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Abstract—This paper proposes a joint design strategy for
enhancing individual user rates in a multi-user system by
optimizing both the programmable reflecting elements (PREs)
of an active reconfigurable intelligent surface (aRIS) and the
transmit beamforming at a base station. Given that the aRIS’s
PREs are bound by discrete constraints due to low-resolution
quantization, this design approach relies on large-scale mixed
discrete-continuous problems, which are addressed through a
new universal penalised optimization reformulations. Initially,
we develop iterations based on convex quadratic solvers (CQ)
to tackle the problem of maximizing the users’ minimum rate
(MR). Given that the computational complexity of these CQs
is cubic, leading to high costs in large-scale computations, we
introduce a pair of surrogate objectives. These objectives are
designed in a way that their constrained optimization can be
efficiently managed through iterations of closed-form expressions
with scalable complexity, rendering them practical for large-scale
computations. This pair of surrogate objectives comprises the
maximization of the geometric mean of users’ rates (GM-rate
maximization) and the soft-maximization of users’ MR (soft max-
min rate optimization). Remarkably, they not only enhance MR
but also contribute to the improvement of the sum-rate (SR).
Building upon the GM-rate optimization, we further propose
addressing the energy efficiency problem, which achieves a high
ratio of SR to power consumption and MR to power dissipation
through closed-form expressions. Comprehensive simulations are
conducted to validate the efficacy of the proposed solutions.

Index Terms—Active reconfigurable intelligent surface (aRIS),
low-resolution quantization, transmit beamforming, active power
control, max-min rate optimization, large-scale computation,
mixed discrete continuous optimization.
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Reconfigurable Intelligent Surfaces (RISs) have the poten-
tial to enhance the performance of next-generation wireless
networks [1]–[3]. In contrast to traditional signal relaying
methods, RISs utilize their programmable reflecting elements
(PREs) to passively manipulate the incident waves, directing
them towards the desired destinations [4]. However, without
power amplification, the signals reaching the destination ex-
perience increased path-loss due to dual-hop propagation [5],
causing a weakening compared to a single hop. Hence RIS-
assisted twice-hop signaling, which involves optimizing both
the RIS PREs and transmit beamformer weights, only proves
advantageous in scenarios where no direct paths exist between
the source and destination [6]–[8].

As a remedy, the concept of active RISs (aRISs), relying on
power amplification at the RISs, has recently been proposed
[9], [10]. Furthermore, aRIS-assisted signaling has also been
explored extensively to improve the joint communication and
sensing performance, as discussed in [10]–[17]. Unlike RISs,
aRISs actively reflect signals with the aid of power amplifi-
cation. By employing a modest amount of power for signal
power amplification, they hold the promise of boosting the
signals at the receiving end to mitigate the twin-hop path-
loss. Research highlighted in [10] has shown that allocating
merely 1% of the total transmit power to the aRIS PREs can
significantly enhance the multi-user sum rate (MU SR).

Notably, aRIS-assisted signaling aiming for maximizing
the MU SR has also been explored [14], [15], proposing
an ad hoc approach to represent the SR function, akin to
[10]. However, this ad hoc method can potentially exacerbate
the nonlinearity of the objective function and necessitate an
additional alternating optimization step. As a result, it is
inadequate for addressing the individual user rate constraints.
Moreover, the stand-alone MU SR maximization cannot guar-
antee MU rate-fairness and thus it is unsuitable for MU
services, because it assigns a major portion of the optimized
SR to users having favorable channel conditions, while serving
other users with zero or near-zero rates. Notably, aRIS-assisted
signaling optimization is remarkably simpler in comparison
to its conventional (passive) RIS-assisted counterpart, when
unquantized PREs are employed. This simplicity arises from
the absence of computationally intricate unit modulus con-
straints (UMCs) applied to passive RIS’s PREs. Consequently,
the optimization problems for aRIS-assisted signaling closely
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resemble those of conventional multi-user relay-assisted sig-
naling, which have been effectively tackled using convex-
quadratic (CQ) solver-based path-following algorithms [18]–
[23]. Applying CQ-based algorithms initially developed for
passive RIS-assisted signaling [6] to solve problems related to
aRIS-assisted signaling, including stand-alone SR maximiza-
tion, SR maximization with MU rate-constraints, and max-
min rate optimization, which were straightforward. In sum-
mary, the challenges associated with aRIS-assisted signaling
using unquantized PREs are aligned with extensively studied
categories in the existing literature. However, it is crucial to
highlight that practical implementations predominantly employ
PREs of low resolutions, operating within restricted discrete
sets of configurations. Consequently, optimizing aRIS-assisted
signaling poses significant computational challenges, involving
large-scale mixed discrete-continuous problems that have not
been thoroughly studied as yet.

Given the context outlined above, we will now delve into ad-
dressing the complex unresolved issue of achieving enhanced
multi-user rate fairness through aRIS-assisted signaling, while
utilizing low-resolution quantized PREs. Our contributions are
three-fold.

• This is the first contribution solving the problem of
maximizing the users’ minimum rates (MR optimization),
which constitutes a non-smooth mixed continuous dis-
crete problem subject to discrete constraints arising from
the low-resolution quantization of the PREs. Specifically,
we develop a CQ-based algorithm for its solution;

• The second contribution pertains to the computational
optimization challenges in aRIS-assisted signaling, pri-
marily due to the substantial number of decision variables
involved in optimizing both the MU beamformers and
the PREs. Given the cubic increase in computational
complexity for large-scale CQ problems, it is crucial
to establish more flexible surrogate problems instead of
direct MR optimization to achieve rate-fairness. This
approach makes large-scale computations more manage-
able. Inspired by [7], the work [24] has demonstrated
that the maximization of the geometric mean of the
users’ rates (GM-rate) leads to a Pareto-optimal solution,
achieving both high SR and high MR. However, this
GM-rate optimization remains computationally complex
for aRIS-assisted systems. To address this, we capitalize
on the smoothness of the GM-rate objective function
and conceive iterative closed-form expressions of scal-
able complexity for its solution. We validate its Pareto
optimality through simulations. Additionally, we devise
a closed-form expression-based algorithm for optimizing
the energy efficiency (EE) of the aRIS;

• We introduce an alternative surrogate optimization ob-
jective based on a soft and smooth approximation of the
non-smooth MR function, which we also solve through
iterative closed-form expressions of scalable complexity.
Our simulations demonstrate that its solution achieves SR
and MR outcomes similar to those obtained by directly
maximizing the SR and MR, respectively.

We introduce Table I to clearly differentiate our contributions

from related works. The last three rows highlight the dis-
tinctive aspects of our paper. A byproduct of this paper is a
novel methodology which leads itself to addressing large-scale
mixed discrete-continuous problems associated with MU rates.

Enhancing Rates’
Fairness by aRIS-aided

Signaling

Sec.II: Max-min Rate
Based Signaling

Sec.III.A-III.C: GM-Rate
Based Signaling

Sec.IV: Soft Max-min
Based Signaling

Sec.III.D: Energy Efficient
Signaling

Fig. 1: The diagrammatic outline of the paper

The paper is organized as follows. Section II details the
development of a CQ-based algorithm to solve the MR prob-
lem. In Section III, we introduce closed-form algorithms for
the GM-rate and GM-rate-based EE problems. Additionally,
we introduce and solve the soft max MR problem using a
closed-form expression-based algorithm in Section IV. Section
V presents our simulations and outlines our computational
experiences. Lastly, Section VI concludes the paper. Appendix
I reviews the relevant concepts of tight minorants and majo-
rants [25], which play a pivotal role in the convergence of our
optimization algorithms. Appendix II introduces an innovative
bisection procedure of scalable complexity for solving multi-
constrained quadratic programming. Fig. 1 offers a concise
overview of the paper’s main highlights at a glance.

Notation. Only variables stand out in boldface to emphasize
to reveal useful structure for optimization. C(0, σI) is the
set of circular Gaussian random variables with zero means
and variance σI . diag[zm]m∈M for M ≜ {1, . . . ,M} is the
diagonal matrix with z1, . . . , zM on its diagonal.

II. MAX-MIN RATE OPTIMIZATION BY CONVEX-SOLVER
BASED COMPUTATION

We consider the wireless network illustrated by Fig. 2,
where an active RIS (aRIS) assists a base station (BS) having
N elements to an antenna array with serve K single-antenna
users, which are indexed by k ∈ K ≜ {1, . . . ,K}. The aRIS is
equipped with M power-amplified programable reconfigurable
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TABLE I: The paper’s contributions.

Contents
Literature This work [6] [7] [8] [10] [14] [15] [17]

Active RIS
√ √ √ √ √

Low-resolution PRE
√ √ √

QoS
√ √ √ √ √ √

Algorithm’s convergence
√ √ √ √ √

Multi-objective optimization
√

QoS aware EE
√

Tractable large scale computation
√

User 1User 1

Base Station

...

aRIS 

User KUser K

1h

Kh

R,BG

R,1h

KR,h

Fig. 2: aRIS-assisted signaling model

elements (APREs) zm, m ∈M ≜ {1, . . . ,M}. We thus define
the vector of APREs by

z ≜
[
z1 . . . zM

]T ∈ CM . (1)

Let us introduce

C1×M ∋ hR,k & GB,R =

GB,R,1. . .
GB,R,M

 ∈ CM×N ,

GB,R,m ∈ C1×N ,m ∈M, (2)

to represent the channel spanning from the aRIS to user k ∈ K,
and that from the BS to aRIS. Furthermore, let hk ∈ C1×N be
the direct channel from the BS to user k. Then the two-path
channel spanning from the BS to user k is given by

ℏ̃k(z) ≜ hk + ℏk(z), (3)

where ℏk(z) is the composite channel spanning from the BS
to user k via the aRIS defined by

C1×M ∋ ℏk(z) ≜ hR,kR
1/2
R,kdiag[zm]m∈MGB,R (4)

= zT∆k, (5)

where RR,k is the spatial correlation matrix of the RIS
elements with respect to user k, while h̃R,k ≜ hR,kR

1/2
R,k, and

CM×N ∋ ∆k ≜ diag[h̃BR,k(m)]m∈MGB,R, k ∈ K. (6)

To emphasize the performance enhancement of the proposed
network, we assume perfect knowledge of the channel state
information (CSI) through accurate channel estimation [26]–
[28].

For supporting the practical implementation of an aRIS, we
assume that the PREs are of low resolution, so the associated
constraints are

zm = pppme
ȷθθθm ,m ∈M, (7)

with pppm ∈ R defining the power amplification coefficients,
and

θθθm ∈ B ≜

{
β
2π

2b
, β = 0, 1, . . . , 2b − 1

}
,m ∈M, (8)

defining the PREs of b-bit resolution.
Let sk ∈ C(0, 1) associated with E(|sk|2) = 1 represent the

information intended for user k, which is beamformed by the
weight vector wk ∈ CN before its downlink (DL) transmission
from the BS. The signal received by user k can be written as

yk = ℏ̃k(z)
∑
k∈K

wksk + h̃R,kdiag[zm]m∈Mν + nk, (9)

where ν ∈ C(0, σνI) is the dynamic noise induced by aRIS,
while nk ∈ C(0, σ) is the additive white Gaussian noise
(AWGN), which includes not only the background noise, but
also the channel impairments due to having imperfect CSI
knowledge [29].

The rate for user k is expressed as

rk(w, z) = ln

(
1 +
|ℏ̃k(z)wk|2

φk(w, z)

)
, (10)

with

φk(w,z) ≜
∑

j∈K\{k}

|ℏ̃k(z)wj |2+σν
∑
m∈M

|h̃R,k(m)|2|zm|2+σ

=
∑

j∈K\{k}

|ℏ̃k(z)wj |2 + σνz
HDkz+ σ, (11)

for
Dk ≜ diag[|h̃R,k(m)|2]m∈M, k ∈ K. (12)

We also use (5) and (6) to represent

ℏ̃k(z)wj = hkwj +wT
j ∆

T
k z. (13)

For w ≜ {wk, k ∈ K}, the beamforming power constraint
given the budget P is∑

k∈K

||wk||2 ≤ P, (14)

while the constraint of the reflected power at the aRISs is
formulated as∑
k∈K

||diag[zm]m∈MGB,Rwk||2+σν||diag[zm]m∈M||2≤PA (15)

⇔
∑
k∈K

(wk)
HQ1(z)wk ≤ P1(z) (16)

⇔ zHQ2(w)z ≤ PA, (17)
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where we have:

Q1(z) ≜ (GB,R)
Hdiag[|zm|2]m∈MGB,R

P1(z) ≜ PA − σν ||z||2,
Q2(w) ≜

∑
k∈K diag[|GB,R,mwk|2]m∈M + σνIM .

(18)

Note that Equation (16) expresses the reflected power con-
straint (15) as a convex quadratic constraint in w with z held
fixed. Similarly, Equation (17) expresses the reflected power
constraint (15) as a convex quadratic constraint in z with w
held fixed.

To address the multi-user rate-fairness offered by aRIS-
assisted communications, we consider the following max-min
rate optimization problem:

max
w,z,θθθ,ppp

f(w, z) ≜ min
k∈K

rk(w, z) s.t (7), (8), (14), (15), (19)

which is computationally challenging because its objective
function is neither nonconcave nor nonconvex as well as non-
smooth. Furthermore, (7) is a nonlinear equality constraint,
while (8) is a difficult discrete constraint. We now follow
[30] to address (19) via the following penalized optimization
problem

max
w,z,θθθ,ppp

fρ(w, z, ppp,θθθ)≜

[
f(w, z)−ρ

∑
m∈M

|zm−pppmeȷθθθm |2
]

s.t (8), (14), (15), (20)

where ρ > 0 is a penalty parameter introduced for incorporat-
ing the nonlinear equality constraint (7) into the optimization
objective.

This section develops a convex solver based algorithm
for the solution of the problem (20). Following initializa-
tion by a feasible point (w(0), z(0), p(0), θ(0)) for (20), let
(w(κ), z(κ), p(κ), θ(κ)) be a feasible point for (20) that is found
from the (κ − 1)-st iteration. We now present alternating
ascents in each of w, z, ppp and θθθ.

A. Beamforming ascent

To seek w(κ+1) so that

fρ(w
(κ+1), z(κ), p(κ), θ(κ)) > fρ(w

(κ), z(κ), p(κ), θ(κ))

⇔ f(w(κ+1), z(κ)) > f(w(κ), z(κ)), (21)

we consider the following problem

max
w

f
(κ)
1 (w) ≜ min

k∈K
r
(κ)
1,k(w) s.t. (14), (22a)∑

k∈K

(wk)
HQ(κ)

1 wk ≤ P (κ)
1 , (22b)

with Q(κ)
1 ≜ Q1(z

(κ)) and P (κ)
1 ≜ P1(z

(κ)) according to (16)
and (18), while according to (10) and (11), we have:

r
(κ)
1,k(w) ≜ rk(w, z

(κ)) = ln

(
1 +
|h(κ)1,kwk|2

φ
(κ)
1,k(w)

)
, k ∈ K.

(23)
for

φ
(κ)
1,k(w) ≜ φk(w, z

(κ)) =
∑

j∈K\{k}

|h(κ)1,kwj |2 + σ
(κ)
1,k ,

and h(κ)1,k ≜ ℏ̃k(z(κ)), and

σ
(κ)
1,k ≜ σν

∑
m∈M

|h̃R,k(m)|2|z(κ)m |2 + σ.

By applying the inequality (96) of Appendix I for
(v,y) = [h

(κ)
1,kwk, φ

(κ)
1,k(w)] and (v̄, ȳ) = [v

(κ)
1,k , y

(κ)
1,k ] ≜

(h
(κ)
1,kw

(κ)
k , φ

(κ)
1,k(w

(κ))), the following tight concave quadratic
minorant of r(κ)1,k(w) is obtained at w(κ):

r̃
(κ)
1,k(w) ≜

a
(κ)
1,k+

2

y
(κ)
1,k

ℜ{(v(κ)1,k )
∗h

(κ)
1,kwk⟩} − ζ(κ)1,k

∑
j∈K
|h(κ)1,kwj |2 = (24)

a
(κ)
1,k + 2ℜ{ψ(κ)

1,kwk} − ζ(κ)1,k

∑
j∈K

wH
j Ψ

(κ)
1,kwj , (25)

with

a
(κ)
1,k ≜ r

(κ)
1,k(w

(κ))−
|v(κ)1,k |2

y
(κ)
1,k

− σ(κ)
1,kζ

(κ)
1,k ,

and

0 < ζ
(κ)
1,k ≜

|v(κ)1,k |2

y
(κ)
1,k

(
y
(κ)
1,k + |v(κ)1,k |2

)
in (24), and ψ

(κ)
1,k ≜ (v

(κ)
1,k )

∗h
(κ)
1,k/y

(κ)
1,k , and Ψ

(κ)
1,k ≜

(h
(κ)
1,k)

Hh
(κ)
1,k , k ∈ K in (25).

We generate w(κ+1) by solving the following convex
quadratic problem of tight minorant maximization:

max
w

min
k∈K

r̃
(κ)
1,k(w) s.t. (14), (22b). (26)

Since (26) involves KN decision variables and two quadratic
constraints, its computational complexity of is on the order of
O(K3N3).

Since w(κ) and w(κ+1) constitute a feasible point and the
optimal solution for (26) respectively, we have:

min
k∈K

r̃
(κ)
1,k(w

(κ+1)) > min
k∈K

r̃
(κ)
1,k(w

(κ))

as far as mink∈K r̃
(κ)
1,k(w

(κ)) ̸= mink∈K r̃
(κ)
1,k(w

(κ+1)). There-
fore, we have:

f(w(κ+1), z(κ)) = min
k∈K

r
(κ)
1,k(w

(κ+1))

≥ min
k∈K

r̃
(κ)
1,k(w

(κ+1)) (27)

> min
k∈K

r̃
(κ)
1,k(w

(κ))

= min
k∈K

r
(κ)
1,k(w

(κ)) (28)

= f(w(κ), z(κ)),

verifying (21), where the inequality (27) and the equality
(28) follow from the inequality r(κ)1,k(w

(κ+1)) ≥ r̃
(κ)
1,k(w

(κ+1))

respectively and the equality r(κ)1,k(w
(κ)) = r̃

(κ)
1,k(w

(κ)), and the
function r̃(κ)1,k is a tight minorant of the function r(κ)1,k at w(κ).
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B. aRIS ascent

To seek z(κ+1) so that

fρ(w
(κ+1), z(κ+1), p(κ), θ(κ)) >

fρ(w
(κ+1), z(κ), p(κ), θ(κ)), (29)

we consider the following problem:

max
z

f
(κ)
ρ,2 (z) ≜

[
min
k∈K

r
(κ)
2,k(z)

−ρ
∑
m∈M

|zm − p(κ)m eȷθ
(κ)
m |2

]
(30a)

s.t. zHQ(κ)
2 z≤PA, (30b)

with Q(κ)
2 ≜ Q2(w

(κ+1)) according to (17) and (18), while
according to (6) and (13), we have:

r
(κ)
2,k(z) ≜ rk(w

(κ+1), z)

= ln

(
1 +
|τ (κ)k,k +∆

(κ)
k,kz|2

φ
(κ)
2,k(z)

)
, k ∈ K, (31)

with

φ
(κ)
2,k(z) ≜ φk(w

(κ+1), z)

=
∑
j∈K\{k} |τ

(κ)
k,j +∆

(κ)
k,jz|2 + σνz

HDkz+ σ,

and τ (κ)k,j ≜ hkw
(κ+1)
j , (k, j) ∈ K × K, and C1×M ∋ ∆

(κ)
k,j ≜

(w
(κ)
j )T∆T

k , (k, j) ∈ K ×K, and Dk defined from (12).
Again, by applying the inequality (96) of Appendix I to

(v,y) ≜ [τ
(κ)
k,k + ∆

(κ)
k,kz, φ

(κ)
2,k(z)] and (v̄, ȳ) = (v

(κ)
2,k , y

(κ)
2,k ) ≜

[τ
(κ)
k,k + ∆

(κ)
k,kz

(κ), φ
(κ)
2,k(z

(κ))], the following tight concave
quadratic minorant of r(κ)2,k(z) is obtained at z(κ):

r̃
(κ)
2,k(z) ≜ ã

(κ)
2,k +

2ℜ{(v(κ)2,k )
∗
(
τ
(κ)
k,k +∆

(κ)
k,kz

)
}

y
(κ)
2,k

−ζ(κ)2,k

∑
j∈K
|τ (κ)k,j +∆

(κ)
k,jz|

2+σνz
HDkz

 ,(32)

with

ã
(κ)
2,k ≜ r

(κ)
2,k(z

(κ))−
|v(κ)2,k |2

y
(κ)
2,k

− σζ(κ)2,k ,

and

0 < ζ
(κ)
2,k ≜

|v(κ)2,k |2

y
(κ)
2,k

(
|v(κ)2,k |2 + y

(κ)
2

) .
By using the identity

|τ (κ)k,j +∆
(κ)
k,jz|

2 = |τ (κ)k,j |
2 + 2ℜ{(τ (κ)k,j )

∗∆
(κ)
k,jz}+ zH∆̃

(κ)
k,jz

with
0 ⪯ ∆̃

(κ)
k,j ≜ (∆

(κ)
k,j )

H∆
(κ)
k,j , (k, j) ∈ K ×K,

we represent (32) by

r̃
(κ)
2,k(z) = ã

(κ)
2,k +

2ℜ{(v(κ)2,k )
∗τ

(κ)
k,k }

y
(κ)
2,k

+
2ℜ{(v(κ)2,k )

∗∆
(κ)
k,kz}

y
(κ)
2,k

−ζ(κ)2,k(
∑
j∈K

(|τ (κ)k,j |
2+2ℜ{(τ (κ)k,j )

∗∆
(κ)
k,jz}+zH∆̃

(κ)
k,jz)

+σνz
HDkz)

= a
(κ)
2,k + 2ℜ{ψ(κ)

2,kz}+ zHΨ
(κ)
2,kz, (33)

for

a
(κ)
2,k ≜ ã

(κ)
2,k +

2

y
(κ)
2,k

ℜ{(v(κ)2,k )
∗τ

(κ)
k,k } − ζ

(κ)
2,k

∑
j∈K
|τ (κ)k,j |

2,

and

ψ
(κ)
2,k ≜

(v
(κ)
2,k )

∗∆
(κ)
k,k

y
(κ)
2,k

− ζ(κ)2,k

∑
j∈K

(τ
(κ)
k,j )

∗∆
(κ)
k,j ,

and

Ψ
(κ)
2,k ≜ ζ

(κ)
2,k

∑
j∈K

∆̃
(κ)
k,j + σνDk

 .

We generate z(κ+1) by solving the following convex quadratic
problem of tight minorant maximization at z(κ):

max
z

f̃
(κ)
ρ,2 (z) ≜

[
min
k∈K

r̃
(κ)
2,k(z)

−ρ
∑
m∈M

|zm − p(κ)m eȷθ
(κ)
m |2

]
s.t. (30b). (34)

As (34) involves M decision variables, its computational
complexity is on the order of O(M3).

It follows that

f̃
(κ)
ρ,2 (z

(κ+1)) > f̃
(κ)
ρ,2 (z

(κ))

as long as we have f̃ (κ)ρ,2 (z
(κ+1)) ̸= f̃

(κ)
ρ,2 (z

(κ)), because z(κ)

and z(κ+1) constitute a feasible point and the optimal solution
for (34) respectively. Therefore, we have:

fρ(w
(κ+1), z(κ+1), p(κ), θ(κ)) = f

(κ)
ρ,2 (z

(κ+1))

≥ f
(κ)
ρ,2 (z

(κ+1)) (35)

> f̃
(κ)
ρ,2 (z

(κ))

= f
(κ)
ρ,2 (z

(κ)) (36)

= fρ(w
(κ+1), z(κ), p(κ), θ(κ)),

verifying (29), where the inequality (35) and the equality
(36) follow from the inequality r

(κ)
2,k(z

(κ+1)) ≥ r
(κ)
2,k(z

(κ+1))

respectively and the equality r
(κ)
2,k(z

(κ)) = r̃
(κ)
2,k(z

(κ)) as the
function r̃(κ)2,k is a tight minorant of the function r(κ)2,k at z(κ).

C. Amplifier and PRE ascent

We generate p(κ+1) and θ(κ+1) by

p(κ+1)
m = argmin

pppm
|z(κ+1)
m − pppmeȷθ

(κ)
m |2

= |z(κ+1)
m | cos(∠z(κ+1) − θ(κ)m ),m ∈M, (37)

and1

θ(κ+1)
m = arg min

θθθm∈B
|z(κ+1)
m − p(κ+1)

m eȷθθθm |2 = ⌊∠z(κ+1)
m ⌉b, (38)

1⌊∠z(κ+1)
m ⌉b = νb

2π
2b

with νb ≜ argmin{ν,ν+1}

∣∣∣ν 2π
2b

− ∠z(κ+1)
m

∣∣∣ for

∠z(κ+1)
m ∈ [ν 2π

2b
, (ν + 1) 2π

2b
].
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which yield

fρ(w
(κ+1),z(κ+1),p(κ+1),θ(κ+1))

> fρ(w
(κ+1),z(κ+1),p(κ+1),θ(κ))

> fρ(w
(κ+1),z(κ+1),p(κ),θ(κ)). (39)

D. Algorithm and convergence
Algorithm 1 provides the pseudo code of solving problem

(20). It follows from (21), (29) and (39) that

fρ(w
(κ+1), z(κ+1), p(κ+1), θ(κ+1)) > fρ(w

(κ), z(κ), p(κ), θ(κ)),
(40)

so the sequence {(w(κ), z(κ), p(κ), θ(κ))} of improved feasible
points for (20) converges to (w̄, z̄, p̄, θ̄) by the Cauchy theo-
rem. Furthermore, a sufficiently large ρ > 0 guarantees that

max
m∈M

|z(κ)m − p(κ)m eȷθ
(κ)
m |2 → 0 as κ→∞,

i.e. z̄m = p̄me
ȷθ̄m , m ∈ M, implying that (z̄, p̄, θ̄) satisfies

the nonlinear constraint (7). Therefore, (w̄, z̄, p̄, θ̄) is feasible
for (19). Actually, we can state that the four-tuple (w̄, z̄, p̄, θ̄)
is at least its locally optimal solution [6].

Algorithm 1 CQ-based algorithm of cubic complexity for
computing the MR problem (20)

1: Initialization: Randomly generate the four-tuple
(w(0), z(0), p(0), θ(0)) feasible for (20). Set κ = 0.

2: Repeat until convergence: Generate w(κ+1) by solv-
ing the convex problem (26) of the complexity order
O(K3N3), and z(κ+1) by solving the convex prob-
lem (34) of the complexity order O(M3). Generate
(p(κ+1), θ(κ+1)) by (37)-(38). Reset κ← κ+ 1.

3: Output (w(κ), z(κ), p(κ), θ(κ)) and rk(w(κ), ), k ∈ K.

III. GM-RATE MAXIMIZATION BY SCALABLE-COMPLEX
CLOSED-FORMS AND APPLICATION TO TRACTABLE

RATE-FAIRNESS AWARE ENERGY EFFICIENCY

The cubic computational complexity of each iteration of
the CQ-based Algorithm 1 is O(K3N3) +O(M3), which is
high because both KN and M are typically larger than 100.
This section is the first step to resolve this computational issue
in achieving the uniform MU rate-fairness by considering the
following problem

max
w,z,ppp,θθθ

fGM (w, z) ≜

(∏
k∈K

rk(w, z)

)1/K

s.t. (7), (8), (14), (15), (41)

which is termed as the GM-rate problem. Our previous trea-
tises [7], [8], [24] have shown that GM-rate maximization
provides a unique approach capable of achieving rate-fairness
similar to that achieved by direct MR optimization as well
as a competitive SR compared to that achieved by direct SR
maximization.

Similarly to (19), we address (41) via the following penal-
ized optimization problem:

max
w,z,ppp,θθθ

fρ,GM (w,z) s.t. (8), (14), (15), (42)

for fρ,GM (w,z) ≜
[
fGM (w,z)−ρ

∑
m∈M |zm−pppmeȷθ

θθm |2
]
,

which is still solved by Algorithm 1, while relying on the min
objectives mink∈K r̃

(κ)
1,k(w) and mink∈K r̃

(κ)
2,k(z) in (26) and

(34) are replaced by the GM-objectives
(∏

k∈K r̃
(κ)
1,k(w)

)1/K
and

(∏
k∈K r̃

(κ)
2,k(z)

)1/K
, which are still concave, since they

represent the GM of concave functions [25].
We now follow our previously developed procedures in [7],

[8], [24] to conceive an algorithm of scalable complexity for
its solution.

Initialized by a feasible point (w(0), z(0), p(0), θ(0)) for (20),
let (w(κ), z(κ), p(κ), θ(κ)) be a feasible point for (42) that is
found from the (κ− 1)-st iteration. The corresponding ascent
optimization is based on the problem:

max
w,z

f
(κ)
ρ,GM (w,z)≜

[
f
(κ)
GM (w,z)

−ρ
∑
m∈M

|zm−p(κ)m eȷθ
(κ)
m |2

]
s.t. (8), (14), (15), (43)

where f (κ)GM (w, z) ≜
∑
k∈K λ

(κ)
k rk(w, z), for

λ
(κ)
k =

maxk′∈K rk′(w
(κ), z(κ))

rk(w(κ), z(κ))
, k ∈ K. (44)

A. Beamforming ascent

To seek w(κ+1) so that

f
(κ)
ρ,GM (w(κ+1), z(κ)) > f

(κ)
ρ,GM (w(κ), z(κ))

⇔ f
(κ)
GM (w(κ+1), z(κ)) > f

(κ)
GM (w(κ), z(κ)), (45)

we consider the following problem

max
w

f
(κ)
GM,1(w) ≜

∑
k∈K

λ(κ)r
(κ)
1,k(w) s.t. (14), (22b), (46)

with r
(κ)
1,k(w) defined from (23). Using (25), we obtain the

following tight concave quadratic minorant of the objective
function f (κ)GM,1(w) in (46) at w(κ):

f̃
(κ)
GM,1(w) ≜

∑
k∈K

λ
(κ)
k r̃

(κ)
1,k(w)

=
∑
k∈K

λ
(κ)
k a

(κ)
1,k + 2

∑
k∈K

ℜ{λ(κ)1,kψ
(κ)
1,kwk}

−
∑
k∈K

(wk)
HΨ

(κ)
1 wk, (47)

with 0 ⪯ Ψ
(κ)
1 ≜

∑
k∈K λ

(κ)
k ζ

(κ)
1,kΨ

(κ)
1,k . We thus gener-

ate w(κ+1) verifying (45) by solving the following convex
quadratic problem of tight minorant maximization at w(κ):

max
w

f̃
(κ)
GM,1(w) s.t. (14), (22b). (48)

Utilizing a traditional convex solver results in a computa-
tional complexity of O(K3N3). Nevertheless, this problem
falls within the problem class defined by (98) and can be
solved using the innovative bisection approach with scalable
complexity outlined in Appendix II.
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B. aRIS ascent

To seek z(κ+1) so that

f
(κ)
ρ,GM (w(κ+1), z(κ+1)) > f

(κ)
ρ,GM (w(κ+1), z(κ)), (49)

we consider the following problem

max
z

f
(κ)
ρ,GM,2(z)≜

[
f
(κ)
GM,2(z)−ρ

∑
m∈M

|zm−p(κ)m eȷθ
(κ)
m |2

]
s.t. (30b), (50)

where f
(κ)
GM,2(z) ≜

∑
k∈K λ

(κ)r
(κ)
2,k(z) with r

(κ)
2,k(z) defined

from (31).
Using (31), we obtain the following tight concave quadratic

minorant of f (κ)GM,2(z) in (50) at z(κ):

f̃
(κ)
GM,2(z) ≜

∑
k∈K

λ
(κ)
k r̃

(κ)
2,k(z)

= a
(κ)
2 + 2ℜ{ψ(κ)

2 z}+ zHΨ
(κ)
2 z, (51)

for a
(κ)
2 ≜

∑
k∈K λ

(κ)
k a

(κ)
2,k , ψ(κ)

2 ≜
∑
k∈K λ

(κ)
k ψ

(κ)
2,k , and

Ψ
(κ)
2 ≜

∑
k∈K λ

(κ)
k Ψ

(κ)
2,k . We thus generate z(κ+1) verifying

(49) by solving the following convex problem of tight minorant
maximization:

max
z

[
f̃
(κ)
GM,2(z)− ρ

∑
m∈M

|zm − p(κ)m eȷθ
(κ)
m |2

]
s.t. (30b).

(52)
Applying the Lagrangian multiplier method to solve our
convex quadratic programming problem subject to a single
quadratic constraint, we derive the following closed-form
solution for (52):

z(κ+1) =


(Ψ

(κ)
2 + ρIM )−1ξ(κ)

if ||
√
Q(κ)

2 (Ψ
(κ)
2 + ρIM )−1ξ(κ)||2 ≤ PA

(Ψ
(κ)
2 + ρIM + αQ(κ)

2 )−1ξ(κ) otherwise,

where ξ(κ) ≜ (ψ
(κ)
2 )H + ρ(p

(κ)
1 eȷθ

(κ)
1 , . . . , p

(κ)
M eȷθ

(κ)
M )T and

α > 0 is found by bisection, so that ||
√
Q(κ)

2 (Ψ
(κ)
2 + ρIM +

αQ(κ)
2 )−1ξ(κ)||2 = PA.

C. Algorithm and its convergence

Algorithm 2 provides the pseudo code for solving the
problem (42) based on iterating the closed forms (48), (53),
(37), and (38). The reader is referred to [7], [8], [24] for a
proof of its convergence.

Algorithm 2 GM algorithm of scalable complexity for com-
puting the GM-rate problem (42)

1: Initialization: Randomly generate a feasible four-tuple
(w(0), z(0), p(0), θ(0)) for (42). Set κ = 0.

2: Repeat until convergence of the objective function in
(42): Define λ

(κ)
k by (44). Generate w(κ+1) by solving

(48), z(κ+1) by (53). Generate (p(κ+1), θ(κ+1)) by (37)-
(38). Reset κ← κ+ 1.

3: Output (w(κ), z(κ), p(κ), θ(κ)) and rk(w(κ), z(κ)), k ∈ K.

D. Application to rate-fairness aware energy-efficiency

It is plausible that the κ-th iteration of solving the SR
problem of

max
w,z,ppp,θθθ

fSR(w, z) ≜
∑
k∈K

rk(w, z) s.t. (7), (8), (14), (15),

(53)
is based on solving the problem (43) for λ(κ)k ≡ 1. Hence
the SR problem (53) can be solved by Algorithm 2 upon
setting λ

(κ)
k ≡ 1. The iterations based on (48) and (53),

disregarding the constraints (7), (8) of low resolutions, have
been precisely derived in [6], [31] and the novelty here
lies in demonstrating that the problem (48) subject to a
pair of convex quadratic constraints admits a closed-form
expression based solution. Meanwhile, the SR problem (53)
excluding (48) and (53) was tackled in [10], [14] using an
ad hoc representation of the sum rate function fSR(w, z)
by maxy∈R2K

+
FSR(y,w, z). From a computational perspec-

tive, optimization of this function FSR(y,w, z) is no more
computational tractable than fSR(w, z). Moreover, the former
involves multiple superfluous variables y, which contribute to
the increased nonlinearity. The optimization in (w, z) with y
held fixed remains computationally intractable, necessitating
an alternating optimization in w and in z. Consequently, three
alternating steps are employed. Although the SR problem (53)
can be efficiently solved, it is deficient in MU communication,
because it assigns a major portion of the optimal SR to a
few users having favorable channel conditions, while leaving
zero or almost zero rates for the other users. In other words,
SR optimization without QoS constraints lacks meaningful
implications.

In considering the following rate-fairness constrained en-
ergy efficiency (EE) problem

max
w,z

fSR(w, z)

π(w, z)
s.t. (14), (15), (54a)

rk(w, z) ≥ γ̄, k ∈ K, (54b)

where π(w, z) is the total power consumption defined by

π(w, z) = τBS
∑
k∈K

||wk||2 + τRIS [
∑
k∈K

||diag[zm]m∈M

×GB,Rwk||2+σν ||diag[zm]m∈M||2]+Pnon, (55)

the variable τBS (τRIS , resp.) represent to the reciprocal of
the drain efficiency of the amplifier at the BS (RIS, resp.), and
Pnon is the total circuit power consumed at the BS and the
RIS, the authors of [14] deprive the QoS constraint (54b) by

|ℏ̃k(z)wk|2/φk(w, z) ≥ (eγ̄ − 1), k ∈ K, (56)

which are treated as convex quadratic constraints in w and z
(see [14, (19b) and (20b)]). In fact, (56) represents the d.c.
(difference of two convex functions) constraints in w or z
that are not convex [25] but by [32], [33] it is equivalent to
ℜ{ℏ̃k(z)wk} ≥

√
eγ̄ − 1

√
φk(w, z) which is a second-order

cone (SOC) in w and z. Then, one can follow [22, Ineq. (A1)]
or [34, Ineq. (68)] to obtain a tight minorant of the objective
function in (54), which is concave quadratic in w and z, for
alternating descent iterations.
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The authors of [15] considered the following RIS resolution
and QoS constrained EE problem

max
w,z,ppp,θθθ

fSR(w, z)

π(w, z)
s.t. (7), (8), (14), (15), (54b), (57)

which follows [6] to use the minorant r̃(κ)1,k(w) and r̃(κ)2,k(z) of
rk(w, z

(κ)) and rk(w
(κ+1), z) to handle the QoS constraint

(54b) by its inner approximations r̃(κ)1,k(w) ≥ γ̄ and

r̃
(κ)
2,k(z) ≥ γ̄. (58)

However, while its proposed alternating optimization in w
looks correct, its alternating optimization in z [15, Alg. 1],
which iterates by solving many convex problems in z, does
not result in a z(κ+1), which is feasible for (7), (8), and (58)
due to the rate-fairness constraint (58). More explicitly, due to
the QoS constraint (58), it may stop at (z(κ+1), p(κ+1), θ(κ+1))

with |z(κ+1)
m −p(κ+1)

m eȷθ
(κ+1)
m | > 0 and thus it is infeasible for

(7), (8), and (58).
To eliminating the rate-fairness constraint (54b) that causes

intractable computation, as suggested in [35], the following
problem is more appropriate

max
w,z

(∏
k∈K rk(w, z)

)1/K
π(w, z)

s.t. (7), (8), (14), (15), (59)

because it automatically leads to both high power effi-
ciency (in terms of SR/power consumptions) and high rate,
without enforcing the rate-fairness constraint (54b). Algo-
rithm 3, which is similar to Algorithm 2, provides the
pseudo-code for its solution. At the κ-iteration, for η(κ) ≜

K
π(w(κ),z(κ))

maxk∈K rk(w
(κ), z(κ)) it iterates the problem

max
w

[
f̃
(κ)
GM,1(w)− η(κ)π(w, z(κ))

]
s.t. (14), (22b).

(60)
instead of (48) to generate w(κ+1), and iterates the problem

max
z

[
f̃
(κ)
GM,2(z)−η

(κ)π(w(κ+1),z)

−ρ
∑
m∈M

|zm−p(κ)m eȷθ
(κ)
m |2

]
s.t. (30b), (61)

instead of (52) to generate z(κ+1).
Based on (47), (14), and (16), we have

f̃
(κ)
GM,1(w)−η(κ)π(w,z(κ)) =

a
(κ)
1 +2

∑
k∈K

ℜ{λ(κ)1,kψ
(κ)
1,kwk} −

∑
k∈K

wH
k Ψ̃

(κ)
1 wk, (62)

for a(κ)1 ≜
∑
k∈K λ

(κ)
k a

(κ)
1,k − η(κ)τRISσν ||z(κ)||2 − η(κ)Pnon,

and Ψ̃
(κ)
1 ≜ Ψ

(κ)
1 + η(κ)τBSIN + η(κ)τRISQ1(z

(κ)), so the
problem (61) is in the form of (98) and thus it can be solved
by the innovative bisection procedure described in Appendix
II.

By (17) and (51)

f̃
(κ)
GM,2(z)−η

(κ)π(w(κ+1),z) = a(κ)+2ℜ{ψ(κ)
2 z}

+zHΨ̃
(κ)
2 z, (63)

for

a(κ) ≜ a
(κ)
2 − η(κ)τBS

∑
k∈K

||w(κ+1)
k ||2 − η(κ)Pnon,

and
Ψ̃

(κ)
2 ≜ Ψ

(κ)
2 + η(κ)τRISQ2(w

(κ+1)).

Like (52), (61) admits a closed-form solution

z(κ+1) =


(Ψ̃

(κ)
2 + ρIM )−1ξ(κ)

if ||
√
Q(κ)

2 (Ψ̃
(κ)
2 + ρIM )−1ξ(κ)||2 ≤ PA

(Ψ̃
(κ)
2 + ρIM + αQ(κ)

2 )−1ξ(κ) otherwise,
(64)

where α > 0 is found by bisection so that ||
√
Q(κ)

2 (Ψ̃
(κ)
2 +

ρIM + αQ(κ)
2 )−1ξ(κ)||2 = PA.

Algorithm 3 QoS aware EE scalable algorithm of scalable
complexity

1: Initialization: Randomly generate a feasible four-tuple
(w(0), z(0), p(0), θ(0)) for (8), (14), (15). Set κ = 0.

2: Repeat until convergence: Define λ
(κ)
k by (44). Gen-

erate w(κ+1) by solving (62), z(κ+1) by (64). Generate
(p(κ+1), θ(κ+1)) by (37)-(38). Reset κ← κ+ 1.

3: Output (w(κ), z(κ), p(κ), θ(κ)) and rk(w(κ), z(κ)), k ∈ K.

IV. SCALABLE-COMPLEX SOFT MAX-MIN RATE
OPTIMIZATION ALGORITHM

Note that for c > 0, we have:

max
w,z,

min
k∈K

rk(w,z)

⇔ max
w,z

−max
k∈K

ln

(
1+

1

µ

|ℏ̃k(z)wk|2

φk(w,z)

)−1
 , (65)

while

max
k∈K

ln

(
1 +

1

µ

|ℏ̃k(z)wk|2

φk(w, z)

)−1

≤ (66)

ln

∑
k∈K

(
1 +

1

µ

|ℏ̃k(z)wk|2

φk(w, z)

)−1
 ≤ (67)

max
k∈K

ln

(
1 +

1

µ

|ℏ̃k(z)wk|2

φk(w, z)

)−1

+ lnK. (68)

For µ > 0, the constant lnK is small compared to the
absolute value of the non-smooth function on the LHS of (66).
Therefore the function in the LHS of (67), which is

fSM (w, z) = ln

(∑
k∈K

νk(w, z)

)
(69)

with

νk(w, z) ≜ 1− |ℏ̃k(z)wk|2

|ℏ̃k(z)wk|2 + µφk(w, z)
, (70)
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provides a good approximation for that in the LHS of (66). As
such, the MR problem (19) can be addressed via the following
soft min problem for small µ > 0:

min
w,z

fSM (w, z) s.t (7), (8), (14), (15). (71)

Similarly to (19), the penalized optimization formulation for
(71) is

min
w,z

fρ,SM (w, z) s.t (8), (14), (15), (72)

for

fρ,SM (w, z)≜

[
fSM (w, z) +ρ

∑
m∈M

|zm−pppmeȷθθθm |2
]
.

Initialized by feasible point (w(0), z(0), p(0), θ(0)) for (72),
let (w(κ), z(κ), p(κ), θ(κ)) be a feasible point for (72) that
is found from the (κ − 1)-st iteration. We now provide the
corresponding alternating descent in each of w and z, since it
is plausible that the alternating descent in (ppp,θθθ) is still based
on the closed forms (37)-(38).

A. Beamforming descent

To seek w(κ+1) so that

fρ,SM (w(κ+1), z(κ)) < fρ,SM (w(κ), z(κ))

⇔ fSM (w(κ+1), z(κ)) < fSM (w(κ), z(κ)), (73)

we consider the following problem

min
w

f
(κ)
SM,1(w) s.t. (14), (22b), (74)

where in accordance with (23), f (κ)SM,1(w) ≜ fSM (w, z(κ)) ≜

ln ν
(κ)
1 (w) for

ν
(κ)
1 (w) ≜

∑
k∈K

(
1−

|h(κ)1,kwk|2

|h(κ)1,kwk|2 + µφ
(κ)
1,k(w)

)
. (75)

Using the inequality (97) for (vk,yk) = [h
(κ)
1,kwk, φ

(κ)
1,k(w)],

k ∈ K, and (v̄k, ȳk) = (v
(κ)
1,k , y

(κ)
1,k ) ≜ [h

(κ)
1,kw

(κ)
k , φ

(κ)
1,k(w

(κ))],
yields the following tight majorant of fSM (w, z(κ)) at w(κ):

f
(κ)
1,SR(w) ≜ a

(κ)
1 −2

∑
k∈K

ℜ{b(κ)1,kwk}+
∑
k∈K

c
(κ)
1,k(|h

(κ)
1,kwk|2

+µ
∑

j∈K\{k}

|h(κ)1,kwj |2) (76)

= a
(κ)
1 −2

∑
k∈K

ℜ{b(κ)1,kwk}+
∑
k∈K

(wk)
HB(κ)1,kwk, (77)

where

a
(κ)
1 ≜ ln ν

(κ)
1 (w(κ)) +

1

ν
(κ)
1 (w(κ))

∑
k∈K

(
|v(κ)1,k |2

µy
(κ)
1,k + |v(κ)1,k |2

+
|v(κ)1,k |2

(µy
(κ)
1,k + |v(κ)1,k |2)2

µσ
(κ)
1,k ), (78)

CN ∋ b(κ)1,k ≜
1

ν
(κ)
1 (w(κ))

(v
(κ)
1,k )

∗

µy
(κ)
1 + |v(κ)1,k |2

h
(κ)
1,k, k ∈ K, (79)

c
(κ)
1,k ≜

1

ν
(κ)
1 (w(κ))

|v(κ)1,k |2

(µy
(κ)
1 + |v(κ)1,k |2)2

, k ∈ K, (80)

and

B(κ)1,k ≜ c
(κ)
1,k(h

(κ)
1,k)

Hh
(κ)
1,k + µ

∑
j∈K\{k}

c
(κ)
1,j (h

(κ)
1,j )

Hh
(κ)
1,j , k ∈ K.

(81)
We thus use the innovative bisection procedure of scalable
complexity described in Appendix II to solve the following
convex problem of majorant minimization for (74) to generate
w(κ+1) verifying (73):

min
w

f
(κ)
1,SR(w) s.t. (14), (22b). (82)

B. aRIS descent

To seek z(κ+1) so that

fρ,SM (w(κ+1), z(κ+1)) < fρ,SM (w(κ+1), z(κ)), (83)

we consider the following problem:

min
z

fρ,SM,3 ≜

[
f
(κ)
SM,2(z) + ρ

∑
m∈M

|zm − p(κ)m eȷθ
(κ)
m |2

]
s.t. (30b), (84)

where in accordance to (31), f (κ)SM,2(z) ≜ fSM (w(κ+1), z) =

ln ν
(κ)
2 (z), with

ν
(κ)
2 (z) ≜

∑
k∈K

(
1−

|τ (κ)k,k +∆
(κ)
k,kz|2

|τ (κ)k,k +∆
(κ)
k,kz|2 + µφ

(κ)
2,k(z)

)
, k ∈ K.

(85)
Using the inequality (97) for (vk,yk) = [τ

(κ)
k,k +

∆
(κ)
k,kz, φ

(κ)
2,k(z)], k ∈ K and (v̄k, ȳk) = (v

(κ)
2,k , y

(κ)
2,k ) ≜

[τ
(κ)
k,k +∆

(κ)
k,kz

(κ), φ
(κ)
2,k(z

(κ))], k ∈ K yields the following tight
majorant of f (κ)SM,2(z) at z(κ):

f̃
(κ)
2,SM (z) ≜ ã

(κ)
2 − 2

∑
k∈K

ℜ{d(κ)2,k(τ
(κ)
k,k +∆

(κ)
k,kz)}

+
∑
k∈K

c
(κ)
2,k(|τ

(κ)
k,k +∆

(κ)
k,kz|

2 + µ(
∑

j∈K\{k}

|τ (κ)k,j

+∆
(κ)
k,jz|

2 + σνz
HDkz)) (86)

= a
(κ)
2 − 2ℜ{b(κ)2 z}+ zHB(κ)2 z, (87)

where

ã
(κ)
2 ≜ ln ν

(κ)
2 (z(κ)) +

1

ν
(κ)
2 (z(κ))

∑
k∈K

(
|v(κ)2,k |2

µy
(κ)
2,k + |v(κ)2,k |2

+
|v(κ)2,k |2

(µy
(κ)
2,k + |v(κ)2,k |2)2

µσ), (88)

d
(κ)
2,k ≜

1

ν
(κ)
2 (z(κ))

(v
(κ)
2,k )

∗

µy
(κ)
2,k + |v(κ)2,k |2

, k ∈ K, (89)

c
(κ)
1,k ≜

1

ν
(κ)
2 (z(κ))

|v(κ)2,k |2

(µy
(κ)
2,k + |v(κ)2,k |2)2

, k ∈ K, (90)
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in (86), and

a
(κ)
2 ≜ ã

(κ)
2 − 2

∑
k∈K

ℜ{d(κ)2,kτ
(κ)
k,k }+

∑
k∈K

c
(κ)
2,k(|τ

(κ)
k,k |

2

+µ
∑

j∈K\{k}

|τ (κ)k,j |
2), (91)

CM ∋ b(κ)2 ≜
∑
k∈K

d
(κ)
2,k∆

(κ)
k,k −

∑
k∈K

c
(κ)
2,k((τ

(κ)
k,k )

∗∆
(κ)
k,k

+µ(
∑

j∈K\{k}

(τ
(κ)
k,j )

∗∆
(κ)
k,j )), (92)

B(κ)2 ≜
∑
k∈K

c
(κ)
2,k((∆

(κ)
k,k)

H∆
(κ)
k,k + µ(

∑
j∈K\{k}

(∆
(κ)
k,j )

H∆
(κ)
k,j

+σνDk)). (93)

We thus solve the following convex problem of majorant
minimization of (84) to generate z(κ+1) verifying (83):

min
z

[
f̃
(κ)
2,SM (z) + ρ

∑
m∈M

|zm − p(κ)m eȷθ
(κ)
m |2

]
s.t. (30b).

(94)
Like (52) and (61), (94) admits a closed-form solution

z(κ+1) =


(B(κ)2 + ρIM )−1ξ

(κ)
2

if ||
√
Q(κ)

2 (B(κ)2 + ρIM )−1ξ
(κ)
2 ||2 ≤ PA

(B(κ)2 + ρIM + αQ(κ)
2 )−1ξ

(κ)
2 otherwise,

where ξ
(κ)
2 ≜ (b

(κ)
2 )H + ρ(p

(κ)
1 eȷθ

(κ)
1 , . . . , p

(κ)
M eȷθ

(κ)
M )T , and

α > 0 is found by bisection so that

||
√
Q(κ)

2 (B(κ)2 + ρIM + αQ(κ)
2 )−1ξ

(κ)
2 ||2 = PA.

C. Convergence and computational efficiency

Algorithm 4 provides the pseudo code for solving the
problem (72). It follows from (73), (83) and (39) that

fρ,SM (w(κ+1), z(κ+1), p(κ+1), θ(κ+1)) <

fρ,SM (w(κ), z(κ), p(κ), θ(κ)), (95)

so the sequence {(w(κ), z(κ), p(κ), θ(κ))} of improved feasible
points for (72) converges to (w̄, z̄, p̄, θ̄), which is a feasible
point for (71).

Algorithm 4 Scalable-complex soft max-min algorithm

1: Initialization: Randomly generate a feasible four-tuple
(w(0), z(0), p(0), θ(0)) for (72). Set κ = 0.

2: Repeat until convergence: Generate w(κ+1) by solving
(82), and z(κ+1) by (95). Generate (p(κ+1), θ(κ+1)) by
(37)-(38). Reset κ← κ+ 1.

3: Output (w(κ), z(κ), p(κ), θ(κ)) and rk(w(κ), z(κ)), k ∈ K.

V. SIMULATIONS

In (2), hR,k =
√
βR,kh̄R,k and GB,R =

√
βB,RḠB,R,

with the path-loss and large-scale fading βR,k = GRIS −
33.05 − 30 log10(dR,k) and βB,R = GBS + GRIS − 35.9 −
22 log10(dB,R) at the distances dR,k and dB,R from the RIS
to user k and that from the BS to the RIS. The antenna gains
are GRIS = GBS = 5 dBi, while h̄R,k =

√
L
L+1 ĥ

LoS
R,k +√

1
L+1 ĥ

NLoS
R,k follow Rician distribution with the Rician factor

of L = 4.7 dB and the line of sight (LoS) as well as
non-LoS (NLoS) components of ĥLoSR,k and ĥNLoSR,k , where
ḠB,R is the small scale Rician fading [5], [36], [37]. In
(3), hk =

√
βkh̄k with the path-loss and large-scale fading√

βk = GBS − 33.05− 36.7 log10(dk) at the distance dk from
the BS to user k. The small-scale fading channel gain h̄k of the
BS to user k obeys the Rayleigh distribution [6]. Furthermore,
the values of small scale fading ḠB,R are generated by
ḠB,R(m,n) = eȷπ((m1−1) sin θ̄m sin ψ̄m+(n−1) sin eȷθm sinψm),
with eȷθm and ψm following uniform distribution within (0, π)
and (0, 2π), respectively. Furthermore, we set θ̄m = π − θm
and ϕ̄m = π + ϕm [37]. The noise power density is set to
−174 dBm/Hz.

The 3-D coordinates of the BS and RIS in Fig. 2 are set
to (120, 0, 25) m and (0, 90, 40) m, where the total K = 8
users are randomly located in two circular areas centered at
(0, 90, 40) m and (240, 90, 40)m with the radius of 60m.

Unless specified otherwise, we assume that the number of
antennas is N = 8, the transmit power is P = 20dBm, the
number of RIS elements is M = 100 and the power split
between the BS and RIS is 0.99P and 0.01P .

The following legends are used to specify the proposed
implementations: (i) MR RIS refers to the performance of the
CQ-based Algorithm 1 designed for solving the MR problem
(20); (ii) GM-RIS and SR-RIS (GM w/o RIS and SR w/o
RIS, resp.) refer to the performance of the scalable Algorithm
2 conceived for solving the GM-rate problem (42) and SR
problem (53) (w/o, resp.); (iii) soft MR-RIS (soft MR w/o
RIS, resp.) refers to the performance of the scalable Algorithm
4 of RIS-assisted signaling (RIS-less signaling, resp.).

A. Algorithmic convergence and efficiency

The choice of the penalty parameter µ in equations (20),
(42) and (72) is of paramount importance for the algorithms’
convergence. Starting with an initial value of µ = 1e−3,
we amplify it by a factor of 1.2 in each iteration. As the
iterative procedure unfolds, the value of µ gradually increases,
eventually resulting in the converge of the objective function
and the subsequent reduction of the penalty term to zero.

Similarly, the choice of c in soft max-min problem (72)
is also significant as a smaller value of c does not neces-
sarily translate to improved MR performance. This is evi-
dent from Table II, which presents the achieved MR versus
c ∈ {1, 0.5, 0.1} under different number of BS antennas N .
For N ∈ {6, 7}, soft-MR RIS with c = 1 yields the lowest
MR, while soft-MR RIS with c = 0.1 and c = 0.5 exhibit
similar MR. In the case of N ∈ {8, 9, 10}, soft-MR RIS
with c = 1 demonstrates the MR is quite similar to that with
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c = 0.5. Therefore, c = 0.5 emerges as the magic choice for
achieving consistent performance.

Fig. 3(a) and Fig. 3(b) depict convergence patterns of
the objective functions and the penalty terms toward zero.
In particular, as shown in Fig. 3(a) the objective functions
of the MR RIS and GM RIS (soft min, resp.) increased
(decreased, resp.) rapidly within 10-20 iterations, followed by
a gradual convergence. Similarly, Fig. 3(b) shows that the
penalty terms practically converge to zero within the same
range of iterations.
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Fig. 3: The convergence of the proposed algorithms

B. Achievable MR and SR by aRIS-aided signaling

Fig. 4(a) and Fig. 4(b) depict the MR and SR versus
the number of BS antennas N achieved by the proposed
algorithms. Surprisingly, the MR of soft-MR RIS is even
slightly better than that of MR RIS in Fig. 4(a). As expected,
the SR achieved by soft-MR RIS is much better than that
attained by MR RIS in Fig. 4(b). Note that the soft-MR RIS
relies on closed-form expressions of scalable computational
complexity, while MR RIS is optimized by CQ of cubic
computational complexity. Hence the former is better than the
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8

(a)
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34

46

58

70
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Fig. 4: The min-rate and sum rate versus the number of BS
antennas N achieved by the proposed algorithms.

latter in terms of its performance versus complexity. We thus
safely depart from MR RIS from now on.

Table III provides the average number of zero-rate users
(ZR-UEs) for SR maximization, demonstrating that the zero
rate problem is an inherent issue. Hence the stand-alone SR
maximization is unsuitable for MU communications.

C. aRIS vs no RIS

Fig. 5(a) and Fig. 5(b), which plot the MR and SR achieved
clearly show the performance advantage of an aRIS-assisted
solution which increases with the number of BS antennas N .
The MR achieved by the soft-MR RIS is better than that of GM
RIS. In terms of SR, soft-MR RIS is outperformed by GM RIS
for N < 8, but the former catches up for N ≥ 8. It is worth
mentioning that both GM RIS and soft-MR RIS achieve a
better SR than that of the stand-alone SR maximization, when
N > K.

Fig. 6(a) and Fig. 6(b), which depict the rate distributions
of the proposed algorithms, show that both the soft-MR and
GM algorithms exhibit a fair MU rate distribution. All users’
rates are reasonably similar.
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TABLE II: The achieved MR versus c under different number of BS antennas N by soft-MR maximization.

N = 6 N = 7 N = 8 N = 9 N = 10
c = 0.1 soft-MR RIS 1.6517 2.2011 4.9702 5.3726 5.7722
c = 0.5 soft-MR RIS 1.6378 2.1413 5.2849 5.8613 6.2480
c = 1 soft-MR RIS 0.5972 1.2214 5.2987 5.8900 6.2929

TABLE III: The average number of ZR-UEs versus the number of BS antennas N by SR maximization

M = 6 M = 7 M = 8 M = 9 M = 10
SR RIS 2.33 1.90 1.40 0.97 0.87
SR w/o RIS 2.80 2.50 1.83 1.43 1.33
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Fig. 5: The min-rate and sum rate achieved versus the
number of BS antennas N .

Fig. 7(a) and Fig. 7(b) show that both the MR and SR
achieved increase in line with the transmit power budget P .
Fig. 7 reveals that soft-MR RIS achieves a better MR than
GM RIS and the SR achieved by the former gets closer to
that achieved by the latter.

Furthermore, Fig. 8 shows that the MR achieved by soft-
MR and GM RIS increases in line with the number of PREs.
Apparently, ones have to substantially increase the number of
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Fig. 6: Rate distribution versus user index.

PREs to achieve a modest improvement MR.

D. EE efficiency

For implementing (55), we set (τBS , τRIS) =
(0.9−1, 0.8−1), while Pnon = NPa,BS+Pc,BS+M(Pa,pre+
Pc,pre), where we have (Pa,BS , Pa,pre) = (30,−10) dBm,
which represent the circuit powers per BS antenna and RIS
PRE. Furthermore, we set (Pc,BS , Pc,pre) = (40,−5) dBm,
which are non-transmission power at BS and RIS.
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Fig. 7: The min-rate and sum rate achieved versus the
transmit power P .

Fig. 9 plots the EE and MR achieved versus the number
of RIS elements, M , with N = 8 BS-antennas and P = 27
dBm. Both the EE and MR are seen to be increased in line
with M , and the aRIS-EE achieves substantially better EE and
MR than that of its RIS-less counterpart.

E. Power split

Fig. 10 shows that both GM RIS and soft-MR achieve only
slightly improved MR upon allocating more power to the aRIS.

F. Performance vs resolution

Finally, Fig. 11(a) and Fig. 11(b) show the sensitivity of the
MR and SR versus the PRE resolution.

VI. CONCLUSIONS

To enhance the rate-fairness of multiple users offered by
aRIS-assisted signaling, we have proposed different optimiza-
tion formulations and their computational solutions. The aRISs
rely on low-resolution PREs for practical implementation. We
set out from the standard problem of maximizing the MR,
which has been addressed by CQ-based iterations of cubic
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Fig. 8: The min-rate versus the number of RIS elements M
achieved .
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Fig. 9: The EE and min-rate versus the number of RIS
elements M achieved.

computational complexity that may become excessive. Then
we have proposed a pair of surrogate problems, namely that of
GM-rate and soft max-min rate optimization. These achieved
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Fig. 11: The min-rate and sum rate achieved versus the
reflection coefficient resolution b.

both a high MR and high sum rate, while iterating by evaluat-
ing closed-form expressions of scalable complexity. Finally,
simulations have been provided to confirm their practical
benefits.

APPENDIX I: FUNDAMENTAL TIGHT MINORANTS AND
MAJORANTS

A function f̄ is said to be a tight minorant of a function f
at v̄ over the domain dom(f), if f(x) ≥ f̄(x) ∀ x ∈ dom(f)
and f(v̄) = f̄(v̄) [25, p. 366]. Then it can be shown that
f(v̄opt) > f(v̄) as far as f̄(v̄opt) ̸= f̄(v̄) for v̄opt =
argminx∈dom(f) f̄(x), i.e. a tight minorant maximization at
the point v̄ helps to obtain a better point than itself.
Analogously, a function f̄ is said to be a tight majorant
of a function f at v̄ over the domain dom(f) if f(x) ≤
f̄(x) ∀ x ∈ dom(f) and f(v̄) = f̄(v̄) [25, p. 366]. Then it can
be readily shown that f(v̄opt) < f(v̄) as far as f̄(v̄opt) ̸= f̄(v̄)
for v̄opt = argmaxx∈dom(f) f̄(x), i.e. a tight minorant
maximization at the point v̄ helps to obtain a better point than
itself.

The linearized function of a concave (convex, resp.) function
f at v̄ is its tight minorant (majorant, resp.) at v̄.

The following inequality holds true for all (v, v̄) ∈ C × C
and y > 0, ȳ > 0 [31]:

ln(1 +
|v|2

y
) ≥ ln(1+

|v̄|2

ȳ
)− |v̄|

2

ȳ
+
2

ȳ
ℜ{v̄∗v} − |v̄|2

ȳ(|v̄|2 + ȳ)

(|v|2+y), (96)

i.e the right hand side (RHS) of (96) provides a tight minorant
of the left hand side (LHS) at (v̄, ȳ) over the domain {(v,y) :
v ∈ C,y > 0}.

The inequality (97) holds true for all vk ∈ C, v̄k ∈ C,
and yk > 0, ȳk > 0, k ∈ K, and µ > 0, i.e. the RHS of
(97) provides a tight majorant of the LHS at (v̄, ȳ) over the
domain {(vk,yk) : vk ∈ C,yk > 0, k ∈ K}. Considering the
LHS as a function f(v, z) with zk ≜ |vk|2 + µyk, which is
concave [31], the RHS is its linearized function at (v̄, z̄) with
z̄k = |v̄k|2 + µȳk.

APPENDIX II: CLOSED-FORM BASED ALGORITHM FOR TWO
CONVEX CONSTRAINED OPTIMIZATION

We consider the following convex problems

min
vk∈CN ,k∈K

−2
∑
k∈K

ℜ{bHk vk}+
∑
k∈K

vHk Q1,kvk

s.t.
∑
k∈K

||vk||2 ≤ P1,
∑
k∈K

vHk Q2,kvk ≤ P2, (98)

with given positive semi-definite matrices Q1,k and Q2,k and
bk ∈ CN , k ∈ K, andP1 > 0 and P2 > 0.

Then it is plausible that the solution of (98) is

voptk = Q−1
1,kbk, l ∈ K, (99)

whenever ∑
k∈K

||Q−1
1,kbk||

2 ≤ P1 (100)

and ∑
k∈K

||
√
Q2,kQ−1

1,kbk||
2 ≤ P2. (101)

When (101) is not met, we use bisection to find µ2 so that∑
k∈K

||
√
Q2,k(Q1,k + µ2Q2,k)

−1bk||2 = P2. (102)
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ln

(∑
k∈K

(1− |vk|2

|vk|2 + µyk
)

)
≤

ln

(∑
k∈K

(1− |v̄k|2

|v̄k|2 + µȳk
)

)
+

(∑
k∈K

(1− |v̄k|2

|v̄k|2 + µȳk
)

)−1 ∑
k∈K

|v̄k|2

|v̄k|2 + µȳk

−

(∑
k∈K

(1− |v̄k|2

|v̄k|2 + µȳk
))

)−1 ∑
k∈K

(
2
ℜ{v̄Hk vk}
|v̄k|2 + µȳk

)− |v̄k|2

(|v̄k|2 + µȳk)2
(|vk|2 + µyk)

)
, (97)

The solution of (98) is

voptk = (Q1,k + µ2Q2,k)
−1bk, k ∈ K, (103)

if ∑
k∈K

||(Q1,k + µ2Q2,k)
−1b||2 ≤ P1. (104)

If (100) is not met, we use bisection to find µ1 so that∑
k∈K

||(Q1,k + µ1IN )−1bk||2 = P1. (105)

The solution of (98) is

voptk = (Q1,k + µ1IN )−1bk, k ∈ K (106)

if ∑
k∈K

||
√
Q2,k(Q1,k + µ1I)

−1bk||2 ≤ P2. (107)

Thus, the remaining case is

voptk = (Q1,k + µ1I + µ2Q2,k)
−1bk, k ∈ K, (108)

where µ1 > 0 and µ2 > 0 are a pair of Lagrangian multipliers,
so that ∑

k∈K

||(Q1,k + µ1IN + µ2Q2,k)
−1bk||2 = P1

&
∑
k∈K

||
√
Q2,k(Q1,k + µ1IN + µ2Q2,k)

−1b||2 = P2, (109)

which however are computationally intractable. We propose
the so-called partial Lagrangian multiplier method, which aims
to find µ2, so that the solution voptk of the problem

min
vk,k∈K

[
−2
∑
k∈K

ℜ{bHkvk}+
∑
k∈K

vHkQ1,kvk

+µ2

(∑
k∈K

vHkQ2,kvk−P2

)]
s.t.

∑
k∈K

||vk||2 ≤ P1, (110)

satisfies
∑
k∈K ||

√
Q2,kv

opt
k ||2 = P2. For fixed µ2, the solu-

tion of (110) is given by

vk(µ2) =


(Q1,k + µ2Q2,k)

−1b

if
∑
k∈K ||(Q1,k + µ2Q2,k)

−1bk||2 ≤ P1

(Q1,k + µ2Q2,k + µ1IN )−1bk otherwise,

where µ1 is found by bisection so that
∑
k∈K ||(Q1,k +

µ2Q2,k + µ1IN )−1bk||2 = P1. It follows from (107) that∑
k∈K v

H
k (0)Q2,kvk(0) > P2, while for a sufficient large µ2,

we have
∑
k∈K v

H(µ2)Q2,kvk(µ2) < P2. We thus start from
µl = 0 and µu is such that

∑
k∈K v

H
k (µu)Q2,k

vk(µu) < P2 and carry out the following bisection.
Innovative bisection procedure. Set µ2 = (µu +

µl)/2 and generate vk(µ2) by (110). Stop the procedure if∑
k∈K v

H
k (µ2)Q2,kvk(µ2) ≈ P2. Otherwise, update µl ←

µ2 if
∑
k∈K v

H
k (µ2)Q2,kvk(µ2) > P2 or µu ← µ2 if∑

k∈K v
H
k (µ2)Q2,kvk(µ2) < P2.
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