 with 
pulse length Δ𝑡(ii) = 0.2 ns. This pulse pushes the Bloch point past the notch. A short pulse 
duration is required to ensure that the Bloch point only moves past one notch. (iii) We remove 
the current and let the system relax for Δ𝑡(iii) = 2 ns. During this period, the Bloch point 
moves away from the notch until it reaches its equilibrium position near the centre of the 
region between the two notches, hereinafter called storage area. In the simulation, the Bloch 
point reaches its equilibrium position after Δ𝑡 ≈ 0.5 ns and does not move for the remainder 
of Δ𝑡(iii). 

We can repeat steps (i) to (iii) to move the Bloch point past a series of notches, as shown in 
Fig. 5.10. Step (iii) is not strictly required to achieve the desired motion past multiple notches. 
However, it demonstrates several advantages. First, the Bloch point in the free system reaches 
an equilibrium position in each storage area without an applied current. Hence, successful 
operation only requires an applied current during a short period of time. This reduces energy 
consumption of potential devices based on this technology as external energy is only required 
to change the configuration. Second, the position of the Bloch point at the end of step (ii) 
is not critical. As long as the Bloch point has moved past the notch, the configuration will 
automatically converge to a low-energy state with the Bloch point in the desired storage area. 
This makes the approach more robust and less sensitive to, for example, variations in current 
pulse duration and notch geometry. 

Figure 5.11 demonstrates a similar process for a configuration containing multiple Bloch points 
in the configuration HH-HH-TT-TT-HH (following the notation introduced in Chap. 4). We 
simulate a strip with length 𝑙 = 1600 nm containing seven notches. Figure 5.11a shows the 
initial configuration with the individual Bloch points labelled. 

The two large red and blue blobs at 𝑥 ≈ 300 nm and 𝑥 ≈ 800 nm are antivortices that form 
between neighbouring Bloch points of the same type and which have significant magnetisation 
in the 𝑧 direction. We have discussed their role in the motion of Bloch points in Sec. 5.3.2. For 
the following discussion, it is sufficient to focus on the Bloch points. 

To simplify the simulation process, we only use steps (i) with Δ𝑡(i) = 5 ns and (ii) with 
Δ𝑡(ii) = 0.25 ns. We start with (i) a weak current that moves the Bloch points towards the 
notches where they get trapped to the left of each notch (Fig. 5.11b). The antivortices experience 
a repelling force from the Bloch points but do not significantly interact with the notches. 
Subsequently, we apply (ii) the strong current pulse that pushes each of the Bloch points 
past the next notch to their right (Fig. 5.11c). In the configuration at the end of this pulse, at 
𝑡 = 5.25 ns, we can see that individual Bloch points have travelled different distances during 
the pulse. After the next weak pulse (Fig. 5.11d) each of the Bloch points is aligned to the left 
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Figure 5.11: Movement of a configuration containing five Bloch points past two notches 
by applying a series of current pulses of alternating lower and higher strength. The initial 

configuration and the distribution of the Bloch points across storage areas is retained. 

of the next notch, and all Bloch points have the same spacing to their notch. By applying the 
weak pulse for a sufficiently long period, we ensure that all Bloch points reach their aligned 
position near the next notch before applying the next strong pulse. The cycle is repeated once 
more (Fig. 5.11e and Fig. 5.11f), and we can see, at 𝑡 = 15.5 ns, that each Bloch point has 
moved one notch further (in comparison to Fig. 5.11d) in the direction of the applied current. 

To demonstrate the stability of the free configuration, we also simulate the free relaxation 
after the last current pulse. Figure 5.11g shows the relaxed configuration. We can see that the 
configuration does not significantly change from the previous step (Fig. 5.11f), but we observe 
small shifts of the Bloch points in the −𝑥 direction due to the repulsion from the notches and 
the sample edge. 



91 5.6. T-shaped geometry 

0 100 200 300 400 500 600
x (nm)

0

50

100

150

200

250

300
y 

(n
m

)
a

part 1
part 2
part 3

b

c

0

1

2

3

4

J (
A/

m
2 )

1e12

Figure 5.12: Movement of a single Bloch point through a T-shaped structure when applying 
a series of current pulses along different directions. The Bloch point is initialised in the left 
storage area, its position during the simulation is shown with the thick line in (a). The Bloch 
point first moves to the right storage area during part 1 with current applied from the left to 
the right as shown in the background of (a), then to the top during part 2 with current applied 
from the right to the top as shown in (b), and finally back to the left during part 3 with current 

applied from the top to the left as shown in (c). 

5.6 T-shaped geometry 

Finally, we study a single Bloch point in a T-shaped geometry with three storage areas. The 
geometry is shown in Fig. 5.12. It has the three storage areas left for 𝑥 < 200 nm, right for 
𝑥 > 400 nm, and top for 𝑦 > 150 nm. They are separated by a total of four notches. We 
initialise the system in a state where it contains a single Bloch point in the left storage area (at 
𝑥 ≈ 135 nm). We apply a series of current pulses of varying strength between different pairs 
of strip ends to move the Bloch point first to the right storage area, then to the top storage area, 
and finally back to the left storage area. 

Each part of the movement consists of three steps: (i) long current pulse with 𝐽(i) = 0.7 × 
1012 A/m2 to move the Bloch point to the notches where it gets stuck, (ii) short current pulse 
with 𝐽(ii) = 6.6 × 1012 A/m2 to push the Bloch point past the notches, and (iii) free relaxation. 
The weak pulse (i) is always applied for Δ𝑡(i) = 2 ns, during which the Bloch point moves 
towards the notch and gets stuck well before the end of the simulation time. The duration 
of the strong pulse depends on the part of the motion (see below). For the free relaxation in 
step (iii) we simulate the time evolution of the system until it reaches an equilibrium state 
(roughly for Δ𝑡(iii) = 2 − 4 ns). 

Figure 5.12a shows the position of the Bloch point during the full cycle. The three parts of the 
trajectory are shown with a solid orange line for the motion left–right (part 1), a dotted olive 
line for the motion right–top (part 2), and a dashed cyan line for the motion top–left (part 3). 
The background in Fig. 5.12a shows the magnitude of the current density for the current 
flowing from the left to the right, streamlines show the current direction. Figures 5.12b and c 
show the current flowing from the right to the top and from the top to the left, respectively. 
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For the motion left–right, we apply the strong pulse for Δ𝑡(ii) = 0.7 ns. We can see a slight
overshoot at the end of the pulse. During the free relaxation, the Bloch point moves in
−𝑥 direction to its equilibrium position at 𝑥 ≈ 500 nm near the centre of the right storage
area. For the motion right–top, we apply the strong pulse for Δ𝑡(ii) = 0.5 ns. Here, we can see a
strong overshoot with the Bloch point nearly reaching the top sample boundary at 𝑦 = 300 nm.
During the free relaxation, the Bloch point moves back to the central part of the storage area at
𝑦 ≈ 200 nm. For the final motion top–left, we apply the strong pulse for Δ𝑡(iii) = 0.7 ns. After
moving past the two notches, the Bloch point gets deflected in +𝑦 direction. This deflection is a
result of the uneven thickness of the two layers (bottom layer 𝑡b = 20 nm, top layer 𝑡t = 10 nm)
and the deformed, off-centred Bloch point after it moves past the notches and the junction. We
have simulated a second system with layer thicknesses 𝑡b = 17.5 nm and 𝑡t = 12.5 nm and find
that the effect decreases. During the free relaxation, the Bloch point moves back to the central
part of the storage area at 𝑥 ≈ 115 nm. The slightly different initial and final position in the
left storage area result from the differences in the initial and final magnetisation configuration
due to the series of applied current pulses and the nearly flat energy landscape for a Bloch
point inside a storage area. Qualitatively similar behaviour can be seen in Fig. 5.10, where the
free Bloch point also relaxes slightly off-centred.

5.7 Discussion

Our micromagnetic simulations show that Bloch points—which are equilibrium configurations
in two-layer FeGe nanostrips—can be moved with spin-polarised currents. In uniform strips,
Bloch points move along the current direction without a Hall effect, independent of their type.
This is different from the behaviour of vortices (He et al., 2006; Shibata et al., 2006; Nakatani
et al., 2008) or skyrmions (Zang et al., 2011; Jiang et al., 2017a; Litzius et al., 2017), and also
Bloch points in other systems (Gong et al., 2021). The straight motion is a special feature of
the two-layer system, in which each Bloch point is encapsulated between two vortices with
opposite polarisation. The vortices would be subject to deflection in opposite direction but
are strongly exchange-coupled across the layer interface. At the Bloch point the forces are
compensated, and thus the Bloch point moves in a straight line. Different behaviour has
been reported by Gong et al. (2021), who have studied current-induced dynamics of a chiral
bobber (Rybakov et al., 2015; Zheng et al., 2018; Ahmed et al., 2018), a skyrmion tube that
ends in a Bloch point. They have simulated thin FeGe films with a single material chirality
with applied spin-transfer torque and observe a motion of the chiral bobber, and hence also
the Bloch point, with a current-dependent Hall effect.

In the system studied here, changes in geometry can be used to modify the motion. We
have demonstrated that below a threshold current density, a Bloch point can be trapped by
a notch. The Bloch point holds its position because the current is pushing it towards the
notch constriction, but the Bloch point is repelled from the boundary and does not want to
deform, and thus it cannot move past the notch. Using these competing effects, we can choose
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appropriate current strengths to either neatly align a Bloch point at a notch or move it past a 
notch. Using a series of current pulses of different strength, we can move an array of Bloch 
points of different type through strips with multiple notches in a controlled fashion. They 
retain their initial order and relative distance in terms of empty or occupied storage areas. The 
additional antivortices between same-type Bloch points do not impede this process, despite 
not being trapped at the notches themselves. In each storage area, we can distinguish between 
three different local configurations: a HH Bloch point, a TT Bloch point, or no Bloch point. 

Furthermore, we have demonstrated that Bloch points can be moved through more complex 
geometries with multiple possible paths. We have demonstrated this for a T-shaped geometry, 
where the Bloch point can move along either of the two possible strip ends when being pushed 
towards the junction depending on the direction of the applied current. In this system, we 
have added additional constrictions at the junction to create three well-separated storage areas. 
The Bloch point in the free system reaches an equilibrium position in each of the three storage 
areas. A weak and subsequent strong pulse can be used to move the Bloch point between 
storage areas. 

In a larger system, these two building blocks—constrictions to restrict the Bloch-point motion 
and junctions with multiple possible paths—can be combined. Such a system can then host an 
array of Bloch points and the geometrical constraints can be used to manipulate the array, e.g. 
re-arrange Bloch points with a series of current pulses between different contacts. Successful 
operation will likely require more device engineering. 

Speculating about potential applications, a simple nanostrip containing a series of Bloch 
points could be used in a racetrack-like design (Parkin et al., 2008), and the two Bloch-point 
types could be used for binary data representation. The whole array of Bloch points could 
be moved with spin currents. Retaining equal spacing would not be required because of the 
two different types that could encode “0” and “1”, which is not the case in skyrmion-based 
racetrack memories. In a more complex setup, we have shown that a series of notches in a strip 
can be used to create confined “storage areas”. Bloch points can be distributed across these 
areas, where each area can be in one of three states: occupied with a HH Bloch point, occupied 
with a TT Bloch point, or not containing a Bloch point—with the potential to realise a ternary 
storage device. The whole configuration could be moved through this strip using a series of 
current pulses. Pinning of the Bloch points at the notches helps control the movement and 
ensures that the configuration is retained. 
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Chapter 6 

Conclusion 

Bloch points are topologically non-trivial point singularities in the magnetisation vector field. 
They are dynamically generated and annihilated in many magnetisation reversal processes. 
Some systems can also host static Bloch points. In the present work, we have numerically 
studied one such system: a FeGe nanostrip consisting of two layers with opposite material 
chirality. 

Using finite-difference micromagnetic simulations, we have investigated both statics and 
dynamics of Bloch points in the two-layer system. In this specific set-up, a Bloch point can be 
realised in two different types, which are energetically equivalent. We have demonstrated that 
two-layer FeGe nanostrips of suitable geometry can host multiple coexisting Bloch points in 
any possible combination of the two types (Chap. 4). We find that neighbouring Bloch points 
of the same type are separated by an additional antivortex, which increases the total energy 
of the system. Based on our simulations for up to eight Bloch points, we can predict suitable 
geometries for an arbitrary number of Bloch points. We have tested these predictions for a 
configuration containing 80 Bloch points (Sec. 4.7). 

We can manipulate Bloch points in this system using spin-transfer torques (Chap. 5). We find 
that arrays of Bloch points can be moved collectively, independent of their individual type and 
arrangement. In the two-layer system, Bloch points move without any Hall effect. We have 
demonstrated that more complex strip geometries can be used to control the motion of the 
Bloch points. In a nanostrip with a notch, Bloch points can get stuck at the notch for lower 
current densities or be pushed past the notch for higher current densities, which allows for a 
controlled, discrete motion triggered with short current pulses. In a structure with multiple 
possible paths, such as the T-shaped structure studied in Sec. 5.6, the movement of a Bloch 
point can be controlled by applying current between suitable contacts. 

For all simulations in this work, we use the Python package Ubermag with OOMMF as the 
numerical backend. The high-level description of the micromagnetic problem in the domain-
specific language provided by Ubermag has significantly simplified the present work. In 
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particular, the integration into the Python ecosystem is useful for semi-automated control of 
larger numbers of simulations with custom scripts. Where required for the work, we have 
extended or modified Ubermag. Most notably, we have significantly improved its interactive 
visualisation capabilities. All of this software work is published under a permissive open-source 
licence and can be used by the community. 

Speculating about potential applications, Bloch points in the two-layer system exhibit several 
properties that could be beneficial for racetrack memory. They can exist in two different 
energetically equivalent configurations, which could be used to encode data in binary format. 
We have demonstrated this for a system containing 80 Bloch points in Sec. 4.7, where we 
encode the word “Blochpoint” in ASCII encoding. Arrays of Bloch points—hence arrays of 
bits—can be moved with spin currents without loosing their order. Because of the two different 
types, it is not necessary to retain a fixed distance between Bloch points to prevent data loss. In 
a micro-structured nanostrip with storage areas separated by constrictions, Bloch points can 
be moved with control over their distance (Sec. 5.5). Such a system could also allow for ternary 
data storage with the states: head-to-head Bloch point, tail-to-tail Bloch point, no Bloch point. 

Going beyond the present work, full control over Bloch points in the two-layer nanostrip 
would additionally require mechanisms for controlled creation and annihilation of individual 
Bloch points. The combination of both processes would then also provide means to switch the 
type of a Bloch point. Additionally, more direct means of switching a Bloch point may also 
be possible. These questions could be addressed in the same micromagnetic framework and 
could directly extend the present work. Other open questions, requiring different techniques, 
comprise energy barriers between different multi-Bloch-point configurations and thermal 
stability of Bloch points in the two-layer system, among others. One of the main problems for 
potential use in actual devices is the detection of Bloch points. Electrical detection methods 
might be suitable to probe the presence or absence of a Bloch point, however it is not clear 
whether distinguishing the two different types would also be possible. Other methods such as 
tomography, which are currently used to resolve the magnetisation structure around Bloch 
points are not suitable for devices. 

The two-layer geometry with stable Bloch points forms an interesting system from a fun-
damental point of view. The Bloch points in this system can be interpreted as particles of 
two different types that form a metamaterial. The individual particles can move around and 
interact with each other. In the present work, focused on long, narrow nanostrips, Bloch 
points are generally distributed in 𝑥 direction and hence form a quasi-1D metamaterial. Our 
simulations revealed repulsive forces between nearby Bloch points. In the investigated system, 
these forces can affect neighbouring Bloch points over distances of several 100 nm, mediated 
via the vortices enclosing the Bloch points. In extended two-layer thin films, we can expect 
Bloch points to be distributed in 𝑥 and 𝑦 direction. Depending on their density, Bloch points 
could presumably arrange in ordered 2D lattices or distribute more irregularly. Such a system 
could exhibit a variety of phenomena, such as domain formation or a melting transition of the 
metamaterial’s crystal lattice, and provide more insights into the interaction of Bloch points. 
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