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BACKGROUND: Surgery for urological cancers is associated with high complication rates and survivors commonly experience
fatigue, reduced physical ability and quality of life. High-intensity interval training (HIIT) as surgical prehabilitation has been proven
effective for improving the cardiorespiratory fitness (CRF) of urological cancer patients, however the mechanistic basis of this
favourable adaptation is undefined. Thus, we aimed to assess the mechanisms of physiological responses to HIIT as surgical
prehabilitation for urological cancer.
METHODS: Nineteen male patients scheduled for major urological surgery were randomised to complete 4-weeks HIIT
prehabilitation (71.6 ± 0.75 years, BMI: 27.7 ± 0.9 kg·m2) or a no-intervention control (71.8 ± 1.1 years, BMI: 26.9 ± 1.3 kg·m2). Before
and after the intervention period, patients underwent m. vastus lateralis biopsies to quantify the impact of HIIT on mitochondrial
oxidative phosphorylation (OXPHOS) capacity, cumulative myofibrillar muscle protein synthesis (MPS) and anabolic, catabolic and
insulin-related signalling.
RESULTS: OXPHOS capacity increased with HIIT, with increased expression of electron transport chain protein complexes (C)-II
(p= 0.010) and III (p= 0.045); and a significant correlation between changes in C-I (r= 0.80, p= 0.003), C-IV (r= 0.75, p= 0.008)
and C-V (r= 0.61, p= 0.046) and changes in CRF. Neither MPS (1.81 ± 0.12 to 2.04 ± 0.14%·day−1, p= 0.39) nor anabolic or
catabolic proteins were upregulated by HIIT (p > 0.05). There was, however, an increase in phosphorylation of AS160Thr642

(p= 0.046) post-HIIT.
CONCLUSIONS: A HIIT surgical prehabilitation regime, which improved the CRF of urological cancer patients, enhanced
capacity for skeletal muscle OXPHOS; offering potential mechanistic explanation for this favourable adaptation. HIIT did not
stimulate MPS, synonymous with the observed lack of hypertrophy. Larger trials pairing patient-centred and clinical endpoints
with mechanistic investigations are required to determine the broader impacts of HIIT prehabilitation in this cohort, and to
inform on future optimisation (i.e., to increase muscle mass).
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INTRODUCTION
Urological malignancy is the most common cancer in men,
accounting for ~25% of all male cancers and 10% of male cancer-
related deaths [1]. Surgery for urological cancers is associated
with high complication rates including transfusion and/or ventilator
requirements, and surgical site infections [2], and survivors
commonly experience fatigue, reduced physical ability and reduced
quality of life [3]. For example, even at 1 year after surgery, only
50% of radical prostatectomy survivors have returned to baseline
levels of physical function [4]. In addition, post-surgical complica-
tions are associated with substantial increases in healthcare costs
and reduced survivorship [5].

Although inextricably linked via the oxygen utilisation
capacity of skeletal muscle, both cardiorespiratory fitness (CRF)
and skeletal muscle mass (MM) are each physiological para-
meters known to be associated with improved post-operative
outcomes [6] in surgical cancer patients. For example, across
multiple cancer types including colon and liver, a pre-operative
increase in anaerobic threshold ((AT); an established measure of
CRF) of 1.5–2.0 ml/kg/min has been shown to be associated with
a ~40% reduction in the odds of post-surgical complications
[7, 8]. Additional work in colon cancer patients has also shown
that both MM and quality are each predictive of numerous
surgical outcomes including length of stay and 30-day mortality
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[9]. However, despite the significant role of both CRF and MM in
the physiological resilience of surgical cancer patients, the
majority of urology research exploring surgical prehabilitation
has remained focussed on reducing urology-specific complica-
tions (e.g., urinary incontinence [10]).
Prehabilitation is defined as interventions to enhance the

‘physiological reserve’ patients before the stress of surgery [11].
While CRF remains the predominant endpoint in cancer pre-
habilitation research, interest in body composition (e.g., MM),
clinical- and patient-centred outcomes is growing. Importantly, in
the UK the time-window for cancer prehabilitation is curtailed by
guidelines from the National Cancer Action Team who specify that
first treatment (including surgery) should start within 31-days of
decision to treat [12].
Based on this short time-window in which to implement

prehabilitation for cancer, high-intensity interval training (HIIT;
brief periods of high-intensity exertions interspersed with rest or
active recovery) has come to the fore in this setting. Proven
effective for improving both body composition [13] and the CRF of
both healthy and clinical populations over shorter time-periods
than commonly needed for traditional aerobic exercise training
[14], we have recently shown that 4-weeks, 5×1-min (interspersed
with 90 s recovery) HIIT on a cycle ergometer can improve the CRF
of urological cancer patients prior to surgery [15]. HIIT has also
shown potential to elicit muscle hypertrophy [16], an adaptation
more commonly associated with resistance exercise training (RET),
although evidence for this adaptation is inconsistent, especially
across surgical cohorts. For example, our work in urological cancer
patients showed no increase in whole-body MM with 4-weeks HIIT
training prior to surgery [15].
With the majority of cancers, including urological, being

associated with advancing age, many patients face the physiolo-
gical challenges of cancer, including anabolic blunting [17], on a
background of pre-existent sarcopenia furthering the importance of
MM/functional maintenance in the peri-operative period. In non-
clinical cohorts, the mechanisms by which HIIT enhances MM have
been subject to intense study. For example, in a pre-clinical rodent
model, HIIT-induced activation of the phosphoinositol-3 kinase-
Akt–mTOR signal transduction pathway led to higher ribosomal
biogenesis and muscle protein synthesis (MPS), and induced
muscle hypertrophy to a greater extent than moderate-intensity
training [18]. Further, in healthy older men, just a single session of
HIIT was shown to increase MPS, which remained elevated for up to
48-hours [19]. Although less well studied in relation to skeletal
muscle, cellular processes involved in the regulation of mitochon-
drial biogenesis and the electron transport chain (ETC) have been
found to be dysregulated both by cancer and associated surgery
[20], yet potentially ameliorated by mitochondria-based therapies
[21]. This work highlights the adaptive capability of cellular systems

associated with CRF [22], and therefore a potential mechanistic
avenue for favourable exercise-induced adaptation.
Despite the therapeutic promise of exercise prehabilitation, the

metabolic and molecular mechanisms by which HIIT is able to
induce favourable physiological adaptations on a physiological
background of cancer, and in particular urological cancer, are not
well-established. Therefore, this study aimed to evaluate the
impact of 4 weeks HIIT; which was able to elicit increases in CRF
[15], on mechanistic adaptation (e.g., mitochondrial oxidative
phosphorylation (OXPHOS) capacity, MPS, anabolic, catabolic and
insulin signalling) in urological cancer patients awaiting surgery.

MATERIALS AND METHODS
Patient recruitment
As detailed in our prior publication [15], this study was approved by an NHS
research ethics committee (REC reference: 16/EM/0075, IRAS Project ID
19141) and registered with Clinicaltrials.gov (NCT02671617). Patients
identified as suitable for surgery with curative intent and with an allocated
operation date that allowed potential for baseline assessment, 10 or more
HIIT sessions and reassessment within 72 h before operation were invited to
participate. Before inclusion, patients provided written informed consent to
participate and underwent a medical screening against pre-defined inclusion
and exclusion criteria including safety criteria as defined in ATS/ACCP
cardiopulmonary exercise test (CPET) guidelines [23]. After baseline
assessments, patients were randomised (block randomisation by age) to
HIIT or a no-intervention control group.

Study conduct
At baseline and after the intervention period, patients had whole-body
composition (body fat percentage and lean mass) measured by dual-energy
X-ray absorptiometry (DXA; Lunar Prodigy II, GE Medical Systems, Little
Chalfont, UK), m. vastus lateralis (VL) muscle architecture (muscle thickness,
pennation angle and fascicle length) assessed by B-mode ultrasonography
(Mylab, Esaote Biomedica, Italy), and CRF assessed by CPET (Lode Corival,
Lode, Groningen) as described previously [15]. In brief, CPET was performed
with in-line breath-by-breath data collected via a metabolic cart (nSpire
Zan600, Germany) and anaerobic threshold (AT) interpretation conducted by
two experienced assessors blinded to patient group allocation and time-point
(i.e., pre- or post-intervention). A muscle biopsy of the VL was taken to
quantify mitochondrial OXPHOS capacity, cumulative MPS over the interven-
tion period and markers of anabolic, catabolic and insulin signalling. To
facilitate the assessment of cumulative MPS before and after the intervention
period, a blood sample was collected at the screening visit and each
assessment visit. Patients then consumed 3ml/kg deuterium oxide (D2O) 72-h
before their first biopsy with weekly D2O “top-ups” (1 ml/kg) and time-
matched saliva samples thereafter [24] (Fig. 1A).
The HIIT group completed up to 12 HIIT sessions (3–4 times weekly)

within a < 31-day period. Each HIIT session lasted 16.5 min in total
including a warm-up period of 2-min, five 1-min high-intensity exertions
interspersed by 90-s unloaded cycling, and a final 2-min recovery phase
(Fig. 1B).

Fig. 1 Study conduct. A Study design, B HIIT protocol. CPET cardiopulmonary exercise testing, D2O deuterium oxide, DXA dual energy X-ray
absorptiometry, HIIT high intensity interval training.
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Laboratory analysis
Immunoblotting for anabolic, catabolic, insulin and mitochondrial oxidative
phosphorylation markers. To prepare samples for immunoblotting, spectro-
photometry was used to determine protein concentration as per our standard
technique [25]. Samples (10ug) were loaded onto Criterion XT Bis–Tris–12%
SDS-polyacrylamide gel electrophoresis (SDS-PAGE) gels (Bio-Rad) for
electrophoresis at 185 V for 45-min, transferred onto polyvinylidene difluoride
membranes blocked in 2.5% low-fat milk in TBST for 1-h at ambient
temperature, and then incubated in the following primary antibodies
overnight at 4 °C (1:2000 in 2.5% bovine serum albumin (BSA) in TBST): rabbit
phospho-protein kinase B (Akt)Ser473 (#9271), phospho-AMP-activated protein
kinase α (AMPKα)Thr172 (#2531), phospho-Akt substrate of 160 kDa
(AS160)Thr642 (#8881), Atrogin (#AP2041), Beclin-1 (#3495), phospho-
Forkhead box O3 (FOXO3a)Ser253 (#13129), phospho-glycogen synthase
(GS)Ser641 (#3891), LC3B (#2775), phospho-mechanistic target of rapamycin
(mTOR)Ser2448 (#2971), phospho-Tuberous Sclerosis Complex 2 (TSC2)Thr1462

(#3617), phospho-4E-BP1 (Eukaryotic translation initiation factor 4E-binding
protein 1)Thr37/46 (#2855) (from Cell Signalling Technology, Leiden, The
Netherlands), MuRF-1 (#101AP) (from ECM Biosciences, Versailles, KY, USA)
and mouse OXPHOS (Abcam, Cambridge, MA, USA). After overnight
incubation membranes were washed, soaked in horseradish peroxidase-
conjugated secondary antibody (New England Biolabs; 1:2000 in 2.5% BSA in
TBST) for 1-h and band intensity quantified (Chemidoc MP, Bio-Rad, Hemel
Hempstead, UK) following exposure to Chemiluminescent HRP substrate
(Millipore Corp., Billerica, MA, USA). Relative arbitrary units (AU) were
normalised to coomassie-stained membranes [25].

Mitochondrial citrate synthase activity. Citrate synthase (CS) activity was
measured as previously described [26]. Briefly, after homogenisation of
3–5mg muscle in 1% Triton-X-100 buffer, samples were centrifuged at
22,000 g for 3-min and the supernatant used. Thereafter, 300 μL master mix
containing 28% 0.05 M TRIS buffer (pH 7.6), 1.3% 1mM 5,5′ dithiobis-2-
nitrobenzoic acid (DTNB), 7% acetyl-coenzyme A (1.36 mg·mL−1), 0.8%
oxaloacetate (9.88 mg·mL−1), and 63% ddH2O was measured at 412 nm as
the blank. Finally, 20 μL of supernatant was used to measure the maximum
rate of reaction (V max), compared with whole protein content.

Myofibrillar muscle protein synthesis. The saliva samples collected were
processed to determine each patient’s body water enrichment over the
time between biopsies to provide a measure of the precursor labelling [24]
using a high-temperature conversion elemental analyser (Thermo Finni-
gan, Thermo Scientific, Hemel Hempstead, UK) connected to an isotope
ratio mass spectrometer (Delta V advantage, Thermo Scientific). To assess
protein bound alanine muscle fraction enrichment, ∼40mg of muscle was
homogenised in an ice-cold homogenisation buffer to isolate myofibrillar
proteins. These were hydrolysed overnight in 0.1 M HCl and Dowex H+

resin at 110 °C, before elution and derivatization of the amino acids as
their n-methoxycarbonyl methyl esters. Incorporation of deuterium into
the protein bound alanine was determined by gas chromatography-
pyrolysis-isotope ratio mass spectrometry (Delta V Advantage, Thermo,
Hemel Hempstead, UK).

Calculation of fractional synthetic rate. Myofibrillar fractional synthetic
rate (FSR) was calculated as follows:

FSRð% � day�1Þ ¼ �In
1� ðAPEAla

APEP

h i

t

0
@

1
A;

where APEAla is deuterium enrichment of protein-bound alanine, APEP is
mean precursor enrichment of the body water over the period (corrected
for the mean number of deuterium moieties incorporated per alanine (3.7)
and dilution from the total number of hydrogens in the derivative)), and t
is the time between the biological samples in hours (i.e., the baseline blood
and first biopsy (~3 days) or between the two biopsies (<31-days)).

Statistical analysis
Sample size was originally calculated to determine change in anaerobic
threshold as detailed in our prior publication [15], however, have previously
shown the ability to detect between group differences for the end points
used herein with the current sample size [27]. All laboratory analysis was
conducted in a single bind manner. All data passed normality testing via
Kolmogorov-Smirnov. Data are expressed as mean ± SEM unless otherwise
stated. Two-way analysis of variance (ANOVA) was used to compare

differences at baseline and post-intervention and changes across the
intervention. Correlations were assessed using Pearson’s product moment
correlation coefficient. Significance was accepted as p < 0.05 and all statistical
analyses were performed using GraphPad Prism 9.5.0 (La Jolla, CA, USA).

RESULTS
Patient characteristics
Nineteen patients (HIIT: 12, control: 7) were recruited to this study,
with muscle biopsies an optional aspect of our previously
published study [15], hence the lower patient numbers reported
herein. Baseline characteristics of the patients for this study are
shown in Table 1. Patients in the HIIT group completed an average
of 11 HIIT sessions with adherence (pre-determined as participa-
tion in 10 sessions or more) 92%. No adverse events were reported
throughout the study.

Mitochondrial oxidative phosphorylation capacity
In keeping with our previous finding that HIIT elicited significant
increases in CRF [15], HIIT resulted in enhanced protein expression
of ETC complex (C)-II (p= 0.010) and C-III (p= 0.045). Protein
expression for each of these complexes was not different between
the groups before or after the intervention period. HIIT did not
significantly enhance protein expression of C-I (p= 0.17), C-IV
(p= 0.87) or C-V (p= 0.20) and there was no difference in protein
expression between the groups at either time-point. In the control
group there were no changes in ETC protein expression (C-I:
p= 0.60, C-II: p= 0.17, C-III: p= 0.36, C-IV: p= 0.75, C-V: p= 0.17).
CS activity was not altered in the HIIT (pre: 84.12 ± 7.22 vs. post:
100.93 ± 7.47 nmol/min/mg, p= 0.08) or control (pre:
124.83 ± 13.72 vs. post: 129.60 ± 13.80 nmol/min/mg, p= 0.86)
groups, despite significantly lower activity in the HIIT group before
the intervention period (p= 0.02) (Fig. 2).
Exploring the relationship between changes in ETC protein

expression and changes in CRF, there was a significant correlation
between HIIT-induced increases in CRF and increases in C-I
(r= 0.80, p= 0.003), C-IV (r= 0.75, p= 0.008) and C-V (r= 0.61,
p= 0.046) expression (Fig. 3). There was no relationship for C-II
(r= 0.49, p= 0.13) or C-III (r= 0.52, p= 0.10). No relationships
were observed in the control group (all p > 0.05).

Myofibrillar muscle protein synthesis and cell signalling
Supporting our previously reported observation of no HIIT-induced
increases in MM [15], cumulative FSR was not significantly increased
by HIIT (pre: 1.81 ± 0.12 vs. post: 2.04 ± 0.14%·day−1, p= 0.39) and

Table 1. Patient baseline characteristics before a < 31-day control
period (CON) or period of high-intensity interval training (HIIT).

Control (n= 7) HIIT (n= 12)

Age (y) 71.8 ± 1.1 71.6 ± 0.75

Weight (kg) 77.3 ± 5 80.7 ± 2.4

Body mass index (kg/m2) 26.9 ± 1.3 27.7 ± 0.9

Location of malignancy Prostate Prostate

DASI 49.97 ± 9.2 53.18 ± 9.5

CPET Wattage (W) 148 ± 37 141 ± 34

VO2PEAK (ml/kg/min) 31.98 ± 3.7 27.03 ± 3.2

VO2AT (ml/kg/min) 16.96 ± 1.9 14.15 ± 1.6

SBP (mmHg) 142 ± 9 139 ± 9

DBP (mmHg) 81 ± 6 82 ± 8

Data is mean ± SD.
BMI body mass index, DASI Dukes Activity Status Index, CPET cardiopul-
monary exercise test, AT anaerobic threshold, SBP systolic blood pressure,
DBP diastolic blood pressure.
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was not different between the HIIT and control groups either before
(control: 1.70 ± 0.21 vs. HIIT: 1.81 ± 0.12%·day−1, p= 0.87) or after
(control: 1.61 ± 0.14 vs. HIIT: 2.04 ± 0.14%·day−1, p= 0.13) the
intervention period (Fig. 4).
Compared to baseline, HIIT significantly increased the phosphor-

ylation of AS160Thr642 (p= 0.046) (control: AS160Thr642, p= 0.64) only
(Supplementary Table S1). No other anabolic or catabolic protein
markers (GSSer641, mTORSer248, AktSer473; 4E-BP1Thr37/46, AMP-
KαThr172, TSC2Thr1462, FOXO3a Ser253, LC3B, Beclin-1, Atrogin, MuRF-
1; all p > 0.05) changed in the HIIT or control groups following the
intervention (Supplementary Table S1).

DISCUSSION
We previously reported that 4-weeks, time-efficient HIIT on a cycle
ergometer as surgical prehabilitation in urological cancer positively

modulated CRF [15]. This HIIT protocol involves 3 sessions per week
with 5, 1-minute high-intensity exertions in each 16.5-minute
session. Herein we report data that suggests this favourable
physiological adaptation likely occurs due to improved mitochon-
drial OXPHOS capacity; thereby offering mechanistic insight into
a potential strategy to offset a well-established cancer-related
physiological deterioration [28], even within the short time-window
available to intervene prior to surgery.
Exercise, including HIIT, is well-known to induce favourable

mitochondrial adaptations. For instance, we have previously
shown that in octogenarians with comorbidities, HIIT increased
both muscle mitochondrial content and function [29]. Specifically
related to cancer, HIIT has been shown to be a potent stimulus for
counteracting reductions in muscle mitochondrial content seen in
patients being treated with chemotherapy for breast cancer [30].
However, there is particularly limited data regarding muscle
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mitochondrial remodelling in cancer patients during the con-
strained time-period for prehabilitation. Here, we show that just
4-weeks HIIT improved muscle OXPHOS capacity in urological
cancer patients awaiting surgery.
OXPHOS capacity has been suggested to have an important

role to play in preventing the accumulation of free radicals and
damaged organelles that could negatively impact muscle function
[31], especially during periods of rehabilitation or recovery (i.e.,
from surgery). For example, Hsaio and colleagues reported a
significant association between downregulation of OXPHOS
capacity and an increase in fatigue in patients with prostate
cancer [32]. Illustrating the spread and impact of cancer-related
fatigue, it is reported to be a chronic problem in over two-thirds of
patients with cancer and close to 40% of patients describe it as
severe for at least 6 months after treatment [33]. Although fatigue
was not assessed in this study, our results paired with the existent
literature highlight the potential for HIIT prehabilitation to
improve both short (i.e., physical function) and long-term (i.e.,
fatigue) post-surgical outcomes for urological cancer patients via
preservation of mitochondrial function.
Mitochondrial biogenesis has previously been reported to be

blunted by both ageing [34] and physical inactivity [35], each of
which are associated with urological cancer [36]. Mitochondria have
also been shown to be subject to cancer-related remodelling,
including in urological cancer; with cancer patients exhibiting lower
mitochondrial oxidative capacity, reduced ATP production and
alterations in phospholipid metabolite profiles; all of which are
indicative of mitochondrial abnormalities [37]. Thus, mitochondrial
dysfunction likely underpins, at least to some extent, the poor
overall physical functioning of cancer patients and presents as a
potential target for interventions to improve physical function.

Although prior work has demonstrated the ability of HIIT to
increase MM in healthy young and older adults [38–40], albeit with
diminishing adaptation with advancing age (as is seen for RET
[41]), the hypertrophic response to HIIT in cancer patients is less
consistent (e.g. refs. [42, 43]). Specific to urological cancer, a
systematic review by Chen et al., concluded that although exercise
training can increase muscle strength it may not be sufficient to
enhance MM in prostate cancer patients [44], a conclusion
supported by the findings of this study. It should be noted that
the review by Chen et al., was on patients undergoing androgen-
deprivation therapy who were training with low systemic
testosterone levels which may have blunted their hypertrophic
potential [27]. That HIIT was not able to increase cumulative MPS
or enhance anabolic signalling logically extrapolates to a lack of
hypertrophy in this study. This does however not mirror what was
seen in co-morbid octogenarians who completed the exact-same
HIIT protocol [29], where increases in MPS and MM were reported,
suggesting urological cancer-induced anabolic, and subsequent
adaptive blunting. One possible suggestion to overcome this is
the addition of RET, given its ability to elicit hypertrophy across
the life course [45], including in cancer patients [46], and that
hypertrophic adaptations have been shown to predominate in the
early stages (3-weeks) of RET [47].
Despite a lack of change in anabolic signalling with HIIT in

this study, increased phosphorylation of AS160Thr642 was seen.
Cancer has previously been shown to lead to marked insulin
resistance due to blocked insulin-stimulated glucose transport
and abolished insulin-induced phosphorylation of AS160Thr642 at
multiple phosphorylation sites [48]. As such, beyond increasing
muscle mitochondrial capacity, our HIIT regime may also have a
positive role to play in the glucose metabolism of urological
cancer patients.
As with almost all research studies, there are limitations: 1) the

majority of patients were white males with prostatic adenocarci-
noma, thus representing a relatively homogenous patient group; 2)
although patients were randomised to intervention group and
instructed to maintain habitual physical activity and dietary intake,
this was not measured in either group; 3) as only a sub-group of the
original study agreed to muscle biopsies for the molecular analysis
presented herein, the number of patients is relatively small
which may have impacted the outcomes of our statistical analysis;
and 4) our mitochondrially-focused measures only provide a
measure of OXPHOS complex content, and do not represent a
dynamic assessment of mitochondrial respiration, which would
have required fresh-tissue analysis using (e.g.,) Oroboros or
Seahorse instruments. In addition, although this study explores a
pre-operative exercise intervention which could be delivered to
patients with a diverse range of urological cancers, that all of the
patients in this study underwent radical prostatectomy must be
considered when designing future trials, as the potential post-
operative impact after more invasive surgeries such as cystectomy
or nephrectomy will likely differ greatly.
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In conclusion, pre-operative, short-term HIIT is a well-tolerated
effective intervention to improve a key aspect of physiological
resilience in patients with urological cancer. This regime appears
to increase CRF via improved mitochondrial oxidative capacity,
whilst also enhancing glucose transport machinery. We propose
this HIIT regime should now be subject to larger trials with direct
clinical outcome endpoints, and potentially with the addition of
adjuvant RET.
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