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A B S T R A C T   

Despite the substantial steps made in understanding the mechanics of reinforced concrete structures, effectively 
addressing, and mitigating inelastic buckling remains a complex and enduring challenge. Consequently, this 
paper provides a comprehensive review of all the previous studies on modelling the inelastic buckling of rein
forcing bars, and the capability of current state-of-the-art numerical models to simulate the nonlinear stress- 
strain response of reinforcing bars with the effect of buckling under monotonic and cyclic loading. This re
view paper consists of four different clusters including: (i) inelastic buckling of reinforcing bars under monotonic 
loading with and without corrosion, (ii) inelastic buckling of reinforcing bars under cyclic loading with and 
without corrosion, (iii) influence of inelastic buckling on low-cycle fatigue life of reinforcing bars with and 
without corrosion, and (iv) influence of tie reinforcement on global stability of longitudinal bars and buckling 
length calculation. For each group, a summary and critical review of all the previous research is provided. A 
quantitative comparison between the most widely used uniaxial material models have been made and their 
performance have been assessed against experimental data. Finally, the current limitations in existing literature 
are examined, unresolved issues for future research are identified, and some recommendations for future 
research are suggested.   

1. Introduction 

In the context of analysing nonlinear performance of reinforced 
concrete (RC) structures under seismic loads, the common practice in
volves employing fibre-type section models [1,2]. These models are 
utilised to replicate the flexural behaviour of beams, columns, and walls, 
which experience nonlinear responses [3]. Typically integrated into 
plastic hinge or distributed-plasticity beam-column elements [1,2], 
these fibre-type section models have been implemented in software tools 
like OpenSees [4], SeismoStruct [5], and SAP2000 [6]. With the use of a 
fibre-type section model, the cross section of a structural element is 
divided into multiple steel and concrete fibres. These fibres collectively 
represent the behaviour of the material. The nonlinear characteristics of 
the materials are captured through uniaxial constitutive models for 
steel, as well as for confined and unconfined concrete. Consequently, the 
accuracy of this modelling approach heavily relies on the precision of 
these uniaxial constitutive models. 

Previous studies have indicated that fibre-type section models, which 
include both lumped and distributed plasticity elements, is capable of 
simulating the stiffness, strength, and cyclic behaviour of RC 

components when subjected to moderate levels of deformation [7–9]. 
However, limited attention has been devoted to comprehensively 
simulating the response to the reduction in lateral load-bearing capacity, 
and more critically, axial load-bearing capacity [3,9,10]. Additionally, 
there is a limited body of work that showcases the precise emulation of 
drift capacity, which signifies the point where substantial loss in lateral 
strength becomes evident [3]. When RC members experience flexural 
loading, the decline in strength typically stems from factors such as the 
buckling of longitudinal reinforcement, fracture of longitudinal rein
forcement due to either large tensile strain or the effect of low-cycle, 
high-amplitude fatigue, and/or the crushing of the confined concrete 
core [10]. 

Over the past few decades, several researchers have examined the 
cyclic performance of reinforcing steel with and without the effect of 
inelastic buckling [11–20]. Their focus has centred on simulating the 
behaviour of reinforcing steel that remains free from corrosion. How
ever, it is important to note that numerous critical structures are situated 
in regions prone to high seismic activity and are also exposed to cor
rosive surroundings. Recent experimental investigations, which 
examine the nonlinear cyclic performance of RC elements featuring 
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corroded reinforcement, reveal a substantial influence of corrosion on 
the response of such structures [21–29]. The empirical findings high
light that corrosion results in a change in the failure mechanism of RC 
components subjected to flexural loading. In certain instances, pro
nounced buckling phenomena were detected, arising from the combined 
impact of uneven pitting corrosion along the longitudinal reinforcement 
and corrosion affecting the horizontal/transverse ties. Corrosion exerts a 
diminishing influence on the rigidity of transverse ties, which restrain 
the longitudinal bars against buckling. Once the corroded bars undergo 
buckling during cyclic loading, they fracture prematurely, especially 
under relatively lower levels of deformation. This premature fracture 
can be attributed to the combined influence of buckling and the 
non-uniform pitting corrosion, resulting in a substantial reduction of the 
low-cycle fatigue life of corroded RC elements subjected to cyclic 
loading [27]. 

1.1. Research contribution 

As mentioned in the introduction, there are serval uniaxial material 
models available in the literature to simulate the inelastic buckling of 
bars with and without corrosion. Some of these models have been 
verified against experimental data and have been extensively used by 
other researchers. However, there is significant paucity in the literature 
to make a quantitative comparison between such models. Moreover, 
there are still some very important open issues in simulating inelastic 
buckling of uncorroded and corroded bars that needs further research. 
Therefore, there is a need for a comprehensive review paper that pro
vides all this information in a single document that can be used in the 
future research by other researchers. 

Accordingly, the review paper presented here focusses on experi
mental testing, numerical modelling, and uniaxial material models of 
reinforcing bars subject to monotonic and cyclic loading (with and 
without corrosion). The primary objective of this paper is to compile all 
the relevant and significant information dispersed in the literature into a 
single comprehensive document, offering a critical review of these 
models. Finally, the paper concludes by pinpointing unresolved matters 
and research gaps, and identifies the areas for future research within this 
domain. 

2. Inelastic buckling of reinforcing bars under monotonic 
loading 

2.1. Modelling inelastic buckling behaviour of reinforcing bar without the 
effect of corrosion 

Table 1, shows a summary of previous studies on inelastic buckling of 
reinforcing bars under monotonic loading. The dataset is extracted from 
a variety of literature sources comprises a large number of distinct 
reinforcing bar specimens. These specimens were chosen to cover a 
range of scenarios. First, the unsupported length ratios, which compares 
the length of the bar (L) to its diameter (D) known as L/D ratio, vary from 
5 to 20. Second, the yield strengths of the bars, from 295 MPa to 540 
MPa. Lastly, the ultimate strength-to-yield strength ratios, range from 
1.2 to 1.6. For additional information about the experimental dataset 
and all the associated parameters, you can refer to Table A1 in the 
appendix. 

Several researchers, as outlined in Table 1, have developed uniaxial 
material models that can be used in nonlinear finite element analysis of 
RC structures. 

The early models in Table 1 [30–36] were mainly focused analytical 
modelling and experimental testing of reinforcing bars to investigate the 
inelastic buckling phenomenon. The first ever uniaxial material model 
that is available in the literature to simulate the inelastic buckling of 
reinforcing bars is Mont-Nuti [13], which was published in 1992. The 
historical development of uniaxial models to simulate the inelastic 
buckling of bars are discussed in the following sections of this paper. 

Here, the relevant equations of most widely used models and their pa
rameters are presented, and a comparison between these models with 
experimental data are provided. 

2.1.1. Monti–Nuti model 
Monti-Nuti model [13] is one of the very first uniaxial material 

models developed for inelastic buckling of reinforcing bars. In this 
model for the unsupported length ratio (L/D) of 5, the compressive 
monotonic curve practically aligns with the tensile curve, indicating that 
the bar maintains a straight form. When L/D = 8, a brief overlap region 
arises, including a superposition length of γs = ε5% − εy. Here, εy is the 
yield strain, and ε5% signifies the strain where the compressive curve 
diverges by more than 5% from the tensile curve, trending toward lower 
values. In the case of L/D = 11, once the yield point is reached, the onset 
of buckling becomes evident, leading to a retreat of the compressive 
monotonic curve from the tensile counterpart (γs = 0). 

This behaviour is describes with an empirical relationship found for 
γs: 

γs =
11 − L

D

ec(L/D) − 1
≥ 0 , for5 <

L
D

≤ 11 (1)  

where c = 0.5 calibrated from experimental data.The hardening ratio, 
denoted as b, is b = Ep/E0 (b+ for the tensile branch, b− for the 
compressive branch). Here, Ep represents the post-yielding modulus, 
while E0 is the initial elastic modulus. In experimental observations, 
inelastic buckling starts to manifest when the unsupported length ratio 
(L/D) surpasses a critical threshold of (L/D)cr = 5. Following the 
occurrence of yielding, a softening branch (b− < 0) becomes evident. 
This softening branch (b− ) decreases as the unsupported length ratio (L/ 
D) increases and is not influenced by the hardening ratio (b+) of the 
material. As a result, the definition of b− is as follows: 

Table 1 
Previous studies on modelling inelastic buckling of reinforcing bars under 
monotonic loading.  

Reference Year of 
Study 

Type of Study 

Shanley 1947[30,31] 1947, 1950 Analytical modelling 
Bresler and Gilbert[32] 1961 Analytical modelling 
Johnston[33] 1961 Analytical modelling 
Mander et al.[34] 1984 Experimental testing and analytical 

modelling 
Mau and El-Mabsout 

[35] 
1989 Analytical modelling 

Papia et al.[36] 1989 Analytical modelling 
Monti and Nuti[13] 1992 Experimental testing and uniaxial 

material model 
Gomes and Appelton 

[15] 
1997 Material model 

Bayrak and Sheikh[37] 2001 Experimental testing and analytical 
modelling 

Dhakal and Maekawa 
[38,39] 

2002 Numerical modelling and uniaxial 
material model 

Bae et al.[40] 2005 Experimental testing and uniaxial 
material model 

Cosenza and Prota[41] 2006 Experimental testing and uniaxial 
material model 

Gil-Martín et al.[42] 2008 Analytical modelling 
Massone and Moroder 

[43] 
2009 Analytical modelling 

Prota e t al.[16] 2009 Experimental testing 
Urmson and Mander 

[44] 
2012 Analytical modelling 

Kashani et al.[45,46] 2013, 2015 Experimental testing and analytical 
modelling 

Zong et al.[20,47] 2010 and 
2014 

Material model 

Massone and Lopez[48] 2014 Material model 
Imperatore and Rinaldi 

[49] 
2019 Experimental testing and analytical 

modelling  
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b− = a
[(

L
D

)

cr
−

L
D

]

, for
L
D
>

(
L
D

)

cr
(2)  

where, the parameter a is calibrated using the experimental. a = 0.006 
results in the secant slope ratio (from εy to ε = 10εy), while a = 0.008 
gives the initial tangent slope ratiob+0 . The softening branch converge to 
an asymptotic value ofσ∞ =

6σy
L
D

. Where σy = yield strength. It is noted 

that with increasing L/D ratio softening branches resulted in lower 
values ofσ∞. 

In summary, this model is calibrated using experimental data of bars 
with D = 16, 20, 24 mm and L/D = 5, 8, 11, and hence, does not cover 
bars with large L/D ratios. Furthermore, since the model is purely based 
on limited experimental data, the softening branch does not account for 
influence of yield strength and hardening ratio of the material. Further 
discussion on the performance of this model and comparison with 
experimental data is available in Section 2.1.8. 

2.1.2. Gomes–Appleton model 
The Gomes–Appleton model [15] characterises the mean stress–

strain correlation, formulated on the basis of the equilibrium attained by 
a buckled reinforcing bar constrained by two consecutive hoops. As per 
the findings of Gomes and Appleton’s investigation, when strain remains 
small, it is crucial to consider the interaction between the axial load N 
and the plastic bending moment Mp to accurately compute the stress of 
the buckled reinforcing bar. However, as strain magnitudes increase (e. 
g. from 0.5% to 1.0%), it becomes permissible to neglect the N–Mp 
interaction without significantly compromising precision. Given that the 
compressive strain at the initiation of buckling, following a significant 
strain reversal, Gomes and Appleton proposed that for simplicity, one 
could omit consideration of the N–Mp interaction. In this context, 
assuming an average strain εs and an average stress σs for a reinforcing 
bar positioned between two successive hoops, εs can be defined as δ/L, 
while σs can be established as N/As. Here, δ and N denote axial defor
mation and axial load, respectively, L is the spacing between two 
consecutive hoops, and As represents the cross-sectional area of the 
reinforcing bar. Then the stress–strain relationship including buckling 
without consideration of N–Mp interaction is given by Eq. (3) below: 

σs =
2

̅̅̅
2

√
× 0.424σy

L
D

1
̅̅̅̅εs

√ (3) 

Further discussion on the performance of this model and comparison 
with experimental data is available in Section 2.1.8. 

2.1.3. Cosenza–Prota model 
Cosenza–Prota [41] conducted comprehensive research focused on 

experimental investigation of smooth bars under monotonic compres
sion with different L/D ratios. The resulting stress-strain relationship is 
then made to cover a range of behaviours, starting from an elastic-plastic 
response similar to what’s seen in tension when L/D is 5, and pro
gressing to elastic buckling behaviour as L/D goes beyond 20. 

In the proposed model the compressive stress-strain behaviour for L/ 
D ≤ 5 is identical to tension envelope and for 5 < L/D ≤ 7 is elastic- 
plastic. The post-buckling behaviour of bars with 8 ≤ L/D ≤ 20 can be 
identified by three ranges of the stress-strain relationships. Firstly, an 
elastic behaviour up to yielding; secondly, a plateau; and finally, a 
nonlinear softening phase. The shift from the plateau to the onset of 
softening transpires at a specific strain value, denoted here as εs (with “s” 
indicating softening). This strain value is situated between εy (with “y” 
indicating yielding) and εh (with “h” indicating hardening). Based on 
experimental observations, εs can be determined using the following 
expression: 

εs

εy
= 1+ c1

εh − εy

εy
e

(

− c2
L
D

)

(4)  

where that c1 = 43.3 and c2 = 0.47. In Eq. (4) εs ≈ εy for L/D = 20 and εs 
≈ εh for L/D = 8. The softening branch can be described by the following 
expression: 

σ = σ∞ +
[(

σy − σ∞
)
e
− c3

(

ε
εs − 1

)

]
, σ∞ = σy

c4
L
D

(5)  

Where that c3 = 0.2 and c4 = 2.8. The value of σ∞here is quite different 
from the suggested value by Monti and Nuti [13] for ribbed bars. 

In summary, this model covers a wider range of L/D ratios and ac
counts for the influence of yield strength on post-buckling softening 
response. However, this model is only valid for smooth bars, and may 
not be directly applicable to ribbed bars. 

2.1.4. Dhakal–Maekawa model 
Dhakal and Maekawa [38] conducted nonlinear finite element ana

lyses on individual reinforcement bars with varying L/D ratios, 
employing a fibre-based technique. Their empirical approach was based 
on the outcomes of these nonlinear analyses. They successfully devel
oped a novel analytical model that can accurately simulate the 
post-yield buckling behaviour of reinforcing steel bars. Notably, the core 
principle of the model is the linkage between reinforcement buckling 
behaviour and the interaction of two key factors: the L/D ratio and the 
yield stress (σy) of the reinforcement material. Within this model, the 
compression response of the reinforcement is characterised by a single 
composite parameter termed the non-dimensional bar buckling param
eter, denoted as λp. The definition of λp is provided in Eq. (6) as follows: 

λp =

̅̅̅̅̅̅̅̅
σy

100

√
L
D

(6)  

The σy in Eq. (5) is in MPa.Given non-dimensional stress η = σ/σy and 
strain ξ = ε/εy (where σy is the yield stress and εy is the yield strain) the 
following Eq.s define the stress-strain envelope. 

η =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

ξ; ξ ≤ 1
(η2 − 1)
(ξ2 − 1)

(ξ − 1) + 1; 1 < ξ ≤ ξ2

η2 − 0.02 (ξ − ξ2) ; ξ2 ≤ ξ&η ≥ 0.2

0.2; otherwise

(7)  

where, the empirical relationships for (η2,ξ2) are given below: 

ξ2 = 55 − 2.3 λp; ξ2 ≥ 7 (8)  

η2 = α
(
1.1 − 0.016 λp

)
η∗

2; η2 ≥ 0.2 (9) 

Here, η * 2 represents the non-dimensional piecewise stress linked to 
ξ2. The parameter α carries significance as a softening coefficient and is 
contingent on the strain hardening characteristics of the reinforcement. 
In their study, Dhakal and Maekawa established that α = 0.75 for 
elastic-perfectly plastic reinforcement, while for reinforcement exhibit
ing linear hardening, α = 1.0. Further elaboration regarding the deri
vation of Eqs. (8) and (9) can be found in Dhakal and Maekawa’s work 
[38]. Further discussion on the performance of this model and com
parison with experimental data is available in Section 2.1.8. 

2.1.5. Bae et al. model 
Bae et al. [40] reported the findings from an experimental investi

gation focused on inelastic bar buckling behaviour. The programme 
entailed testing a total of 162 specimens of reinforcing bars subjected to 
monotonic compression loading. Moreover, a simple analytical model 
has been developed, designed to be integrated into the conventional 
cross section analysis methodology. 

In this model the average axial strain is assumed as the summation of 
axial strain due to axial stress and axial strain from transverse 

M.M. Kashani                                                                                                                                                                                                                                   



Construction and Building Materials 411 (2024) 134634

4

displacement of a bar after inelastic buckling; i.e. εave = εs + εtra, where 
εave is total average strain in a buckled bar, εs is the strain due to axial 
displacement, and εtra is the axial strain due to lateral displacement. The 
axial strain resulting from an axial stress can be calculated by refer
encing the tensile stress-strain curve. In this context, the stress-strain 
model for tension as suggested by Mander et al. [34] was employed as 
the basis for their post-buckling model. They proposed a set of equations 
to calculate the transverse displacement due to axial stress and subse
quently axial strain due to transverse displacement. Further details are 
available in Bae et al.[40]. 

In summary, this model can simulate the post-buckling response of 
reinforcing bars. However, it requires several assumptions on initial 
imperfection and transverse displacement of reinforcing bars, which are 
difficult to be evaluated in all cases. Therefore, this model has not been 
widely used by other researchers. 

2.1.6. Urmson and Mander model 
Urmson and Mander [44] formulated a direct computational 

framework for simulating the axial compressive force-deformation steel 
reinforcement. This framework incorporated considerations of local 
buckling that occurs between successive tie reinforcement. The analysis 
of various L/D ratios resulted in some empirical interpretations, namely:  

• At the onset of critical buckling load, the deformed bar exhibits 
notable tensile stress. At this pivotal section, a neutral axis (charac
terised by zero strain) is positioned 0.15D distant from the side 
experiencing tension.  

• For extremely diminutive L/D ratios (L/D < 4), the inelastic local 
buckling capacity is governed by the ultimate compressive strength 
(plastic) of the section.  

• At moderate L/D ratios (typically 4 < L/D < 11), the inelastic local 
buckling capacity is influenced by lateral stability. Within this realm, 
and for a given yield strength of the steel, a consistent eccentricity (e/ 
D ratio) is present. As an illustration, when σy = 330 MPa, e equals 
0.125D. 

Following the above empirical observations, Urmson and Mander 
developed a formulation to predict both inelastic local buckling stress 
and strain depending on L/D ratio. Subsequently, a unified formula was 
suggested to capture the complete stress-strain behaviour in compres
sion, accounting for strain-hardening and localised inelastic buckling. A 
compelling agreement was demonstrated between their computational 
model, and experimental data. 

Although this model is quite accurate for small to medium L/D ratios, 
it has not been verified for L/D> 11. Therefore, the applicability of this 
model is limited to bar with L/D< 11. 

2.1.7. Kashani et al. model 
Kashani et al. [46] introduced a novel phenomenological uniaxial 

material model. This model was designed to simulate the behaviour of 
both corroded and uncorroded reinforcing bars including inelastic 
buckling and post-yield buckling phenomena. The model is calibrated 
using an extensive selection of experimental data involving both types of 
reinforcing bars. The model demonstrated its capability to capture the 
nonlinear post-buckling behaviour exhibited by both corroded and 
uncorroded bars. Notably, this model was built upon Dhakal and Mae
kawa’s prior model. Consequently, the post-yield buckling response of 
reinforcing bars in this model can be expressed as a function of λp, as 
defined in Eq. (5). 

In Kashani’s model, the post-yield buckling response of reinforcing 
bars is characterised by an exponential function. The post-buckling 
curve is defined in Eq.s (10) to (13): 

σ=
{

Es ε :ε≤εy

σ∗+
(
σy − σ∗

)
exp

(
−
(

ρ1+ρ2
̅̅̅̅̅εp

√
)(

εp
))

:ε>εy
for 8≤L

/
D≤30 (10)  

ρ1
(
λp
)
= 4.572 λp − 74.43 (11)  

ρ2
(
λp
)
= 318.40 exp

(
− 0.071 λp

)
(12)  

σ∗ = 3.75
σy
L
D

(13)  

where Es is the elastic modulus, ρ1 is the initial tangent of the post- 
buckling response curve, ρ2 is the rate of change of the tangent, ε is 
the current strain, εp = ε - εy is the plastic strain, σ * is the asymptotic 
lower stress limit of the post-buckling curve, and all other variables are 
as previously defined. This model improves the Dhakal and Maekawa’s 
model by replacing the post-buckling trilinear curve with a smooth 
curve, which improves the numerical stability in nonlinear finite 
element simulations. Further discussion on the performance of this 
model and comparison with experimental data is available in Section 
2.1.8. 

2.1.8. Comparison of the most widely used post-buckling models for 
reinforcing bars 

Fig. 1 shows a comparison between some of the most widely used 
material models against experimental data and nonlinear fibre element 
models of single reinforcing bars. The experimental data are taken from 
Kashani et al. [45,50] and nonlinear fibre element modelling data are 
taken from Kashani et al. [51]. 

The comparison of the model shows that there is a good agreement 
between the Dhakal-Maekawa and Kashani models and experimental 
and numerical data. However, Gomes-Appleton model is not very ac
curate bars with L/D < 10. This is because the formulation of Gomes- 
Appleton model is using plastic moment due to second order effects, 
and for simplicity the axial-flexure interaction is ignored. For bars with 
large L/D ratios this assumptions works well, however, in bars with 
smaller L/D ratios this assumption results in underestimating the stress 
in simulating the post-buckling softening response. The Monti-Nuti 
model does not show a good agreement with experimental and numer
ical results. This is because the original model is calibrated using a very 
limited experimental data. 

2.2. Modelling inelastic behaviour of reinforcing bar with the effect of 
corrosion 

2.2.1. Kashani et al. model 
The impact of corrosion on the inelastic buckling of corroded bars 

was investigated by Kashani et al. [45] [50] experimentally and 
computationally [51]. Experimental testing and numerical simulations 
indicates that there are three main parameters that affect the buckling of 
corroded bars including (a) non-uniform loss of cross section area and 
second moment of area along the length of the bar, (b) changing the 
centroid of the bar cross section along of the bar, which results in ec
centricity and (c) cross sectional shape of the bar, which is very 
important inelastic buckling. These parameters results in stress con
centrations and impair imperfections, and subsequently, reduce the 
buckling capacity. Creating a precise equation that explains how 
corrosion affects the factors influencing buckling behaviour is chal
lenging due to the complex nature of the problem and the unpredictable 
way corrosion happens. Therefore, Kashani et al. [45,46] proposed a set 
of empirical equations to modify the buckling and post-buckling 
behaviour of corroded bars. 

The residual cross section of corroded bars can be estimated by 
assuming reduced cross section using Eq. (14) below: 

D′ = D0

10
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
100 − ψ

√
(14)  

where, D′ is the reduced bar diameter due corrosion, D0 is the original 
bar diameter prior to corrosion, and ψ is the percentage of corrosion- 
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induced mass loss.The compressive yield strength of corroded bars (σˊyc) 
is estimated using the Eq. (15): 

σ′yc =

⎧
⎨

⎩

σy(1 − 0.005 ψ)forL
/

D ≤ 6
σy(1 − 0.0065 ψ)for6 < L

/
D < 10

σy(1 − 0.0125 ψ)forL
/

D ≥ 10
(15) 

The proposed model for post-buckling response of corroded bars 
employs Eqs. (10) to (13) as discussed in Section 2.1.6 of this paper. The 
values of σy and D should be replaced with σˊyc and D′ in non- 
dimensional slenderness ratio, λp (Eq. (5)), and the minimum stress 
limit asymptotic, σ * (Eq. (12)). 

2.2.2. Imperatore and Rinaldi model 
Imperatore and Rinaldi [49] examined and discussed how uniform 

corrosion impacts the stress-strain behaviour of reinforcing bars when 
under monotonic compression loading through an extensive experi
mental testing programme. The study includes a broad range of speci
mens, each characterised by varying slenderness ratios 
(length-to-diameter ratios) and degrees of corrosion (experimental test 
parameters are available in Table A1 of this paper). The interaction 
between these factors and the overall response is thoroughly detailed. 
Ultimately, a simplified analytical model is formulated and presented, 
capable of capturing both peak stress and post-buckling behaviour. The 
formulation is following the approach developed by Gomes and Apple
ton [15] using three plastic hinge mechanisms (two at either ends of the 
bars and one in the middle). The analytical formulation yields to Eq. (15) 
to model the post-buckling response of corroded bars. 

σN =
8

3π
σy,cor,λ

λcor

⎛

⎜
⎝

1
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 −
(
εp − 1

)√ 2

⎞

⎟
⎠ (16)  

where, λcor = L/ D′, σy,corr,λ is the compressive yield strength of corroded 
bars, and εp = ε - εy is the plastic strain. The main difference between this 
model and Gomes and Appleton’s model is that Eq. (16) reduces the 
yield strength in compression as a function of L/D ratio for uncorroded 
and corroded bars (D′ for corroded bars). 

Δσy,λ = 1 − β. λcorr (17)  

where, β = 0 for λcor ≤ 8 and β = 0.005 for λcor > 8. Further details and 
derivation of Eqs. (16) and (17) are available in Imperatore and Rinaldi 
[49]. 

2.2.3. Comparison of the available post-buckling models for corroded 
reinforcing bars 

Fig. 2 compares the only three available material models for simu
lating the post-buckling response of corroded bars against experimental 
data. The modified Dhakal-Maekawa and Kashani model are again in 
good agreement with experimental data. However, Imperatore-Rinaldi 
model, which follows the same assumption as Gomes-Appleton model 
underestimate the stress in bars with L/D ≤ 10. For the bars with L/D 
> 10 almost all three models show good agreement with the experi
mental data. 

Fig. 1. Comparison of most widely used material models for post-buckling response of reinforcing bars: (a) L/D = 8, (b) L/D = 10, (c) L/D = 15, (d) L/D = 20.  
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3. Inelastic buckling of reinforcing bars under cyclic loading 

3.1. Modelling nonlinear cyclic behaviour of reinforcing bars with the 
effect of inelastic buckling without corrosion 

Table 2 shows a summary of previous studies on nonlinear cyclic 
response of reinforcing bars including inelastic buckling. The dataset 
extracted from a variety of literature sources comprises a large number 
of distinct reinforcing bar specimens. Similar to Table 1, these specimens 
were chosen to cover a range of scenarios. For additional information 
about the experimental dataset and all the associated parameters, you 
can refer to Table A1 in the appendix. Several researchers, as outlined in 
Table 2, have developed uniaxial material models that can be used in 
nonlinear finite element analysis of RC structures. Here the most widely 
used models and their parameters are presented, and a comparison be
tween these models are provided. 

3.1.1. Modelling nonlinear cyclic behaviour of reinforcing bars including 
the effect of buckling excluding low-cycle fatigue 

Most of the previously proposed material models for the cyclic stress- 

strain behaviour of reinforcing bars employ variations of the original 
Menegotto–Pinto (MP) model [11]. Here, a summary of these models 
and their main features are provided. 

Monti and Nuti [13] have developed their models by making modi
fications to the Menegotto-Pinto model [11]. They introduced a set of 
guidelines based on experimental observations of how reinforcement 
bars buckle. While they adopted the stress-strain relationship from 
Menegotto-Pinto, they emphasized that other constitutive laws could be 
used as long as they are appropriately formulated. The Monti-Nuti 
model’s parameters are vigorously adjusted after each load reversal. 
They employed two classical methods for this adjustment: (i) isotropic 
hardening, and (ii) kinematic hardening rules. Additionally, they 
incorporated (iii) a memory rule to account for the material’s ability to 
"remember" the plastic path that it followed, and (iv) a saturation rule to 
accommodate the eventual levelling off of the hardening phenomena. 
These four rules were defined for both scenarios – with and without 
buckling. The buckling parameters are discussed in Section 2.1.1 of this 
paper, and further details about the cyclic rules can be found in Monti 
and Nuti [13]. 

Gomes and Appleton [15] undertook modifications to the Guif
fre–Menegotto–Pinto model [11], resulting in the creation of a stress–
strain model that incorporates the impact of buckling. The Gomes and 
Appleton buckling model is discussed in Section 3.1.2 of this paper. 
Under cyclic loading, the Gomes–Appleton model directly follows the 
Guiffre–Menegotto–Pinto model in determining unloading path from 
tension and onset of buckling. This indicates that buckling is not 
included in the unloading path and reloading in tension. Further details 
can be found in Gomes–Appleton [15]. 

Rodriguez et al. [52] tested a series of reinforcing bars under 
monotonic cyclic loading. The tests were performed until the specimens 
failed, in all cases under compressive loading. To study the effects of the 
ratio of spacing of lateral supports (L) to bar diameter (D) on rein
forcement stability, tests were performed for L/D ratios of 2.5, 4, 6, and 
8. Using the experimental results, they proposed a procedure for pre
dicting onset of buckling. It is shown that the initiation of buckling 
within a steel rebar, when exposed to hysteresis cycles, might occur 
during unloading from tension. This phenomenon exhibits a notable 
dependency on the peak value attained by the tensile strain before this 
reversal. Under these circumstances, the inception of buckling in a steel 
rebar could potentially take place within the tensile segment of the 
hysteresis cycle. Although this model can approximately predict the 

Fig. 2. Comparison of the available material models for post-buckling response corroded reinforcing bars: (a) L/D = 8% and 23.09% mass loss, (b) L/D = 10% and 
17.96% mass loss, (c) L/D = 15% and 22.2% mass loss, (d) L/D = 20% and 11.68% mass loss. 

Table 2 
Previous studies on modelling inelastic buckling of reinforcing bars under cyclic 
loading.  

Reference Year of 
Study 

Type of Study 

Monti and Nuti[13] 1992 Experimental testing and uniaxial 
material model 

Gomes and Appleton 
[15] 

1997 Uniaxial material model 

Rodriguez et al.[52] 1999 Experimental testing and uniaxial 
material model 

Dhakal and Maekawa 
[17] 

2002 Numerical and uniaxial material model 

Prota et al.[16] 2009 Experimental testing and uniaxial 
material model 

Kunnath et al.[18] 2009 uniaxial material model 
Su et al.[53] 2015 Experimental testing and analytical 

modelling 
Kashani et al.[46] 2015 Experimental testing and uniaxial 

material model 
Yang et al.[54] 2016 uniaxial material model 
Kim and Koutromanos 

[12] 
2016 uniaxial material model  
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onset of buckling under cyclic loading, the stress-strain response does 
not explicitly model the post-buckling response. Furthermore, the 
largest L/D tested in this study is 8, in which buckling has a relatively 
minor impact on the stress-strain response. Further details can be found 
in Rodriguez et al. [52]. 

Dhakal and Maekawa [17] presented a novel cyclic model for rein
forcing bars, designed to rectify the limitations in previous models. Their 
model fulfils the subsequent criteria:  

1) It systematically incorporates the influence of both geometrical and 
mechanical characteristics of the bar on its post-buckling behaviour. 
This applicability extends to bars characterized by diverse material 
properties and a variety of hardening mechanisms.  

2) It follows to the σ = f(ε) structure, a feature that confers notable 
benefits in any non-linear finite element (FE) computations based on 
kinematic approximations, such as displacement-controlled FE 
analysis.  

3) Notably, it is fundamentally dependent on the deformation path, 
including all feasible strain histories.  

4) This model is not only straightforward in formulation but also relies 
on material parameters that are readily obtainable. This facilitates 
effortless implementation and integration into any FE analysis 
program. 

The buckling and post-buckling response of Dhakal and Maekawa’s 
model is discussed in Section 2.1.4 of this paper. They employed Mander 
et al.’s [34]for tension envelope and Guiffre–Menegotto–Pinto model 
[11] for cyclic loading and unloading. They have made some modifi
cation to the Guiffre–Menegotto–Pinto model to account for inelastic 
buckling. Further details can be found in Dhakal and Maekawa [17]. 

Yang et al., 2016 [54] made adjustments to the cyclic steel stress–
strain relationship initially proposed by Gomes–Appleton [15]. These 
modifications aimed to enhance the precision of simulating the 
stress–strain path during inelastic buckling by utilising a simplified 
model based on the equilibrium of a plastic mechanism within a buckled 
bar, comprising four plastic hinges. Subsequently, they introduced an 
adjustment coefficient to further refine the buckled bar stress–strain 
model they developed. For the loading and unloading paths within the 
tension region of stress–strain curves, the Gomes–Appleton model had 
been following the Guiffre–Menegotto–Pinto model, which does not 
account for buckling effects. Consequently, the assumptions regarding 
the plastic hinges in the Gomes–Appleton model were revised from three 
to four, leading to the derivation of an average stress calculation formula 
for buckled reinforcing bars. The introduced adjustment coefficient 
aimed to rectify potential errors arising from deviations in the full plastic 
stress distribution assumption, particularly pertinent to small L/D ratios. 
The proposed model, demonstrated accurate simulation of unloading 
and reloading paths during tension-induced stress–strain behaviour in 
buckled reinforcing bars. To validate the model’s efficacy, it was 
employed for numerical simulations of reversed cyclic tests of 41 spec
imens, including varied L/D ratios, yield strengths, and loading meth
odologies, as conducted by different researchers. A comparison between 
the simulation outcomes and experimental results showed the good 
accuracy and effectiveness of the proposed model. Further details are 
available in Yang et al., 2016 [54]. 

3.1.2. Modelling nonlinear cyclic behaviour of reinforcing bars including 
the effect of buckling and low-cycle fatigue 

Many researchers have investigated the low-cycle fatigue life of 
reinforcing bars in the absence of buckling effects [55,56] [57]. These 
investigations have predominantly employed three approaches to 
characterise the low-cycle fatigue life of these bars: (i) Coffin-Manson 
model [58], (ii) Koh-Stephen model [59], and (iii) energy method 
[60]. It’s worth noting that these models are specifically applicable to 
low-cycle fatigue occurring under conditions of constant amplitude 
loading. To address the cumulative damage resulting from random 

loading histories, Miner’s rule [61] has been utilised (for a more detailed 
discussion, refer to [62]). Among the models mentioned above, the 
Coffin-Manson and Koh-Stephen models have gained prominence 
among researchers due to their simplicity in integration with various 
finite element software packages for seismic analysis of civil engineering 
structures. Both the Coffin-Manson and Koh-Stephen models adopt a 
strain-life approach for representing the low-cycle fatigue life of engi
neering materials. Within this framework, the plastic strain amplitude 
emerges as the most crucial parameter influencing the material’s sus
ceptibility to low-cycle fatigue. The fatigue life as a function of the 
plastic strain amplitude (εp) is described by Coffin-Manson in Eq. (16): 

εp = ε′f
(
2Nf

)c (18)  

where, ε′f is the ductility coefficient i.e. the plastic fracture strain for a 
single load reversal, c is the ductility exponent and 2 Nf is the number of 
half-cycles (load reversals) to failure.Koh-Stephen [59] employed the 
Coffin-Manson for modelling the low-cycle fatigue life of materials 
based on the total strain amplitude (elastic strain + plastic strain) as 
shown in Eq. (17): 

εa = εf
(
2Nf

)α (19)  

where, εf is the ductility coefficient i.e. the total fracture strain for a 
single load reversal, α is the ductility exponent and 2 Nf is the number of 
half-cycles (load reversals) to failure. 

Kunnath et al., 2009 [18] developed a uniaxial material model 
relating equivalent strain and average stress, which implicitly includes 
the geometric effects of longitudinal bar buckling in a reinforced con
crete section. Additionally, low-cycle fatigue failure and damage 
resulting from cyclic deterioration are also incorporated. The proposed 
model employed Chang and Mander model [60] for tension envelope, 
Dhakal and Maekawa buckling [38] for compression envelope, and 
Guiffre–Menegotto–Pinto model [11] for cyclic loading and unloading. 
Coffin-Manson [58] and Miner’s rule [61] are used to model the 
low-cycle fatigue deration of reinforcing bars under cyclic loading. The 
simulation results showed a good agreement with experimental data. 
This refined constitutive material model for reinforcing bars is aimed to 
facilitate a more advanced representation of the cyclic degradation 
behaviour within RC structures. However, the influence of bar buckling 
on low-cycle fatigue degradation of reinforcing bars is not accounted in 
this model. This model is implemented to the OpenSees [4] (Material 
name in the OpenSees is ReinforcingSteel) and is available to be used by 
other researchers. The implemented model in the OpenSees has two 
options for buckling; i.e. Dhakal-Maekawa and Gomes-Appleton models. 

Kim and Koutromanos in 2016 [12] introduced a uniaxial constitu
tive model for reinforcing steel that builds upon the model initially 
proposed by Dodd and Restrepo-Posada in 1995 [63]. This enhancement 
is achieved by eliminating the requirement for iterative processes during 
stress updates. The newly proposed material model includes consider
ations for both the initiation of local buckling and the subsequent 
post-buckling behaviour of reinforcing bars. Particularly, this model is 
endowed with the ability to incorporate the influences of low-cycle fa
tigue and the consequent rupture of reinforcing steel. A distinctive 
feature of this proposed material law is does not require number of cy
cles as the damage variable. Consequently, the need for employing a 
cycle-counting algorithm is obviated. Instead, the model operates on the 
premise that rupture transpires when a scalar damage variable, linked to 
the inelastic work accumulation under tensile stress, surpasses a critical 
threshold. Further details are available in Kim and Koutromanos 2016 
[12]. Similar to Kunnath et al., 2009 [18], this model does not account 
for the influence of inelastic buckling on low-cycle fatigue degradation 
of reinforcing bars. 
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3.1.3. Comparison of the available nonlinear cyclic uniaxial material 
models including the effect of buckling 

Fig. 3 shows a comparison between the ReinforcingSteel model in the 
OpenSess with two different buckling models which was implemented 
by Kunnath et al. [18], and Kashani model. Fig. 3(a) shows that there are 
large differences between the three models. These differences are due to 
the impact of inelastic buckling on cyclic response, which results in 
significant pinching in the stress-strain curves. Although the Reinfor
cingSteel includes two buckling models the formulation does not account 
for this pinching effect. This is because the model is not calibrated 
against bars with large L/D ratios and large strain amplitudes. Fig. 3(b) 
shows the comparison of Kashani model against experimental data. This 
shows that the model is able to capture the pinching response due to 
buckling. It should be noted that Kashani model includes low-cycle fa
tigue degradation too, which is discussed later in Section 3.2 of this 
paper. 

Furthermore, ReinforcingSteel model shows numerical instability for 
large strain amplitudes (beyond ~3% strain), and therefore, it is not 
possible to compare this model with experimental data. 

3.2. Modelling nonlinear cyclic behaviour of reinforcing bars including 
effect of inelastic buckling, corrosion damage, and low-cycle fatigue 
degradation 

Kashani et al. [46] developed a new phenomenological hysteretic 
model that significantly improved the inelastic buckling simulation of 
reinforcing steel with and without corrosion damage. The main feathers 
of this model are:  

i. It accounts for the combined effect of inelastic buckling and low- 
cycle fatigue. 

ii. It accounts for the effect of corrosion damage on inelastic buck
ling and low-cycle fatigue life of reinforcing bars.  

iii. It was calibrated against an extensive set of experimental and 
computational data. 

The proposed model integrates both material nonlinearity and geo
metric nonlinearity arising from buckling, along with low-cycle fatigue 
degradation, into a unified material model. This model is currently the 
most advanced uniaxial material models, accurately tailored for rein
forcing bars, which also accounts for corrosion damage. 

Kashani et al. [51,64] conducted a series experimental testing and 
nonlinear finite element parametric study to investigate the nonlinear 
cyclic behaviour of uncorroded and corroded reinforcing bars. The 
simulations results showed that slenderness ratio of the bars known as 
the L/D ratio beyond 8 in reinforcing bars with yield strength between 
400 MPa and 500 MPa results in a complex pinching effect in the hys
teretic cycles. This is the result of geometrical nonlinearity on the cyclic 
response. Other researchers have also come up with the same conclusion 

based on the experimental results [49,65,66]. This demonstrates a 
consistent cyclic behaviour pattern in reinforcing bars influenced by 
buckling effects. 

Kashani et al. [51] conducted a comparative analysis between the 
existing analytical models and computational results. They conclusively 
demonstrated that the pinching effect arising from geometric nonline
arity is absent in previous analytical models (e.g. ReinforcingSteel model 
in OpenSees). The pronounced pinching phenomenon within hysteretic 
cycles of longitudinal reinforcement plays a crucial role in the cyclic 
deterioration of RC components subjected to seismic loading. Conse
quently, its inclusion is imperative within the material modelling of 
reinforcement for nonlinear analysis of RC structures encountering cy
clic loading. In this model the tension envelope utilises the model 
developed by Balan et al. [67], which constitutes a continuous function 
enabling a continuous shift from the linear elastic to the strain hardening 
zone. This enhancement will support the numerical stability in nonlinear 
finite element analyses. The corrosion in tension is modelled using the 
modification suggested by Du et al. [68,69] (further details are available 
in Kashani et al. [46]). The compression envelope to model the 
post-buckling response of bars including the effect of corrosion damage 
is discussed previously in Sections 2.15 and 2.2 of this paper. 

This phenomenological model employs the fatigue life model in Eq. 
(17) and the methodology proposed by Kunnath et al. [18] to model 
low-cycle fatigue degradation of reinforcing bars under cycling loading. 
Kashani et al. [64,70] studied low-cycle fatigue life of reinforcing bars 
with the effect of corrosion using the available data in the literature. The 
analysis of the data showed that corrosion doesn’t influence the material 
constant εf in Eq. (18). However, corrosion changes the material con
stant α. The relationship between corrosion and the material constant α, 
is described in Eq. (20) below: 

αcorr

α = 1+ 0.004 ψ (20)  

where, αcorr is the material constant of corroded bars. Accordingly the 
value of α in fatigue life model (Eq. (17)) can be replaced with αcorr to 
account for the influence of non-uniform pitting on fatigue life. 

In another study Khashani et al. [62,71] investigated the influence of 
inelastic bucking on low-cycle fatigue life reinforcing bars. They pro
posed a set of empirical equations that modifies the fatigue life model of 
reinforcing bars a function of bar buckling parameter, λp (Eq. (5)) as 
describe below: 

The relationship between the fatigue model parameters and λp is 
defined by empirical Eqs. (21) and (22): 

α = − 0.017 λp − 0.23 (21)  

εf = 0.053 exp
(
0.078 λp

)
+ 0.065 (22) 

The above equations have been implemented to the original model, 
and the updated model is currently the only available phenomenological 

Fig. 3. Comparison of the available nonlinear cyclic material models with the effect of buckling: (a) three of the most common models (DM is Dhakal-Maekawa and 
GA is Gomes-Appleton), and (b) Kashani model and experimental data. 
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material model of reinforcing bars that accounts for inelastic buckling, 
corrosion damage, and influence of inelastic buckling on low-cycle fa
tigue life. 

Fig. 4 shows a comparison between the Kashani and Kunnath 
(ReinforcingSteel in OpenSees) models and experimental data of a 
corroded bar. Here, the modified Dhakal-Maekawa model, as discussed 
in section 3.2.3 of this paper, in used in Kunnath model to account for 
corrosion and buckling. The comparison of the models and experimental 
data shows a good agreement between Kashani model experimental 
data. However, ReinforcingSteel cannot simulate the experimental re
sults. Furthermore, as discussed earlier in section 4.1.3 of this paper, the 
ReinforcingSteel model in the OpenSees has numerical instability in large 
strain amplitudes (>~0.03), and therefore, it is not possible to compare 
this model across the whole hysteretic loops the observed experimental 
data. 

4. Influence of tie reinforcement in global stability of 
longitudinal bars and buckling length calculation 

The initial exploration of longitudinal reinforcement buckling within 
concrete columns was undertaken by Bresler and Gilbert [32]. They 
introduced an approach for estimating the critical load and buckling 
mode. This approach facilitated the design of lateral ties possessing the 
necessary rigidity to prevent bar buckling. In a parallel vein, Scribner 
[72] conducted an analytical study on bar buckling, employing an en
ergy minimisation methodology similar to that used by Bresler and 
Gilbert. The findings revealed that employing ties exceeding the rec
ommendations specified by seismic provisions, only proved effective in 
preventing certain modes of longitudinal reinforcement buckling in el
ements subjected to cyclic inelastic flexure. 

Papia et al. [73] developed a model that utilised a positively sym
metrical shape function to depict the buckled configuration of a longi
tudinal bar. They also accounted for the effects of longitudinal bar 
inelasticity during the buckling process by incorporating a reduced 
modulus. Employing an energy minimisation technique, they calculated 
the values of critical buckling load and critical buckling length. 

Pantazopoulou [74] investigated the influence of tie reinforcement, 
limiting concrete strain in compression, bar diameter, and tie spacing on 
reinforcement stability in RC columns. To calculate this relationship, an 
extensive collection of data including more than 300 column tests was 
compiled from international literature sources. The tests incorporated 
within this collection were executed using repeated axial and flexural 
load reversals, aiming to replicate seismic forces on specimens featuring 
varied configurations of longitudinal and confining steel elements. 

Subsequently, a systematic examination of the comprehensive dataset 
was conducted, seeking to determine from empirical observations the 
critical state at which reinforcement stability becomes acute. This crit
ical stage was found to stand a direct correlation with factors such as the 
constrained average compressive strain and/or the demand for ductility 
in the plastic hinge region. Additionally, the geometry and effectiveness 
of confinement were integral considerations. 

In 2002, Dhakal and Maekawa [39] introduced a straightforward 
and reliable approach for estimating both the buckling length of longi
tudinal reinforcing bars and the likelihood of concrete cover spalling in 
reinforced concrete components. Their methodology requires a 
comprehensive stability analysis that duly accounts for the geometric 
and mechanical properties of the longitudinal reinforcing bars and 
transverse ties. By employing energy principles, they established the 
necessary tie stiffness for protecting longitudinal reinforcing bars 
against multiple buckling modes. A comparison between this calculated 
tie stiffness and the actual value is then utilised to identify the mode of 
stable buckling. The actual buckling length is determined as the product 
of the stable buckling mode and the spacing between ties. To validate 
the efficacy of their proposed approach for buckling length determina
tion, a range of cases is verified against experimental data available in 
the literature. 

Massone and López 2014 [48] investigated the inelastic buckling 
behaviour of reinforcement under monotonic compression loading 
including the effects of tie reinforcement. They used the computational 
model that was originally developed by Massone and Moroder [43] for 
local buckling of reinforcing bars, assuming four plastic hinges. This 
model is modified to include the stiffness of tie reinforcement and core 
concrete expansion pressure over the buckling length of longitudinal 
bars. In contrast to many prior studies, the model presented in this 
research offers a unique feature, in addition to its ability to predict the 
buckling mode, it provides the stress–strain relationship for the buckled 
bars. This stress–strain curve can be effectively employed in both 
sectional and element analyses. Verification of the model against three 
column specimens sourced from existing literature, showed that while 
the exact representation of the buckling mode might not be achieved, a 
reasonable approximation of the overall stress versus strain behaviour 
can still be achieved. The peak stress in this model is predicted with an 
approximately 10% error relative to the experimental outcome, specif
ically for a strain level well captured by the model. Furthermore, the 
model provides a reliable estimate for the post-peak slope, which proves 
valuable in predicting the degradation stage. 

Zong et al., 2014 [20] introduced a beam-on-springs model, applied 
to derive average stress-strain relationships for reinforcement bars 
within reinforced concrete columns of circular cross sections. The model 
parameters were determined through a systematic study that examined 
key factors influencing the buckling behaviour of longitudinal bars. Two 
versions of the model were presented: a general-purpose version and a 
simplified trilinear version designed for immediate use in existing 
nonlinear analysis software. The model effectively predicted the 
post-yield softening response attributed to buckling and verified through 
comparison with real-world observed behaviour. It should be noted that 
modelling and guidelines in this study are specific to columns with 
circular cross sections. Furthermore, the investigation into cyclic 
behaviour and degradation has not been pursued and should be explored 
in future research endeavours. 

Su et al., 2015 [53] presented a simplified buckling model designed 
for columns with rectangular and circular cross sections. The model 
employed stability theory to predict buckling behaviour. To validate its 
effectiveness, six rectangular and five circular RC columns with varying 
reinforcement characteristics were subjected to consistent axial and 
reverse horizontal loads in experimental tests. The proposed simplified 
buckling model verified against experimental data, and its impact on the 
seismic behaviour of RC columns was explored. Through a comparative 
analysis of predicted and measured buckling lengths of longitudinal 
bars, the developed model was shown to accurately predict buckling Fig. 4. Comparison of Kashani and Kunnath models with experimental data.  
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length of both rectangular and circular columns. The model indicated 
that several factors influenced the buckling length of longitudinal bars, 
including the shape of the column cross section, the arrangement of 
reinforcement, the elastic modulus of longitudinal bars, tie reinforce
ment spacing, diameter of longitudinal bars, and tie reinforcement 
diameter. The outcomes of this study suggest that the stiffness of tie 
reinforcement is more pronounced in circular cross sections than in 
rectangular ones. Consequently, longitudinal bars in circular columns 
exhibited a shorter buckling length, contributing to larger hysteresis 
loops in circular columns. Circular columns also showed more ductility 
and energy dissipation capacity compared to their rectangular coun
terparts. Furthermore, the yield strength of tie reinforcement had min
imal impact on the buckling of longitudinal bars. Consequently, under 
low axial loads, the primary failure mode of RC columns is govern by 
longitudinal bar buckling, and high-strength tie reinforcement had 
almost no effect on the seismic performance of RC columns. 

Vecchi and Belletti [75] made some modifications to the original 
Kashani model [46] to account for the influence of tie stiffness on 
average stress-strain behaviour of reinforcing bars in compression. 
These modifications was based on experimental observations and a 
numerical parametric study [76,77] [78,79]. The proposed model was 
successfully implemented in ABAQUS (embedded reinforcement using 
truss element) and verified against experimental data. However, these 
modifications are not based on mechanics, and hence, they need further 
verification before they can be used by other researchers. 

5. Design guidelines for buckling length calculations and anti- 
buckling tie reinforcement 

In 2018, Dhakal and Su [80] introduced a new design criterion aimed 
at mitigating buckling effects. This criterion draws from a widely 
accepted bar buckling model [38,39], utilising a parameter combining 
bar diameter, yield strength, and buckling length to characterise bar 
buckling behaviour. The specified buckling parameter, which limits 
buckling-induced stress loss to a about 15% in compression bars at the 
strain corresponding to design ductility, is determined. By establishing 
this value, the maximum allowable buckling length for a given bar 
diameter and yield strength can be estimated. This length in turn es
tablishes an upper boundary for spacing between transverse ties or 
hoops. The stiffness required to stabilise main bar buckling near the 
positions of transverse ties or hoops is depending on the flexural rigidity 
of the main bars and the buckling length, which can match or be mul
tiples of the spacing between transverse ties or hoops. On the other 
hand, the efficacy of transverse reinforcement in preventing buckling 
depends on their dimensions, quantity, and arrangement. Building on 
this concept, practical design guidelines are formulated for the quantity, 
layout, and spacing of rectangular and circular ties. These guidelines 
ensure that the anti-buckling capacity of the provided transverse rein
forcement surpasses the restraint required to minimise the vulnerability 
of main bars to buckling. Validation of key elements within this method 
was performed through experimental tests available in the literature. 
They have also reviewed the anti-buckling detailing rules in the current 
seismic design codes, and confirmed that the criteria for spacing be
tween the ties or hoops are acceptable. However, none of the current 
seismic design codes account for the stiffness of time or hoop rein
forcement. Therefore, they suggested the following steps that enhances 
the current design procedure. Further details and derivation of the 
equations are available in Dhakal and Su [80]. 

Step 1: Design of transverse reinforcement for shear and 
confinement. 

Step 2: Calculate the buckling length: 

Full ductility : L = 14
D

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

σy
/

100
√ (23)  

Limited ductility : L = 18
D

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

σy
/

100
√ (24)  

Step 3: Check if the spacing of ties, s ≤ buckling length, L in Eq.s (21) 
and (22), If not assume s = LStep 4: Calculate the required stiffness of 
ties, Kt, to prevent buckling as a function of flexural rigidity of longi
tudinal reinforcement: 

Kt = 0.75
π4EIeff

s3 ;EIeff =
EI
2

̅̅̅̅̅̅̅̅
σy

400

√

(25)  

where E, I, and σy are the elastic modulus, second moment of area, and 
yield strength of vertical bars respectively.Step 5: Calculate the stiffness 
of tie for the specific cross section: 

For rectangular sections : Kr =
EtAt

nb

∑nl

i=1

cos2θi

ltie
(26)  

where Et and At are elastic modulus and cross section area of each 
transverse tie leg, nb is the number of longitudinal bars on the side of the 
section that is prone to buckling, nl is the total number of legs provide by 
transverse reinforcement; θi is the angle between the side of the buckling 
face of the section and leg of tie reinforcement, and ltie is length of tie leg 
for the ith leg. The values of nb, nl, ltie, and θi for some common ar
rangements of main bars and lateral ties in square/rectangular cross 
sections are provided in Dhakal and Su [80]. 

For circular sections : Kc =
EtAt

D
1
nb

(27)  

nb = 1+ 2
[

nt

2πcos− 1
(

1 − 2
D
Dc

)]

integer
(28)  

where D is the diameter of longitudinal bars, and Dc is the diameter of 
the RC section. 

Step 6: Check if Kr or Kc ≥ Kt, if not, repeat the Step 5 until this 
condition is satisfied. 

5.1. Influence of corrosion on anti-buckling tie reinforcement 

Kashani et al. [81] developed a set of probabilistic model using a 
lognormal distribution for calculation of geometrical properties of 
corroded bars. Here, the mean value of the lognormal distribution 
models can be used to model the effect of pitting corrosion on the geo
metric properties of corroded bars. Further details and derivation of 
these equations are available in Kashani et al. [81]. 

The Eq. (29) can be used to calculate the average reduced cross 
section area, Aave, of reinforcement considering a linear reduction in 
area as function of percentage mass loss ψ . 

Aave = A0(1 − 0.01 ψ) (29)  

where, A0 is the corresponding original uncorroded cross section area. 
The cross section area allowing for pitting effect (A′) can be calculated 
using the Eq. (30). 

A′ = ϒ Aave (30)  

where, ϒ is the mean value of area pitting coefficient.The minimum 
second moment of area of corroded bars (I′min) can be calculated by 
introducing a pitting coefficient for second moment of area as defined in 
Eq. (31) below: 

I′min = Κ I0 (31)  

where, Κ is the mean value of pitting coefficient of minimum second 
moment of area of the corroded bars, and I0 is the second moment of 
corresponding the uncorroded bar.The mean values of the pitting 
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coefficients (ϒ and Κ) can be calculated using the Eq. (32). 

M(ϒorΚ) = exp
(

μ+
σ2

2

)

(32)  

where, μ and σ are defined in Eqs. (33) and (34) below: 

μ = a ψb (33)  

σ = c ψd (34) 

The values of coefficients a, b, c and d are provided in Table 3 below. 
Finally, the values of σy, D, I, and At should be replaced with σˊyc (Eq. 
(15)), D′ (Eq. (14)), A′ (Eq. (30)), and I′min (Eq. (31)) in Eqs. (23) to (28). 

6. Unresolved issues and future research needs 

Although there are several inelastic buckling models available in the 
literature, there is still no reliable and stable model readily available that 
can simulate the nonlinear cyclic response of RC elements. Currently 
OpenSees and SeismoStruct [4,5] are the most widely used fibre-based 
finite element platforms that have uniaxial material models for rein
forcing bars accounting for buckling. However, these models are not 
numerically stable, and cannot be easily used in the nonlinear seismic 
analyses of RC components. Furthermore, almost all of the available 
models have been developed and calibrated using numerical and 
experimental data of bare reinforcing bars rather than average 
stress-strain behaviour of bars in RC elements. Kashani et al. [77,78] 
calibrated their models for circular and rectangular RC columns, but this 
model is calibrated empirically against experimental data. This is 
because the influence of tie stiffness on average stress-strain response of 
buckled bar under monotonic and cyclic loading should be considered in 
the material model, which is different for circular and rectangular sec
tions. As discussed in Section 4 of this paper, several researchers have 
attempted to address this issue but there is still no model readily 
available that accounts for such interaction. 

Influence of tension strain on the onset of inelastic buckling of bars is 
another important parameters that affects the performance of RC com
ponents under seismic loading. Depending on the strain history, the 
onset of buckling is different. Some of the researchers [82,83] have 
attempted to address this issue, but there is still no model available in 
the literature that is able to capture the influence of tension strain his
tory on the onset of buckling. 

This is mainly because the onset of buckling of longitudinal bars 
inside concrete (at about 0.002 strain for bars with L/D>8) is occurring 
prior to the spalling of concrete cover (at about 0.004 strain), and hence, 
it is invisible. Since inelastic buckling of vertical bars is a combined 
material and geometrical nonlinear problem, internal strain gauges 
cannot be used to identify the onset of buckling. Furthermore, as 
mentioned above, inelastic buckling is a load path dependent phenom
enon. The experimental tests can only capture limited cyclic load his
tories, and hence, the path dependency cannot be easily capure in 
experimental data. As a results, the only approach that can be used in 
simulation of inelastic buckling of longitudinal bars inside concrete is 
high-fidelity 3D continuum finite element models such as those reported 
in [20]. 

The abovementioned issues are related to uncrroded reinforcing 

bars. The same issues are valid for corroded reinforcing bars, and 
presence of pitting corrosion makes these issues much more complicated 
to solve. Furthermore, the influence of localised pitting corrosion of tie 
reinforcement on stability and buckling length of longitudinal rein
forcement is yet to be addressed. This is very important parameter, 
which is different for circular and rectangular section. The chloride 
penetration in circular columns is almost uniform in all the bars, how
ever, in rectangular columns the corner bars are subjected to two- 
dimensional chloride penetration from two sides. The two-dimensional 
chloride penetration in corner bars in rectangular sections results in 
more severe corrosion in longitudinal and tie reinforcement [84], and 
hence, they are more vulnerable to buckling. Therefore there is a need 
for further research in corroded RC components to investigate this 
phenomenon in more detail. 

7. Conclusions 

This paper presents a comprehensive review of all the available 
(most widely used) uniaxial material models of reinforcing bars 
including the effects of buckling under monotonic and cyclic loading. A 
comparison between various models and experimental data is presented 
and a critical review on the ability of each model to simulate the 
nonlinear behaviour of reinforcing bars under monotonic and cyclic 
loading is provided. The main outcomes of this state-of-the-art review 
paper can be summarised as follows:  

(1) The existing models can simulate the nonlinear stress-strain 
behaviour of reinforcing bars under monotonic cyclic loading 
including inelastic buckling. However, there is a need for signif
icant model calibration for such models to be able to use them in 
simulating the nonlinear seismic behaviour of RC components.  

(2) There is a need for further research to account for the influence of 
transverse tie reinforcement on the average cyclic stress-strain 
behaviour of longitudinal bars after onset of buckling (pinching 
response).  

(3) The specific anti-buckling rules in the current seismic design 
codes do not account for the stiffness of tie reinforcement. The 
simplified rules provided in Section 5 can be used to improve the 
current design practice.  

(4) The impact of pitting corrosion on nonlinear stress-strain 
behaviour of reinforcing bars in compression and cyclic loading 
needs further research. The location of pitted section along the 
bar has significant impact on the nonlinear cyclic response of 
corroded bars.  

(5) The impact of inelastic buckling on low-cycle fatigue failure of 
reinforcing bars need further refinement. The existing fatigue 
models are all based on experimental tests of bare reinforcing 
bars. As mentioned in conclusion (2), the average stress-strain 
response of reinforcing bars in concrete is affected by the stiff
ness of tie reinforcement. This has a significant impact on low- 
cycle fatigue degradation of longitudinal reinforcing bars, and 
hence, it requires further research.  

(6) The impact of corrosion on low-cycle fatigue failure of reinforcing 
bars with and without the effect of buckling needs further 
research. In this context, the bar diameter is very important as it 
might affect the pitting corrosion pattern as well as low-cycle 
fatigue life.  

(7) The conclusion (2) to (4) are applicable to corroded reinforcing 
bars and RC component too. However, pitting corrosion makes 
these issues much more complicated, and hence, further exten
sive experimental testing is required to investigate these issues.  

(8) This review paper is limited to simulating inelastic buckling of 
reinforcing bars under monotonic compression and cyclic loading 
including low-cycle fatigue (with and without the present of 
corrosion damage). There is a need for a similar paper to compare 
their performance of these models when they are implemented in 

Table 3 
Probabilistic model parameters in Eqs. (31) and (32).  

Model Parameter a b c d 
ϒ     
μ -0.000052 1.825   
σ   0.0006491 1.526 
Κ  
μ -0.008811 1.354   
σ   0.001768 1.495  
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RC structural components. Nevertheless, this paper provides a 
comprehensive guidance to other researchers for future research. 
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Appendix A  

Table A1 
Experimental test data and parameters.  

Reference Year of 
Study 

Number of 
Specimens 

Loading D (mm) L/D σy 
(MPa) 

εy εsh 
/εy 

εu /εy σu/ 
σy 

Mander et al. 1984 3 uncorroded Monotonic 16 6,10,15 295 0.00148 16.90 129.00 1.47 
Monti and Nuti 

[13] 
1992 3 uncorroded Monotonic 16 5,8,11 440 0.0024 1.00 16.00 1.40 

Monti and Nuti 
[13] 

1992 3 uncorroded Monotonic 20 5,8,11 440 0.0024 1.00 16.00 1.40 

Monti and Nuti 
[13] 

1992 3 uncorroded Monotonic 24 5,8,11 440 0.0024 1.00 16.00 1.40 

Monti and Nuti 
[13] 

1992 3 uncorroded Cyclic 16 5, 11 440 0.0024 2.90 29.20 1.29 

Monti and Nuti 
[13] 

1992 3 uncorroded Cyclic 20 5, 11 440 0.0024 2.90 29.20 1.29 

Monti and Nuti 
[13] 

1992 3 uncorroded Cyclic 24 5, 11 440 0.0024 2.90 29.20 1.29 

Rodriguez et al. 
[52] 

1999 10 uncorroded Monotonic 16 (machined from 
32 mm bars) 

2.5,4,6,8 449 0.0022 4.05 54.55 1.86 

Rodriguez et al. 
[52] 

1999 26 uncorroded Cyclic 16 (machined from 
32 mm bars) 

2.5,4,6,8 449 0.0022 4.05 54.55 1.86 

Bayrak and Sheikh 
[37] 

2001 7 uncorroded Monotonic 20 4,5,6,7,8,9,10 520 0.0026 3.80 57.70 1.34 

Bae et al.[40] 2005 9 uncorroded Monotonic 25 4,5,6,7,8,9,10,11,12 437 0.0022 4.20 66.80 1.67 
Bae et al.[40] 2005 9 uncorroded Monotonic 32 4,5,6,7,8,9,10,11,12 444 0.0022 4.10 71.80 1.44 
Cosenza and Prota 

[41] 
2006 3 uncorroded 

(smooth bars) 
Monotonic 8 5 to 70 358 0.0018 20.56 119.44 1.25 

Cosenza and Prota 
[41] 

2006 3 uncorroded 
(smooth bars) 

Monotonic 12 5 to 70 327 0.0016 20.00 144.38 1.34 

Cosenza and Prota 
[41] 

2006 3 uncorroded 
(smooth bars) 

Monotonic 14 5 to 70 351.5 0.0021 11.43 107.14 1.26 

Cosenza and Prota 
[41] 

2006 3 uncorroded 
(smooth bars) 

Monotonic 16 5 to 70 321 0.0016 18.75 138.75 1.32 

Prota et al.[16] 2009 1 uncorroded 
(smooth bars) 

Cyclic 8 5 to 
15,20,25,50,75,100 

358 0.0018 20.56 119.44 1.25 

Prota et al.[16] 2009 1 uncorroded 
(smooth bars) 

Cyclic 12 6 to 
15,20,25,50,75,100 

327 0.0016 20.00 144.38 1.34 

Prota et al.[16] 2009 1 uncorroded 
(smooth bars) 

Cyclic 14 7 to 
15,20,25,50,75,100 

351.5 0.0021 11.43 107.14 1.26 

Prota et al.[16] 2009 1 uncorroded 
(smooth bars) 

Cyclic 16 8 to 
15,20,25,50,75,100 

321 0.0016 18.75 138.75 1.32 

Kashani et al.[45] 2013 5 uncorroded and 42 
corroded 

Monotonic 12 5,8,10,15,20 520 0.00247 - 24.42 1.18 

Kashani et al.[45] 2013 3 uncorroded and 40 
corroded 

Cyclic 12 5,10,15 520 0.00247 - 24.42 1.18 

Kashani et al.[46] 2015 30 uncorroded Low-Cycle 
Fatigue 

12 5, 8, 10, 12,15 535 0.00281 10.21 50.89 1.18 

Kashani et al.[46] 2015 30 uncorroded Low-Cycle 
Fatigue 

16 5, 8, 10, 12,15 544 0.00271 6.75 38.38 1.18 

Kashani et al.[46] 2015 12 uncorroded and 
48 corroded 

Low-Cycle 
Fatigue 

12 5,10,15 535 0.00281 10.21 50.89 1.18 

Kashani et al.[50] 2017 6 uncorroded and 5 
corroded 

Monotonic 10 5, 8, 10, 12, 15,20 538 0.00269 12.01 56.80 1.17 

Kashani et al.[50] 2017 6 uncorroded and 10 
corroded 

Monotonic 12 5, 8, 10, 12, 15,20 540 0.00268 11.47 54.03 1.19 

Kashani et al.[50] 2017 6 uncorroded and 6 
corroded 

Monotonic 16 5, 8, 10, 12, 15,20 530 0.00273 9.33 60.37 1.21 

Kashani et al.[50] 2017 6 uncorroded and 7 
corroded 

Monotonic 20 5, 8, 10, 12, 15,20 530 0.00258 9.02 55.66 1.19 

Imperatore and 
Rinaldi[49] 

2019 10 uncorroded and 
36 corroded 

Monotonic 16 5, 8, 10,15,20 520 0.00272 9.34 51.47 1.19 

Kashani et al.[71] 2019 30 uncorroded Low-Cycle 
Fatigue 

10 5, 8, 10, 12, 15 538 0.00269 12.01 56.80 1.17 

Kashani et al.[71] 2019 30 uncorroded Low-Cycle 
Fatigue 

12 5, 8, 10, 12, 15 540 0.00268 11.47 54.03 1.19 

(continued on next page) 
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Table A1 (continued ) 

Reference Year of 
Study 

Number of 
Specimens 

Loading D (mm) L/D σy 
(MPa) 

εy εsh 
/εy 

εu /εy σu/ 
σy 

Kashani et al.[71] 2019 30 uncorroded Low-Cycle 
Fatigue 

16 5, 8, 10, 12, 15 530 0.00273 9.33 60.37 1.21 

Kashani et al.[71] 2019 30 uncorroded Low-Cycle 
Fatigue 

20 5, 8, 10, 12, 15 530 0.00258 9.02 55.66 1.19 

σy = yield sress, σu = ultimate sress, εy = yield strain, εu = strain at ultimate stress, εsh = strain at strain hardening point. 
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[48] L.M. Massone, E.E. López, Modeling of reinforcement global buckling in RC 
elements, Eng. Struct. 59 (2014) 484–494, https://doi.org/10.1016/j. 
engstruct.2013.11.015. 

[49] S. Imperatore, Z. Rinaldi, Experimental behavior and analytical modeling of 
corroded steel rebars under compression, Constr. Build. Mater. 226 (2019) 
126–138, https://doi.org/10.1016/j.conbuildmat.2019.07.109. 

[50] M.M. Kashani, Size effect on inelastic buckling behavior of accelerated pitted 
corroded bars in porous media, J. Mater. Civ. Eng. 29 (2017), https://doi.org/ 
10.1061/(ASCE)MT.1943-5533.0001853. 

[51] M.M. Kashani, L.N. Lowes, A.J. Crewe, N.A. Alexander, Finite element 
investigation of the influence of corrosion pattern on inelastic buckling and cyclic 
response of corroded reinforcing bars, Eng. Struct. 75 (2014) 113–125, https://doi. 
org/10.1016/j.engstruct.2014.05.026. 

[52] Mario Rodriguez B.E., Botero J.C., Villa J. Cyclic stress-strain behavior of 
reinforcing steel including effect of buckling. n.d. 

[53] J. Su, J. Wang, Z. Bai, W. Wang, D. Zhao, Influence of reinforcement buckling on 
the seismic performance of reinforced concrete columns, Eng. Struct. 103 (2015) 
174–188, https://doi.org/10.1016/j.engstruct.2015.09.007. 

[54] H. Yang, Y. Wu, P. Mo, J. Chen, Improved nonlinear cyclic stress-strain model for 
reinforcing bars including buckling effect and experimental verification, Int. J. 
Struct. Stab. Dyn. 16 (2016), https://doi.org/10.1142/S0219455416400058. 

[55] J.B. Mander, F.D. Panthaki, A. Kasalanatp, Low-cycle fatigue behavior of 
reinforcing steel, J. Mater. Civ. Eng. 6 (1993) 453–468. 

M.M. Kashani                                                                                                                                                                                                                                   

http://refhub.elsevier.com/S0950-0618(23)04353-2/sbref1
http://refhub.elsevier.com/S0950-0618(23)04353-2/sbref1
http://refhub.elsevier.com/S0950-0618(23)04353-2/sbref2
http://refhub.elsevier.com/S0950-0618(23)04353-2/sbref2
http://refhub.elsevier.com/S0950-0618(23)04353-2/sbref3
http://refhub.elsevier.com/S0950-0618(23)04353-2/sbref3
http://refhub.elsevier.com/S0950-0618(23)04353-2/sbref4
http://refhub.elsevier.com/S0950-0618(23)04353-2/sbref4
http://refhub.elsevier.com/S0950-0618(23)04353-2/sbref5
http://refhub.elsevier.com/S0950-0618(23)04353-2/sbref5
http://refhub.elsevier.com/S0950-0618(23)04353-2/sbref6
http://refhub.elsevier.com/S0950-0618(23)04353-2/sbref6
http://refhub.elsevier.com/S0950-0618(23)04353-2/sbref6
http://refhub.elsevier.com/S0950-0618(23)04353-2/sbref6
https://doi.org/10.1061/(asce)st.1943-541x.0001593
https://doi.org/10.1061/(asce)st.1943-541x.0001593
http://refhub.elsevier.com/S0950-0618(23)04353-2/sbref8
http://refhub.elsevier.com/S0950-0618(23)04353-2/sbref8
https://doi.org/10.14359/11644
http://refhub.elsevier.com/S0950-0618(23)04353-2/sbref10
http://refhub.elsevier.com/S0950-0618(23)04353-2/sbref10
https://doi.org/10.1080/13632460902837686
http://refhub.elsevier.com/S0950-0618(23)04353-2/sbref12
http://refhub.elsevier.com/S0950-0618(23)04353-2/sbref12
http://refhub.elsevier.com/S0950-0618(23)04353-2/sbref13
http://refhub.elsevier.com/S0950-0618(23)04353-2/sbref13
http://refhub.elsevier.com/S0950-0618(23)04353-2/sbref14
http://refhub.elsevier.com/S0950-0618(23)04353-2/sbref14
https://doi.org/10.1061/(asce)st.1943-541x.0000808
https://doi.org/10.1061/(asce)st.1943-541x.0000808
https://doi.org/10.1016/j.engstruct.2017.10.020
https://doi.org/10.1016/j.engstruct.2017.10.020
https://doi.org/10.1016/j.engstruct.2014.06.043
https://doi.org/10.1016/j.engstruct.2022.114037
https://doi.org/10.1080/19648189.2021.1896582
https://doi.org/10.1080/19648189.2021.1896582
https://doi.org/10.1007/s10518-020-00883-3
https://doi.org/10.1007/s10518-020-00883-3
https://doi.org/10.1080/15732479.2017.1359631
https://doi.org/10.1080/15732479.2017.1359631
https://doi.org/10.1061/(asce)be.1943-5592.0001429
https://doi.org/10.1080/15732479.2021.1919148
https://doi.org/10.1080/15732479.2021.1919148
https://doi.org/10.1098/rsta.2020.0290
https://doi.org/10.1098/rsta.2020.0290
http://refhub.elsevier.com/S0950-0618(23)04353-2/sbref25
http://refhub.elsevier.com/S0950-0618(23)04353-2/sbref26
http://refhub.elsevier.com/S0950-0618(23)04353-2/sbref27
http://refhub.elsevier.com/S0950-0618(23)04353-2/sbref27
http://refhub.elsevier.com/S0950-0618(23)04353-2/sbref28
http://refhub.elsevier.com/S0950-0618(23)04353-2/sbref28
http://refhub.elsevier.com/S0950-0618(23)04353-2/sbref29
http://refhub.elsevier.com/S0950-0618(23)04353-2/sbref29
http://refhub.elsevier.com/S0950-0618(23)04353-2/sbref30
http://refhub.elsevier.com/S0950-0618(23)04353-2/sbref30
http://refhub.elsevier.com/S0950-0618(23)04353-2/sbref31
http://refhub.elsevier.com/S0950-0618(23)04353-2/sbref31
https://doi.org/10.1061/ASCE0733-94452002128:91139
https://doi.org/10.1061/ASCE0733-94452002128:91139
http://refhub.elsevier.com/S0950-0618(23)04353-2/sbref33
http://refhub.elsevier.com/S0950-0618(23)04353-2/sbref33
https://doi.org/10.1061/(asce)0733-9445(2005)131:2(314)
http://refhub.elsevier.com/S0950-0618(23)04353-2/sbref35
http://refhub.elsevier.com/S0950-0618(23)04353-2/sbref35
https://doi.org/10.1680/macr.2006.00004
https://doi.org/10.1016/j.engstruct.2008.11.019
https://doi.org/10.1016/j.engstruct.2008.11.019
https://doi.org/10.1061/(asce)st.1943-541x.0000414
https://doi.org/10.1061/(asce)st.1943-541x.0000414
https://doi.org/10.1016/j.engstruct.2012.09.034
https://doi.org/10.1016/j.compstruc.2015.04.005
https://doi.org/10.1016/j.compstruc.2015.04.005
https://doi.org/10.1016/j.engstruct.2013.11.015
https://doi.org/10.1016/j.engstruct.2013.11.015
https://doi.org/10.1016/j.conbuildmat.2019.07.109
https://doi.org/10.1061/(ASCE)MT.1943-5533.0001853
https://doi.org/10.1061/(ASCE)MT.1943-5533.0001853
https://doi.org/10.1016/j.engstruct.2014.05.026
https://doi.org/10.1016/j.engstruct.2014.05.026
https://doi.org/10.1016/j.engstruct.2015.09.007
https://doi.org/10.1142/S0219455416400058
http://refhub.elsevier.com/S0950-0618(23)04353-2/sbref47
http://refhub.elsevier.com/S0950-0618(23)04353-2/sbref47


Construction and Building Materials 411 (2024) 134634

14

[56] Brown J., Kunnath S.K. Low-Cycle Fatigue Behavior of Longitudinal Reinforcement 
in Reinforced Concrete Bridge Columns. 2000. 

[57] T. Higai, H. Nakamura, S. Saito, Fatigue failure criterion for deformed bars 
subjected to large deformation reversals, Acids Spec. Publ. 237 (2006) 37–54, 
https://doi.org/10.14359/18244. 

[58] S.S. Manson, Fatigue: a complex subject-some simple approximations - both ends of 
the fatigue spectrum are covered in this lecture. On the one hand, the present state 
of understanding of the mechanism is reviewed and the complexity of the process 
observed. On the other hand, some approximations useful in design are outlined 
and their application illustrated, Exp. Mech. 5 (1965), https://doi.org/10.1007/ 
BF02321056. 

[59] S.K. Koh, R.I. Stephens, Mean stress effects on low cycle fatigue for a high strength 
steel, Fatigue Fract. Eng. Mater. Struct. 14 (1991), https://doi.org/10.1111/ 
j.1460-2695.1991.tb00672.x. 

[60] Chang G., Mander J.B. Seismic energy based fatique damage analysis of bridge 
columns - part I - evaluation of seismic capacity. Technical Report NCEER-94–0006 
1994. 

[61] M.A. Miner, Cumulative damage in fatigue, J. Appl. Mech., Trans. ASME vol. 12 
(1945), https://doi.org/10.1115/1.4009458. 

[62] M.M. Kashani, A.K. Barmi, V.S. Malinova, Influence of inelastic buckling on low- 
cycle fatigue degradation of reinforcing bars, Constr. Build. Mater. 94 (2015) 
644–655, https://doi.org/10.1016/j.conbuildmat.2015.07.102. 

[63] L.L. Dodd, J.I. Restrepo-Posada, Model for predicting cyclic behavior of reinforcing 
steel, J. Struct. Eng. 121 (1995) 433–455. 

[64] M.M. Kashani, A.J. Crewe, N.A. Alexander, Nonlinear cyclic response of corrosion- 
damaged reinforcing bars with the effect of buckling, Constr. Build. Mater. 41 
(2013) 388–400, https://doi.org/10.1016/j.conbuildmat.2012.12.011. 

[65] S. Caprili, W. Salvatore, Cyclic behaviour of uncorroded and corroded steel 
reinforcing bars, Constr. Build. Mater. 76 (2015) 168–186, https://doi.org/ 
10.1016/j.conbuildmat.2014.11.025. 

[66] W. Zhang, X. Song, X. Gu, S. Li, Tensile and fatigue behavior of corroded rebars, 
Constr. Build. Mater. 34 (2012) 409–417, https://doi.org/10.1016/j. 
conbuildmat.2012.02.071. 

[67] Toader B., Filippou F.C., Popov E.P. Hysteretic model of ordinary and high-strength 
reinforcing steel. n.d. 

[68] Y.G. Du, L.A. Clark, A.H.C. Chan, Residual capacity of corroded reinforcing bars, 
Mag. Concr. Res. 57 (2005) 135–147. 

[69] a H.C. Chan, L.A. Clark, Y.G. Du, Effect of corrosion on ductility of reinforcing bars, 
Mag. Concr. Res. 57 (2005) 407–419. 

[70] M.M. Kashani, P. Alagheband, R. Khan, S. Davis, Impact of corrosion on low-cycle 
fatigue degradation of reinforcing bars with the effect of inelastic buckling, Int J. 
Fatigue 77 (2015) 174–185, https://doi.org/10.1016/j.ijfatigue.2015.03.013. 

[71] M.M. Kashani, S. Cai, S.A. Davis, P.J. Vardanega, Influence of bar diameter on low- 
cycle fatigue degradation of reinforcing bars, J. Mater. Civ. Eng. (2019) 31, 
https://doi.org/10.1061/(ASCE) MT.1943-5533.0002637. 

[72] C.F. Scribner, Reinforcement buckling in reinforced concrete flexural members, 
ACI J. (1986) 966–973. 

[73] Papia M., Russo G., Zingone G. Instability Of Longitudinal Bars In Rc Columns. n.d. 
[74] S.J. Pantazopoulou, Detailing for reinforcement stability in RC members, J. Struct. 

Eng. 124 (1998) 623–632. 
[75] F. Vecchi, B. Belletti, Capacity assessment of existing RC columns, Buildings 11 

(2021), https://doi.org/10.3390/buildings11040161. 
[76] M.M. Kashani, L.N. Lowes, A.J. Crewe, N.A. Alexander, A multi-mechanical 

nonlinear fibre beam-column model for corroded columns, Int. J. Struct. Integr. 7 
(2016), https://doi.org/10.1108/IJSI-09-2014-0044. 

[77] M.M. Kashani, L.N. Lowes, A.J. Crewe, N.A. Alexander, Nonlinear fibre element 
modelling of RC bridge piers considering inelastic buckling of reinforcement, Eng. 
Struct. 116 (2016), https://doi.org/10.1016/j.engstruct.2016.02.051. 

[78] M.M. Kashani, M.R. Salami, K. Goda, N.A. Alexander, Non-linear flexural 
behaviour of RC columns including bar buckling and fatigue degradation, Mag. 
Concr. Res. 70 (2018) 231–247, https://doi.org/10.1680/jmacr.16.00495. 

[79] M.M. Kashani, C. Málaga-Chuquitaype, S. Yang, N.A. Alexander, Influence of non- 
stationary content of ground-motions on nonlinear dynamic response of RC bridge 
piers, Bull. Earthq. Eng. 15 (2017) 3897–3918, https://doi.org/10.1007/s10518- 
017-0116-8. 

[80] R.P. Dhakal, J. Su, Design of transverse reinforcement to avoid premature buckling 
of main bars, Earthq. Eng. Struct. Dyn. 47 (2018) 147, https://doi.org/10.1002/ 
eqe.2944. 

[81] M.M. Kashani, A.J. Crewe, N.A. Alexander, Use of a 3D optical measurement 
technique for stochastic corrosion pattern analysis of reinforcing bars subjected to 
accelerated corrosion, Corros. Sci. 73 (2013) 208–221, https://doi.org/10.1016/j. 
corsci.2013.03.037. 

[82] M.J. Moyer, M.J. Kowalsky, Influence of tension strain on buckling of 
reinforcement in concrete columns, Acids Struct. J. 100 (2003) 75–85. 

[83] Y. Feng, M.J. Kowalsky, J.M. Nau, Finite-element method to predict reinforcing bar 
buckling in RC structures, J. Struct. Eng. 141 (2015), https://doi.org/10.1061/ 
(asce)st.1943-541x.0001048. 

[84] X. Ge, M.S. Dietz, N.A. Alexander, M.M. Kashani, Nonlinear dynamic behaviour of 
severely corroded reinforced concrete columns: shaking table study, Bull. Earthq. 
Eng. 18 (2020) 1417–1443, https://doi.org/10.1007/s10518-019-00749-3. 

M.M. Kashani                                                                                                                                                                                                                                   

https://doi.org/10.14359/18244
https://doi.org/10.1007/BF02321056
https://doi.org/10.1007/BF02321056
https://doi.org/10.1111/j.1460-2695.1991.tb00672.x
https://doi.org/10.1111/j.1460-2695.1991.tb00672.x
https://doi.org/10.1115/1.4009458
https://doi.org/10.1016/j.conbuildmat.2015.07.102
http://refhub.elsevier.com/S0950-0618(23)04353-2/sbref53
http://refhub.elsevier.com/S0950-0618(23)04353-2/sbref53
https://doi.org/10.1016/j.conbuildmat.2012.12.011
https://doi.org/10.1016/j.conbuildmat.2014.11.025
https://doi.org/10.1016/j.conbuildmat.2014.11.025
https://doi.org/10.1016/j.conbuildmat.2012.02.071
https://doi.org/10.1016/j.conbuildmat.2012.02.071
http://refhub.elsevier.com/S0950-0618(23)04353-2/sbref57
http://refhub.elsevier.com/S0950-0618(23)04353-2/sbref57
http://refhub.elsevier.com/S0950-0618(23)04353-2/sbref58
http://refhub.elsevier.com/S0950-0618(23)04353-2/sbref58
https://doi.org/10.1016/j.ijfatigue.2015.03.013
http://refhub.elsevier.com/S0950-0618(23)04353-2/sbref60
http://refhub.elsevier.com/S0950-0618(23)04353-2/sbref60
http://refhub.elsevier.com/S0950-0618(23)04353-2/sbref60
http://refhub.elsevier.com/S0950-0618(23)04353-2/sbref61
http://refhub.elsevier.com/S0950-0618(23)04353-2/sbref61
http://refhub.elsevier.com/S0950-0618(23)04353-2/sbref62
http://refhub.elsevier.com/S0950-0618(23)04353-2/sbref62
https://doi.org/10.3390/buildings11040161
https://doi.org/10.1108/IJSI-09-2014-0044
https://doi.org/10.1016/j.engstruct.2016.02.051
https://doi.org/10.1680/jmacr.16.00495
https://doi.org/10.1007/s10518-017-0116-8
https://doi.org/10.1007/s10518-017-0116-8
https://doi.org/10.1002/eqe.2944
https://doi.org/10.1002/eqe.2944
https://doi.org/10.1016/j.corsci.2013.03.037
https://doi.org/10.1016/j.corsci.2013.03.037
http://refhub.elsevier.com/S0950-0618(23)04353-2/sbref70
http://refhub.elsevier.com/S0950-0618(23)04353-2/sbref70
https://doi.org/10.1061/(asce)st.1943-541x.0001048
https://doi.org/10.1061/(asce)st.1943-541x.0001048
https://doi.org/10.1007/s10518-019-00749-3

	Inelastic buckling of reinforcing bars: A state-of-the-art review of existing models and opportunities for future research
	1 Introduction
	1.1 Research contribution

	2 Inelastic buckling of reinforcing bars under monotonic loading
	2.1 Modelling inelastic buckling behaviour of reinforcing bar without the effect of corrosion
	2.1.1 Monti–Nuti model
	2.1.2 Gomes–Appleton model
	2.1.3 Cosenza–Prota model
	2.1.4 Dhakal–Maekawa model
	2.1.5 Bae et al. model
	2.1.6 Urmson and Mander model
	2.1.7 Kashani et al. model
	2.1.8 Comparison of the most widely used post-buckling models for reinforcing bars

	2.2 Modelling inelastic behaviour of reinforcing bar with the effect of corrosion
	2.2.1 Kashani et al. model
	2.2.2 Imperatore and Rinaldi model
	2.2.3 Comparison of the available post-buckling models for corroded reinforcing bars


	3 Inelastic buckling of reinforcing bars under cyclic loading
	3.1 Modelling nonlinear cyclic behaviour of reinforcing bars with the effect of inelastic buckling without corrosion
	3.1.1 Modelling nonlinear cyclic behaviour of reinforcing bars including the effect of buckling excluding low-cycle fatigue
	3.1.2 Modelling nonlinear cyclic behaviour of reinforcing bars including the effect of buckling and low-cycle fatigue
	3.1.3 Comparison of the available nonlinear cyclic uniaxial material models including the effect of buckling

	3.2 Modelling nonlinear cyclic behaviour of reinforcing bars including effect of inelastic buckling, corrosion damage, and  ...

	4 Influence of tie reinforcement in global stability of longitudinal bars and buckling length calculation
	5 Design guidelines for buckling length calculations and anti-buckling tie reinforcement
	5.1 Influence of corrosion on anti-buckling tie reinforcement

	6 Unresolved issues and future research needs
	7 Conclusions
	Declaration of Competing Interest
	Data Availability
	Appendix A
	References


