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Abstract

Temporal knowledge graphs represent temporal facts
(s, p, o, τ) relating a subject s and an object o via a relation
label p at time τ , where τ could be a time point or time in-
terval. Temporal knowledge graphs may exhibit static tem-
poral patterns at distinct points in time and dynamic tempo-
ral patterns between different timestamps. In order to learn
a rich set of static and dynamic temporal patterns and ap-
ply them for inference, several embedding approaches have
been suggested in the literature. However, as most of them
resort to single underlying embedding spaces, their capabil-
ity to model all kinds of temporal patterns was severely lim-
ited by having to adhere to the geometric property of their
one embedding space. We lift this limitation by an embed-
ding approach that maps temporal facts into a product space
of several heterogeneous geometric subspaces with distinct
geometric properties, i.e. Complex, Dual, and Split-complex
spaces. In addition, we propose a temporal-geometric atten-
tion mechanism to integrate information from different geo-
metric subspaces conveniently according to the captured re-
lational and temporal information. Experimental results on
standard temporal benchmark datasets favorably evaluate our
approach against state-of-the-art models.

1 Introduction
Knowledge Graphs (KGs) (Hogan et al. 2021) model facts
in real-world applications as directed edge-labeled graphs.
Temporal KGs (TKGs) include timestamps to their facts in
order to model the temporal validity of facts. Depending on
the representational model, timestamps may represent time
points or time intervals. For instance, a quadruple (Boris
Johnson, IsPrimeministerOf, UK, [2019, 2022]) in a TKG
represents the fact that Boris Johnson is the prime minister
of UK between 2019 and 2022.

Relations in temporal knowledge graphs may exhibit var-
ious structural temporal patterns. In the left part of Figure
1, (Charles III, marriedWith, Camilla, 2005) and (Camilla,
marriedWith, Charles III, 2005) forms a symmetrical struc-
ture in time. In the middle part, at first (Elizabeth Bowes-
Lyon, hasChild, Elizabeth II, 1926) and then (Elizabeth II,
hasChild, Charles III, 1948). The transition of hasChild re-
lation through Elizabeth II forms a hierarchy structure in
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Figure 1: Unit spheres in their corresponding spaces. All
points on the orange hyperplanes have the same distance to
their origin. Different spaces favor different temporal pat-
terns: Left: Unit circle represented in Complex space (top)
is suitable for representing periodicities and for inferenc-
ing with ‘periodic’ logical temporal patterns, e.g. symme-
try (bottom). Middle: Minkowskian unit circle in Split-
complex space (top) is suitable for representing a temporal
hierarchy formed by Make statement. Right: Galilean unit
circle represented in Dual space (top) is suitable for repre-
senting temporal star patterns (bottom).

TKGs. In the right part, Charles III, Visit Malta, France,
Belgium, USA etc at different timestamps, forming a star
structure over time. Moreover, as Charles III shows, the
structures which entities are involved in temporal knowl-
edge graphs may evolve over time. How to preserve differ-
ent relational structural patterns and how to capture evolving
temporal patterns for entities is a fundamental challenge in
TKGEs.

Existing embedding approaches such as TeRO, Rotate-
QVS, and TLT-KGE(Xu et al. 2020; Chen et al. 2022; Zhang
et al. 2022) resorted to single underlying embedding spaces,
such as Complex space or Quaternion space to model sym-
metric patterns by the rotations on a unit hypersphere. Other
works (Chami et al. 2020; Balazevic, Allen, and Hospedales
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2019; Montella, Barahona, and Heinecke 2021; Han et al.
2020) use hyperbolic space to preserve hierarchical patterns
in temporal KGs. However, their capability to model all
kinds of structural patterns was severely limited by having
to adhere to the geometric properties of their one embed-
ding space. (Han et al. 2020) has shown the advantage of
using multiple geometric subspaces (spherical, hyperbolic,
etc) in different dimensions to preserve heterogeneous struc-
tural patterns in temporal KGs. However, it ignores the evo-
lution of structural patterns between entities and requires a
manual selection of subspaces dimension. How to integrate
suitable subsets of geometries to model different relational
structural patterns as well as capturing evolutionary tem-
poral patterns between entities remain an open problem in
these approaches.

In this paper, we address these problems by introducing
a new product space covering various geometric subspaces
namely a) complex, b) split-complex and c) dual spaces with
a temporal relational attention mechanism and a tempo-
ral geometric attention mechanism to model both structural
and evolutionary temporal patterns. Figure 1 illustrates the
spaces and some corresponding patterns. a) Consider the left
part of Figure 1: In the complex space, Euclidean unit circles
are induced by circular rotations. Thus, points on the circle
establish periodicities and various logical temporal patterns,
e.g. relations that are symmetry in time (Xu et al. 2020).
Circular rotations are modeled by circular sine and cosine
functions in the complex space. b) Consider the middle part
of Figure 1: In the split-complex space, a Minkowskian unit
circle is induced through hyperbolic rotation, where points
on the circle can be mapped using hyperbolic sine and co-
sine. Thus, the split-complex space can capture a tempo-
ral hierarchy, e.g. children must be born after their parents.
c) Consider the right part of Figure 1: In the dual space,
a Galilean unit circle is induced by the rotation that maps
points on the circle using Galilean sine and cosine. Points
on the induced circle (two parallel lines) are equidistant to
the center, making it useful for modeling star-shaped sub-
graphs.

The combination of these three spaces together with their
geometries and corresponding operators allows for captur-
ing diverse logical and structural patterns such as relational
symmetry in time, temporal hierarchy patterns, and tempo-
ral star patterns. Which geometry should be preferred in a
specific case, however, needs to be learned. For this purpose,
we provide a temporal geometric attention mechanism to se-
lect the preferred geometries for a given relation and time.
Moreover, to deal with the evolution of patterns between en-
tities, we propose the temporal-relational attention mecha-
nism to balance static embedding and time-evolving embed-
ding. We compare our TKGE model, heterogeneous geomet-
ric embedding (HGE), to TKGE methods in Complex space
such as TComplEx (Lacroix, Obozinski, and Usunier 2020),
TeRo (Xu et al. 2020), TLT-KGE (Zhang et al. 2022) and
find that our model obtains better results for link prediction
tasks in TKGs. In summary, the key contributions of this pa-
per are as follows:
• We extend state-of-the-art Temporal Knowledge Graph

Embedding (TKGE) models that use Complex spaces to

a new method, HGE. By utilizing multiple heterogeneous
geometries, HGE embeds temporal facts in a product
space of Complex, Split-complex, and Dual subspaces.

• Our theoretical analysis shows that our embedding
method can capture a range of various structural and log-
ical temporal patterns by utilizing the rotation operations
acting on Euclidean, Minkowskian, and Galilean unit cir-
cles. These theoretical considerations are supported by
experiments and ablation studies on pre-existing bench-
mark datasets.

• Two novel kinds of attention mechanisms, temporal-
relational attention, and temporal-geometric attention al-
low for representing relation changing frequencies and
suitable geometries, respectively.

• Experimental results on benchmark datasets show that
HGE uniformly improves several state-of-the-art TKGE
models. Subsequent ablation studies verify the general
benefit of the attention-based product space models over
the Complex space.

2 Preliminaries
Definition 1 (Time Interval). Let T be the set of closed in-
tervals on the real line R. For a time interval τ = [m,n] ∈
T, τ ⊆ R, with m,n ∈ τ,m ≤ n it holds that ∀t ∈ R : m ≤
t ≤ n ⇒ t ∈ τ .

Definition 2 (Temporal Knowledge Graph). Let V be a set
of vertices, R be a set of relation labels, T be the set of all
time intervals, G ⊆ V × R × V × T, then a temporal fact
(s, p, o, τ) ∈ G with subject s, object o and relation label p
is valid during time interval τ . A temporal knowledge graph
TKG = (V,R,G) defines a set of temporal facts. In addi-
tion, we denote Gi as i-th snapshot of the TKG

We re-use Allen’s interval calculus to express relations
between time intervals (Allen 1983). It defines 13 possible
relations between two time intervals such that these relations
are exhaustive and pairwise disjoint. For example, Allen
relation Contains(τ1, τ2) holds between two time intervals
τ1 = [m1, n1], τ2 = [m2, n2] if m1 < m2 < n2 < n1.
Following (Singh et al. 2023), we refer to the 13 relations
of Allen interval calculus as Allen relations and the relation
in temporal knowledge graphs as KG relations. Appendix A
describes the details of 13 Allen relations.

3 Embedding Model in Heterogeneous
Geometric Subspaces

To capture heterogeneous structural and logical patterns in
a temporal KG, we propose the HGE model which ex-
tends the complex space adopted by existing models(Zhang
et al. 2022; Lacroix, Obozinski, and Usunier 2020) to
an attention-based product space. We introduce the key
components of our temporal knowledge graph embedding
method, HGE, in the following order: a) embedding space,
b) temporal-relational attention, c) temporal-geometric at-
tention. Figure 2 shows the structure of our proposed HGE
model.
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Figure 2: An illustration for the HGE. At first, entities, relations and timestamps in temporal knowledge graphs are represented
in heterogeneous geometric subspaces: 1) complex space, 2) split-complex space, 3) dual space respectively. Based on the static
relation embedding ps, and dynamic relation embedding pc, temporal relational attention learns hybrid relation embedding pst
based on each relation’s changing frequencies. Temporal geometric attention incorporates embeddings in geometric subspaces
into a product space by pst, which decides the suitable geometry for each relation. Finally, the scoring function is performed on
the embeddings learned in the product space.

3.1 Embeddings in Geometric Subspaces

We aim to embed the elements of a temporal knowledge
graph (entities, relations, and times) into a d dimensional
product space M = M1 × . . . × Md where each Mi is a
Complex, Dual or Split-complex space, i.e. Mi ∈ {C,S,D}.
For a given fact (s, p, o, τ) ∈ G, we use the mappings
fe : E −→ Mi, fr : R −→ Mi, fτ : T −→ Mi to as-
sign d dimensional vectors to each element of a TKG as
sMi , pMi , oMi , τMi respectively.

We introduce the three fundamental parts of the product
space for developing our model, namely Complex, Split-
complex and Dual spaces together with their geometric in-
terpretations. Given a quadratic formula k2 + g = 0, g =
{−1, 1, 0}, we have the three number systems based on the
value of g:

Complex Vector Space Complex numbers (Harkin and
Harkin 2004; Helzer 2000) allow for solving the quadratic
formula k2 + 1 = 0, by defining a new number k = i
where i2 = −1. i is used to define the set of Complex num-
bers C = {q = a + bi|a, b ∈ R, i2 = −1}, where a is
the real and b the imaginary part. The multiplication of two
Complex numbers q1 = a + bi, q2 = c + di is defined by
q1 ∗ q2 = (ac − bd) + (ad + bc)i. It has been proved by
previous works (Zhang et al. 2022; Lacroix, Obozinski, and
Usunier 2020; Xu et al. 2020) to represent temporal knowl-
edge graphs effectively. Following their work, we represent
s, p, o, τ in complex space as:

sC = sCa + sCbi,pC = pCa + pCbi,

oC = oCa + oCbi, τC = τCa + τCbi
(1)

where s{.},p{.},o{.}, τ {.} ∈ Rd. {.}a represents the real
part of each element and {.}b represents the imaginary part.

Split-complex Vector Space Dealing with quadratic for-
mula k2 − 1 = 0, a split-complex number (Harkin and
Harkin 2004; Helzer 2000) is defined as p = a + jb, where
k = j, j2 = 1, j ̸= 1,−1. Formally the space of split-
complex number is defined as S = {q = a + bj|a, b ∈
R, j2 = 1, j ̸= 1,−1}. a, b are real and split parts, re-
spectively. The multiplication of two Split-Complex num-
bers q1 = a + bj, q2 = c + dj is defined by q1 ∗ q2 =
(ac + bd) + (ad + bc)j. We represent s, p, o, τ in split-
complex space as:

sS = sSa + sSbj,pS = pSa + pSbj,

oS = oSa + oSbj, τS = τ Sa + τ Sbj,
(2)

Dual Vector Space Dual numbers (Angeles 1998; Helzer
2000) are similar to Complex numbers, but their imaginary
ϵ is defined such that ϵ2 = 0, ϵ ̸= 0. The dual space is then
defined as D = {q = a+ bϵ|a, b ∈ R, ϵ2 = 0, ϵ ̸= 0} where
a, b are real and dual components of the dual numbers. The
multiplication of two Dual numbers q1 = a+bϵ, q2 = c+dϵ
is defined by q1 ∗ q2 = (ac) + (ad + bc)ϵ. We represent
s, p, o, τ in dual space as:



sD = sDa + sDbϵ,pD = pDa + pDbϵ,

oD = oDa + oDbϵ, τD = τDa + τDbϵ
(3)

3.2 Embeddings in Attention-based Product
Space

How to fuse information from different subspaces into a
product space efficiently remains a challenging task in the
knowledge graph embedding task. Existing work (Han et al.
2020) assigns different dimensions di for each subspace
Mi, where

∑
di = d, and calculates their individual loss

which will be aggregated subsequently to a total loss. Such
a stacking strategy requires the manual selection of suitable
di numbers for every new task and consumes huge computa-
tion resources to reach optimal di decision. To capture suit-
able geometries from various subspaces efficiently, we intro-
duce an attention-based product space. Rather than stacking
ad hoc vectors for each subspace, our method reuses vec-
tors for every subspace and aggregates Scoring Vectors of
subspaces by relational and temporal information.

Real and Imaginary Vector Sharing Existing methods
(Han et al. 2020) assigns different vectors for each sub-
spaces. However, pre-experiments in Appendix C illustrate
that although their geometric interpretations are diverse, real
and imaginary vectors in different subspaces are almost
unanimous when trained to optimal settings with the same
embedding sizes. Accordingly, we share the real and imagi-
nary vectors between all subspaces as follows:

{.}Ca = {.}Sa = {.}Da
{.}Cb = {.}Sb = {.}Db

(4)

where {.} ∈ {s, p, o, τ}. With the reusing strategy, our
method avoids the manual selection of subspace dimen-
sions and saves embedding space. If not specified, we use
s = [sa, sb], p = [pa,pb], o = [oa,ob] and τ = [τ a, τ b] to
represent embeddings a generic geometric subspace in the
following section for simplicity.

Temporal-relational Attention Relations in TKGs may
exhibit different frequencies of change varying from fully
static to quickly changing behavior (Lacroix, Obozinski, and
Usunier 2020). For example, the relation capitalOf is not
changing often over time, while the relation isPresidentOf
exhibits more frequent changes. Therefore, for each relation
p, we provide two vectors ps,pc ∈ M. The first captures
the static behavior and the second captures the dynamic be-
havior by multiplication with time embedding τ τ . We pro-
vide a temporal attention mechanism to emphasize static or
dynamic behavior depending on the characteristics of the re-
lation:

psτ = ατ (pc ∗ τ τ ) + αsps

(ατ , αs) = Softmax (wp (pc ∗ τ τ ) ,wpps)
(5)

where wp is the relation-specific weight.

Scoring Vectors from Subspaces We take all values in
each subspace for entities, relations, and times si,psτi,oi ∈
Mi and compute ci = ⟨si,psτi,oi⟩1, where ⟨, , ⟩ is the prod-
uct in Complex, Split-complex and Dual spaces computed as
follows:

cC = ⟨(sapsτa − sbpsτb) + (sapsτb + sbpsτa)i,oa + iob⟩
= (sapsτaoa − sbpsτboa − sapsτbob − sbpsτaob)+

(sapsτaob − sbpsτbob + sapsτboa + sbpsτaoa)i,

cS = ⟨(sapsτa + sbpsτb) + (sapsτb + sbpsτa)j,oa + job⟩
= (sapsτaoa + sbpsτboa + sapsτbob + sbpsτaob)+

(sapsτaob + sbpsτbob + sapsτboa + sbpsτaoa)j,

cD = ⟨(sapsτa) + (sapsτb + sbpsτa)ϵ,oa + ϵob⟩
= (sapsτaoa) + (sapsτaob + sapsτboa + sbpsτaoa)j.

(6)

Temporal-geometric Attention Scoring vectors repre-
sent distinctive geometric information captured by each sub-
space. We propose a temporal-geometric attention mecha-
nism to integrate them based on current relational and time
information.

βi = Softmax (psτci) , i ∈ {C,D,S}. (7)
It emphasizes the most suitable geometry for each query

via the augmented relation embedding pst. As the chang-
ing frequencies of relations could be reflected by pst, HGE
could model the static and dynamic logical and structural
patterns in TKGs. The overall score aggregates the inner
product in all subspaces:

SM(s, r, o, τ) =

d∑
i=1

βici, (8)

It’s worth noting that new geometric subspaces could be eas-
ily incorporated into Equation 8 given shared real and imag-
inary vectors and appropriate scoring vectors.

4 Theoretical Analysis on Temporal Patterns
Knowledge graphs exhibit patterns. A structural pattern
is a regularity in the graph, e.g. a tree as given in the
middle of Figure 1, that may or may not allow for log-
ical conclusions, but which may be hard to represent in
some embedding methods. A logical pattern represents a
rule that allows for concluding new facts when applied
to given facts. For instance, (Charles,marriedWith,Camilla)
implies (Camilla,marriedWith,Charles) because married-
With is symmetric.

Embeddings for temporal knowledge graphs must ac-
count for temporal facts including time components and ex-
press corresponding temporal patterns. Four kinds of logi-
cal patterns, symmetric, inverse, asymmetric and evolve are
mostly considered and studied in existing TKGE models
(Chen et al. 2022; Xu et al. 2020). However, their definitions
either neglect time information or merely consider patterns

1Similar to previous work(Xu et al. 2020; Lacroix, Obozinski,
and Usunier 2019), we adopt conjugate on oi to increase the per-
formance in experiments.



when facts happen at the same time. We generalize and go
beyond these approaches and consider static temporal pat-
terns and dynamic temporal patterns. If a structural or a log-
ical temporal pattern holds regardless of time information as
in traditional knowledge graphs, we call it a static temporal
pattern. If a structural or a logical temporal pattern repre-
sents or draws conclusions using time information, we call
it a dynamic temporal pattern.

In the following, we will formally define a few temporal
patterns. For simplicity, we only illustrate the occasion when
τ is a time interval. However, it’s convenient to extend the
following definitions when τ is a time point. Examples of
each definition are indicated after “//”.

4.1 Static Logical Temporal Patterns
Definition 3. A temporal relation p is symmetric at all
points in time iff ∀s, o, τ : (s, p, o, τ) → (o, p, s, τ). //
marriedWith
A temporal relation p is anti-symmetric at all points in time
iff ∀s, o, τ : (s, p, o, τ) → ¬(o, p, s, τ). // locatedIn

Definition 4. A temporal relation p1 is the inverse of
temporal relation p2 at all points in time iff ∀s, o, τ :
(s, p1, o, τ) → (o, p2, s, τ). // advises, advisedBy

4.2 Dynamic Logical Temporal Patterns
Definition 5. A temporal relation p is temporal symmetric
iff ∀s, o, τ1 : ∃τ2 : (s, p, o, τ1) → (o, p, s, τ2). // consults
A temporal relation p is temporal anti-symmetric
iff ∀s, o : ∃τ1 : (s, p, o, τ1) → ∀τ2¬(o, p, s, τ2). // arrest

Definition 6. A relation p1 at time τ1 is the temporal inverse
of relation p2 at time τ2
iff ∀s, o : ∃τ1, τ2 : (s, p1, o, τ1) → (o, p2, s, τ2). //
invitesToVisit, Visit

Definition 7. Relation p1 evolves into relation p2
iff ∀s, o : ∃τ1, τ2 : Precedes(τ1, τ2) & (s, p1, o, τ1) →
(s, p2, o, τ2). // engagedWith, marriedWith

Definition 8. Relation p is temporary in time
iff ∀s, o, τ1 : (s, p, o, τ1) → ∃τ0, τ2 : Precedes(τ0, τ1) &
Precedes(τ1, τ2) & ¬(s, p, o, τ0) & ¬(s, p, o, τ2). //-
worksFor

4.3 Modeling Temporal Patterns
We present a theoretical analysis corresponding to the ability
of our method in modeling various temporal patterns intro-
duced in 4 as follows: (See details in Appendix F)

Proposition 1. HGE can model (anti-)symmetry and tem-
poral (anti-)symmetry in Definitions 3 and 5.

Proposition 2. HGE can model inverse and temporal in-
verse patterns in Definitions 4 and 6.

Proposition 3. HGE can model evolves pattern in Defini-
tion 7.

Proposition 4. HGE can model temporary relations in Def-
inition 8.

5 Experiments
5.1 Experimental Settings
Dataset To evaluate the effectiveness of the proposed
attention-based product space embedding, we perform the
link prediction task on four popular temporal knowledge
graph benchmark datasets, i.e. ICEWS14 (Garcia-Duran,
Dumančić, and Niepert 2018), ICEWS05-15 (Garcia-
Duran, Dumančić, and Niepert 2018), GDELT (Trivedi
et al. 2017) and Wikidata12k (Lacroix, Obozinski, and
Usunier 2020). ICEWS14 and ICEWS05-15 are two sub-
set datasets from the Integrated Conflict EarlyWarning Sys-
tem (ICEWS)(Lautenschlager, Shellman, and Ward 2015),
which contain news facts in 2014 and between 2005 and
2015 respectively. The Global Database of Events, Lan-
guage, and Tone (GDELT) is a large knowledge graph that
describes facts about human behaviors. We adopt the same
data subset as (Gao et al. 2020), which uses the subset of
facts from April 1, 2015 to March 31, 2016. Compared to
other datasets, GDELT contains fewer temporal relations but
more quadruples, which makes it the densest dataset con-
cerning temporal information. Wikidata12k is a subset of
wikidata dump (Erxleben et al. 2014). It represents the time
information τ ∈ T as time intervals, in which m or n could
be empty, referring to intervals (−∞, n] or [m,∞). Table 5
summarises the statistics of four datasets.

Backbone and Baseline Models Our proposed model,
HGE, aims to generalize complex-space-based TKGE mod-
els to an attention-based product space of heterogeneous ge-
ometric subspaces. Hence, we choose several state-of-the-
art complex-space-based TKGE models as HGE’s backbone
models to validate its effectiveness. TeRo (Xu et al. 2020)
defines the evolution of entity embeddings from the initial
state to the current time as a rotation in complex vector
space. TComplEx and TNTComplEx (Lacroix, Obozinski,
and Usunier 2020) models temporal knowledge graph com-
pletion as an order 4 tensor completion problem. TLT-KGE
(Zhang et al. 2022) models semantic information and tempo-
ral information as different parts of complex space or quater-
nion space. Complex or quaternion operations exchange in-
formation between different parts.

To give a comprehensive overview, we also compare our
model with non-complex space temporal knowledge graph
embedding baselines TTransE (Garcia-Duran, Dumančić,
and Niepert 2018), TA-DistMult (Leblay and Chekol 2018),
RotateQVS(Chen et al. 2022), BoxTE (Messner, Abboud,
and Ceylan 2022), and LCGE(Niu and Li 2023)2.

Evaluation Metrics We adopt the link prediction task to
evaluate our proposed model. Link prediction infers the
missing entities for incomplete facts. During the test step,
we follow the procedure of (Xu et al. 2020) to generate can-
didate quadruples. From a test quadruple (s, p, o, τ), we re-
place s with s̄ ∈ E and o with ō ∈ E to get candidate
quadruples (s, p, ō, τ) ∪ (s̄, p, o, τ). If τ is a time interval
[m,n], we sample a time point (appearing in the dataset) uni-
formly at random, in the range [m,n] as (Lacroix, Obozin-

2We notice some inconsistent inference issues in LCGE’s orig-
inal code. Please refer to Appendix J for detailed discussions.



ski, and Usunier 2019). When m or n is empty, we set it
as the first or last time point of the dataset. All candidate
quadruples will be ranked by their scores using a time-aware
filtering strategy (Goel et al. 2020). We evaluate our models
with four metrics: Mean Reciprocal Rank (MRR), the mean
of the reciprocals of predicted ranks of correct quadruples,
and Hits@(1/3/10), the percentage of ranks not higher than
1/3/10. For all experiments, the higher the better.

To have a fair comparison, we set entity and relation em-
bedding dimension sizes as reported in the original papers.
For TeRo-based models, we set the dimension size of d
as 500 on four benchmark datasets. For TComplEx-based,
TNTComplEx-based, and TLT-KGE-based models, we set
the dimension size of d as 1200, 1200, 1500 and 2000 on
ICEWS14, ICEWS05-15, GDELT and Wikidata12k respec-
tively. The training epoch is set to 200. We adopt the same
regularizer, loss function, and negative sampling size as re-
ported in the original papers3.

5.2 HGE’s Performance Comparison
We evaluate HGE’s performance gain on four datasets. Ta-
ble 1 shows the performances of the original backbones
and backbones plugged with HGE on time point datasets
ICEWS14, ICEWS05-15, and GDELT. From Table 1, we
have the following observations:

(i) HGE can provide significant improvements over cho-
sen backbones consistently on all datasets, which verifies the
effectiveness of the proposed HGE module.

(ii) We observe the proposed method is more effective on
the dense dataset GDELT. GDELT provides more instances
for each relation-timestamp pair. We conjecture it benefits
the temporal-geometric attention mechanism, in which fine-
grained geometric attention is influenced by both relational
and temporal information. Conversely, ICEWS05-15 is the
sparsest dataset. As a result, HGE dose not greatly improve
the performance of backbones on ICEWS05-15 and even de-
creases TeRo’s performance.

(iii) We find that HGE achieves greater performance gains
for TNTComplEx and TComplEx than for TLT-KGE. As the
TLT-KGE model provides interactions between time infor-
mation and relation information in complex numbers, we
believe it substitutes the function of the temporal-relation
attention mechanism to some degree. However, Table 7 in
Appendix presents that TNTComplEx+HGE reaches com-
parable results as TLT-KGE with only half parameter num-
bers, which demonstrates the proposed temporal-relation at-
tention mechanism is more efficient to combine time and
relation information.

Table 2 shows link prediction results on the time interval
dataset. With HGE, all metrics get improvement, reflecting
HGE could boost the performance of backbones on different
kinds of TKGs.

5.3 Ablation Study
We conduct ablation study experiments on backbone TNT-
ComplEx to investigate the effectiveness of each compo-

3The code, details of training and appendix are provided in
https://github.com/NacyNiko/HGE

Poland

𝛽ℂ = 0.32

(Barack Obama, intent to cooperate, ?, 153)

Complex space: Angela Merkel

Split-complex space: Japan

Dual space: Poland
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Figure 3: A case study of HGE model. We omit some entities
connected to France by relation r1 which forms a temporal
star structure for brevity. r1 stands for intent to cooperate
relation and r2 stands for consult relation. Time information
is shown in ids.

nent. From Table 3, we have the following observations:
(i) Our proposed subspace integration strategy achieves

higher performance than the stacking strategy introduced by
(Han et al. 2020). We find out individual loss for each sub-
space in TNTComplEx+stack becomes unbalanced during
training time. We conjecture the model may pay too much
attention to optimizing the unsuitable geometry subspaces
for certain facts and hamper further improvement.

(ii) We observe that the temporal-relation attention mech-
anism contributes more performance gain on GDELT.
GDELT is a dense dataset and has more facts for the enumer-
ation of objects of relation types and timestamps than other
datasets. We conjecture it benefits from the fine-grained ge-
ometric attention mechanism in which the attention weights
are influenced by both relation type and timestamps.

(iii) We find that the temporal-geometric attention mech-
anism is more effective on ICEWS14 and ICEWS05-15
datasets. Compared to GDELT, they contain more relation
types and thus provide a wider variety of relational structural
patterns in the datasets. This illustrates the importance of in-
troducing heterogeneous geometric spaces in HGE to repre-
sent the diverse structure in temporal knowledge graphs.

5.4 Case Study

Intent to cooperate relation forms a temporal-star structure
in TKGs as the head entity could express this attitude to
multiple tail entities. In Figure 3, on account of the query
(Barack Obama, intent to cooperate, ?, 153), complex space
predicts the wrong answer Angela Merkel as it supposes a
symmetric instance exists for (Angela Merkel, r1, Barack
Obama, 105). Split-complex space predicts the wrong an-
swer Japan to form a hierarchy path between Angela Merkel,
Barack Obama and Japan. Dual space predicts the correct
answer Poland as it has been the object entity in the tem-
poral star structure formed by France. Given that Barack
Obama consults Japan recently, HGE chooses the correct
answer Poland with the help of the temporal-geometric at-
tention mechanism.



Table 1: Link prediction results on ICEWS14, ICEWS05-15, and GDELT. The best results among all models are in bold.
Additionally, we underline the best results among models with the same backbone model.

Model ICEWS14 ICEWS05-15 GDELT
MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10

TTransE 25.5 7.4 - 60.1 27.1 8.4 - 61.6 11.5 0 16.0 31.8
TADistMult 47.7 36.3 - 68.6 47.4 34.6 - 72.8 20.6 12.4 21.9 36.5
RotateQVS 59.1 50.7 64.2 75.4 63.3 52.9 70.9 81.3 27.0 17.5 29.3 45.8
BoxTE(k=2) 61.5 53.2 66.7 76.7 66.4 57.6 72.0 82.2 33.9 25.1 36.6 50.7
LCGE 61.6 53.2 66.7 77.5 61.8 51.4 68.1 81.2 - - - -
TeRo 56.2 46.8 62.1 73.2 58.6 46.9 66.8 79.5 23.2 14.5 24.9 30.9
TeRo+HGE 58.6 49.5 64.5 74.9 57.8 45.3 66.5 80.4 23.4 14.7 25.2 40.5
△ Improve 4.3% 5.8% 3.9% 1.4% -1.5% -3.4% -0.1% 1.1% 0.9% 1.4% 1.2% 31.1%
TComplEx 61.9 54.2 66.1 76.7 66.5 58.3 71.6 81.1 34.6 25.9 37.2 51.5
TComplEx+HGE 62.6 54.7 67.2 77.4 67.2 59.3 72.0 81.7 36.8 27.4 40.1 55.3
△ Improve 1.1% 0.9% 1.7% 0.9% 1.1% 1.7% 0.6% 0.7% 5.2% 5.8% 7.8% 7.4%
TNTComplEx 60.7 51.9 65.9 77.2 66.6 58.3 71.8 81.7 34.1 25.2 36.8 51.5
TNTComplEx+HGE 63.0 55.1 67.5 78.0 68.1 60.1 72.9 82.9 37.1 28.3 40.0 54.1
△ Improve 3.7% 6.2% 2.4% 0.6% 2.3% 3.1% 1.5% 1.5% 8.8% 12.3% 8.7% 5.0%
TLT-KGE 63.0 54.9 67.8 77.7 68.6 60.7 73.5 83.1 35.6 26.7 38.5 53.2
TLT-KGE+HGE 63.4 55.0 68.5 78.8 68.8 60.8 74.0 83.5 37.1 27.7 40.2 55.6
△ Improve 0.6% 0.1% 1.0% 1.4% 0.3% 0.2% 1.4% 0.5% 4.2% 3.7% 4.4% 3.0%

Table 2: Link Prediction results on Wikidata12k.

Model MRR[a, b] MRR[a,∞) MRR(−∞, b]
TNTComplEx 27.4 37.8 51.7
TNTComplEx +HGE 28.4 37.8 57.0
TLT-KGE 27.0 36.0 48.0
TLT-KGE +HGE 27.4 37.7 51.7

Table 3: MRR performance of HGE components. +tra stands
for merely using temporal-relational attention mechanism.
+tga stands for merely using temporal-geometric attention
mechanism. +stack stands for integrating subspaces with the
stacking strategy in (Han et al. 2020)

Model ICEWS14 ICEWS05-15 GDELT
TNTComplEx+HGE 63.0 68.1 37.1
TNTComplEx 60.7 66.6 34.1
TNTComplEX+stack 62.0 67.3 35.6
TNTComplEx+tra 62.0 67.4 36.9
TNTComplEx+tga 62.6 67.5 36.4

6 Related Works
TKGE models incorporate time information in different
ways. TTransE (Leblay and Chekol 2018) and TA-DistMult
(Garcia-Duran, Dumančić, and Niepert 2018) insert the time
information into different score functions as another ele-
ment. TeRo (Xu et al. 2020) defines the temporal evolution
of entity embeddings as a rotation from the initial time to the
current time in complex vector space.

T(NT)ComplEx (Lacroix, Obozinski, and Usunier 2019)
is a semantic matching approach that models temporal
knowledge graph completion as an order 4 tensor comple-
tion problem. TeLM (Xu et al. 2021) also performs 4th-order
tensor factorization on temporal knowledge graphs but adds
a bias component between the neighboring temporal embed-
dings in the temporal regularizer. Moreover, it adopts multi-
vector embeddings for entities, relations, and timestamps.

Inspired by TeRo (Xu et al. 2020), RotateQVS (Chen

et al. 2022) embeds entities in quaternion space and tem-
poral changes are represented as rotations. BoxTE (Mess-
ner, Abboud, and Ceylan 2022) extends BoxE (Abboud et al.
2020) by including relation-specific time embeddings. TLT-
KGE (Zhang et al. 2022) models semantic information and
temporal information as different parts of complex space
or quaternion space. Complex or quaternion operations ex-
change information between different parts. LCGE (Niu and
Li 2023) use temporal rules to regularize entity embedding
and adopts commonsense reasoning as the extra learning
task. Most of the reviewed TKGE approaches model tempo-
ral patterns by using a single geometry, and do not present
multiple geometries to capture diverse temporal patterns.

Several manifold-based TKGE models have been pro-
posed in (Montella, Barahona, and Heinecke 2021; Han
et al. 2020). (Montella, Barahona, and Heinecke 2021) is
an extension of AttH (Chami et al. 2020) to temporal KGEs
which use hyperbolic manifolds as embedding space. It only
uses a single geometry for embedding space. (Han et al.
2020) embeds TKGs into a product space of several mani-
folds to model multiple structural patterns. However, it does
not select the most suitable manifold depending on structural
patterns existing in TKGs but chooses it manually.

7 Conclusion
We present HGE, a new temporal KGE model that utilizes
multiple geometries. HGE extends state-of-the-art TKGEs
from a Complex space to the product space that embeds tem-
poral facts in Complex, Split-complex, and Dual subspaces
via two temporal attention mechanisms. The temporal-
relational attention mechanism captures relations with vary-
ing change frequencies. The temporal geometric attention
mechanism fuses information from different geometries ac-
cording to the captured relational and temporal informa-
tion. Extensive experiments on benchmark datasets validate
that our model uniformly improves several state-of-the-art
Complex-based TKGE models. In the future, we plan to in-
clude more types of heterogeneous geometric spaces.
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A Allen’s Relations
The definitions of 13 Allen’s Relations between two-time
intervals τ1 = [m1, n1], τ2 = [m2, n2] are defined in Figure
4.

Figure 4: 13 relations in Allen algebra calculus.

B Extending Backbones to HGE methods
TeRo TeRo (Xu et al. 2020) represents s, p, o, τ in Com-
plex space as Equation 1. Similarly, we represent s, p, o, τ
in Split-complex space and Dual space as Equation 2 and 3.
Following (Xu et al. 2020), we represent st and ot as:

stMi
= sMi

◦ tMi
,otMi

= oMi
◦ tMi (9)

For temporal relational attention, we set p = ps = pc, so
the dynamic relational information is captured by p ∗ t.
TLT-KGE TLT-KGE (Zhang et al. 2022) represents
s, p, o, τ in Complex space as:

sC = es + teτ i,pC = rp + trτ i,oC = eo + teτ i, (10)

Similarly, we represent s, p, o, τ in Dual space and Split-
complex space as:

sD = es + teτ ϵ,pC = rp + trτ ϵ,oC = eo + teτ ϵ,

sS = es + teτ j,pS = rp + trτ j,oS = eo + teτ j,
(11)

For temporal relational attention, we adopt rp and rcompr

in Equation 12 of original paper as ps, and pc ∗ τ τ respec-
tively, where rcompr = rp * tcompr.

C Embeddings in Complex, Dual and
Split-Complex Subpaces

Keeping other settings fixed, we train 3 model vari-
ants TNTComplEx+complex, TNTComplEx+split, TNT-
ComplEx+dual which use a single geometric space to op-
timal MRR scores on ICEWS14. We randomly select 100

entities from the entity set and analyze the similarity of their
embeddings on different geometric spaces by cosine simi-
larity:

SC(A,B) =
A ·B

∥A∥∥B∥
=

∑n
i=1 AiBi√∑n

i=1 A
2
i ·

∑n
i=1 B

2
i

(12)

We concat the real part and imaginary part of one entity
when calculating the cosine similarity. From Figure 5, we
could find out that in every sub-graph, the values on the di-
agonal, which represent the cosine similarity between en-
tity embeddings of the same entity on different geometric
subspace, are always the highest in a row and exceed 0.95.
Therefore, although their geometric interpretations are di-
verse, real and imaginary vectors in different subspaces are
almost unanimous when trained to optimal settings.

D Dataset Overview
Dataset statistics are described in Table 5.

E Temporal Pattern Statistics
We calculate the occurrence of each temporal pattern intro-
duced in Section 4 to give an overview distribution of the
temporal patterns. Table 4 shows the statistics on ICEWS14,
ICEWS05-15 and GDELT. If a group of quadruples, such as
the examples shown in the 2nd column in Table 4, meets the
definition in Section 4, we calculate it as one occurrence.

F Modeling Various Temporal Patterns
Proposition 5. HGE can model (anti-)symmetry patterns in-
troduced in Definitions 3 and 5.

Proof. Let p be a relation with temporal symmetry. One
condition for modeling this pattern is S(s, p, ō, τ) =
S(o, p, s̄, τ). For simplicity of representation, we use pt =
psτ . Without loss of generality, we assume that we have only
a one-dimensional split-complex vector. Therefore, we have
the following equality to fulfill temporal symmetry:(

saptaoa + sbptboa − saptbob − sbptaob
)
=(

oaptasa + obptbsa − oaptbsb − obptasb
)
.

This leads to the following equality sbptboa = saptbob.
To hold this equality, we need to have either ptb = 0 or
sboa = saob. So far, we show for a given grounded quadru-
ple (s, p, o, τ), if our model learns (s, p, o, τ) to be true, it
can also hold its temporal symmetry (o, p, s, τ) as true. To
generalize this to the universal quantifier (every grounded
quadruple), we can add one extra dimension to model tem-
poral symmetry for the extra pair of entities. In the extended
dimension for the new pair (s,o), we should have ptb = 0
or sboa = saob to hold temporal symmetry. In this way,
all pairs (s, o) which are connected by temporal symmetry
relation will be held as true by the model. A similar proce-
dure can be done for Dual and ComplEx spaces. Therefore,
there exist assignments for embeddings of entities and re-
lations that fulfill the encoding of the temporal symmetric
pattern.



Table 4: Real examples and statistics of each pattern in the train set of ICEWS14, ICEWS05-15, GDELT.

Patterns Examples ICEWS14 ICEWS05-15 GDELT

static symmetric (Iraq, sign formal agreement, Iran, 2014-04-06) 6,506 36,537 366,830
(Iran, sign formal agreement, Iraq, 2014-04-06)

static inverse (Fiji, host a visit, Julie Bishop, 2014-11-04), 10,361 63,092 552,280
(Julie Bishop, make a visit, Fiji, 2014-11-04)

dynamic symmetric (France, engage in negotiation, Poland, 2014-04-04) 78,473 3,817,343 17,265,293
(Poland, engage in negotiation, France, 2014-02-20)

dynamic inverse (Angela Merkel, discuss by telephone, Ukraine, 2014-03-14), 768,586 48,641,730 104,909,248
(Ukraine, consult, Angela Merkel, 2014-03-27)

dynamic evolve (South Korea, demand, Japan, 2014-07-15), 971,055 63,733,447 112,653,245
(South Korea, reject judicial cooperation, Japan, 2014-07-18)

Proposition 6. HGE can model inverse patterns introduced
in Definitions 4 and 6.

Proof. Let temporal relation p1 be the inverse of the tempo-
ral relation p2 at all time points (4). One condition to model
this pattern is to fulfill S(s, p1, ō, τ) = S(o, p2, s̄, τ). With-
out loss of generality, we assume that we have only a one-
dimensional split-complex vector. Therefore, we have the
following equality to fulfill temporal inverse relationships:(

sap1taoa + sbp1tboa − sap1tbob − sbp1taob
)
=(

oap2tasa + obp2tbsa − oap2tbsb − obp2tasb
)
.

If we set p1ta = p2ta, p1tb = −p2tb, the above equal-
ity holds. This means there exist assignments for embed-
dings of entities, relations, and times that fulfill the encod-
ing of temporal inverse patterns. Our proof can be gener-
alized to d dimensional product space by adding one di-
mension per each grounded atom. For the pattern in 6, the
proof procedes likewise. The only difference is that the time
embedding will be different at the two times τ1, τ2 to hold
p1ta = p2ta, p1tb = −p2tb.

Proposition 7. Let us assume that relation p1 evolve to re-
lation p2 as formalized in 7. HGE can model this pattern.

Proof. Given that p1 evolves to p2, and also given the two
times τ1 and τ2 with τ1 ≺≤ τ2, to model the pattern,
we need to have S(s, p1, ō, τ1) = S(s, p2, ō, τ2). Without
loss of generality, we assume that we have only a one-
dimensional split-complex vector. Then, we must fulfill the
following equality:(

sap1t1aoa + sbp1t1boa − sap1t1bob − sbp1t1aob
)
=(

sap2t2aoa + sbp2t2boa − sap2t2bob − sbp2t2aob
)
.

For this equality to hold, it must be the case that p1t1a =
p2t2a, p1t1b = p2t2b. Note that these equality conditions do
not necessarily mean that the embedding of static and tem-
poral relations in Equation 5 should be the same because
different convex combinations can create the same vector
for temporal relations. Considering the universal quantifier,
we can add one extra dimension for each grounded atom
to fulfill equality. A similar consideration can be applied
to Dual and ComplEx spaces. Therefore, there exist assign-
ments for embeddings of entities and relations that encode
the patterns.

Table 5: Statistics for ICEWS14, ICEWS05-15, GDELT and
Wikidata12k.

Dataset ICEWS14 ICEWS05-15 GDELT Wikidata12k
Entities 7,128 10,488 500 12,554
Relations 230 251 20 24
Times 365 4017 366 1,726
Train 72,826 386,962 2,735,685 32,497
Validation 8,941 46,275 341,961 4,062
Test 8,963 46,092 341,961 4,062

Proposition 8. Let p be a temporary relation in time as de-
fined in 8. HGE can model this relation.

Proof. Let p be a temporary relation as in 8. To follow this
pattern in the embedding space, for a given grounded atom
(s, p, o, τ1), there exist τ0, τ2 and also the embedding vec-
tors for s, p, o, τ0, τ1, τ2 such that we have S(s, p, ō, τ1) ̸=
S(s, p, ō, τ2) and S(s, p, ō, τ1) ̸= S(s, p, ō, τ0) as one pos-
sible condition to fulfill the pattern. Similar to the previous
proofs, let us assume that we have only a one-dimensional
split-complex vector. To fulfill the first condition (the second
one will be similar), we have(

sapt1aoa + sbpt1boa − sapt1bob − sbpt1aob
)
̸=(

sapt2aoa + sbpt2boa − sapt2bob − sbpt2aob
)
.

This can be simply fulfilled if we set pt1a ̸= pt2a, pt1b ̸=
pt2b. In addition, we can have a large value for S(s, p, ō, τ1)
and a small value for S(s, p, ō, τ2) (or vice versa) by prop-
erly setting the temporal relation close to zero at time τ1 and
high value at time τ2 (and vice versa). A similar calculation
can be done for Dual and ComplEx spaces. Therefore, there
exist assignments for embeddings of entities and relations
that encode the pattern.

G Experiment Details
All experiments in the paper were run on the same NVIDIA
A100 GPU device(40G GPU/100G CPU) with Ubuntu sys-
tem 22.0. We implement a grid search to select the best regu-
larizer weight from [5e-4, 3e-3, 5e-3, 3e-3, 1e-3, 3e-2, 1e-2,
1e-1]. A detailed list of hyperparamters is provided in hyper-
paramter.pdf file in the code folder of supplement material.



(a) Cosine similarity score between trained entity embeddings in
Complex space and Split-complex space.

(b) Cosine similarity score between trained entity embeddings in
Complex space and Split-complex space.

(c) Cosine similarity score between trained entity embeddings in
Split-complex space and Dual space.

Figure 5: Cosine similarity scores between entity embed-
dings from different geometric space. x-axis and y-axis show
the entity id on relevant geometric space

H Temporal Structural Patterns on
Geometric subspaces

We consider symmetric patterns belonging to structural pat-
terns too and define two other types of temporal structural
patterns:
Definition 9. Relation p forms a temporal star of size n ∈ N
iff ∀s : ∃o1, τ1 . . . , on, τn : Precedes(τ1, τ2) &
. . . & Precedes(τ(n − 1), τn) & (s, p, o1, τ1) &
(s, p, o2, τ2) & . . . & (s, p, on, τn).

Definition 10. A relation p forms a temporal hierarchy iff
∀v1, v2, v3, τ1, τ2 : (v1, p, v2, τ1) & (v2, p, v3, τ2) → τ1 ≺
τ2

We investigate if heterogeneous geometric subspaces
could represent different kinds of structural patterns. We
extract 3 subsets for static symmetry, temporal hierarchy,
and temporal star structural patterns from the test set of
ICEWS14 and ICEWS05-15. Four variants of TNTCom-
plEx+HGE model are tested in these subsets: 1) complex:
only complex space is used. 2) split-complex: only split-
complex space is used. 3) dual: only dual space is used. 4)
HGE: the full model with three heterogeneous subspaces.

Table 6 shows that models using complex space perform
best on static symmetric structural patterns. Models using
split-complex space performs best on temporal hierarchy
pattern while models using dual space perform best on tem-
poral star pattern. This observation supports our core as-
sumption that multiple geometric spaces may benefit tem-
poral knowledge graph representation. Moreover, TNTCom-
plEx+HGE performs better than all variants with single ge-
ometric spaces, demonstrating that the proposed product
space with temporal geometric attention mechanism could
integrate the advantages of individual subspaces.

I HGE’s Time and Space Usage
As HGE reuses vectors for different geometric subspaces,
the increased parameters to implement an HGE module will
be 2|R| ∗ d, which is the attention weights for two proposed
attention mechanisms. We demonstrate the HGE’s efficiency
by comparing the number of parameters and running times
of the original backbone with HGE-extended backbones. All
models are trained with 200 epochs and we calculate the
average running time of training epochs for each model.
From Table 7, we observe that with the same embedding
dimension d=1200 for entities and relations, the increased
number of parameters and running time are rather moderate
for HGE-extensions. Specifically, when TNTComplEx is ex-
tended by HGE, its performance is comparable to TLT-KGE
with only half as many parameters and a shorter running
time. Even if we decrease d of TNTComplEx+HGE to 1100,
it still outperforms backbone TNTComplEx(d=1200) with
fewer parameter numbers. This demonstrates that HGE’s im-
provements do not come from the increased number of pa-
rameters, but rather from its representational approach.

J Baseline Selection
LCGE We found out the commonsense reasoning score
introduced in equation 11 of LCGE(Niu and Li 2023) was



Table 6: MRR performance of heterogeneous geometric spaces on diverse structural pattern subsets.

Datasets Structural Patterns Statistics TNTComplEx complex split-complex dual HGE

ICEWS14
static symmetric 1352 98.8 99.5 99.3 98.3 99.5

temporal hierarchy 1193 69.5 70.4 71.8 71.0 71.8
temporal star 6197 70.5 71.6 71.9 72.9 73.0

ICEWS05-15
static symmetric 7240 99.7 99.8 99.7 99.6 99.8

temporal hierarchy 16703 72.7 72.8 73.7 72.5 74.3
temporal star 39724 73.8 73.8 72.4 74.7 75.4

Table 7: Parameter number and average runtime for original backbones and backbones extended by HGE.

Datasets Model Rank(d) Parameter number Average epoch time(s) MRR

ICEWS14

TNTComplEx 1200 20,191,200 1.80 60.7
TLT-KGE 1200 38,693,400 2.25 63.0

TNTComplEx+HGE 1100 19,520,600 2.10 62.9
TNTComplEx+HGE 1200 21,295,200 2.19 63.0

ICEWS05-15

TNTComplEx 1200 37,221,600 11.79 66.6
TLT-KGE 1200 81,360,600 13.91 68.6

TNTComplEx+HGE 1100 35,224,200 11.52 67.7
TNTComplEx+HGE 1200 38,426,400 12.13 68.1

Table 8: Results of LCGE in original paper and by our implementation

Model ICEWS14 ICEWS05-15
MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10

LCGE(Niu and Li 2023) 92.5 91.6 92.9 93.7 91.2 90.3 91.6 92.5
LCGE 61.6 53.2 66.7 77.5 61.8 51.4 68.1 81.2

considered during the training time but missed during the
test time, which causes bias to final scores and rankings. We
re-implemented the codes and attached our implementation
in the supplementary material’s code/LCGE new folder. Ta-
ble 8 shows the comparison of reported results in (Niu and
Li 2023) and results by our implementation.

DyERNIE We do not include the baseline of Dy-
ERNIE(Han et al. 2020) since this paper reports the re-
sults using the static filtered setting. Moreover, the code re-
leased by the authors is not complete to implement hyper-
bolic spaces, making it hard to report time-aware filtering
results.

HSAE HSAE(Ren et al. 2023) adopts a hierarchy self-
attention mechanism to incorporate information from dif-
ferent time shots. We do not include the baseline of HSAE
because the author does not publish the codes.


