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Abstract—Asynchronous distributed hybrid beamformers
(ADBF) are conceived for minimizing the total transmit
power subject to signal-to-interference-plus-noise ratio (SINR)
constraints at the users. Our design requires only limited
information exchange between the base stations (BSs) of the
mmWave multi-cell coordinated (MCC) networks considered.
To begin with, a semidefinite relaxation (SDR)-based fully-
digital (FD) beamformer is designed for a centralized MCC
system. Subsequently, a Bayesian learning (BL) technique is
harnessed for decomposing the FD beamformer into its analog
and baseband components and construct a hybrid transmit
precoder (TPC). However, the centralized TPC design requires
global channel state information (CSI), hence it results in a high
signaling overhead. An alternating direction based method of
multipliers (ADMM) technique is developed for a synchronous
distributed beamformer (SDBF) design, which relies only on
limited information exchange among the BSs, thus reducing
the signaling overheads required by the centralized TPC design
procedure. However, the SDBF design is challenging, since it
requires the updates from the BSs to be strictly synchronized.
As a remedy, an ADBF framework is developed that mitigates
the inter-cell interference (ICI) and also control the asynchrony
in the system. Furthermore, the above ADBF framework is
also extended to the robust ADBF (R-ADBF) algorithm that
incorporates the CSI uncertainty into the design procedure for
minimizing the the worst-case transmit power. Our simulation
results illustrate both the enhanced performance and the
improved convergence properties of the ADMM-based ADBF
and R-ADBF schemes.

Index Terms—mmWave MIMO, multi cell, coordinated
beamforming, inter-cell interference, CSI uncertainty

I. INTRODUCTION

Millimeter wave (mmWave) technology offers a signifi-
cant promise toward achieving the goal of high throughput
in next-generation wireless networks [1]–[3]. This pivotal
technology however faces tremendous challenges in its prac-
tical realization. This is due to the fact that mmWave signals
suffer from high penetration losses and signal blockage,
which significantly degrades the received signal strength
[4]–[7]. Fortunately, the short wavelength of mmWave fre-
quencies enables a large number of antennas to be tightly
packed into a compact array, in turn enabling highly di-
rectional beamforming which can help to make up for the
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signal loss that occurs during propagation [8], [9]. However,
conventional transceiver designs rely entirely on baseband
(BB) signal processing, which necessitates a separate RF
chain for each of the antennas. This leads to insurmountable
implementation challenges in practice due to the associated
high power requirement, coupled with excessive hardware
complexity. This has prompted the development of the
hybrid MIMO signal processing transceiver architectures as
a viable solution, that employ significantly fewer RF chains
than the number of antenna elements, thereby simplifying
their practical implementation [10]–[13].

Furthermore, the severe signal blockage in the mmWave
regime also leads to both reduced coverage and to signal
quality degradation. The deployment of dense mmWave
networks having small cells and distributed base stations
(BSs) has shown considerable promise toward overcoming
these challenges [14], [15]. In such a deployment, coordina-
tion among the BSs can substantially enhance the spectral
efficiency by reducing the inter-cell interference (ICI) [16],
[17]. In a multi-cell coordinated (MCC) network, multiple
BSs covering different cells are linked to a control unit
(CU) via a fast backhaul network to jointly design the
coordinated beamformers. The performance of coordinated
beamformers designed for MCC systems depends on the
presence of channel state information (CSI) at the BSs.
The level of CSI required for the coordinated beamformer
design varies depending upon the specific implementation.
In general, a centralized design requires global CSI of all the
channels of all the BSs and all the users in the system. By
contrast, distributed methods only require each BS to have
information about its channels to all the users in the MCC
network. This is typically referred to as local CSI in the
literature. Therefore, distributed beamformer design entails a
significantly lower signaling overhead, which is immensely
useful in scenarios having a large number of coordinated
cells.

However, a distributed implementation typically requires
accurate coordination and synchronization among the BSs,
i.e., the information from different BSs required for dis-
tributed coordinated beamformer design must be available
simultaneously at the CU. Furthermore, the CU has to
wait until all the BSs report their respective information.
However, in practice, different BSs often have different
computation and communication delays. Furthermore, the
transmitted updates are also susceptible to packet losses over
the backhaul network. In addition, the BSs may also suffer
from intermittent failures that can perturb their operation.
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All these factors may lead to serious delays in computation
of the beamformer weights at the CU. Finally, even when
timely updates are available, it is a challenge to acquire accu-
rate CSI between the users and BSs due to practical factors,
such as finite-length training sequences used for channel
estimation and the quantized feedback of CSI. The resultant
CSI error degrades the beamformer performance, unless it is
incorporated in the beamformer design. Thus, for improved
performance and to realize the full benefits of mmWave
MCC systems, it is critical to formulate coordinated hybrid
beamformer designs that directly take the asynchronicity
as well as the CSI uncertainty into consideration. A brief
summary of the contributions and of the knowledge-gaps is
presented below.

A. Literature review

Fully Digital TPC Designs: BS coordination in sub-6
GHz MCC systems has been studied in [18]–[21] which
focus on mitigating the inter-cell interference (ICI) and intra-
cell interference. Ng and Huang [18] proposed a cooperative
linear transmit precoding (TPC) technique based on soft
interference nulling (SIN) for MCC networks under the
idealized simplified assumption that both the CSI and data
of all the users in the system is available at each of the
BSs. However, the framework proposed therein requires the
global CSI to be available at each of the BSs and results in
a large amount of information exchange. Hence these results
characterize the best-case performance. Zhang et al., in their
path-breaking work in [19], conceived signal-to-interference
leakage-plus-noise ratio (SILNR) maximization based dis-
tributed linear TPC design techniques for cooperative multi-
cell systems that rely on reduced information exchange
amongst the BSs. Xiang et al. [20] provided coordinated
TPC designs for maximizing the signal-to-interference noise
ratio (SINR), incorporating realistic individual BS power
constraints. He et al. [21] proposed coordinated TPCs for
the maximization of the weighted sum energy efficiency in
multi-cell MIMO systems.

However, all the treatises reviewed above consider the
availability of perfect CSI. But again, due to the afore-
mentioned challenges, acquiring perfect CSI at all the BSs
remains an open challenge in practice. Hence, Several re-
searchers have directed their efforts towards designing a
robust beamformer by accounting for the CSI uncertainty.
Lakshminarayana et al. [22], proposed a robust distributed
TPC design based on the random matrix theory of massive
MIMO MCC networks by minimizing the total transmit
power subject to the realistic QoS constraints of all the users.
Xie et al. [23] proposed an interference alignment based
robust beamformer for incorporating the CSI uncertainty by
minimizing the interference leakage into their power control
problem. Dhifallah et al. [24] proposed robust coordinated
distributed beamforming for transmit power minimization,
while taking into account realistic practical constraints, such
as the QoS, BS power, CSI error, and backhaul capacity.
Chen et al. [25] proposed a power control algorithm for

reducing the average power consumption by also consider-
ing the CSI uncertainty in a MCC network. As a further
development, the authors of [26], [27] considered intelligent
reflecting surface (IRS)-aided mmWave MIMO networks to
improve the performance of the system further. To elaborate,
the authors of [26] proposed a robust transmission scheme
for IRS-aided mobile mmWave networks considering imper-
fect statistical CSI under random blockages. Their proposed
scheme exploited the fact that the angle-of-arrival (AoA)
and angle-of-departure (AoDs) vary slowly in comparison
to the complex path gains of mobile channels. Chen et al.
[27] exploited the dynamic dual-structured sparsity (DDS)
of the angular cascaded mmWave MIMO channel of each
user equipment (UE) to perform channel tracking, hence
significantly reducing the pilot overhead.

Analog and Hybrid Beamforming: A common feature of
all the contributions reviewed above is that they consider
fully-digital (FD) TPC schemes, which need separate RF
chain for each antenna element, hence they are unsuitable
for mmWave MIMO systems. Several researchers have
therefore developed novel techniques based on analog and
hybrid analog-digital beamforming in order to overcome
the above challenge. In [6], the authors proposed a low-
complexity phased-zero forcing (PZF) hybrid TPC scheme
wherein phase-only control is applied in the RF domain,
followed by the design of a low-dimensional BB ZF TPC.
The authors of [28] presented a hybrid TPC design for
both uplink and downlink scenarios by optimizing both
the energy and spectral efficiencies of the system. Further-
more, Michaloliakos et al. [29] presented a cutting-edge
for coordinated analog beamformer designed for mmWave
MIMO MCC systems by maximizing the sum-rate of all
the users considering predefined beam patterns. Sun et al.
[30] proposed a SILNR based regularized zero-forcing (ZF)
hybrid beamformer (HBF), with the goal of interference
mitigation in a mmWave MCC system. As a further advance,
Castanheira et al. [31] obtained the HBF in a distributed
scenario, where the RF TPC is applied at the BSs, while
the BB TPC is used at the CU for joint transmission.
Kumar et al. [32] maximized the weighted sum-rate of a
coordinated blockage-aware hybrid beamformer by exploit-
ing the successive convex approximation (SCA) framework.
Bai et al. [33] conceived a novel cooperative multi-user
(MU) TPC for improving energy efficiency by exploiting the
unique propagation characteristics of the mmWave MIMO
channel. Zhao et al. [34] proposed a robust distributed hybrid
TPC for mmWave multi-cell networks by maximizing the
sum-rate of the system. The authors employed the penalty
dual decomposition (PDD) aided iterative procedure for
circumventing the mathematically intractable nature of their
beamformer design. However, in their proposed scheme,
the CU is required to obtain the CSI estimates of all the
users in the system, which incurs an excessive signaling
overhead. The authors of [35] developed an ADMM-based
synchronous beamformer design for mmWave MCC net-
works. However, the proposed framework therein requires
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TABLE I: List of notations

N Number of cells
Nt Number of transmit antennas at each BS
NRF,n Number of RF chains at nth BS
K Number of users in each cell
snk Information symbol for UEnk

GRF,n RF TPC matrix at BSn

gBB,nk baseband TPC for UEnk

hmnk Channel vector between BSm and UEnk

Γnk SINR of UEnk

γnk Target SINR of UEnk

G Size of dictionary matrix
v Global ICI variable
vn Local ICI variable of BSn

νn Dual variable update of BSn

ΦT Dictionary matrix

a high signalling overhead. Furthermore, the authors of [36]
design a cooperative beamformer for cell-free networks con-
trolled in a centralized fashion, which requires the exchange
of both information symbols and global CSI among the
BSs. This in turn leads to a high signalling overhead. In
[37], the authors proposed a near-interference-free (NIF)
user scheduling framework that leverages directional beams
to avoid any potential interference for mmWave multi-cell
networks by harnessing a hybrid architecture relying on
multiple RF chains at the BSs. As a further development,
the authors of [38] proposed a generalized NIF-based user
scheduling, beam scheduling, and power allocation frame-
work by considering multiple objective functions, i.e., sum-
rate maximization, minimum user rate maximization, and
total transmit power minimization.

However, all the papers reviewed above assume that
the BSs are in perfect coordination and synchronization
with each other and the updates from the different BSs
are available simultaneously at the CU. But again, the
different communication and computation delays associated
with each BS and the packet losses over the backhaul
network lead to serious delays in the computation and action
of the beamformers at the CU. Therefore, to address this
knowledge-gap in the existing research, this paper proposes
a robust asynchronous distributed beamformer (ADBF) for a
multi-user MCC mmWave networks, while considering the
availability of both perfect and imperfect CSI.

B. Contributions

An asynchronous distributed hybrid beamformer (ADBF)
design framework is proposed for minimizing the total
transmit power subject to SINR constraints at the users.
The proposed novel ADBF design framework is capable
of coping with asynchronicity in the system imposed by
network delays and BS failures encountered in distributed
hybrid beamformer designs. In contrast to the coordinated
beamforming of multi-cell mmWave networks [35] and to
cooperative beamforming in cell-free networks [36] that
ignore the synchronicity, the ADBF design also overcomes
the problem of staggering that arises when the updates from
the different BSs arrive at the CU with different delays. First,

a centralized BL-based hybrid TPC design framework is
formulated. Subsequently, an alternating direction method of
multipliers (ADMM)-based synchronous distributed beam-
former (SDBF) design is developed to mitigate the excess
signaling overhead of the centralized design. Finally, we
exploit both the centralized and SDBF designs to formu-
late the ADBF design, while considering both perfect and
imperfect CSI. The contributions of this treatise are boldly
and explicitly contrasted to the literature in Table II and are
summarized below.

• A model is developed for coordinated hybrid beam-
forming in a multi-user MCC mmWave network. Then
our centralized TPC design problem is formulated
by minimizing the transmit power at each BS, while
meeting the SINR requirements for each user, which
is shown to be non-convex. A novel two-step TPC
design technique is proposed for solving the above
problem. First, the FD-TPC is obtained via semidefinite
relaxation (SDR), which converts the above non-convex
problem into a tractable convex optimization problem.
Next, a Bayesian learning (BL)-based framework is
introduced for decomposing the FD-TPC into its RF
and BB constituents [39].

• Subsequently, a SDBF design technique is formulated
for reducing the signalling overhead required by the
centralized TPC design. For achieving this, an ADMM
approach is proposed for our distributed coordinated
beamformer design [40]. Again, the main advantage of
the distributed TPC design is that each BS only has to
exchange local CSI and ICI information, which leads
to significant reduction in the signalling overhead.

• Next, an ADBF design is proposed for overcoming the
challenges of the SDBF design, which requires strict
coordination and synchronization among the BSs. The
novel ADBF design framework proposed in this paper
incorporates asynchronicity in the system to overcome
the challenge of network delays and BS failures for
distributed hybrid beamformer designs. Moreover, the
technique developed has a low signalling overhead,
which makes it appealing for practical implementation.
Hence, the ADBF design presented is novel in the
context of mmWave MCC networks.

• Our analysis is subsequently extended to include a
realistic scenario associated with CSI uncertainty, and
the robust ADBF (R-ADBF) is derived that minimizes
the transmit power for the worst-case channel uncer-
tainty. In addition to being non-convex, the robust
beamformer design optimization problem has infinitely
many constraints arising due to the channel induced
errors. To overcome this challenge, the S-lemma [40]
is invoked for transforming the ADBF optimization
problem into having a finite number of constraints,
which are convex in nature. This renders the problem
mathematically feasible.

• Finally, simulation results are presented to illustrate the
efficiency of the ADBF design compared to that of the
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TABLE II: CONTRASTING OUR CONTRIBUTIONS TO THE EXISTING LITERATURE

[18] [19] [20] [22] [23] [24] [25] [29] [30] [31] [32] [33] [34] [35] [36] Our
mmWave communication X X X X X X X X X
Hybrid architecture X X X X X X X X X
Multi-cell X X X X X X X X X X X X X X X
Multi-user X X X X X X X X X X X X X X X X
Centralized TPC X X X X X X X X X X X X X X X
SDBF X X X X X X X X
Robust design X X X X X X X X
ADBF X

TABLE III: List of acronyms

MCC Multi-cell coordination
CSI Channel state information
BS Base station
ADBF Asynchronous distributed beamformer
R-ADBF Robust asynchronous distributed beamformer
SDBF Synchronous distributed beamformer
SINR Signal-to-interference-noise ratio
QoS Quality of service
BL Bayesian learning
SDR Semidefinite relaxation
TPC Transmit precoder
FD Fully-digital
RFCs Radio frequency chains
ICI Inter-cell interference
ADMM Alternating direction method of multipliers
BB baseband
PSD Positive semidefinite
UE User-equipment
TAs Transmit antennas
AoD Angle of departure

SDBF design and the feasibility of the proposed asyn-
chronous distributed both algorithms with and without
CSI uncertainty.

C. Organization of the paper

The rest of the paper is organized as follows. Section
II introduces the mmWave MIMO MCC system model
and mmWave channel models, followed by our SDR-based
centralized beamformer design. This is followed by our BL-
based hybrid TPC design procedure in Section III. Section
IV describes the ADMM-based ADBF design conceived
for mmWave MCC systems. Subsequently, in Section V
our robust ADBF design is derived for scenarios having
imperfect CSI. The convergence analysis of the proposed
ADBF design is presented in Section VI, followed by our
simulation results characterizing the effectiveness of the
proposed schemes in Section VII and our conclusions in
Section VIII.

Notations: The notation used in this paper is described
here. Boldfaced lowercase x and uppercase X alphabets
are used to represent vectors and matrices, respectively. The
operators E{·} and Tr (X) denote the expectation operator
and trace of the matrix X, respectively. The notations X � 0
and X � 0 represent the fact that the matrix X is positive
semidefinite and positive definite , respectively. The function
rank (X) denotes the rank of a matrix X and the quantity

‖x‖ represents the Euclidean norm of a vector x. The
matrices I and 0 denote the identity matrix and the all-zero
matrix/vector of appropriate dimension, respectively. The
quantities XT and XH denote the transpose and Hermitian.
A brief lists of notations and acronyms are given in Table-I
and III, respectively.

II. MCC MMWAVE SYSTEM MODEL

The mmWave multi-cell downlink system consists of N
cells, wherein each cell has a single BS. The BS in each
cell has Nt transmit antennas (TAs) and NRF,n RF chains
(RFCs) obeying 1 ≤ NRF,n << Nt, and serves K single
antenna user equipment (UE). We consider a multi-cell
coordinated mmWave network in which the BSs are linked to
the control unit through a high-capacity backhaul network, as
shown in Fig. 1. Our objective is to jointly design the coordi-
nated beamformers for mitigating the intra-cell interference
and ICI. Let BSn and UEnk denote the nth BS and the kth
UE in the nth cell for k ∈ K = {1, . . . ,K}. Furthermore,
assume that snk denotes the information symbol intended
for UEnk of average power unity, i.e., E{|snk|2} = 1. The
signal transmitted by BSn can be expressed as

xn =

K∑
k=1

GRF,ngBB,nksnk, ∀n ∈ N , k ∈ K, (1)

where N = {1, . . . , N}, and GRF,n ∈ CNt×NRF,n and
gBB,nk ∈ CNRF,n×1 represent the RF and the BB TPCs,
respectively, employed by BSn for transmission to UEnk.
The signal ynk ∈ C received at the UEnk is splitted
into the desired signal, intra-cell and inter-cell interference
components in (2). where hnmk ∈ CNt is the mmWave
downlink channel spanning from BSn to UEmk and ζnk
denotes the zero-mean symmetric additive complex white
Gaussian noise of variance σ2

nk. From (2), the mathematical
expression for the SINR Γnk of user UEnk is written as

Γnk =

∣∣hHnnkGRF,ngBB,nk
∣∣2{

K∑
i 6=k

∣∣hHnnkGRF,ngBB,ni
∣∣2

+
N∑

m 6=n

K∑
i=1

∣∣hHmnkGRF,mgBB,mi
∣∣2 + σ2

nk

}
. (3)

The propagation environment between the BSm and user
UEnk is modeled as a geometric channel having L mul-
tipath components [11]. Under this model, the channel
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ynk =

desired signal︷ ︸︸ ︷
hHnnkGRF,ngBB,nksnk +

intra-cell interference︷ ︸︸ ︷
K∑
i 6=k

hHnnkGRF,ngBB,nisni +

inter-cell interference︷ ︸︸ ︷
N∑

m 6=n

K∑
i=1

hHmnkGRF,mgBB,mismi +ζnk,∀n, k, (2)

vector hmnk ∈ CNt between the BSm and UEnk can be
expressed as hHmnk =

√
Nt
L

∑L
l=1 αl,mnka

H
T (θTl ), where

the quantities αl and θTl ∈ [0, 2π] denote the channel
gain and AoD, respectively, of the lth multi-path com-
ponent and aT (θTl ) ∈ CNt×1 represents the associated
array response vector corresponding to the uniformly spaced
linear array (ULA), which can be written as aT (θTl ) =

1√
Nt

[
1, e

j 2π
λd
d sin(θTl )

, . . . , e
j 2π
λd

(Nt−1)d sin(θTl )
]T
, where

d denotes the antenna spacing and λd represents the car-
rier wavelength. The centralized TPC design procedure is
detailed below.

A. Centralized beamforming for the MCC system with per-
fect CSI

To satisfy the QoS requirement of the user UEnk, Γnk
must exceed the required target SINR γnk, i.e., Γnk ≥ γnk.
Mathematically, the weighted sum transmit power minimiza-
tion problem of centralized TPC design, while satisfying the
QoS constraints for each user, can be formulated as

min
{GRF,n},{g BB,nk}

N∑
n=1

βn

(
K∑
k=1

‖GRF,ngBB,nk‖2
)

s.t. Γnk ≥ γnk, ∀n, k,

|GRF,n(i, j)| = 1√
Nt
, ∀n,

(4)

where Γnk is as defined in (3) and βn represents the
power weighting factor associated with the nth BS. The
optimization problem in (4) is non-convex in nature due
to the SINR constraints and also owing to the constant
magnitude constraints imposed on the entries of each RF
TPC. This makes the problem difficult to solve. Therefore,
in order to transform it into a tractable problem, a two-step
hybrid TPC design procedure is conceived as next. First,
the FD optimal TPC gnk is obtained using the popular SDR
technique. The FD-TPC gnk obtained from this procedure
is subsequently decomposed into its corresponding RF and
BB components via the BL method. Upon substituting
gnk = GRF,ngBB,nk into (4), the optimization problem can
be equivalently reformulated as

min
{gnk}

N∑
n=1

βn

(
K∑
k=1

Tr
(
gnkgH

nk

))
s.t. Γnk ≥ γnk, ∀n, k, (5)

where ‖gnk‖2 is replaced by Tr
(
gnkg

H
nk

)
. The non-convex

optimization problem above can be transformed into a
convex one via SDR [41], wherein the matrix gnkg

H
nk is

replaced by a rank-1 positive semidefinite (PSD) matrix

Fig. 1: Coordinated downlink beamforming in an mmWave
MCC network.

Gnk � 0, followed by relaxing the unity rank constraint.
The resultant TPC optimization problem can be written as

min
{Gnk}

N∑
n=1

βn

(
K∑
k=1

Tr(Gnk)

)
(6a)

s.t
1

γnk
Tr
(
HnnkGnk

)
−

K∑
i 6=k

Tr
(
HnnkGni

)
≥

N∑
m6=n

K∑
i=1

Tr
(
HmnkGmi

)
+ σ2

nk,∀n, k, (6b)

Gnk � 0,∀n, k, (6c)

where (6) is obtained by expanding the quantity Γnk for
each n, k, and Hmnk = hmnkh

H
mnk. The problem above is

a convex semi-definite program (SDP), which can be solved
efficiently using widely available tools such as CVX [42].
When the solution G∗nk is of rank-1, the optimal beamformer
gnk is determined as the eigenvector corresponding to the
largest eigenvalue of G∗nk, i.e., gnk,opt =

√
λmaxg̃nk, where

g̃nk denotes the eigenvector having a unit-norm correspond-
ing to λmax. However, when G∗nk is not a rank-1 matrix,
the relaxed problem (6) is not equivalent to the original
problem (5). Therefore, the solution obtained by solving (6)
acts as a lower bound for the problem (5). In such cases,
the approximate beamformer can be obtained via Gaussian
randomization [41]. The state-of-the-art BL method can now
be utilized for decomposing the FD-TPC gnk,opt into its
constituents RF and BB TPCs, as detailed in the following
section.
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III. BL-BASED HYBRID PRECODER DESIGN FOR
MMWAVE MCC SYSTEMS

This section presents our hybrid TPC designed for
mmWave MCC networks. To begin with, let Gn,opt =
[gn1,opt,gn2,opt, . . . ,gnK,opt] ∈ CNt×K denote the con-
catenated FD beamformer corresponding to all the users
at BSn. The optimization problem of jointly designing the
BB and RF TPCs GBB,n ∈ CNRF,n×K and GRF,n ∈
CNt×NRF,n , respectively, at BSn, can be expressed as(
G∗BB,n,G

∗
RF,n

)
= arg min

G∗BB,n,G
∗
RF,n

‖Gn,opt −GRF,nGBB,n‖2F

s.t. |GRF,n(i, j)| = 1√
Nt
. (7)

One can now simplify the above problem as follows. Let
FT , [fT (φ1) , fT (φ2) , · · · , fT (φG)] ∈ CNt×G denote
the dictionary matrix of transmit array response, where
ΦT = {φg, ∀1 ≤ g ≤ G} represents the quantized set

of AoD associated with cos(φg) =
2

G
(g − 1) − 1, and

G represents the grid size [43]. It is worth noting that the
columns of the RF TPC can be appropriately selected from
the matrix FT , since the elements in FT meet the constant-
magnitude constraint as specified in (7). In order to achieve
the best approximation of the ideal TPC Gn,opt, the equiv-
alent optimization problem of our centralized coordinated
hybrid beamformer designed for mmWave MCC networks
can be expressed as

arg min
G̃BB,n

∥∥∥Gn,opt − FT G̃BB,n

∥∥∥2
F
,

s.t.
∥∥∥diag

(
G̃BB,nG̃H

BB,n

)∥∥∥
0

= NRF,n, (8)

where G̃BB,n ∈ CG×K represents the intermediate BB TPC.
The constraint

∥∥∥diag
(
G̃BB,nG̃H

BB,n

)∥∥∥
0

= NRF,n is a result
of the fact that there are only NRF,n RFCs, implying that
the matrix G̃BB,n can only have NRF,n non-zero rows. The
parameterized Gaussian prior for the matrix G̃BB,n can be
defined for our BL-based hybrid TPC design as

p
(
G̃BB,n; Γ

)
=

G∏
i=1

p
(
G̃BB,n(i, :); γi

)

=

G∏
i=1

1

πγi
exp

−
∥∥∥G̃BB,n(i, :)

∥∥∥2
γi

 , (9)

where Γ = diag (γ1, . . . , γG) ∈ RG×G represents the hyper-
parameter matrix. As observed from (9), the hyperparameter
γi is assigned to the ith row of the matrix G̃BB,n, which
imposes row sparsity, as seen in the constraint (8). The
posterior density of the matrix G̃BB,n can be expressed as
p
(
G̃BB,n | Gn,opt; Γ

)
∼ CN (S,Ω) in conjunction with

S =
1

σ2
e

ΩFHT Gopt,n and Ω =

(
1

σ2
e

FHT FT + Γ−1
)−1

,

(10)

where S ∈ CG×K and Ω ∈ CG×G represent the a
posteriori mean matrix and the associated covariance matrix,
respectively. Furthermore, σ2

e denotes the approximation
error variance. One can observe that the MMSE estimate,
i.e., the a posteriori mean S, depends on the hyperpa-
rameter matrix Γ. Additionally, the ith row of the matrix
G̃BB,n, denoted by G̃BB,n(i, :), approaches 0 as γi → 0.
Therefore, it can be observed that obtaining the estimate of
G̃BB,n translates into the estimation of the hyperparameter
vector γ = [γ1, . . . , γG]T . The procedure of designing a
hybrid TPC using BL can now be utilized for maximizing
the Bayesian evidence p(Gopt; Γ) by invoking the low-
complexity expectation-maximization (EM) method for de-
termining the γ.

Let us assume that Γ̂
(j−1)

represents the estimate
of the hyperparameter matrix Γ calculated in the
(j − 1)st iteration. The EM framework has two
stages. The expectation stage (E-stage) involves
the evaluation of the log-likelihood function
L
(
Γ | Γ̂

(j−1))
of the hyperparameters, which is given by

E
G̃BB,n|Gn,opt;Γ̂

(j−1)

{
log p

(
Gn,opt, G̃BB,n; Γ

)}
. Next,

the average log-likelihood is maximized with respect to
the hyperparameter vector γ in the maximization stage
(M-stage). Hence, the hyperparameter estimates can be
evaluated by obtaining the solution to the following problem

γ̂(j) = arg max
γ

E

{
log p

(
Gn,opt | G̃BB,n

)
+ log p

(
G̃BB,n; Γ

)}
. (11)

In the above equation, it can be observed that the first term
inside the E{·} operator is independent of the hyperparame-
ter γ, and can therefore be omitted in the following M-stage.
As a result, the equivalent optimization problem of the M-
stage used for determining the hyperparameter estimates can
be framed as

γ̂(j) = arg max
γ

E
G̃BB,n|Gn,opt,Γ̂

(j−1)

{
log p

(
G̃BB,n; Γ

)}
= arg max

γ

G∑
i=1

− log (γi)−

∥∥∥S(j)(i, :)
∥∥∥2 +KΩ

(j)
(i,i)

γi
,

(12)

where S(j) and Ω(j) are obtained from (10) by setting
Γ = Γ̂

(j−1)
. One can now evaluate the gradient of the

objective function (OF) in (12) with respect to γ and
set it equal to zero to obtain the optimal value of the
hyperparameter estimate γ̂

(j)
i . Thus, the estimate of each

hyperparameter in the jth EM-iteration can be formulated

as γ̂(j)i =
1

K

∥∥∥S(j)(:, i)
∥∥∥2 + Ω

(j)
(i,i). On convergence, the

BB and RF TPCs are obtained in the following manner.
Let A contain the NRF,n indices of the hyperparameters
having the highest magnitude. The BB TPC matrix G∗BB,n
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corresponding to the nth BS can be extracted from G̃BB,n

as G∗BB,n = G̃BB,n (A, :). Similarly, the RF TPC G∗RF,n

can be chosen from FT by columns indexed by the set A
as G∗RF,n = FT (:,A).

IV. ASYNCHRONOUS DISTRIBUTED COORDINATED
HYBRID BEAMFORMER (ADBF) DESIGN

This section describes the ADBF design procedure of
MCC mmWave MIMO networks. As part of this process,
the BSs send their information to the CU via backhaul links.
Since the BSs in the mmWave regime are typically densely
deployed with small cell sizes for mitigating the blockage
and propagation losses, BS synchronization is challenging
to achieve, especially with an increase in the network size.
Furthermore, in practice, transmission delays and packet
losses occur frequently, which leads to outdated information
at some of the BSs and further aggravates the problem of
synchronization in such systems. To address these issues, we
develop an ADMM-based ADBF design for MCC mmWave
MIMO networks. To begin with, the ADMM technique is
reviewed next. This is followed by the algorithms conceived
for ADMM-based SDBF and ADBF design.

A. Overview of ADMM

ADMM constitutes a state-of-the-art optimization proce-
dure that integrates the concept of dual decomposition with
that of the augmented Lagrangian method, which is often
employed for solving distributed optimization problems [44].
Hence, the ADMM algorithm typically demonstrates greater
numerical stability and faster convergence compared to the
conventional dual decomposition method, which results in
unbounded sub-problems due to lack of strict convexity [45],
[46]. To demonstrate the concept of ADMM, consider the
following optimization problem that has a separable OF:

min
x∈Rn,z∈Rm

F (x) +G(z) (13a)

s.t. Ax + Bz = y, x ∈ S1, z ∈ S2,, (13b)

where F : Rn 7→ R and G : Rm 7→ R are convex functions,
A ∈ Rp×n , B ∈ Rp×m and y ∈ Rp. S1 ⊂ Rn and S2 ⊂
Rm are non-empty convex sets. The Lagrangian [45] for (13)
is defined as:

Lp(x, z, ξ) = F (x) +G(z) + ξT (Ax + Bz− y)

+
c

2
‖Ax + Bz− y‖2 . (14)

The ADMM comprises the following steps in the ith itera-
tion

x(i+1) = arg min
x∈S1

Lp(x, z
(i), ξ(i)), (15a)

z(i+1) = arg min
z∈S2

Lp(x
(i+1), z, ξ(i)), (15b)

ξ(i+1) = ξ(i) + c(Ax(i+1) + Bz(i+1) − y), (15c)

where c > 0 is the penalty parameter. Note that (15a)
and (15b) are the x-minimization and z-minimization steps,

respectively, and (15c) is the dual variable update equation.
The dual variable ξ is updated via the subgradient method
of [45] with a step size equal to the penalty parameter c.
The ADMM algorithm alternatively performs one iteration
relying on the Gauss-Seidel step [47], followed by the
subgradient update harnessed for improving the convergence
speed. The next section describes the ADMM-based dis-
tributed framework used in SDBF design for MCC mmWave
MIMO networks.

B. Synchronous distributed coordinated hybrid beamformer
design

In order to apply the steps of the ADMM for our
SDBF design, the centralized TPC design problem (6) of
MCC systems is reformulated by introducing the auxiliary
variables vmnk =

∑K
i=1 Tr

(
HmnkGmi

)
and Vnk =∑N

m6=n vmnk,∀m,n, k, where vmnk denotes the inter-BS
interference power emanating from BSm upon UEnk and
Vnk denotes the total interference power imposed by the
nearby BSs upon UEnk. The optimization problem of our
centralized beamformer design in (6) can be reformulated
as

min
{gnk}

N∑
n=1

K∑
k=1

Tr(Gnk), ∀n, (16a)

Gnk � 0, ∀n, k, (16b)

1

γnk
Tr
(
HnnkGnk

)
−

K∑
j 6=k

Tr
(
HnnkGnj

)
≥

Vnk + σ2
nk,∀n, k, (16c)

vmnk =

K∑
i=1

Tr
(
HmnkGmi

)
, ∀m,n, (16d)

Vnk =

N∑
m 6=n

vmnk ≥ 0. (16e)

Observe from the SINR constraint (16c) that each UEnk in
cell n experiences the sum of the interference power Vnk
(16d) from all the other cells rather than being subjected
only to the individual inter-BS interference power vmnk. It is
interesting to observe that exchanging the subindices m and
n has no effect on (16d), and does not alter the optimization
problem. Therefore, upon interchanging the subscripts m
and n in (16d), the constraints in (16b) to (16e) can be
divided into N independent convex sets as follows:
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Cn =

{(
{Gnk}n,k, {Vnk}k, {vnmk}m,k

)∣∣
vnmk =

K∑
i=1

Tr(HnmkGni), ∀m 6= n, ∀k,

1

γnk
Tr(HnnkGnk)−

K∑
j 6=k

Tr(HnnkGnj)

≥ Vnk + σ2
nk, ∀k,

Gnk � 0, Vnk ≥ 0, ∀k

}
,∀n ∈ N . (17)

We additionally define the following new variables:

v =
[
[v121, . . . , v12K ], . . . , [vN(N−1)1, . . . , vN(N−1)K ]

]T
∈ RN(N−1)K , (18)

vn =
[
[Vn1, . . . , VnK ], [vn11, . . . , vn1K ],

. . . , [vnN1, . . . , vnNK ]
]T ∈ RNK+ , ∀n, (19)

where v gathers all the global ICI variables and vn collects
the ICI variables {Vnk}Kk=1 and {vnmk}m,k for m ∈ N\{n}.
The variable vn represents the total interference experienced
by BSn along with the total interference experienced by the
other cells due to BSn. Moreover, we have vn = Wnv,
where Wn ∈ {0, 1}NK×N(N−1)K denotes the linear map-
ping matrix. Hence, (16) can be rewritten as:

min
{Gnk,vn,v}

N∑
n=1

K∑
k=1

βnTr(Gnk)

s.t. ({Gnk}k,vn) ∈ Cn, and vn = Wnv, ∀n. (20)

Upon applying the ADMM technique to (20), the problem
can be recast as

min
{Gnk,vn,v}

{
N∑
n=1

K∑
k=1

βnTr (Gnk) +
c

2

N∑
n=1

‖Wnv − vn‖2
}

s.t. ({Gnk}k,vn) ∈ Cn, and vn = Wnv, ∀n. (21)

Thus, (21) is equivalent to (20). The augmented Lagrangian
of (21) can be recast as

min
{Gnk}k,

vn,pn,n=1,...,M

N∑
n=1

{
K∑
k=1

βnTr(Gnk) +
c

2

∥∥∥Wnv(i) − vn

∥∥∥2
− ν(i)T

n vn

}
s.t.

({
Gnk

}
k
,vn

)
∈ Cn,∀n. (22)

The original problem can now be decoupled into N in-
dependent optimization problems for the design of our
synchronous distributed beamformer. For the nth cell of the
MCC mmWave system, the beamformer design problem can
now be expressed as

{
v(i+1)
n ,Gnk

}
= arg min

{
K∑
k=1

βnTr(Gnk)

+
c(i)

2

∥∥∥Wnv(i) − vn

∥∥∥2 − ν(i)
n

T
vn

}
,

s.t.
({

Gnk

}
k
,vn

)
∈ Cn. (23)

The above optimization problem (23) is convex in nature for
each cell which can readily be solved by employing widely
available tools such as CVX [42]. The update equation for
the dual variables νn can be written as

ν(i+1)
n = ν(i)

n + c(i)
(
Wnv(i+1) − v(i+1)

n

)
, ∀n, (24)

where the intermediate problem of updating the variable
v(i+1) is given by

v(i+1) = arg min
v∈RN(N−1)K

c(i)

2

N∑
n=1

‖vnv − v(i+1)
n ‖2

+

N∑
n=1

ν(i)
n

T
Wnv. (25)

Since the problem (25) is quadratic convex in nature, the
closed-form solution of the problem given in (25) can be
expressed as

v(i+1) = W†
(

ṽ(i+1) − 1

c
ν̃(i)

)
, (26)

where ṽ(i+1) =

[(
v
(i+1)
1

)T
, . . . ,

(
v
(i+1)
N

)T]T
and ν̃(i) =[(

ν
(i)
1

)T
, . . . ,

(
ν
(i)
N

)T]T
. The proposed ADMM-based

distributed beamformer designed for MCC mmWave net-
works is synchronous in nature, since the CU only updates
the global ICI variable v upon receiving the updates from
all the participating BSs in the system. Hence, the procedure
described above is termed SDBF. Note that, given only the
knowledge of the local CSI hnmk, the ADMM steps in (23)
can be solved separately at each BS in a distributed fashion
by only relying on the local CSI. Next, each BS transmits
the updated local information {vn} and ν

(i)
n to the CU. The

global ICI variable v is evaluated iteratively at the CU using
{vn} from (26), which is then further employed for updating
the quantity ν

(i+1)
n in (24) at each BS. The above steps are

summarized in Algorithm 1.
The SDBF algorithm is based on the idealized simplifying

assumption that the updates from all the BSs are synchro-
nized with respect to each other. In other words, in the
SDBF design procedure, the CU must wait for all the BSs to
complete the update of vn before proceeding further. This
can often lead to problems in practice, especially when the
BSs have different delays, arising for example due to packet
losses, communication delays, etc. In such a scenario, the
CU has to wait for the slowest BS to complete its update
before proceeding to the next iteration. This allows the
system to advance only at the rate of updates gleaned from
the slowest BS, which erodes its performance. Additionally,
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the SDBF design completely halts in the event when no
updates are received from some of the participating BSs,
which can arise frequently in practice. In order to overcome
these impediments, we propose an ADMM-based ADBF
design that is robust to BS failures and network delays.

Algorithm 1: SDBF design for mmWave MCC
systems

1 Initialization: i = 0, ν(i)
n = 0,v(i) = 0 and c > 0;

2 while (stopping criterion is not satisfied) do
3 obtain the local ICI iterate {v(i+1)

n } and Gnk in
Eq. (23) ;

4 Transmit the local ICI {v(i+1)
n } and {νn} to the

CU ;
5 CU updates the public ICI value {v(i+1)} using

Eq. (26) ;
6 Update the dual variables {νn} using Eq. (24) ;
7 i← i+ 1;

C. Asynchronous distributed beamformer design

For conceiving an ADBF design, the CU updates the
global ICI variable v upon receiving the local updates vn
from a subset of the BSs. Hence, neither the BSs have to be
synchronized, nor is the CU required to wait for the slowest
BS to respond. As a result, under this asynchronous protocol,
both the CU and the faster BSs can expedite the variable
updates.

As part of this procedure, the CU requires a minimum
of S BS responses for updating the global ICI v, where
1 ≤ S ≤ N . The ADBF reduces to the SDBF, when S =
N . Furthermore, to ensure that all the BSs contribute to
the updates and not only the ones that respond the fastest,
we also enforce a bounded delay condition. Specifically, the
updates from every BS have to be taken into account by the
CU at least once in every τ iterations, where τ ≥ 1 is a
user-defined parameter. A counter τn is maintained by the
CU for each BSn. When the update from BS n arrives at
the CU, the corresponding τn is reset to 1; otherwise, τn
is incremented by 1 as the CU clock i is incremented. Let
Ni ⊆ N denote the index subset of BSs from which the
CU receives variable information during iteration i. Then
we have n ∈ Ni, if the update from BSn has arrived at the
CU in iteration i. For all n ∈ N and iteration i, it must hold
that n ∈ Ni ∪ Ni−1 ∪ . . .∪ Ni−τ+1. This implies that an
update from BS n must have arrived at least once between
iteration i−τ+1 and iteration i [48]. Therefore, the variable
information used by the CU is at most τ iterations old. For
this assumption to hold, at every iteration, the CU is required
to stop and wait for the BSs whose updates have not arrived
for τ − 1 iterations, if any. When τn = τ , the CU stops
updating the global ICI variable until it receives an update
from the nth BS, at which time τn is set to 1. Therefore, the
scenario τn > τ does not arise. In the ADBF design scheme,

the CU also maintains a clock i which starts from zero and
it is incremented by 1 after each update of the variable v.
Similarly, each BS has its own independent clock {in}Nn=1

that starts from zero and it is incremented by 1 after each
dual variable update νn.

D. Local ICI update at the BS

Consider the nth BS at time in. Using the most recent
global ICI update v denoted by ṽ(n) and received by this
BS from the CU, the local ICI vn is updated via solving{

v(in+1)
n ,Gnk

}
= arg min

{
K∑
k=1

βnTr(Gnk)

+
c(in)

2
‖Wnṽ(n)− vn‖2 − ν(in)

n

T
vn

}
,

s.t.
({

Gnk

}
k
,vn

)
∈ Cn, (27)

where the quantity Cn has been defined in Eq. (17). More-
over, since the system is asynchronous in nature, the ṽ(n)
are in general different. In other words, some BSs may be
using out-of-date versions of the global ICI variable v. The
quantities v

(in+1)
n and ν(in)n are transmitted next to the CU.

Following this, the nth BS waits for the next global ICI
update v from the CU before undertaking further processing.

E. Global ICI update by the CU

When both the bounded delay condition is met and S BS
updates arrived, as described in Section IV-C, the CU can
proceed with the update of the global ICI variable v. The
global ICI variable v can be updated as

v(i+1) = W†
(

ṽ(i+1) − 1

c
ν̃(i)

)
(28)

where ṽ(i+1) =
[
(v̂1)

T
, . . . , (v̂N )

T
]T

and ν̃(i) =[(
ν̂
(i)
1

)T
, . . . ,

(
ν̂
(i)
N

)T]T
, where v̂n, ν̂n are the most re-

cent updates received from the nth BS at the CU. Since as
few as S fresh updates might have been received, the update
in (28) is still based on {v̂n, ν̂n} ,∀1 ≤ n ≤ N . Therefore, it
is possible that many of the updates {v̂n, ν̂n} are outdated.
The CU clock is subsequently incremented by 1, and the
updated quantity v(i+1) is transmitted to only those BSs
that have sent updates in the ith iteration. Hence, the BSs
whose updates are not received by the CU in this iteration
will not be aware of this recently updated quantity v(i+1).
The steps for calculating the global ICI update v(i+1) at the
CU are given in Algorithm 2.

F. Dual variable update procedure at the BS

Once the nth BS receives the global ICI update v(i+1), it
updates the dual variable as follows:

ν(i+1)
n = ν(i)

n + c(i)
(
Wnṽ − v(in+1)

n

)
, ∀n. (29)

The steps required for calculating the local BS updates vn at
the nth BS are given in Algorithm 3. The BS then increments
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Fig. 2: Flow-chart of the ADBF design for an N -cell scenario

the local clock in by one and the procedure is repeated
from step 3 onward in Algorithm 3 until the difference
between the (i−1)st and ith iterations becomes lower than an
acceptable tolerance threshold. The flow chart of the ADBF
design procedure is displayed in Fig. 2 to provide a visual
representation. Finally, utilizing the BL-technique developed
in Section II, the corresponding hybrid TPC can once again
be derived.

Algorithm 2: Gobal ICI update by the CU

1 Initialization:i = 0,v̂n = 0, ν̂n = 0, n = 1, 2, ..., N
while updates received from at least S BSs and
τn ≤ τ, ∀n. do

2 if BS n has transmitted local updates then
3 τn ← 1;
4 v̂n ← vn (newly received local ICI update

from BS n);
5 ν̂n ← νn (newly received dual variable

update from BS n)
6 else
7 τn ← τn + 1;

8 update v(i+1) using (28);
9 broadcast v(i+1) to BSs that have sent updates in

the current iteration;
10 i← i+ 1;

V. ROBUST ASYNCHRONOUS DISTRIBUTED
BEAMFORMER DESIGN FOR IMPERFECT CSI

In the previous sections, we developed our ADBF de-
signed for MCC systems considering that the true knowledge
of CSI is available at each BS. However, frequently, only
imperfect CSI is available as a result of the errors arising
due to channel estimation, CSI quantization and feedback,
which are inevitable in practical systems. To overcome the
effects described above, this section extends our framework
for robust ADBF designs to consider also realistic scenarios

Algorithm 3: ADBF design for mmWave MCC
systems

1 Initialization: in=0, ν(in)n = 0,v(in) = 0 and c > 0;
2 while stopping criterion is not satisfied do
3 Obtain the local ICI iterate v

(i+1)
n using (27);

4 Transmit the local ICI v
(i+1)
n and ν(i)n to the CU;

5 if (global ICI v(i+1) update has been received
from the CU) then

6 update the dual variables ν(in)n using (29)
respectively;

7 else
8 wait;

9 in ← in + 1;

associated with imperfect CSI. To achieve this goal, let the
quantities ĥmnk ∈ CNt , ∀m,n denote the estimated CSI
modeled as hmnk = ĥmnk + ξmnk. The quantity hmnk
denotes the true underlying CSI, which is unknown, and the
quantity ξmnk ∈ CNt represents the CSI error that can be
modeled as ξHmnkRmnkξmnk ≤ 1, where Rmnk represents
a positive definite matrix. This is the popular ellipsoidal
channel estimation error model described in [40]. When
Rmnk = ε−2mnkINt , where ε2mnk > 0, the ellipsoidal reduces
to the well-known spherical model of CSI uncertainty,
formulated as ‖ξmnk‖

2 ≤ ε2mnk. The robust centralized
coordinated TPC design problem that requires the minimum
transmit power, while ensuring that the SINR constraint is
satisfied for each user for even the most adverse channel in
each uncertainty ellipsoid, can be expressed as

min
{GRF,n},{gBB,nk}

N∑
n=1

βn

(
K∑
k=1

‖GRF,ngBB,nk‖2
)

s.t. Γnk ≥ γnk, ∀ ξHmnkRmnkξmnk ≤ 1,∀m,n, (30a)

|GRF,n(i, j)| = 1√
Nt
, ∀n, (30b)
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where Γnk is defined in (31). Note that the constraints (30b)
are non-convex in nature and hence the problem is difficult
to solve. To make the problem tractable, similar to Section
II-A, we begin with the design of the FD-TPC by setting
GRF,ngBB,nk = gnk. Using this substitution, the SINR
constraint of each UE can be written as

(
ĥHnnk+ξ

H
nnk

) 1

γnk
gnkg

H
nk−

K∑
i 6=k

gnig
H
ni

(ĥnnk+ξnnk

)

≥
N∑

m 6=n

(
ĥHmnk+ξ

H
mnk

)( K∑
i=1

gmig
H
mi

)
(ĥmnk+ξmnk) + σ2

nk,

∀ ξHmnkRmnkξmnk ≤ 1,∀n, k. (32)

Once again the SDR framework can be employed, wherein
gnkg

H
nk is replaced by the PSD matrix Gnk � 0 followed

by the relaxation of the rank constraint. The above constraint
then becomes:

(
ĥHnnk+ξ

H
nnk

) 1

γnk
Gnk−

K∑
i 6=k

Gni

 (ĥnnk+ξnnk)

≥
N∑

m6=n

(ĥHmnK+ξHmnk)

(
K∑
i=1

Gmi

)(
ĥmnk+ξmnk

)
+ σ2

nk,

∀ ξHmnkRmnkξmnk ≤ 1, ∀n, k, and Gnk � 0. (33a)

The SINR constraints of (33) can be rewritten as

min
ξHnnkRnnkξnnk≤1

(̂
hHnnk + ξHnnk

) 1

γnk
Gnk −

K∑
i6=k

Gni


×
(
ĥnnk + ξnnk

)
≥

N∑
m 6=n

{
max

ξHmnkRmnkξmnk≤1

(̂
hHmnk+ξHmnk

)

×

(
K∑
i=1

Gmi

)(
ĥmnk+ξmnk

)}
+ σ2

nk. (34)

In the above expression, the right-hand term for each m
represents the worst-case ICI power arriving from BSm at
UEnk, ∀ m ∈ N\{n}. Therefore, by defining the slack
variable vmnk as

vmnk = max
ξHmnkRmnkξmnk≤1

(
ĥHmnk + ξHmnk

)(K∑
i=1

Gmi

)
(̂
hmnk+ξmnk

)
, (35)

the constraints can be reformulated as

(̂
hHnnk + ξHnnk

) 1

γnk
Gnk−

K∑
i 6=k

Gni

(ĥnnk + ξnnk)

≥
M∑
m 6=n

vmnk + σ2
nk, ∀ ξHnnkRnnkξnnk ≤ 1,∀n, k, (36a)

(
ĥHmnk + ξHmnk

)( K∑
i=1

Gmi

)(
ĥmnk + ξmnk

)
≤ vmnk,∀ ξHmnkRmnkξmnk ≤ 1,∀m 6= n, k, (36b)
Gnk � 0. (36c)

Even though the constraints in (36) above are convex, it
is mathematically intractable to evaluate the optimal TPC
due to the presence of infinitely many SINR constraints,
namely one for each value of ξmnk. However, these infinitely
many constraints can be reduced into a few constraints by
employing the S-lemma [40], as given below.

Lemma 1. Let X, Y ∈ CN×N denote complex Hermitian
matrices, and a ∈ CN , b ∈ CN and d ∈ R. The following
condition

aHXa + bHa + aHb + d ≥ 0, ∀ aHYa ≤ 1,

holds true if and only if there exists a value of λ ≥ 0 so

that
[
X + λY b

bH d− λ

]
� 0.

In order to apply the S-lemma, set x = ξmnk and B =
Rmnk. The constraints in (36a) and (36b) can be recast as
the linear matrix inequalities, which are given as

Φnk

(
{Gni}Ki=1, {vmnk}m, λnnk

)
, Φnk � 0,

Ψmnk

(
{Gmi}Ui=1, vmnk, λmnk

)
, Ψmnk � 0, (37)

where the matrices above are defined as

Φnk ,

[
I

ĥHnnk

] 1

γnk
Gnk −

K∑
i 6=k

Gni

[I ĥnnk
]

+

λnnkRnnk 0

0 −σ2
nk −

N∑
m 6=n

vmnk − λnnk

 , (38)

Ψmnk ,

[
I

ĥHmnk

]− N∑
m 6=n

Gmk

[I ĥmnk
]

+

[
λmnkRmnk 0

0 vmnk − λmnk

]
. (39)

The optimization problem for the robust centralized beam-
former design can now be recast as:

min
{Gnk},{λmnk},{vmnk}

N∑
n=1

βn

(
K∑
k=1

Tr(Gnk)

)
s.t. Φnk � 0, Ψmnk � 0,∀m 6= n, (40a)

Gnk � 0, and λmnk ≥ 0,∀n, k,m. (40b)



12

Γnk =

∣∣∣∣(ĥnnk + ξnnk

)H
GRF,ngBB,nk

∣∣∣∣2
K∑
i 6=k

∣∣∣∣(ĥnnk + ξnnk

)H
GRF,ngBB,ni

∣∣∣∣2 +
N∑

m 6=n

K∑
i=1

∣∣∣∣(ĥmnk + ξmnk

)H
GRF,mgBB,mi

∣∣∣∣2 + σ2
nk

. (31)

Note that the optimization problem in (40) is a SDP that can
be efficiently evaluated similar to (6) described in Section II.
Following this, the principal eigenvector of the matrix Gnk

having a unit-norm can be chosen as the optimal solution
gnk,opt, and the associated hybrid TPC can be designed
by employing the BL-method developed in Section II. The
ADMM-based robust asynchronous distributed beamformer
(R-ADBF) design relying on imperfect CSI knowledge is
described next.

A. Robust ADBF design

To begin with, one can interchange the subscripts m
and n in Ψmnk without changing the original prob-
lem, therefore, the matrix Ψmnk can be rewritten as
Ψnmk

(
{Gni}Ki=1, vnmk, λnmk

)
� 0,∀m 6= n, k. Follow-

ing this, the constraints in (40) can be decomposed into N
independent convex sets as

Cn=

{(
{Gnk}k, {λnmk}m,k, {Vnk}k, {vnmk}m,k

)
|

Φnk �0,∀k, Ψnmk �0,∀m 6= n, k,

λnmk ≥ 0, Gnk�0, Vnk ≥ 0, ∀m,n, k,

}
,∀n. (41)

The optimization problem in (40) can now be reformulated
as

min
{Gnk},{λnmk},

{vn},v

N∑
n=1

βn

K∑
k=1

Tr(Gnk)

s.t.
(
{Gnk}k, {λnmk}m,k,vn

)
∈ Cn,vn = Wnv,∀n, (42)

which is similar to problem (20). Therefore, Algorithm 1
can now be readily applied for the design of the SDBF
in this scenario having CSI uncertainty, Furthermore, the
ADBF design can be carried out by applying Algorithm
2 and Algorithm 3. Following this, the FD ADBF can be
decomposed into the RF and BB TPC for obtaining the asso-
ciated hybrid ADBF via the BL-method developed in Section
II. Using Algorithm 1, each BS iteratively approaches the
optimal solution until the pertinent ICI information

(
v
(i+1)
n

)
for BSn is cancelled from the ICI information

(
v(i+1)

)
,

formulated Wnv(i+1) = v
(i+1)
n , for all n. It is important to

note that the quantities {Gnk} and {λnmk} obtained in Step-
4 of Algorithm 2 may not be feasible for the primal problem
(42). This is due to the fact that the ADMM algorithm
works in the dual domain, which does not guarantee the
constraint Wnv(i+1) = v

(i+1)
n to hold true prior to reaching

convergence. Nevertheless, each BS can perform additional
optimization, as shown in the problem below

min
{Gnk�0}k,{λmnk≥0}n,k

N∑
n=1

βn

(
K∑
k=1

Tr(Gnk)

)
s.t. Φnk � 0, Ψnmk � 0,∀m 6= n, (43)

by employing the tentatively consented ICI power vector
v(i+1). The quantities {Gnk} and {λnmk} are feasible
for the SDR problem (43), provided that the optimization
problem (43) yields feasible solutions for all the BSs. If at
least one BS declares the infeasibility of (43), additional
iterations of Algorithm 2 are required for convergence, as it
may not have reached a reasonable consensus regarding the
global ICI vector v(i+1). The overhead of backhaul signaling
required for the centralized and ADBF design schemes can
be determined as follows. In the centralized TPC design, the
global CSI for each BS is obtained by exchanging the local
CSI of each BS through backhaul links. The total signaling
overhead for scalar-valued complex channel coefficients in
this case is proportional to 2NtKN (N − 1). Furthermore,
in [35], the overall signalling overhead for the nth BS at any
iteration is given as (N−1)NK. However, for the proposed
ADBF design algorithm, in each iteration of Algorithm 2,
the local variable updates

(
vn(i+ 1)− 1

cνn(i)
)
∈ CNK×1

are transmitted by each BS to the CU, which incurs a
total signaling overhead of NK. Therefore, the signalling
overhead is significantly reduced in comparison to [35] and
the centralized TPC.

A brief analysis of the computational complexity of the
proposed ADBF design and BL scheme is presented next.
The complexity of each scheme is quantified in terms of
complex additions and multiplications. Table-IV and Table-
V details the computational cost of the various steps of
the BL algorithm and ADBF scheme, respectively. One
can observe that the FD ADBF design incurs a complexity
of order O

(
N3
t

)
. Next, the FD TPC is decomposed into

its constituent RF and BB TPCs using the BL algorithm.
This leads to a computational complexity of order O

(
G3
)

due to the matrix inversion of size G × G in (10). Since
G >> Nt, the overall complexity of the ADBF design can
be closely approximated by O

(
G3
)
. On the other hand, the

complexity of state-of-the-art hybrid TPC design method,
i.e., the simultaneous orthogonal matching pursuit (SOMP)
algorithm [3] is of the order of O (NtKG). However, the
SOMP algorithm has a poor performance in comparison
to the BL-based approach, since the performance of the
SOMP algorithm is highly sensitive both to the choice of
the dictionary matrix and to the stopping criterion.
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TABLE IV: Complexity of the BL scheme per-EM-iteration

Operation Complex Multiplications Complex Additions

Ω(j) G3

2
+

3G2

2
+
NtG(G+ 1)

2
+G2 G3

2
−

3G2

2
+

(Nt − 1)G(G+ 1)

2
+G2

G̃
(j)
BB,n GNtK +GK GK(Nt − 1)

γ̂
(j)
i KNRF,n G2 +K

TABLE V: Complexity of ADBF design per-iteration

Operation Complex Multiplications Complex Additions
Algorithm 3:

Step-3 3N3
t + (NK)2 (N − 1) + 2NK

NK (N (N − 1)K − 1) + 3NK
+3N2

t (Nt − 1) + 2NtK

Algorithm 2:
Step-8

3N4K3(Nc−1)2

2
+

N3K3(N−1)3

2
+

3N2K2(N−1)2

2
+2N3K2 (N − 1)

N4K3(N−1)2

2
+

N3K3(N−1)3

2
− N2K2(N−1)2

2
+N4K2 (N − 1)2 +N4K2

Algorithm 3:
Step-5 (NK)2 (N − 1) 2NK

VI. CONVERGENCE ANALYSIS OF THE ADBF DESIGN
ALGORITHM

This section discusses the convergence behavior of the
proposed ADBF design. In general, the arrival of updates
at the CU is random in nature and depends on the number
of BSs participating in the coordinated beamformer design.
Hence, we assume that at any CU in iteration i, the updates
from all the N BSs have an equal probability of arriving
at the CU. Let us assume that the CU clock i and each
BS clock in runs for Q and Qn iterations, respectively. The
individual optimization problem constructed for determining
the beamformer at each BSn is given as follows

fn(v(in+1)
n ,Gnk) = arg min

{
K∑
k=1

βnTr(Gnk)

+
c(in)

2
‖Wnṽ(n)− vn‖2 − ν(in)

n

T
vn

}
,

s.t.
({

Gnk

}
k
,vn

)
∈ Cn, (44)

Since, the information exchange between each BSn and
the CU is in terms of the local ICI vn and global ICI
v, one can simplify fn(v

(in+1)
n ,Gnk) as fn(v

(in+1)
n ) . Let

v̄n = 1
Qn

∑Qn
in=1 vinn denote the average of all the local ICI

updates vn generated throughout Qn iterations by all the
BSs. Let v̄ denote the average of all the global ICI updates
v(i) generated by CU throughout its Q iterations. Next, we
demonstrate that the ADBF design algorithm converges with
the order of O(NτQS ).

Lemma 2. Let (v∗n,v
∗) be the optimal primal solution, and

{ν∗n}
N
n=1 the corresponding optimal dual solution. It follows

that

E
[ N∑
n=1

fn(v̄n)− fn(v∗n) + 〈ν∗n, v̄n −Wnv̄〉
]

≤ Nτ

2QS

{
N∑
n=1

c
∥∥v(n)0 − v∗

∥∥2 +
1

c

∥∥ν0
n − ν∗n

∥∥2} (45)

where v(n)0 and ν0
n are the initial values of the variables

v(n) and νn, respectively, at the BSn.

Proof: To obtain the upper bound of the convergence rate of
ADBF design algorithm, we consider the following worst-
case conditions:
• Only S BS updates out of N are received at CU in any

iteration.
• The probability that the update from BS n belongs to

the set of S updates received at CU in iteration i + 1
Ai+1 is S

N .
• The CU receives each BS updates only once every
τ iterations. As a result, each BS runs for only Q

τ

iterations. Therefore, v̄n = τ
Q

∑Q
τ −1
in=0 vin+1

n .

Note that v̄ = 1
Q

∑Q−1
i=0 vi+1 and

vi+1 = W†
(
ṽ(i+1) − 1

c ν̃
(i)
)

, where

ṽ(i+1) =
[
(v̂1)

T
, . . . , (v̂N )

T
]T

and ν̃(i) =[(
ν̂
(i)
1

)T
, . . . ,

(
ν̂
(i)
N

)T]T
, where v̂n, ν̂n are the most

recent updates received from the nth BS at the CU.
Therefore, v̄ = 1

Q

∑Q−1
i=0 W†

(
ṽ(i+1) − 1

c ν̃
(i)
)

. However,
observe that each BS updates involved in v̄ is repeated τ
times. Therefore, v̄ can be written as an average of global
ICI updates over Q

τ iterations, where each CU iteration will
receive distinct updates from all the BSs, i.e.,

v̄ =
τ

Q

Q
τ −1∑
i=0

vi+1. (46)

The convergence equation for the ADBF design algorithm
can be written as [48], [49]

E

[
N∑
n=1

Q−1∑
i=0

Pr (n ∈ Ai+1)

{
fn (vn)− fn (v∗)

+ (ν∗n)
T

(vn − v)

}]
≤ θ

2
, (47)

where θ =
{∑N

n=1 c
∥∥v(n)0 − v∗

∥∥2 + 1
c

∥∥ν0
n − ν∗n

∥∥2} and
the quantity Pr (n ∈ Ai+1) denotes the probability that the
update from BS n belongs to the set Ai+1. Since, each BS
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runs only for Q
τ iterations, one can rewritten the expression

(47) as

E

[
N∑
n=1

Q
τ −1∑
i=0

S

N

{
fn
(
vi+1
n

)
− fn (v∗)

+ (ν∗n)
T (

vi+1
n − v̂i+1

)}]
≤ θ

2
. (48)

Since fn (vn) are convex functions for each n, following
the Jensen’s inequality one can write

∑Q
τ −1
i=0 fn

(
vi+1
n

)
≥

Q
τ fn(v̄n). Hence, the above equation reduces to

S

N

Q

τ
E

[
N∑
n=1

{
fn (v̄n)− fn (v∗) + (ν∗n)T (v̄n − v̄)

}]
≤ θ

2

(49)

E

[
N∑
n=1

{
fn (v̄n)− fn (v∗) + (ν∗n)T (v̄n − v̄)

}]
≤ Nτ

SQ

θ

2
.

(50)
Therefore, the convergence rate of the proposed asyn-
chronous algorithm is given as O

(
Nτ
QS

)
. which can be

intuitively explained as follows:
• When the number of coordinated cells N is large, the

specific fraction of information shared by each BS is
reduced. This corresponds to the situation wherein the
update from each BS is less influential. Hence, the
number of iterations required for convergence increases.

• A large S corresponds to the scenario that information
from a large fraction of BSs is incorporated in each
CU update in the design of the distributed beam-
former. Therefore, the number of iterations required for
convergence of the ADBF algorithm decreases upon
increasing S.

• Recall that updates from each BS are incorporated by
the CU at least Q

τ times in Q CU iterations. Hence, a
large τ implies that information from the slower BSs is
not utilized by the CU frequently. Thus, the iterations
required for convergence increases upon increasing τ .

VII. SIMULATION RESULTS

This section characterizes the performance of the pro-
posed asynchronous distributed hybrid TPC design consid-
ering both perfect as well as imperfect CSI for mmWave
MCC networks. In the simulation model, we consider an N -
cell network with each BS equipped with Nt TAs, and K
users equipped with a single RA each. The number of RFCs
NRF,n at each BS in a cell is set equal to the number of users
served by that BS. The gains of the multipath components
αl,nmk are assumed to be symmetric complex Gaussian
distributed as N (0, 1). The power priority weight βn is set
to 1, ∀n. The target SINRs for all the UEs are the same, i.e.,
γnk = γ, ∀n, k. Again, the spherical uncertainty model is
considered for the CSI errors, i.e., Rmnu = ε−2mnuIN , where
ε2mnu > 0 denotes the radius of the uncertainty ball. In order
to simulate a realistic asynchronous scenario, we assume that
at any CU iteration i, the update from each BS arrives with

probability p, whereas (1 − p) denotes the probability that
an update is not received at the CU due to either BS failure
or network delay. When p = 1, the ADBF design reduces
to the SDBF design. In our simulation setup, we consider
p = 0.6. Furthermore, we assume that the updates from all
the BSs arrive independently at the CU in each iteration.
For the BL-based hybrid TPC design, the AoD space ΦT

is partitioned into G = 64 angular bins. Additionally, the
maximum number of EM iterations ηmax and the stopping
parameter (ρ) are set as 50 and 10−5, respectively.

Fig. 3a compares the feasibility rate of the proposed SDBF
and ADBF distributed hybrid beamformers for N = 2,
K = 2, S = 1, Q = 20 and τ = 4. The feasibility rate
is defined as the percentage of the number of successful
computations of the corresponding quantities, namely of the
average transmit power and beamformer weights using the
algorithms proposed in (6), (22), (40) and (42). One can
observe that the ADBF design associated with S = 1,
wherein only one BS update is required to update the global
ICI variable v by the CU, achieves the performance of
the SDBF design in which updates from all the BSs are
available at the CU simultaneously. Thus, it can be deduced
that the proposed ADBF technique is capable of effectively
cancelling the ICI with only limited information available
at the CU. Due to transmission delays and packet losses
that might occur when using the backhaul network for
information exchange among the BSs, certain BSs may be
using outdated information, forcing the problem to become
unfeasible. However, bounded delay conditions and the
reliance on only S BS updates used in the algorithm ensure
that the updates from all the BSs are incorporated at regular
time intervals. This guarantees a high feasibility rate for
our ADBF design. Furthermore, the proposed ADBF design
also has a significantly enhanced feasibility rate compared
to the robust TPC design operating without coordination,
which is a non-cooperative beamformer (NCBF) design.
This illustrates the superiority of our coordinated ADBF
design since the beamformer with no coordination among the
BSs fails to cancel the inter-cell interference. Furthermore,
it is interesting to note that the feasibility rate increases
upon increasing the number of BS TAs. This arises because
the mmWave MCC MIMO system and the ADBF design
techniques are able to achieve higher array gain. Fig. 3b
plots the feasibility rate versus channel uncertainty radius ε
for different target SINR values γnk of the proposed ADBF
design in mmWave MCC networks. As anticipated, it can
be observed that the feasibility rate decreases as the CSI
uncertainty increases, since it becomes more challenging
to meet the minimum SINR requirement when the error
radius ε is large. Furthermore, it can also be seen that as the
desired SINR levels increase, the feasibility rate decreases.
This is because the higher SINR demands of the UEs make
it challenging to find a feasible solution that satisfies the
SINR constraints. Despite this, the proposed ADBF design
method still achieves an adequate feasibility rate for high
target SINR values even in the face of high CSI uncertainty.
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Fig. 3: (a) Feasibility rate versus target SINR parameterized by different number of BS TAs for ε = 0.4; (b) Feasibility
rate versus error radius for Nt = 16.

-2 -1 0 1 2 3 4 5 6
Target SINR (dB)

4

6

8

10

12

14

16

18

20

22

24

26

A
v
e

ra
g

e
 T

ra
n

s
m

it
 P

o
w

e
r 

(d
B

m
)

ADBF Perfect CSI

Centralized  = 0.1

ADBF  = 0.1

Centralized  = 0.3

ADBF  = 0.3

NCBF  =  0.1, N
t
 = 16

N
t
 = 8

N
t
 = 16

(a)

0 2 4 6 8
Target SINR (dB)

2

4

6

8

10

12

14

16

18

20

22

24

26

28

A
v
e

ra
g

e
 T

ra
n

s
m

it
 P

o
w

e
r 

(d
B

m
)

ADBF  = 0.1

ADBF  = 0.3

N
t
 = 128

N
t
 = 16

N
t
 = 32

N
t
 = 64

(b)

Fig. 4: Average transmit power versus target SINR for; (a) N = 2, K = 2, S = 1; (b) N = 4, K = 3, S = 3.

Fig. 4a demonstrates the power efficiency of the central-
ized beamformer and ADBF designs versus the desired target
SINR for different number of BS TAs Nt and error radius
ε. It can be observed that as the target SINR increases,
the transmit power must be increased. Nevertheless, as the
number of BS TAs increases, the transmit power required
decreases due to the enhanced array gain provided by the
larger antenna arrays, explicitly highlighting the significance
of having a large number of TAs for enhanced power effi-
ciency. Additionally, it is essential to note that the centralized
and the ADBF designs utilize the same transmit power. This
is because the ADBF design achieves the same performance
as the centralized one in significantly less iterations. Finally,
it can also be observed that the coordinated ADBF design

results in higher power efficiency than the NCBF design at
the same target SINR values. Fig. 4b once again illustrates
the average transmit power (dBm) versus the target SINR
requirement for different values of the CSI error of ADBF
our design for N = 4, S = 3 and K = 3. Although one
can observe that the average transmission power required
increases with an increase in the number of cells and users
due to the increased ICI, it decreases with an increase in
the number of transmit antennas (TAs) at the BSs. This
observation emphasizes the importance of deploying a large
number of TAs in the mmWave regime to achieve an
improved power efficiency.

Fig. 5a and Fig. 5b illustrate the sum transmit power of
the ADBF design by testing 40 randomly generated channel
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Fig. 5: Sum power comparison between centralized and ADBF designs for S = 1, K = 2, τ = 4, Nt = 16, ε = 0.1:
(a) N = 2; (b) N = 3.
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Fig. 6: Normalized power accuracy versus the number of iterations for τ = 4, ε = 0.1 and Nt = 16: (a) N = 2, K = 2;
(b) N = 3, K = 2; (c) N = 4, K = 2.

realizations. The horizontal axes in the figures show the
index of the channel realization. One can observe in 5a that
Q = 20 iterations are adequate for the ADBF algorithm to
achieve a performance close to that of the centralized TPC
for N = 2 cells and the performance does not change further
for Q = 40 iterations. Upon increasing the number of cells
to three, as shown in Fig. 5b, Q = 40 iterations are seen to
be adequate for obtaining a near-optimal performance. This
result is similar to that obtained for 80 iterations. Further-
more, the robust ADBF design achieves a performance close
to the perfect CSI scenario.

Let us now define the normalized power accuracy as
|P̂ (i)−P |

P , where P̂ (i) =
∑N
n=1 pn(i) is the sum transmit

power at each iteration i of the distributed beamformer and
P denotes the sum transmit power of the centralized TPC.
Then Fig. 6 plots the power accuracy versus the number of
iterations required for convergence of the proposed coordi-
nated ADBF design. In Fig. 6a, S = 1 and S = 2 correspond
to the ADBF and SDBF designs, respectively. Observe that

the normalized power accuracy of the ADBF design is close
to that of the SDBF design and it achieves an accuracy of
0.01 in approximately 100 iterations. Furthermore, Fig. 6b
and 6c compare the performance of the ADBF and SDBF
designs for three-cell and four-cell scenarios, respectively.
It can be observed that as the value of S increases, i.e.,
updates from more BSs are incorporated for designing the
TPC, the ADBF design closely approaches the performance
of the SDBF design. However, the ADBF still achieves a
high power accuracy in fewer iterations.

Fig. 7a and 7b compare the convergence behavior of the
ADBF design versus the number of iterations for different
values of S and τ , respectively. Observe in Fig. 7a that
for S = {2, 3}, the convergence behaviour of the ADBF
design closely follows that of the SDBF design (S = 4) for
a fixed value of τ , where τ is the bounded delay condition
parameter. Explicitly, the update from every BS has to be
serviced by the CU at least once in every τ iterations. This
is due to the fact that for a large S, local ICI information
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Fig. 7: Convergence behavior of the ADBF design under various simulation settings: (a) N = 4, K = 2, Nt = 16, ε = 0.1
and τ = 4; (b) N = 4, K = 2, Nt = 16, ε = 0.1 and S = 2 .
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Fig. 8: Convergence behavior of the ADBF design: (a) For different values of S and τ = 4; (b) For different values of τ
and N = 4, K = 2, S = 2; (c) Sum rate versus target SINR for N = 3, S = 2, K = 2, Nt = 16 and ε = 0.1.

from more BSs is available at the CU, which leads to
convergence in fewer iterations. In Fig. 7b, S is fixed at
2. It can be observed that a large τ leads to more iterations,
since information from the slower BSs is not utilized by the
CU frequently. Thus, the number of iterations required for
convergence increases upon increasing τ . Fig. 8a compares
the convergence speed of the proposed ADBF and the
SDBF designs. It can be observed that the ADBF algorithm
converges substantially faster than the SDBF scheme, which
is due to the fact that updates from the BSs arrive at the
CU more frequently in the former scheme. Similarly, Fig.
8b shows the convergence speed of the ADBF algorithm
for different values of the parameter τ . It can be observed
that as τ increases, the updates from the slower BSs are
not incorporated frequently in each global ICI update by
the CU. Therefore, the running time of the ADBF design
is shorter than that of its synchronous counterpart (τ = 1).
Note that plots in Fig. 8a and 8b are representative and the

time duration for computation in an actual deployment will
depend on the computational capabilities of the hardware
employed.

Fig. 8c compares the sum-rate of the BL-based hybrid
TPC design both to that of the ideal FD-TPC and SOMP
algorithm [3] based hybrid TPC. One can observe that
our BL-based ADBF design provides a significant spectral
efficiency gain in comparison to the SOMP-based design.
This arises due to the fact that the BL algorithm has im-
proved sparse signal recovery properties in comparison to the
SOMP. Furthermore, the performance of the latter scheme
is highly sensitive to the choice of the dictionary matrix and
stopping criterion. Moreover, one can also observe that the
BL-based design attained a performance close to the ideal
FD-TPC design, even though it employs significantly fewer
RFCs. This can be attributed to the fact that the mmWave
MIMO channel has fewer multipath components, which is
readily exploited by the proposed BL-based hybrid TPC
design. This clearly demonstrates the fact that the ideal FD-
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TPC can be tightly approximated using a few transmit RFCs.

VIII. CONCLUSION

Distributed hybrid TPC designs have been proposed for
coordinated multi-cell mmWave MIMO systems. Initially,
the SDR and BL-based framework has been developed in
support of our centralized hybrid TPC design. Next, an
ADMM-based asynchronous distributed TPC design was
presented, which required only the local CSI and limited
information sharing amongst the BSs. Next, robust cen-
tralized and ADBF designs were derived by considering
realistic scenarios having CSI uncertainty. Furthermore, it
was also observed that the proposed ADBF design achieves
a performance comparable to the centralized solution at a
modest signalling overhead, making it ideal for practical
implementation. Finally, the simulation results illustrate that
the proposed ADBF design is robust against BS failures and
network delays.
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