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Opinion shaping, by which a strategic attempts to influence the opinion of a social
group, is a pervasive phenomenon in human behaviour, with clear examples in
current societies in information campaigns, political competition, or marketing.
However, the effect that influence attempts have in societies is not easy to foresee, as
they are complex systems where interactions can cascade and compound in
unpredictable ways. The research subfield of opinion dynamics employs a
mathematical modelling approach to study these phenomena using tools from the
more general field of complex systems. In this approach, the opinions held by an
individual are typically modelled as mathematical variables, with changes in opinion
dictated by simple rules triggering upon interactions, which typically only happen
interact according to a complex network that reflects their social structure. By drawing
from techniques from statistical physics, agent-based simulations, and optimisation
research, this thesis studies the effects that different external control strategies have on

opinion formation processes.

We first focus on a case where the external controller is a “perfect optimiser’, i.e. they
can split their influence targets among the individuals and have information to do so
strategically as to achieve the best possible result — a problem commonly known as
Influence Maximisation. We place this optimising controller against an opponent in a
scenario where individuals have preferences over two possible choices (e.g. products
or political parties), propose an optimisation algorithm to find optimal targetting
strategies, and analyse the characteristics of these to understand why they are
effective. We find that optimal strategies can be characterised by two heuristics,
shadowing and shielding, while the structure of the network only plays a secondary
role. Shadowing entails targeting the same individuals as the opponent to directly
block her influence in the network, unless the opponent’s influencing power is much
higher, in which case these are avoided. Shielding entails ring—fencing the individuals
targeted by the opponent to indirectly block the spreading of her influence. We then
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modify the previous scenario to incorporate different levels of bias against either
opinion in individuals, and analyse optimal targetting strategies when the population
is structured in different network topologies. We find a general pattern in which
individuals that are difficult to control (i.e. biased against the controller, highly
connected, or targeted by the opponent) are avoided if the influencing power is small
and sought if the influencing power is high.

Last, we shift the scenario to one in which the controllers are not ‘perfect optimisers’
any more but only have very limited information and perform local moves to improve
their situation in the short term. Therefore, their control strategies are ‘adaptive’,
reacting to the dynamics of the opinions as they unfold and creating a dynamic
interaction between the two. We focus on the specific agenda—setting scenario where
political parties seek to increase votes by affecting the importance that different
political dimensions have and how their strategies interferes with the process of
arriving at consensus or polarisation within the social group. We find in this scenario
that party competition often fosters the arrival of a polarised state with most
individuals gathering in two opposed camps, although if parties perform frequent
shifts in the issues they give importance to, their behaviour inadvertently fosters the

arrival at a consensus in opinion in social group.
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Chapter 1

Introduction

It has been argued that the evolutionary origin of reasoning is rooted in trying to
persuade others to align their intentions (Norman, 2016); hence attempting to
influence others” opinions may be as old as reasoning itself. The evolutionary benefit
of persuasion comes from achieving common outlooks that can either improve the
effectiveness of mutually beneficial collaboration or by obtaining an argumentative

advantage at the expense of the persuaded partner.

As societies progressed, advances in communication technologies brought more
powerful channels through which to exert influence, from the invention of the press to
the radio and television. Massive diffusion of propaganda and advertisements
marked much of the social opinion sphere in the last century. The recent arrival of the
Internet has further revolutionised communication, moving from a centralised
paradigm —where the channels are owned by a few powerful institutions— to a
distributed one, where any individual can be a source of information and the
propagation of opinions depends on individuals replicating them (Bakshy et al., 2012;
Kramer et al., 2014; Quattrociocchi et al., 2015). Furthermore, the abundance and
immediacy of virtual communication have led to an almost instantaneous spread of
information (Bakshy et al., 2011; Morales et al., 2014).

Unexpectedly, the elimination of entry barriers brought by the so—called ‘social media’
— online platforms where anyone can share and broadcast messages and content at
different levels — has not clearly democratised the opinion market. The topics under
discussion and the prevalent views are still greatly controlled by powerful agents that
continue to exert their influence on communication channels (De Domenico and
Altmann, 2020; Morales et al., 2014; Borondo et al., 2012). Topical examples include the
support campaign for Donald Trump (Badawy et al., 2018; McFaul and Kass, 2019),

Russia’s attempts to shape international opinion around the incidents in Ukraine!, or

1Source: https://www.buzzfeednews . com/article/maxseddon/documents-show-how-russias-troll-army-hit-amer
retrieved on October 4, 2023.
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the Brexit campaign in the UK?2. Such cases raise concerns about the threats influential
agents pose for the stability of democratic systems in the new hyper-connected reality,
demanding a better understanding of the dynamics caused by external influence on a
social network (Hoferer et al., 2020; Stewart et al., 2019; Albanese et al., 2020).

Furthermore, the recent decentralisation of social communication introduces further
complexity to the mechanisms through which opinions are formed in social systems
or how collective decisions are made. This is because the amplification of continuous
micro—interactions between individuals may lead to highly unexpected system-level
dynamics (De Domenico and Altmann, 2020). As a consequence, a plethora of new
opinion phenomena has arisen in post-Internet societies, such as echo chambers (Del
Vicario et al., 2016; Choi et al., 2020), viral posts (Morales et al., 2014; Garcia et al.,
2012), or opinion polarisation (Ramos et al., 2015a; Axelrod et al., 2021), finding much
attention from both researchers and the broader public. Understanding these
phenomena requires a complex systems approach that incorporates in its explanation
the complexity of networks of interaction and non-linear effects (Biswas et al., 2018;
Noorazar, 2020).

Understanding how an influence attempt interacts with opinion phenomena is not a
trivial task, as, from the point of view of control theory, it adds a feedback interaction
loop to an already complex scenario. Therefore, there are many questions that arise
regarding the effects that an influence attempt may have. First of all, one may wonder
if the external control is capable of affecting the dynamics of opinion and, naturally, if
it is able to benefit from it. There may be circumstances where the means or resources
that the external influence has are not enough for causing significant effect — or even
more, they may result in the opposite effect that the desired one, what is usually
known as ‘backfire effects” (Carletti et al., 2006; Vendeville et al., 2022). Second, there is
a question of the strategies that the external influence can employ and how they differ.
Related to this, there has been quite some efforts in past literature to understand the
problem termed influence maximisation (IM) (Domingos and Richardson, 2001; Kempe
et al., 2003; Li et al., 2018), which addresses how to optimally target a limited number
of individuals for attaining the highest influence possible in the social group. Third,
multiple external controllers may be present and interacting in a quest to bring their
desired opinions in the population. This introduces the question of how their
influence effects combine — e.g. they may cancel out — and the suitability of different
strategies to combat the other controllers (Bimpikis et al., 2016)s. Last, if the influence
control reactively adapts to the dynamics of the opinions, there may be unexpected
dynamics emerging, and it is important to understand how this interaction affects the
outcome of the opinion process, such as if they increase a state of polarisation or
fragmentation of opinions (Gonzalez-Avella et al., 2006).

2Source: https://www.theguardian. com/news/2018/mar/17/cambridge-analytica-facebook-influence-us-election
retrieved on Ocober 4, 2023.
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These questions are relevant in a wide number of contexts. First, these are very
natural questions in the political realm, in the context of the promotion of candidates
or parties in elections (Javarone, 2014; Wilder and Vorobeychik, 2018; Sobkowicz,
2016), favouring stances on policy issues (Moya et al., 2017), or agenda-setting
strategies (De Sio and Weber, 2014). In this context, many scenarios typically involve
multiple external controllers with opposing needs, so a game-theoretical study of how
combinations of strategies perform is of particular interest (Fowler and Laver, 2008),
as well as how their behaviour affects voters as a side effect (Fowler and Smirnov,
2005). As parties typically have limited information about the positions of the
electorate, it is common to model their behaviour as adaptive, reacting to polls or
outcomes of elections with simple rules (Kollman et al., 1992). The influence
maximisation problem is also of paramount interest in marketing, closely related to
‘viral marketing’ or the use of ‘influencers’ in social platforms (Domingos and
Richardson, 2001; Kempe et al., 2003). In this context, firms seek to spread the
popularity of their product or have it preferred over those of the competition. These
scenarios may include a single external controller if the goal is to make a new product
known (Domingos and Richardson, 2001) or multiple external controllers competing
to promote alternative products, adding a game-theoretical component (Ikizler, 2019).
Likewise, influence maximisation can also be applied to policy making with various
purposes, as to promote cooperative behaviour (Han et al., 2018), prevent substance
abuse (Rahmattalabi et al., 2018), increase awareness of risks (Yadav et al., 2017),
promote the adoption of norms or ecological behaviour (Zhang et al., 2016), vaccine
immunisation campaigns (Veldsquez-Rojas and Vazquez, 2017; Wang et al., 2016), or
limiting the spread of misinformation (Budak et al., 2011; Tsai et al., 2012). These
scenarios typically include a single external controller (the policy maker) who wants
to spread a piece of information effectively or needs to bring the social system to a
desired equilibrium state. Last, influence maximisation also relates to other problems
with similar frameworks but not strictly within opinion dynamics, such as guiding
technological innovation (Alshamsi et al., 2018a) or preventing epidemic contagion
(Altarelli et al., 2014; Dezs6 and Barabasi, 2002; Fekom et al., 2019; Wilder et al., 2018b).

Although the study of external control has many applications and uses in different
contexts, it is not free of ethical concerns. Improving understanding of how external
control influences opinions, also indirectly provides tools to these external controllers
to better do so. And while these attempts can be done to improve the welfare of the
social group — e.g. all the scenarios provided above in the context of policy making,
with examples of actual implementations in Zhang et al. (2016) and Yadav et al. (2017)
— they can also be employed by malicious agents, authoritarian regimes, or firms, at
the expense of the society. However, we argue that investigating these topics from
public research institutions entails that this knowledge can remain publicly available
to the wider society. Understanding the effects of external control not only provides

tools for external controllers — with moral or immoral goals — to increase their
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influence, but at the same time provides tools to the society to prevent this control, as
there may be modifications in their micro-behaviours or in the patterns of social
connections that may make the social group more robust to these influence attempts.
Meanwhile, it can be assumed that similar research is also being undertaken privately
by intelligence services and firms for their benefit. So an important question to answer
is: when providing resources to better understand external control, are these
increasing the tools that malicious external controllers already have more than the
tools that benevolent external controllers or citizens have, or are these strengthening
the latter group due to a current imbalance in resources? Either way, these key ethical
questions have not found much discussion in the research around external control
barring some exceptions (Hegselmann et al., 2015), and it is important that these

concerns are voiced more often.

1.1 Research challenges

Understanding the effects of external influence on a social system is a task that faces
important challenges, as opinion dynamics are highly complex processes that are hard
to conceptualise, measure, and model. The typical conceptualisation of opinion
formation processes involves a system of many agents that interact dynamically and
who are typically embedded in a network of interactions with non-trivial topologies.
Predicting system behaviour or analysing its characteristics may be challenging —
particularly for non-linear interaction rules — while the parameter space can easily
become high-dimensional, hindering its exploration or the optimisation of some

outcome.

This high complexity is treated in the literature via two paradigmatic approaches
(Jedrzejewski and Sznajd-Weron, 2019): statistical physics and agent-based modelling,
both of which aim to extract simple, general patterns at the system level from the
low-level behaviour of individual agents (Castellano et al., 2009a). In statistical
physics, this is typically done by making certain assumptions of the low-level
distributions and working with average behaviours and simplifications that may
allow for analytical solutions. This approach is highly related to sociodynamics
(Helbing and Weidlich, 1995), where social phenomena are studied from the
perspective of dynamical systems and non-linear dynamics, typically modelling the
rates of change in the system. This approach strongly relies on the tractability of the
proposed models, so its success depends on selecting simple models and adequate
approximations that preserve the main mechanisms of the modelled phenomena. In
contrast, agent-based models rely on numerical simulations to explore the
characteristics of the system behaviour, so they are not as strongly constrained by the
model complexity and accept more details in the low-level interaction rules. This
bottom—up approach has special relevance in the study of conditions that trigger the
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emergence of system-level behaviours. While simpler models can afford to
exhaustively explore large areas of the parameter space, models with wealth in details
can rely on calibrating their parameters with empirical data. Due to the potentially
complex models, care needs to be put in their design to cater for reasonable time and
memory constraints in computing. Although both approaches are able to provide
some insights into the studied phenomena, major challenges still remain in the
analysis and understanding of the models, as they include a large number of variables

that vary in time and that are embedded in complex networks structures.

Furthermore, performing influence maximisation or any other optimisation goal on
opinion dynamics processes takes tractability challenges one step further. As
evidence, the problem of influence maximisation has been proven to be NP-hard in its
most common formulations in the literature (Kempe et al., 2003), resulting in many
researchers focusing on devising heuristics or approximation algorithms to solve this
problem while scaling well with system size (Chen et al., 2013; Li et al., 2018). Any
influence maximisation attempt should devise an optimisation algorithm that
provides an exact solution or bounds to an approximate solution (Liu et al., 2010; Mai
and Abed, 2019). Although a significant body of literature has been devoted to
devising algorithms that provide solutions, a further challenge remains in the
examinations of the structure of these solutions, uncovering the ingredients that are
responsible for them to be successful. This is an open question that, barren some
exceptions (Yildiz et al., 2013; Lynn and Lee, 2016) has been largely unexplored.

Additionally, contexts of opinion dynamics often include more than one external
controller willing to introduce their influence in a population —e.g. competing
political parties aiming to collect partisans or companies that try to have their products
preferred over the competition. Such scenarios add a game-theoretical component
(Hegselmann and Krause, 2015), with research works typically focusing on finding
Nash equilibria (Masucci and Silva, 2014) — i.e. combined strategies from where no
player has an incentive to divert — or best responses to certain strategies held by the
opponent (Javarone, 2014; Bharathi et al., 2007; Lin et al., 2015). The interaction of
opposing controllers has been significantly less explored than when a single external

controller is present and more research is needed to understand these scenarios.

Last, the presence of adaptive control that reacts to the opinion dynamics adds a
challenge to its modelling an analysis, as the time scales in which the dynamical
processes evolve and react to each other can play an important role in the outcomes.
These two components are related by a feedback loop with high non-linearities and
disentangling the mechanisms that cause specific outcomes can be challenging.
Therefore, there is a need to better understand how adaptive controllers interfere with
the opinion dynamics and lead to new emerging phenomena (Fowler and Smirnov,
2005; Gonzalez-Avella et al., 2006).
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1.2 Research contribution

This work studies different scenarios of external influence on opinion dynamic
processes on graphs, emulating social systems. The approach is chiefly theoretical: we
study system behaviours and optimal solutions, as well as their dependence on
various aspects of the models, such as network topology, model parameters, or
influence power. By doing this, we aim to better understand the mathematical
properties of dynamical social systems and their interplay with external sources of

influence.

An important part of this thesis focuses on the case of external controllers as ‘perfect
optimisers” who have complete information about the social system and where
opposing controllers compete. In this context, we focus on a scenario where external
controllers exert influence by targetting agents in a population that is embedded into a
social network, and allow them to divide their influence power continuously among
all agents in the population. For this scenario, we first the infuence maximisation
problem by developing an gradient-ascent algorithm that is able to arrive at optimal
strategies of targetting with high guarantees and in polynomial time. This is novel in
that most previous work aims to find an optimal subset of nodes to influence with a
fixed targeting intensity, while our modelling adds flexibility in targeting, allowing for
arbitrary intensity (under a certain budget).

Additonally, and unlike most previous research in the field, we perform a thorugh
analysis of the structure of optimal targetting strategies to characterise the factors that
shape their structures, to provide insights of what aspects of the strategies make them
effective and how these change under different scenarios of power imbalance or react
to the strategy of the opponent. To complement this analysis, we also derive
mean—field approximations that provide further insights between the mathematical
relations of the strategies to other system variables under specific limiting conditions.

As an important contribution, we distil two joint heuristics that can explain a large
part of the variance in optimal influence allocations, which we term shadowing and
shielding, respectively. With shadowing, an external controller focuses resources on
nodes targeted by the opponent if in resource superiority, while avoiding them when
in resource disadvantage. With shielding, the controller focuses additional resources
on nodes surrounding those targeted by the opponent, thus preventing the spread of
influence, although an inverse effect may also appear if the controller’s budget is
much lower than the opponent’s. Interestingly, these two heuristics strongly depend
on the behaviour of the opponent, while the effect of the topology of the social
network —e.g. node degree or centrality, which are common heuristics in the
literature— is only marginal and purely a side effect resulting from the application of

shadowing and shielding.
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While we initially explore the relevance of these heuristics in the regime of continuous
influence maximisation (where nodes can be targeted with arbitrary intensity), we
also test these heuristics for the discrete influence framework of homogenous
targeting intensity, which is more common in the influence maximisation literature (Li
etal., 2018; Peng et al., 2018). We observe that shadowing and shielding are also
present in solutions for the discrete framework, although their presence is also shared
with an intrinsic dependence on node degree, revealing an important difference
between the continuous and discrete frameworks.

Additionally, we also explore influence maximisation on heterogeneous populations
where some individuals are biased towards one of the opinions. This additional
aspect accounts for the natural tendencies of individuals towards certain preferences
or, alternatively, the presence of external factors not captured in the model. We
address whether these biased individuals are worth being targeted, under which
circumstances, and how much effort should be spent on them. We find that targeting
strongly biased agents is only optimal when the controller has an abundance of
influence resources, while they should be avoided otherwise. Interestingly, the
topological position of biased (and unbiased) agents is highly important in these

scenarios, with hubs also being preferred when influencing budgets are high.

The last section of this thesis moves away from the assumption that external
controllers have full knowledge of the opinion dynamics and that they can predict its
evolution in the long term. Instead, we assume that they adaptively react to the
current state the opinion dynamics and their opponents at similar timescales, and our
focus is on how the presence of this adaptive control interferes with the trajectory of
the social dynamics. In particular, we consider the scenario of political parties that
affect a population’s consensus formation process by modifying the importance in
which political dimensions are perceived by the population. Unlike the above, we
consider here the case of opinions that have real values from within a continuous
interval, representing political dimensions of opinions. Although there are numerous
works studying the adaptive control of parties in the political sciences, its interference
with the opinion dynamics and their feedback effect have not been previously studied.
By employing agent-based simulations, we show that the adaptive control by the
parties tends to bring the citizen population to a state of polarisation that would have
not happened without their interference, although under some circumstances their
adaptive control can also foster the arrival at a population-level consensus. The
produced effect depends on the constellation of party positions and their number,
although a polarising effect is much more prevalent than a promotion of consensus. If
the population is embedded into a sparse, random social network, it is more prone to
reach a consensus state, but the effects that party competition has on this process

remain qualitatively similar.



8 Chapter 1. Introduction

1.3 Thesis structure

The structure of the thesis is as follows. First, Chapter 2 provides background theory
of the different areas that overlap within the topic of this thesis. This chapter includes
an introduction to how social networks are commonly model and some tools in
network science for their analysis, presents the most important modelling approaches
to opinion dynamics, covers relevant literature on external influence in opinion
dynamics, introduces famous agent-based modelling for social simulations, and
covers the most important techniques to perform optimisation. Then, Chapter 3
focuses on the first scenario where the external controller optimises its influence
strategy against an opposing external controller. There, we formalise the continuous
influence maximisation problem with arbitrary targeting intensities, provides a
gradient-ascent algorithm for obtaining optimal solutions and analyses the structure
of these solutions in relation to the strategy of the opponent and the role of individuals
within a complex networks. Chapter 4 extends the scenario and analysis to the case of
heterogeneous populations with biased agents, providing understanding of optimal
influence in this richer scenario. Chapter 5 moves away from external controllers as
‘perfect optimisers” and investigates the case of adaptive external control in the
context of party competition affecting the agenda—setting and their effect in
consensus—formation processes within a society. Last, Chapter 6 summarises the
contributions of the thesis, performs a critical review of its limitations, and sketches

possible lines of investigation that can extend the reach of the current work.



Chapter 2

Background theory and literature

review

Perhaps motivated by the increasing prevalence of social media and their influence on
public opinion, processes of opinion formation on social networks have found much
attention in the recent literature (Biswas et al., 2018; Condie and Condie, 2021; Lim and
Bentley, 2022). Models in this domain have addressed general properties of opinion
spread on static and co-evolving networks, but also basic mechanisms underlying
phenomena such as radicalisation (Ramos et al., 2015b; Lim and Bentley, 2022) and the
role of external influence (De et al., 2018; Palombi et al., 2017; Macy et al., 2021).

Opinion dynamics have been commonly studied through a statistical physics
approach. This is not surprising, as individuals in a social system can be paralleled to
particles with local rules that lead to various system-level behaviours (Castellano

et al., 2009a). The study of opinion formation from this perspective can help to
determine which conditions may drive a society to a desirable state, which can be
derived either analytically or via simulations.

When modelling opinion dynamics, there are three main aspects upon which
researchers must decide: how to define influence ties between individuals,
mathematically model opinions, and how their opinions change based on those
influencing ties. The first aspect is addressed in Section 2.1 of this chapter, which
introduces network formalisations of social systems and their typical characteristics
and structures. The second and third aspects are jointly covered in Section 2.2, which
reviews the basic ideas behind the main opinion formation models. Section 2.3 covers
an additional ingredient to opinion dynamics that is the focus of this thesis: external
influence on opinion formation, covering the recent literature on both untargeted and
targeted external influence. Section 2.4 reviews Agent-Based Modelling as an
important tool to study social systems, covering its history and relevant applications

to social and political phenomena. Section 2.5 introduces the topic of optimisation and
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the basic methods for performing it. Finally, Section 2.6 summarises the chapter and

points to existing gaps in the literature and the fit of our work.

2.1 Network models of social influence

A society is a complex system formed by individuals that have frequent interactions.
However, individuals typically only interact with a small subset of others due to
spatial proximity or social ties, creating a complex landscape of interconnections
(Guimera et al., 2003). A common and helpful approach to understand the structure of
interactions is to use techniques from graph theory and model them as a network,
where individuals are nodes and interactions are represented by edges (Newman,
2003).

Formally, a graph (or network) G = {V, E} represents a social group, where nodes

vi € V,i=1,...,N correspond to the individuals and edges ¢;; € E that interactions
can occur between the pair of nodes v; and v; (Majeed and Rauf, 2020). In many cases,
it is useful to assign a weight w;; € R%" to each edge e;; to reflect the strength of the
interaction (e.g. frequency, duration, effect) which makes the graph weighted. Under
this formulation, an absence of an edge can be modelled as weight with w;; = 0, and
unweighted graphs would correspond to weights with binary values, w;; € {0,1}. All
pairwise weights can then be gathered into a weighted adjacency matrix W = (w;;),
which fully captures the network (Newman, 2003). Another particularly useful
quantity is the degree d; = }_; w;; of a node, as it provides insight of how “socially
active’ an individual is'. Further, inspecting the distribution of degrees of a network
provides a very valuable insight on its structure and the level of heterogeneity in
nodes’ connection patterns. The weighted adjacency matrix and node degrees can be
merged into the Laplacian matrix of the graph, L = D — W — where D is a diagonal
matrix whose elements in the diagonal correspond to node degrees, i.e. D;; = d;
(Newman, 2003). Thanks to the mathematical properties of this matrix, many
powerful tools from linear algebra can be employed to unveil structural properties of
the network, such as the presence of clusters (Newman, 2003).

There are a few useful measures that characterise the role a node has in the network
topology. The geodesic distance between two nodes reflects the minimum number of
links required to travel between them — i.e. the length of the shortest path that joins
them. The centrality of a node relates to its global position within the graph and it
comes in different flavours. The betweenness centrality is the fraction of shortest paths
in the network that pass through a node and reflects the ability of a node to act as an
intermediary (Newman, 2003). The closeness centrality is the inverse of the sum of

1Some works use the term “degree” only with unweighted networks, while they term the sum of weights
as ‘strength’ in weighted networks. We will use ‘degree’ in both cases for simplicity of language, as the
distinction is irrelevant in our work.
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shortest distances to all other nodes in the network and reflects how quickly
information can spread from a node to the rest of the network. Another important
centrality measure is the eigenvector centrality, which is given by the eigenvector of the
largest eigenvalue of the Laplacian matrix, and reflects the idea that nodes connected
to ‘important’ nodes should also be important. Variations of the eigenvector centrality
are the Katz centrality or Google’s PageRank, which was designed to rate the relevance
of websites for ranking them in its search engine (Majeed and Rauf, 2020). Note that
many of these centrality measures are only meaningful if the network is connected, i.e.

at least one path connecting each node to every other node exists.

There are many extensions of the basic graph formulation above adding ingredients
that capture further details of the system that is modelled. An important distinction is
in whether edges have a direction, implying that the interaction has an actor and a
receiver. This modification results in an adjacency matrix that is not necessarily
symmetric any more, so some of the metrics introduced above need to be redefined.
For instance, the degree of a node needs to be divided into two different types of
degree, the out-degree di" = Y; wij and the in-degree dont = )_; wji, each of them defining
different types of roles of nodes in the network (Newman, 2003). Other relevant
extensions include multi-layer networks (Kivela et al., 2014) — where each layer
represents different types of interactions, with some form of coupling between the
layers — networks with higher—order interactions (Battiston et al., 2020) — where each
edge links three or more nodes simultaneously — temporal networks — with
time-stamped interactions — or dynamic network — whose structure changes with

time, maybe coupled to the social interactions.

Since this work focuses on opinion dynamics, we will use networks to represent
channels of influence among individuals in their opinion formation. Ideally, we would
employ empirical networks obtained from data regarding influence channels, as to
represent a credible social influence structure. However, the task of registering
influence among individuals can be problematic, since it cannot be directly measured.
Instead, it needs to be inferred from recurrent data over long periods of time and at
society—wide levels, which is often very difficult to access. Furthermore, influence
may vary dynamically, so the confidence over its inference cannot be reliably
increased by extending the time scope of measurements. Due to all these difficulties,
measuring and constructing influence networks requires a whole branch of research
and it is still in its infancy (Peng et al., 2018; Panzarasa et al., 2009).

As simpler alternatives, influence networks can be proxied by registered exchanges of
information, such as in-person conversations (Mastrandrea et al., 2015), ‘follow’
patterns on social media (Atienza-Barthelemy et al., 2019), or email exchanges
(Guimera et al., 2003). Although these proxy networks are not identical to the
influence network we are after, their structure and characteristics may resemble the

target ones well enough to produce similar outcomes in the opinion dynamics.
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Depending on the context that is studied, these networks could be undirected (if they
represent friendship, family relations, or bilateral conversation) or directed (if they
capture the emission of messages with a sender and a receiver, such as in some social
platforms or in emails). Additionally, it is also common to build synthetic network
topologies that capture basic network features of social networks. Since they are
synthetically created, specific network properties can be controlled to better
understand their effect on the social dynamics. Below we review the most prominent

synthetic network architectures in the social network literature.

2.1.1 Complete graph

The complete graph is a graph where every node is connected to any other node in the
network, which would for instance correspond to a closed (and typically small) group
of people where everyone interacts with each other. If the network is unweighted, this
implies that the there is a lack of social structure, serving as a baseline to decouple its
effect to that of the opinion formation process.

2.1.2 Bipartite graph

A bipartite graph is a network with two classes of nodes, A and B, and where
connections between nodes of the same class are forbidden (Newman, 2003). These
can be used to represent e.g. interactions between buyers and sellers or ties between
workers and organisations. They can also be used to connect individuals as one type
of entity to interactions, representing the other type of entities in the network, and
thus capture higher—order relationships using pairwise edge connections (Battiston
et al., 2020).

2.1.3 Spatial networks

Spatial networks refer to networks where nodes are embedded into a geographical
(typically Euclidean) space and are linked by edges depending on proximity. These
networks capture interactions that are strongly embedded geographically (such as in
supply networks) or in an abstract ‘social space” (Hamill and Gilbert, 2009). The
presence of edges can be deterministic (if the distance between two nodes is smaller
than a threshold) or probabilistic (with a function depending on the distance). A
subclass of spatial networks that are particularly used in simulations of social systems
are regular networks, which have the benefits of high tractability and easy visualisation
(Amblard et al., 2015). These are typically formed by square lattices, influenced by the
early research in cellular automata (Amblard et al., 2015), although can contain other

regular patterns, and span different numbers of dimensions. They may be infinite or
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may have aperiodic or periodic boundaries, with the latter implying that nodes at one
boundary are connected to the nodes at diametrically opposed boundary.

2.1.4 Erdés-Rényi random graphs

Erdds—Rényi random graphs (Erdos and Rényi, 1959) are among the most common
synthetic network structure used in research involving social simulation (Amblard

et al., 2015). Edges in Erd6s—Rényi random graphs are sampled from a Bernoulli
distribution with equal probability 7, resulting in a node degree distribution following
a binomial distribution. This results in an homogeneity that them share many of the
properties held by complete networks while having a sparsity that can be easily
controlled with the parameter 7. However, values of # below In N/ N (with N being
the size of the network) can arrive at fragmented networks with many disconnected
groups of nodes, so it is usually undesirable to use value below that limit, known as
the percolation threshold (Erdos and Rényi, 1959).

2.1.5 Small-world networks

Small-world networks (Watts and Strogatz, 1998) are a class of networks that
showcases some of the properties found in human social networks. They were
inspired by an experiment suggesting that the average number of connections needed
to link any two individuals in a society is around six (Milgram, 1967; Guare, 1990).
Small-world networks can be seen as an interpolation (controlled by the parameter

v € (0,1)) between regular lattices and Erdfs—Rényi random graphs, as they maintain
the small mean geodesic distance of random graphs ? —i.e. any node is easily reached
by any other node in the network — and the high clustering coefficient of lattice
graphs —i.e. neighbours of a node also tend to be neighbours themselves. The
standard algorithm for building small-world networks departs from a ring of nodes
where each node is connected to its k closest neighbours and then each edge has one
end rewired to a new random node with probability v (Watts and Strogatz, 1998) 3
therefore mixing the mechanisms to generate regular lattices and Erd6s—-Rényi
random graphs. Small-world networks fit well structures of societies under loose
spatial restrictions (Newman, 2003), as happens with in-person communications,
although some of their characteristics may also be found in online communities
(Panzarasa et al., 2009).

2More precisely, a mean geodesic distance that scales logarithmically with the network size (Newman,
2003).
3Duplicated edges or disconnected graphs are typically not allowed.
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2.1.6 Scale—free networks

Scale—free networks are a class of networks that have received much attention, not
only for their pervasiveness in social systems (Broido and Clauset, 2019) but also in
many other domains (Barabasi and Albert, 1999). They are characterised by a
scale—free (power law) distribution in the node degree, i.e.

P(d;) «d:®, (2.1)

where P(d;) is the probability of finding a node of degree d; and « is a constant value
that can vary between networks. Consequently, a few nodes are extremely
well-connected, while the vast majority have very few connections, showcasing a

heavy-tailed distributions of node degrees.

It is hypothesised that these network structures commonly originate from
rich—get-richer network formation dynamics Barabdsi and Albert (1999), where new
nodes attach to existing nodes with a probability proportional to their degree.
Networks generated by this process are commonly referred to as Barabasi—Albert
networks (or BA—networks, for short), named after the authors of the seminal paper
Barabasi and Albert (1999). BA-networks are equivalent to scale—free networks with
a € (2,3] %. Another standard algorithm for generating general scale—free networks is
the configuration model (Bayati et al., 2010), which generates random networks from a

pre-defined degree distribution sampled from a power-law distribution.

2.2 Modelling opinion formation processes within a society

The psychological foundations of why opinions spread through a society can be found
in two basic mechanisms: the social impact theory (Latané, 1981) and the persuasive
argument theory (Vinokur and Burstein, 1974; Myers, 1978). Although stemming from
different mechanisms —the need to fit in a group or an active exchange of arguments,
respectively— both theories account for the same behaviour: individuals tend to
change their opinion and align towards their peers’. This is the basic ingredient in all
opinion dynamics models; implementation details, however, vary widely in their
specification of opinion change upon interaction. This is natural since the
phenomenon that is to be modelled (the changing of individuals” opinions based on
their peers’ influence) is highly complex. Furthermore, it is not easy to harvest
empirical data that can be used for model validation, and models commonly lack links
to sociological studies (Flache et al., 2017). This results in a plethora of different

4This range of « values give scale—free networks interesting properties, such as having a first moment
(which would not happen with a < 2) but not a second moment (which emerges with « > 3). However,
note that social networks do not always fulfil these characteristics (Broido and Clauset, 2019).
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models that are considered in the field, often varying significantly in their dynamical
properties. The decision on which one to use depends on the social process to be
modelled or, sometimes more pragmatically, on the need for mathematical tractability.

Opinions are typically transferred to mathematical quantities as a variable or set of
variables. The simplest models include a single binary variable — e.g. being in favour
or against an idea (Granovetter, 1978) — which can be naturally extended to a discrete
variable — e.g. choosing among competing products or political parties (Marvel et al.,
2012). Less coarse—grained representations are adopted with continuous variables,
accounting for degrees of intensity in which a particular position is embraced
(Hegselmann and Krause, 2015). More ambitious models are multi-dimensional, with
each individual holding several independent opinion variables associated with each
of the dimensions, which can at times also be binary (Mueller and Tan, 2018),
continuous (Fortunato et al., 2005; Schweighofer et al., 2020a), or a combination of
both (Martins, 2008).

A critical reader can note that there is a considerable simplification when reducing
sophisticated mental phenomena to one or few variables. While this is true, the
aforementioned opinion models attempt to capture the most relevant opinion states
for answering specific research questions, while other more superfluous aspects can be
included in the form of noise (Brede et al., 2019b; Castellano et al., 2009a).
Furthermore, typical research questions answered by these models do not focus on
understanding specific events or predicting the behaviour of particular societies but
attempt to understand general behaviours —or stylised facts (Schweighofer et al.,
2020a)— that emerge from different interaction rules between individuals. Hence,
most research in the field does not employ real opinion data (whose mining and
distillation into abstract opinion variables is challenging) but makes assumptions on

general opinion distributions (Flache et al., 2017).

Most relevant models in the literature are introduced next. We have categorised into
two main groups depending on whether opinions are modelled as discrete or
continuous variables. For more details of the models and most extensive reviews of
opinion dynamics, refer to Castellano et al. (2009a); Sirbu et al. (2017); Proskurnikov
and Tempo (2017, 2018) and Grabisch and Rusinowska (2020).

2.21 Models considering opinions as discrete variables

In discrete—variable models, there are only a few possible opinion states, and changes
in opinion are consequently abrupt. Although this may appear as a limitation to the
model richness, it is argued that humans are not psychologically comfortable at
perceiving degrees between choices and rather think in symbolic streams (Mueller
and Tan, 2018; Rabinowitz and Macdonald, 1989). In these models, influence is
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implemented as copying opinions from peers, and models mainly differ on which

opinions are copied, in which order, or with which probability.

For instance, in the paradigmatic voting dynamics or Voter Model (Clifford and
Sudbury, 1973) individuals are randomly selected to then copy the opinion of a
random neighbour, entailing high levels of stochasticity. The probability of copying
either opinion depends on how many neighbours are holding that opinion, which is a
linear relation that makes the model highly tractable. The majority rule reduces the
stochastic element by having individuals adopting the opinion of the majority of their
neighbours, although the selection of which individuals performs the copying each
time is also asynchronous and random (Galam, 2002). This can be considered of model
incorporating complex contagion in that the aggregation of the neighbouring opinions is
highly non-linear (a step function). Majority rules drive the social group to a
consensus much faster than in the voter model (Valentini et al., 2016). The Glauber
dynamics of the Ising model (Ising, 1925) likens opinion diffusion to the coupling of
spins in ferromagnetic materials and can be thought of as an in-between the Voter
Model and the majority rule, as the probability of copying an opinion increases
super-linearly with its prevalence on an individual’s neighbourhood (Galam et al.,
1982). An additional and important ingredient is the inclusion of random changes in

spin that are controlled by a ‘temperature’ parameter T.

With a similar behaviour to the Glauber dynamics, social impact models (Nowak et al.,
1990) draw inspiration in the social impact theory (Latané, 1981) to include
heterogeneity in the ability to convince individuals with the same opinion
(‘supportiveness’) and or the opposite opinion (‘persuasiveness’), plus a ‘social
distance’ structure. When simulated in a square lattice, the model shows the
appearance of clusters of opinions (Nowak et al., 1990), although when noise is
present the opinion show a ‘staircase” dynamics by which clusters shrink between
periods of stability until the population eventually arrives at a consensus (HOLYST
et al., 2001). Variations of the model include reinforcement dynamics in the
supportiveness and persuasiveness (Kohring, 1996), the presence of a strong leader
(Kacperski and Holyst, 2000), or a social temperature (the general rate of random
behaviours) that is coupled with the dynamics (HOLYST et al., 2001).

Other models are inspired by applications in other fields. For instance, the
epidemic-related SIR (Susceptible-Infected-Recovered) (Kermack and McKendrick,
1927), which models the spread of a contagious disease, can be naturally mapped to
attention mechanisms in phenomena like the spread of rumours, where “infected’
would imply an awareness of the rumour and the capability of spread it further and
‘recovered’ that the attention towards the rumour is lost. The variant SIS
(Susceptible-Infected—Susceptible) would model a possible re-ignition of the
contagious state. The Naming Game (Steels, 1995) was developed for the study of
language dynamics and fixation of new works, where agents hold a pool of terms to
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name a concept and perform one of two actions upon interaction: they copy one term
from the other agent’s pool if there is no common term between the two or if there is a
common term in both pools they discard all others. As each term can be presence or
absence, this opinion model can be conceived as a multidimensional binary model

with particular rules.

Although all these models usually include binary variables, they can often be easily
extended to categorical variables with more than two choices (Axelrod, 1997b) or with
an in-between neutral state (Arendt and Blaha, 2015). In this class, the Axelrod model
(Axelrod, 1997b), which includes multiple categorical variables, stands out in the
study of cultural dissemination, drawing attention from both social scientists and
physicists. In this model, when two agents encounter their probability of interaction is
proportional to the overlap between their variables, hence encoding the notion of
homophily, i.e. interactions occur more frequently between the alike. Unlike many of
the models above, this model does not necessarily lead to a single cluster or
consensus, but is capable to create under some parameter regimes an entrenched state
of diversity into different cultural groups that do not interact with each other,

reproducing behaviours commonly found in real societies.

Progressive (or static) opinion dynamics models form a sub-class of binary models that
is particularly relevant in the influence maximisation literature from the computer
science community. These models only allow changes of opinion in one direction,
from inactive to active (Kempe et al., 2003). The system is typically initialised with a
few active agents and many inactive ones, and the propagation occurs as a one—off
process, with the new opinion percolating through the society. This modelling feature
is particularly useful for situations when a new opinion is introduced into a social
group (e.g. spread of rumours) and for opinions that remain unchanged for a long
time once individuals commit to them (e.g. adhering to a telecommunications
supplier, buying a product, (Leskovec et al., 2007)), but are inappropriate when
addressing fast-changing opinions, such as stances toward political issues, or when
longer time frames are studied. In the paradigmatic independent cascade model (IC)
(Goldenberg et al., 2001), active agents can activate their inactive neighbours in a
single attempt with a probability encoded by the weight of their shared edge. Once all
active nodes have used all their edge attempts, the spreading process ends. In the
related linear threshold model (LT) (Granovetter, 1978), inactive agents only change their
state when the combined weight of incoming edges from active neighbours surpasses
a specific threshold, similar to perceptrons in neural networks. Extensions to these
models abound, including the addition of non-linear diffusion functions, time-varying

parameters, or considering community structure, to name a few (Xie et al., 2021).

Next, the details and variations of the Voter Model will be presented, as it will be

extensively used in this work.
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The voter model

Most of this work employs the Voter Model (VM) (Clifford and Sudbury, 1973; Holley
and Liggett, 1975) as the diffusion rule of opinions, since it is a well-studied model
that has been prominent in the opinion dynamics literature for many years. In the
Voter Model, opinions are typically binary —e.g. A or B, Conservative or Labour,
etc.— although it can easily be extended to more than two states (Marvel et al., 2012).
The diffusion rules are simple: at each time step, one agent is randomly selected and
copies the opinion of a random neighbour. For the study of its dynamics, it is useful to
consider the evolution of the probability of a node x;(t) € [0,1] to be in state A at

time t (Mobilia et al., 2007; Even-Dar and Shapira, 2011). From this perspective, the
flow of probabilities in any node is described by the rate equation

dx; _ Yjwixp  Yywii(l—xj)
E = (1 xl) di X; dz- .

(2.2)

Note that the first term on the right-hand side of (2.2) represents the probability of
holding opinion B and choosing a neighbour with opinion A (inflow of probabilities),
and the second term corresponds to holding opinion A and choosing a neighbour
with opinion B (outflow of probabilities). Importantly, the number of agreeing
neighbours linearly affects the rate of change, which facilitates the tractability of the
problem. This linearity in the influence of neighbours is a key feature of the VM, as it
facilitates establishing many of its properties via mathematical derivations (Redner,
2019). Additionally, note that this probability flow can be equalled to continuous
opinions and (2.2) rewritten as

dx;

dftl =Y wi/di(x; — xi), (2.3)
j

which is analogous to the DeGroot model, a paradigmatic model of opinion dynamics

with continuous opinions.

Although (2.2) implies that the expected probability of any node to be in state A
converges to a single value x; = x, the full probability distribution is doubled—peaked,
with two absorbing states placed at the extremes of all agents holding the same
opinion (A or B). Since opinions continuously flicker back and forth, homogeneous
populations in finite, connected networks asymptotically reach consensus at one of
these two absorbing states; which of them depends on the initial distribution of
opinions, the network topology, and the stochasticity of the dynamics (Even-Dar and
Shapira, 2011). Times to reach consensus vary significantly depending on the network
topology, with sparseness in the number of links considerably delaying the process
(Redner, 2019).
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Nevertheless, the behaviour of the system changes significantly in the presence of
agents with fixed opinions, commonly known as zealots (Mobilia, 2003), stubborn
agents (Kuhlman et al., 2013), or frozen nodes (Chinellato et al., 2015). If zealots support
only one of the opinions, the system always asymptotically converges to their opinion
regardless of initial conditions. When there are zealots from both sides, the system
converges to a dynamical, fragmented steady state with both opinions present
(Mobilia et al., 2007) in proportions that depend on the topology of the network and
the position of the zealots in it (Masuda, 2015). Importantly, no absorbing states exist
for this case and the asymptotic probability distribution is singled-peaked and with
non-negligible variance (Yildiz et al., 2013). Models of voting dynamics including
zealots have been employed to model election outcomes. For example, Braha and

de Aguiar (2017) have found voting dynamics with zealots to be suitable for
modelling outcomes of USA elections in the last century, Vendeville et al. (2021) have
used a similar approach for election outcomes in the UK, and Fernandez-Gracia et al.
(2014) have also applied noisy voter dynamics to model election outcomes in the USA.
Additionally, note that the probability flow formulation of the Voter Model with
zealots can be mapped to the Friedkin—Johnsen model of continuous opinions and
private convictions under some formulations, or to a DeGroot model with zealots.

2.2.2 Models considering opinions as continuous variables

From the side of opinion models with continuous opinion variables, the DeGroot model
(DeGroot, 1974) stands out for its simplicity, as agents just adopt a weighted averaged
opinion of their neighbourhood (including themselves). However, such a simple
model is considered unrealistic, as it always leads to a consensus of the population as
long as the graph is connected (Mueller and Tan, 2018), which is at odds with the
fragmented or polarised opinion landscapes that are the norm in many societies
(Iyengar et al., 2019).

After the DeGroot model, a new generation of opinion models added mechanisms to
allow for the emergence of polarised or fragmented opinion groups in the steady state.
In the paradigmatic bounded—confidence model (BC) (Deffuant et al., 2000; Hegselmann
and Krause, 2002)), interactions have no effect if agents” opinions are too different,
which effectively breaks the social network into disconnected components
(Kurahashi-Nakamura et al., 2016). The Friedkin—Johnsen model (Friedkin and
Johnsen, 1990) adds fixed, private opinions to each agent, which affect their opinion
update and may prevent the arrival to consensus in some regimes. These private
opinions can also be mathematically equivalent to having zealots with fixed opinions
in the society (Taylor, 1968). Other modifications of the DeGroot model that break the
consensus outcome include repulsive forces (Jager and Amblard, 2005), or contrarian

agents that seek to differentiate themselves from others (Mis et al., 2010).
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Inspired by the dynamics of rarefied gases, kinetic models of opinion formation
(Toscani, 2006) build on the DeGroot model by introducing a noisy diffusion of the
opinions and non-linearities, as both the rate of concession and the diffusion can
depend on the value of the opinion. Drawing techniques from physics, solutions were
found by operating on differential equations instead of performing simulation
(Toscani, 2006). These modifications can still lead the population to a consensus
around a single opinion, but some regimes also retrieve bimodal distributions in the
steady state (Toscani, 2006; Lallouache et al., 2010; Sen, 2011; Oestereich et al., 2020).

Next, the details and variations of the bounded-confidence model are presented.

Bounded confidence models

Chapter 5 employs the bounded—confidence (BC) model, as it is common in the study
of consensus—forming and polarisation processes in societies (Ramos et al., 2015a;
Deffuant et al., 2002). This model departs from the DeGroot model of opinion
dynamics and introduces a limitation to interactions between individuals, which only
have an effect if their opinions are close enough. This interaction rule requires the
definition of a distance metric between opinions, and a folerance threshold 6 that
determines the maximum distance for which interactions are still effective. The
bounded-confidence mechanism is inspired by the idea that individuals whose
opinions are foo different may never listen to —or, even more, convince— each other.
This might be related to the rise of polarisation in several Western countries, in which
the attitudes and opinions towards those that are ideologically different have
worsened over the last years (Iyengar et al., 2019). From the seminal studies of the BC
model, it was found that the value of the tolerance threshold ¢ crucially influences the
state to which the system will converge (Weisbuch et al., 2003), with outcomes ranging
from consensus (all agents gathering into a single cluster with very similar opinions)
to polarisation (two clusters of opinions) or fragmentation (many scattered clusters)
(Sikder et al., 2020).

The BC model was developed in parallel by Deffuant et al. (2000) and Hegselmann
and Krause (2002), leading to two fundamental variants, which will be labelled as DW
and HK, respectively. In the DW model, two randomly chosen agents i and j

encounter at each time step ¢ and they only interact provided that the distance

) ()

between their opinions, 0;", 0 i is less than the specified tolerance threshold 4. For a

1D opinion model, updates at each time step occur as

0} i J / 24
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where i € (0,1/2] is a parameter that models how much is conceded upon

interaction, and analogous, simultaneous update occurs for 0](t+1). In contrast, the HK
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variant considers synchronous updates of all agents in the society, with each agent
being simultaneously influenced by all neighbours that are within their tolerance
region at each time step,

oz.(i'url 1G] ot (2.5)
jEI(it)
where I(i, 1) { j ‘ |o (t)\ <6 } Therefore, an important difference between

both variants is that the DW is stochastic while the HK is deterministic.

Since their conception, many variations and additions to the models and how they
affect the transition points in § have been studied. For instance, the inclusion noise in
the form of nodes relocating to anywhere in the space with (as a notion of ‘free will”)
prevents the formation of clusters at low values of 6 (Pineda et al., 2009), while
making the outcomes of the model less dependent on initial conditions (Carro et al.,
2013). When agents are placed in a network structure, they can arrive at consensus for
lower values of §, which can be explained by the role of bridges in the network
(Schawe et al., 2021), while the presence of zealots or radical agents who never change
their opinion can produce an effect of polarisation (Hegselmann and Krause, 2015).
Another important extension is the extension of the model to multiple dimensions, for
which it is necessary to define a distance metric, although not much differences are
found between the Manhattan and Euclidean distances (Fortunato et al., 2005). In
two—dimensional spaces, opinions clusters gather at square lattices (Lorenz, 2008).

Other recent variations of the bounded—-confidence models attempt to provide more
realistic accounts of how states of polarisation emerge in societies by means of
repulsion mechanisms and exogenous events. For instance, Macy et al. (2021) include
mechanisms of repulsion, party identity, and exogenous shocks that unite opinions in
a multidimensional model, and show that partisanship can create tipping points at
states of polarisation by which the populations cannot recover, even after the
partisanship is removed. Condie and Condie (2021) also study the effect of exogenous
shocks in a networked population where individuals also have a “certainty” in their
opinion, only being convinced by individuals with higher certainty, and who also
display random fluctuation in their opinions. They show that when shocks are not
present the population arrive at a wide consensus, but the introduction of shocks
creates a state of polarisation. Based on the idea that people may have incentives to
express opinions more polarised than their real ones in social media, Lim and Bentley
(2022) show that opinion amplification can also act as a mechanism that leads
bounded—confidence-like dynamics to a state of high polarisation. However, they
provide two simple intervention strategies — limiting the number of amplified
messages allowed and spreading balanced opinions — that can effectively counter the

polarising effect.
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2.3 External influence of opinions dynamics

The basic statistical physics approach of most models outlined above is the study of
complex behaviours emerging from simple interactions of the many constituents of
the system. While this approach already provides insight into interesting social
phenomena, a key element widely prevalent in social information systems is still
missing: external influence. ‘External influence” can be understood here in two different
ways. First, as an agent that is outside the system in that it does not follow the opinion
dynamics that all other agents in the system follow, which can be thought as “internal’
or ‘intrinsic’. Hence, this agent has the power to affect but not be affected by it (Masuda,
2015; Brooks and Porter, 2020) or at least a disproportionate imbalance in the influence
power (Kacperski and Holyst, 2000). However, unlike zealot agents introduced above,
the external influence typically has the power to affect all or most individuals of the
social group (Carletti et al., 2006) —a form of mass media or government propaganda
— or to strategically choose whom to influence (Masuda, 2015; Bimpikis et al., 2016)
—e.g. public policies. Second, external influence can be understood as a process that
interferes the intrinsic dynamics of the social group by means of a different
mechanism. This can be modelled e.g. as an external field (Lynn and Lee, 2016;
Crokidakis, 2012) or a controller that is able to affect aspects of the social system such
as the placement of zealots (Vendeville et al., 2022; Yildiz et al., 2013) or altering the
social ties. Below, we divide external influence by whether their attempts are finely
targeted to the level of picking individuals or edges to affect or whether they are
untargeted or targeted very coarsely and review the literature covering each of the

two categories.

2.3.1 Untargeted external influence (or coarsely targeted)

Untargeted external influence is typically referred to as mass media, or media sources, as
they mimic in many cases the role of radio, television, newspapers, and other forms of
information channels that reach big parts of the social group. Research questions here
concern how untargeted external influence may affect the opinion dynamics, resulting
in consensus to a different opinion to what would be expected without the external
influence (Laguna et al., 2013; Crokidakis, 2012), or sometimes hindering (or fostering)
the appearance of a consensus altogether (Colaiori and Castellano, 2015; Peres and
Fontanari, 2011).

From a modelling perspective, untargeted external influence is typically introduced as
an immutable agent with which all agents in the social group interact, which may
occur after every peer interaction (Sirbu et al., 2013b; Quattrociocchi et al., 2011), at
other rates (Carletti et al., 2006; Vaz Martins et al., 2010), instead of peer interactions
with a certain probability (Laguna et al., 2013; Pineda and Buendia, 2015; Lu et al.,
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2009), or be taken as an agent that has connections to (most) agents in the network and
follows normal interaction rules of the opinion dynamics model (Bhat and Redner,
2020). Although conceptually different, the ‘truth’ (when opinions are related to
perceptions of some truth) can have an identical role to mass media in opinion
dynamics models (Kurz and Rambau, 2011), as it is an immutable source to which
most agents have partial access —typically through a form of ‘sensing” or reasoning
(Brede and Romero Moreno, 2022).

External influence may produce different outcomes depending on the opinion
dynamics model, with major qualitative differences between binary (or categorical)
and continuous opinions. Among binary opinion models, many of them have been
extended with untargeted external influence, such as voter-model-like models
(Colaiori and Castellano, 2015), the Sznajd model (Crokidakis, 2012), the Ising model
(Tessone and Toral, 2009), the Naming Game (Lu et al., 2009), or the Axelrod model
(Peres and Fontanari, 2011). The effect of external media varies depending on its
modelling details and the opinion dynamics. In some cases, the external influence can
bring the social opinion to a consensus (Colaiori and Castellano, 2015), which in some
cases it may be systematically aligned with the media’s opinion (Laguna et al., 2013).
In the Axelrod model of cultural dynamics and contrary to basic intuition, it has been
shown that an external medium with a fixed cultural profile fosters diversity in the
population (Peres and Fontanari, 2011). Tessone and Toral (2009) study IM for an Ising
model that includes fixed preferred opinions in agents, finding that having diversity
in the distribution of the preferred opinions facilitates arriving at a consensus around
the media’s opinion. A different picture emerges when more than two or more sources
of media compete in the spread of ideas, typically leading to a fragmentation of
opinions in the population (Bhat and Redner, 2020).

Many models with continuous opinions also include the role of external influence,
ranging from models with repulsive forces (Sirbu et al., 2013b), Kinetic models
(Boudin et al., 2010), or the bounded confidence model (Carletti et al., 2006; Vaz
Martins et al., 2010; Kurz and Rambau, 2011; Pineda and Buendia, 2015; Brooks and
Porter, 2020; Quattrociocchi et al., 2015). Due to the segmentation dynamics produced
by bounded confidence or repulsive forces, the effect of the external media here
typically depends on its intensity. When an external medium aggressively promotes
an extremist view, it may succeed in capturing a small fraction of agents that initially
were in its vicinity, but most agents will likely be unaffected by its influence (Sirbu

et al., 2013b), or even cluster further to the other side of the opinion spectrum (Carletti
et al., 2006). This relates both to the intensity of the message and the frequency of its
broadcasting (Carletti et al., 2006). Pineda and Buendia (2015) found that populations
with heterogeneous bounded—confidence thresholds are more sensitive to external
influence. The inclusion of additional media sources with opposing extreme views,

however, may foster a population consensus at a moderate opinion (Sirbu et al.,
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2013a), and moderate media outlets with links to only sub-parts of the population
may have more success at gathering followers close to their views than greedier ones
(Brooks and Porter, 2020).

In the above works, the external control is passive, although its effect is studied under
different scenarios. In contrast, Albi et al. (2015) explore the idea of how external fields
in kinetic models can be optimally controlled to bring the population towards the
desired opinion. Other optimising works look at external control in the form of
strategic agents that can modify their opinion as the dynamics unfold. Their goal may
be to bring opinions in the population to a desired state (Mirtabatabaei et al., 2014;
Hegselmann and Krause, 2015; Wongkaew et al., 2015) or to minimise the time it takes
to reach consensus (Kurz, 2015). A different means of control is tampering with the
opinion dynamic itself to enforce (or prevent) consensus in the society. Examples of
this approach are the control of the order of pairwise encounters of agents (instead of
random, (Lorenz and Urbig, 2007)), or controlling how much agents are allowed to

move when updating their opinions (Li et al., 2020).

In contrast to the above, not much work has been done around external controllers
that react to the evolution of the distribution of opinions to instantly maximise their
influence. Such modelling is realistic in that external agents may have very limited
information about the dynamics of opinions, what other opponents may be doing, or
may have bounded rationality. An account of this approach is given by Quattrociocchi
et al. (2015), where several media outlets interact with citizens affecting their opinions.
Further to the dynamics among citizens, the media opinions also evolve according to
their own coupled dynamics, copying the most successful of their neighbours (the one
that has more citizens within their BC interval) as they compete for followers. They

find that such media competition leads to a polarisation of opinions in the society.

2.3.2 Finely targeted external influence

Finely targeted external influence refers here to an external agent that performs local
modifications in the population in an attempt to indirectly influence the whole system.
The modelling of external influence may vary, from the selection of ‘seed” agents that
are automatically converted into zealots (Kuhlman et al., 2013; Yildiz et al., 2013;
Arendt and Blaha, 2015; Liu et al., 2010; Gionis et al., 2013), to choosing targets that are
linked to a zealot that represents the external influence (Masuda et al., 2010; Brede

et al., 2018; Chakraborty et al., 2019; Lynn and Lee, 2016; Lu et al., 2009; Ghezelbash

et al., 2019; Mai and Abed, 2019; Yi and Patterson, 2020), or modifying the network
structure (Gaitonde et al., 2020a; Musco et al., 2018; Chitra and Musco, 2020; Dong

et al., 2017). Targeting only a subset of the population is typically sought because it
may lead to better results, or because a more resource—intensive (and more effective)

form of communication is modelled and a limited budget needs to be considered.
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Hence, with a targeted external influence, it is paramount to determine its optimal

placing, a problem that is commonly termed influence maximisation (IM).

Studies on IM allow us to better understand different aspects of influencing attempts,
such as under which conditions one can effectively introduce the desired opinion in a
population (Ikizler, 2019; Albanese et al., 2020), how influencing strategies interact
when competition for influence takes place (Goyal et al., 2019; Hoferer et al., 2020), or
what the effect of external influence is on reaching consensus in a population (Bhat
and Redner, 2020). Influence maximisation has huge relevance for a variety of
important applications that range from advertising (Domingos and Richardson, 2001),
political and public information campaigns (Wilder et al., 2018a; Zhang et al., 2016), to
questions on how to optimally encourage a developing economy (Alshamsi et al.,
2018b).

Influence maximisation has already been studied for almost two decades, starting
with the seminal works of Domingos and Richardson (2001), Richardson and
Domingos (2002) and Kempe et al. (2003). Their work employed binary, progressive
models —the independent cascade (IC) and linear threshold (LT)— which remained as
the main preference on following studies in the computer science literature (Li et al.,
2018). Kempe et al. (2003) initially defined influence maximisation in the context of
progressive opinion models as finding the k-subset of initial active nodes (seeds) that
achieves the largest expected number of activated nodes at the end of the progressive
diffusion process. They proved that this problem is NP-hard for both the IC and LT
models, and provided a greedy hill-climbing algorithm that approximates the optimal
solution within a factor of 1 — 1/e (~ 63%) in polynomial time. The whole process
requires evaluating the spread of influence for every node in the network with k
repeats. However, since an exact calculation of the spread of influence is exponential
in the network size®, the task is only feasible for medium-size networks via
approximated evaluations that simulate many instances of the diffusion process with
Monte Carlo sampling. Therefore, existing work of influence maximisation in the
computer science community has mainly been devoted to improving the efficiency of
the greedy algorithm in both time and accuracy (for a review, see Li et al. (2018) and
Peng et al. (2018)). Most works tackle the standard problem of a single influencer
trying to bring their opinion to the network, although a smaller stream of work has
focused on the game-theoretical scenario with two adversarial influencers (Budak

et al., 2011; Tsai et al., 2012), providing best-response actions to the problem for
different graph settings and under the possibility of uncertainty.

In non-progressive models, nodes can change their opinions back and forth and hence
the diffusion process may not arrive at a static attractor. For this reason, the influence
maximisation goal needs an additional temporal specification, namely achieving the
highest influence spread at a specific time horizon (Brede et al., 2019a; Cai et al., 2021),

5Tt has been shown to be #P-hard (Chen et al., 2010a,b).
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at the asymptotic equilibrium (if it exists, (Masuda, 2015)), or along the whole
diffusion process (Kempe et al., 2003). Although in most cases the goal of the external
influence is to bring the population to a desired opinion, some studies also consider
alternative goals such as the promotion of consensus (Lu et al., 2009) or polarisation
(Ghezelbash et al., 2019).

Regarding the opinion diffusion models, IM has been studied in many of them,
including both binary /categorical and continuous models. Among binary models, IM
has been studied for the Voter Model (Kuhlman et al., 2013), the AB model (Arendt
and Blaha, 2015), the SIR and its variants (Kandhway and Kuri, 2014), the Ising model
(Liu et al., 2010), or the Naming Game (Lu et al., 2009). For continuous models, IM has
mainly been studied for the DeGroot model (Ghezelbash et al., 2019) and the
Friedkin—Johnsen (Abebe et al., 2018) Similar to progressive models, IM is solved in
many cases for non-progressive models via a greedy algorithm (Liu et al., 2010). Other
studies approach solutions to IM via gradient ascent algorithms (Lynn and Lee, 2016;
Mai and Abed, 2019), message-passing algorithms (Vassio et al., 2014), percolation
theory (Saito et al., 2012) Shapley Values (Jain et al., 2021), topology—-based heuristics
(Montes et al., 2020) or other analytical approaches (Eshghi et al., 2020; Kandhway and
Kuri, 2014). Additionally, in many cases, IM is considered against an opponent, which
may be passive (Kuhlman et al., 2013) or actively maximising their influence, for
which a game-theoretical approach is needed (Goyal and Manjunath, 2020; Dhamal
etal., 2018).

Next, the literature related to IM for the Voter Model is reviewed in more detail, as it is
closer to this work.

Influence maximisation in the voter model

The first studies performing influence maximisation on the Voter Model were
performed by Even-Dar and Shapira (2011). In their problem definition, the external
controller can influence the initial opinion of some individuals in the network (under
some budget constraint) and attempts to maximise the expected number of nodes
holding the desired opinion in the steady state. They provide an exact solution to the
problem when the cost of setting the initial opinion of a node is uniform among the
population, which is picking the nodes with the highest degree of the network.
Masucci and Silva (2014) extended this work to a competitive setting with two
external controllers favouring opposite opinions and Li et al. (2013) to signed
networks, with positive and negative links. These works face some problems as the
steady state of the Voter Model becomes independent of the initial conditions under
some realistic modifications of it, such as the inclusion of noise (Brede et al., 2019b) or
zealots (Masuda, 2015). Therefore, modifying initial opinions could only be useful

when maximising opinions for a short time horizon instead of in the steady state.
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Due to the important role that zealots play in the composition of opinions in
equilibrium, some works conceive IM in the Voter Model as the optimal placement of
zealots in the network (Kuhlman et al., 2013; Yildiz et al., 2013). A first approach was
to consider which individuals should be transformed into zealots of the desired
opinion to maximally spread it in the steady state (Kuhlman et al., 2013; Yildiz et al.,
2013). Note that, in the Voter Model, the presence of zealots holding the same opinion
guarantees its reaching the whole population. For this reason, these studies assume
that zealots of the opposing opinion are randomly scattered in the social network.
Comparable to the question of finding optimal seeds in the independent cascade
model, this approach assumes that nodes can be readily transformed into zealots of
the desired opinions without considering the costs and effort of conversion, which is

too strong an assumption.

A different approach, introduced by Masuda (2015), takes inspiration from other
works on network control (Porfiri and di Bernardo, 2008; Liu et al., 2011) as a way of
bringing a network with a dynamics process happening between its nodes to the
desired state by introducing an external influence in a subset of the nodes. In this line,
Masuda treats zealots as external agents who exert influence via strategically placing
control links to nodes in the social network. Unlike the above zealot approaches, in
this framework the external influence needs to compete with peer influence at the
entry points, so nodes targeted by the external zealot do not deterministically stay at
their side. This approach is closer to the common scenarios of viral marketing and
mass media, as users targeted by these techniques are not guaranteed to be convinced.
Influence maximization is then conceptualised as identifying an optimal set of targets
subject to a budget constraint and against a passive, opposing controller with random
targets. Masuda (2015) has shown that, for undirected networks, optimal targets
typically follow a degree ordering, starting with nodes of the largest degrees.
Subsequent works have employed the same framework to show that noise or copying
errors (Brede et al., 2019b) and resistance to attempts of control (Brede et al., 2018) can
shift optimal targeting to low—degree nodes in certain parameter regimes. Similar
effects can also be observed if optimization is not aimed at achieving maximum vote
shares in the stationary state, but rather at a finite time horizon (Brede et al., 2019a).
Then, when time horizons are short, control cannot always capture hub nodes in time
and targeting lower degree nodes may become optimal. All these studies with
external controllers use stochastic hill-climbing algorithms to find the set of nodes
that maximise influence without providing a theoretical guarantee for the quality of
the approximated solution.

All of the above studies that include zealots assume a discrete targeting of the
controller; a node is either a zealot or not (Kuhlman et al., 2013; Yildiz et al., 2013), or
an edge is either built to a node or not (Masuda, 2015; Brede et al., 2018, 2019b,a).
However, controllers may want to split their budget unevenly between nodes to
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achieve a higher impact. Furthermore, most works cited above hold an algorithmic
approach to the influence maximisation problem: they focus on developing
algorithms that reach optimal solutions with proven bounds on their approximation
factors and complexity scaling. However, very little attention is placed on how the
structure of solutions looks like, i.e. which nodes are preferentially targeted and under
which conditions. For instance, there are well-known heuristics that make use of the
structural properties of nodes and perform reasonably well for influence
maximisation (Montes et al., 2020; Erkol et al., 2019). If optimal algorithms perform

better than such heuristics, where does this extra advantage come from?

2.4 Agent-Based Modelling

Agent-Based Modelling (ABM) are a simulation modelling techniques in which
individual entities with a set of rules of behaviour are let to interact. They are
particularly useful for the study of complex systems that are dynamic and highly
non-linear, resulting in chaotic or emergent phenomena. They are a theoretical
exercise in that no empirical data is used, but they do generate data is later analysed,
so they can be considered as a ‘third way of doing science” (Axelrod (1997a), p. 3).
Most of the opinion models above can be approached via ABM, as they depart from
microscopic rules of agent behaviours that can be simulated. However, many of them
are typically designed to be mathematically tractable and researchers typically mix
analytical and numerical approaches in their study. However, if models grow in

complexity, ABM becomes the most appropriate approach for their analysis.

As it is generally common in any modelling approach, models should not grow
arbitrarily in complexity; an unmoderated increase of ingredients would difficult the
inspection of the model and the understanding of the mechanisms that produce its
behaviour. Furthermore, ABM simulations may be computationally costly, so a focus
in parsimony is also desired to alleviate computational burden. Therefore, it is
important to only keep the model ingredients that are thought to be relevant and
contribute to the dynamics of the studied phenomenon, while removing irrelevant
details. Further challenges in the implementation of ABM include risks that
‘interesting” behaviour emerges from unnoticed errors in the computer code that
implemented the model. Due to the complex nature of the models, these code errors
may be hard detect, so rigorous programming practices should be employed.
Likewise, a rigorous tracking of model changes, and code reusability are key to ensure
the reproducibility of the experiments (Axelrod, 1997a). Last, there are risks of
numerical stabilities that come from any simulation task, as computational
representation of quantities have a finite limit in their precision and the biggest and
smallest quantities that they can represent, and care must be put in detecting these
situations (Hegselmann and Krause, 2015).
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Earliest cases of ABM can be found in cellular automata — machines formed by a grid
of cells that change state by simple rules according to the state of the neighbours —
which were able to produce chaotic and complex behaviour. These models were taken
and expanded in the field of population biology and developed into a sub-research
field called artificial life, where biological and ecological process are typically studied
by creating environment with resources and granting agents the abilities to interact
with others and the environment and to reproduce (Langton, 1995). Paradigmatic
examples of ABM applied to ecological phenomena include the study of swarm
behaviour — such as flocking, schooling, or foraging — how cooperative behaviours
can emerge from evolution (Smith, 1976; Axelrod and Hamilton, 1981), or how ‘swarm
intelligence’” emerges from distributed behaviours in colonies of ants and bees. These
were also naturally transferred to the design of swarm robotics which, inspired by
biological populations, attempt to increase the robustness of a group of robots by

having decentralised behaviours (Brede and Romero-Moreno, 2022).

In parallel of the emergence of the field of artificial life, ABM found a natural ground
in the study of social systems, where it was applied to diverse phenomena, such as
neighbourhood seggregation (Schelling, 1971), the emergence of norms (Axelrod,
1997a), or the collapse of civilisations (Roman et al., 2017). The first large—scale ABM
was developed by Epstein and Axtell (1996), featuring complex societies of agents
including very diverse phenomena such as migration, pollution, reproduction,
combat, trade, diseases, and culture (Epstein and Axtell, 1996). Many other large-scale
ABM representing societies at the level of cities or states followed with a wide variety
of topics of study, from political violence (Cioffi-Revilla and Rouleau, 2010) to
pandemic outbursts (Panovska-Griffiths et al., 2022).

Related to the topic of opinion dynamics and external control, a stream of ABM
research has also focused on developing models in the context of political science,
with political parties and mass media are viewed as types of agents that interact with
the opinion dynamics of the agents as normal citizens (Sobkowicz, 2016; Moya et al.,
2017). Particularly interesting are the cases around party competition, where the
opinion space reflects a space of political stances and parties compete for votes.
According to the classic theory of issue voting from Downs (1957), voters will select
their chosen party depending on their distance to the party platforms in this political
space. Consequently, parties — whose survival is strongly tied to their capability to
secure votes — can act strategically to maximise their vote share, either by moving
their platforms (typically at a cost in votes or in utility if moving away of the party’s
core values) or by affecting the political issues that are perceived as most important by
voters when comparing their distances to the parties, i.e. by ‘setting the agenda’ (De
Sio and Weber, 2014).

The Downsian model predicts that both parties should converge to the median voter’s
position (Downs, 1957), which is at odds the behaviour observed in many political
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systems. Inspired the research using ABM in evolutionary game theory (Axelrod,
1997a), the application of ABM to party competition showed that more realistic
outcomes of divergence in party platforms emerged if parties are under bounded
rationality, i.e. they have limited information about voters’ preferences or the
opponent’s strategies, having an ‘adaptive behaviour” instead of being perfect
optimisers (Laver and Schilperoord, 2007). Another landmark of the use of ABM in
contrast to more classic techniques from economics is that it allows to study the
dynamic aspects of adaptive learning instead of focusing on the equilibrium point of
forward-looking strategic analysis (Laver and Sergenti, 2011; GARCIA-DIAZ et al.,
2013)

The study of Kollman et al. (1992) was among the first in which parties move their
platform to maximise votes. They implemented three adaptive strategies for parties to
change their platform: i) Random Adaptive Parties, who are able to poll L points of
small changes in party platform and move to the one that gives them the highest
expected vote share, ii) Climbing Adaptive Parties, who perform L hill-climbing
iterations of changes in party platform, and iii) Genetive Adaptive Parties, who perform
L/2 iterations of a genetic algorithm — where L represents the length of the campaign
previous to each election. They also implemented two classes of parties: ambitious
parties, who only seek to maximise votes, and ideological parties, who prioritise
maximising votes when they are not the majority, but also seek to remain closer to
their ideology represented by their initial position. They showed that, although the
performance of the three strategies did not differ much, ideological parties have much
higher chance to remain incumbent than ambitious ones. Following Kollman’s work,
Miller and Stadler (1998) showed that hill-climbing party strategies asymptotically
converge to the median voter, although times to reach there may be long and rich,
chaotic-like transient dynamics can emerge before that point is reached. Later models
explored additional party strategies (LAVER, 2005; Fowler and Laver, 2008) and
extensions, such as the endogenous appearance of new parties (Laver and
Schilperoord, 2007), the interplay of party competition and social turnout (Fowler and
Smirnov, 2005), changes in the dimensionality of the political space (Garcia et al.,
2012), or the formation of coalitions (Lehrer and Schumacher, 2018).

A different approach to party competition is by analysing how parties alter the
perceived importance of specific issues (Budge and Farlie, 1983). This approach is
related to the agenda-setting capabilities of parties, who are able to influence the
topics that are discussed by influencing the mass media to promote aspects of the
debate in which they hold favourable positions relative to the electorate (De Sio and
Weber, 2014). Hence, the assumption is that, when computing the distance of a voter
to a party, the different component dimensions of the political space are weighted by
the perceived importance (or, political sciences terms, saliency), which is the one that
parties want to affect (Amorés and Puy, 2010). Interestingly, Dragu and Fan (2016)
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showed that this form of party competition led parties in the minority to support
divisive topics within the electorate. Meyer and Wagner (2019) posited that the
movement of party platforms is only an effect of aggregating changes in saliency in
low-level issues into coarser political dimensions, unifying both perspectives. In
contrast, other works have simultaneously considered movement of party platforms
and changes in saliency to study the appearance of new parties (Tavits, 2008) and the
success of niche parties (Meguid, 2005). Muis (2010) models both party competition in
platform and media effects on voter perceptions, although their media distortion
represents a lack of media coverage that introduces increases the perceived distance
from voters instead of pursuing an agenda-setting effect. Crucially, some of these
works have made efforts to calibrate model parameters with empirical data or used it
for validation (LAVER, 2005; Muis, 2010; Sobkowicz, 2015; Moya et al., 2017; Muis and
Scholte, 2013).

2.5 Optimisation methods

Optimisation is a branch of mathematics that involves obtaining the highest (or
lowest) value of an objective quantity by choosing values of a set of variables.
Optimisation occurs at many levels in nature — as emerging behaviours — such as in
societies (trading), biology (evolution), and physics (energy) (Nocedal and Wright,
1999). From a human decision perspective, optimisation techniques allow to operate
on mathematical models of the world, typically with the help of computers, and are a
key element of engineering. An optimisation problem can be formally defined as®

max f(x), s.t. gi(x) =0 hj(x) >0, (2.6)

X

where x is the vector or variables, f denotes the objective function that links the
variables to the objective function, and g; and }; a set of functions specifying
constraints in the values of the varaibles that can be picked.

Approaches and methods to optimisation vary according to the nature of the variables
(e.g. continuous or discrete, bounded or unbounded) and the type of function that
relates them to the objective (e.g. implicit or explicit, linear or non-linear, known or
unknown). Depending on the complexity of the problem and the method employed,
the optimisation task may require computation above the resources available, maybe a
solution is not even feasible, or there may not be guarantees that the solution obtained
is the optimal one. Thus, some important properties that characterise optimisation

methods are the following.

®Note that while the equation refers to max, all concepts apply to seeking the minimal value; it is
enough to maximise the function f' = —f.
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1. Time complexity, or how much time the optimisation method takes to obtain a
solution. It typically depends on the characteristics of the problem, such as its
size (in terms of the number of variables and other parameters). This
dependencies are typically expressed with a big O notation, O(X), which
represents a computing time that scales linearly with the expression X in the
worst—case scenarios (upper bound).

2. Memory complexity, or how much information the optimisation method needs
to hold in memory simultaneously. Similarly to the time complexity, it can be
expressed with a big O notation.

3. Guarantees on error bounds in the form of a limit in how far the solution
obtained is from the optimal one or, in the case of discrete variables, a
probability that the optimal solution was found.

4. Robustness. The quality of the solution should not vary considerably with the

initial conditions (in iterative methods).

Therefore, a large body of research is devoted to develop and understand different
optimisation method that are appropriate for varying contexts depending on
resources avaiable and needs.

A major difference in the nature of optimisation problems and solutions stems from
the space of the variables. If variables are restricted to discrete values (e.g. binary,
categorical, integer), we talk about discrete optimisation, while continuous optimisation
refers to optimisation with variables within the real numbers. We will cover each of
these next.

2.5.1 Discrete optimisation

Discrete optimisation involves an objective function that depends on a set of discrete
variables, i.e. binary, categorical, or integer numbers. Problems with binary or
categorical variables without an order (sets) may lack any information about how to
explore the space of solutions and exploring all possible combinations of variables
may be the only guarantee that an optimal solution is found. Such problems are said
to be NP-hard, and their time complexity scales as Z N where Z is the number of
categories per variable and N is the number of variables. Hence, ensuring that an
optimal solution is obtained is only feasible for small problems with low number of
variables N.

If the space cannot be fully explored due to limitations of resources, it is not possible
to know whether the solution obtained is the optimal one. By exploiting the structure

of a problem or domain knowledge, some methods employ smart heuristics to discard



2.5.  Optimisation methods 33

parts of the space that are unlikely to contain the optimal solution and therefore can
arrive at it with higher chances. However, it is still not possible to know whether it has
indeed been found. Stochastic hill-climbing is a different approach which, starting from
a guess, makes random changes in the variables and only keeps those if they lead to
higher values of the objective function. Similarly, greedy hill-climbing starts from an
initial guess and optimises each variable once, one at a time, performing the
optimisation in a single pass. Under some properties of the function f, greedy
hill-climbing algorithms can guarantee that the solution obtained is at least 1 —1/¢
(~ 63%) times smaller than the optimal one. Genetic algorithms are a sophisticated
extension of these methods that draws inspiration from evolutionary processes to
create a population of solutions that then follow an iterated two-stage process. First,
single values in each solution may change with some probability (mutation) and
combinations of variables values may be exchanged between a pair of solutions
(crossover). At the second stage, solutions are replicated (offspring) according to their
evaluation in the objective function f (fitness) and those with the lowest fitness get
discarded. Due to the role of crossover, genetic algorithms are able to better arrive at
solutions to which hill-climbing would not be able. However, this comes at the cost of
higher computational cost and additional mechanisms to ensure diversity in the

population of solutions.

Problems whose variables are integer numbers are of a very different nature, since
there is a sense of proximity between the different values that a variable can obtain.
The set of methods that are used for solving these are collectively called as Integer
programming, which is used in many areas of business and industry including

logistics, finance, or manufacturing.

2.5.2 Continuous optimisation

Continuous optimisation involves optimising an objective function that depends on a
set of continuous variables, i.e. they are real numbers. This type of optimisation is
typically easier to achieve than discrete optimisation if the function to optimise is
smooth, i.e. if its first and second derivatives are defined in all points of the variable
space. This smoothness allows to know the local behaviour of the function around any
specific point, providing valuable information about in which direction its values are
increasing or decreasing and the rate of change (gradient). Continuous optimisation
methods generally start from an initial guess xo and use the information of the
gradient of the function V f to navigate the space in the direction of increasing values
until a maximum is found, i.e. a point with higher than all points in its
neighbourhood. However, this may not be enough, as there may be points with even

higher values further apart —i.e. it may be a local maximum.
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Often, it is not possible to know whether the maximum arrived at is a local or a global
one; only a wider exploration of the variable space can provide some hope that the
solution found is at least ‘good enough’. However, there is a class of problems, called
convex problems which guarantee that there is only a single maximum, that is therefore
the global one (Nesterov, 2004). Convex problems are characterised by a convex

function f and a convex space of variables x, where a convex function implies

flax+ (1 —a)y) <af(x)+(1-a)f(y) Vae[0]] 27)
and a convex variable space S implies

xeS,yeS—ax+(1—a)yes. (2.8)

Continuous optimisation problems move through the space via discrete steps
(iterations) and they mainly differ in how these steps are calculated. A common
approach is to compute a direction of movement and then find an appropriate step
size at each iteration, a family of methods known as line search (Nocedal and Wright,
1999). An appropriate direction of improvement can be that in which the function will
increase the most, which is the maximum direction of the gradient, what gives these

methods the common name of gradient ascent.

The choice of the step size can come in many flavours. While too small step sizes will
unnecessarily increase the number of iterations to reach the solution, too big step sizes
can also be inefficient — or even create instability of the method, preventing it to ever
converging at a solution — as the information conveyed in the gradient may only hold
locally (Nocedal and Wright, 1999). The magnitude of the gradient can provide useful
information for adapting the step size too: a large gradient magnitude indicates
higher confidence that the function is increasing in that direction, while the gradient
magnitude will become vanishingly smaller as a maximum is approached. To prevent
overshooting, the value of the function f at iteration i + 1 can be compared to that of i;
if it is lower, that means that the step size should be reduced and a new step from the
previous point should be computed — a technique called backtracking (Nocedal and
Wright, 1999). An extension of this method checks the value of f at several step sizes
and keeps the best of them, or even performing a full-fledge optimisation (by taking
several steps) along that direction. However, there is a clear trade—off between the
time spent to compute a good step size and how much improvement is obtained by it
and the balance would come from how expensive is to evaluate f and to compute V f
(Nocedal and Wright, 1999).

A more sophisticated technique that simultaneously provides the direction and size of
the steps is the Newton direction, which uses the second derivative V2 to provide a
more efficient navigation of the space (Nocedal and Wright, 1999). Therefore, this

technique is recommended in problems with complex surfaces of f. Additionally, as it
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provides optimal step sizes, problems arising from selecting inappropriate sizes can
be avoided. However, the computation of V£ is not always possible, or it may be too

computationally costly to perform it at every step.

2.6 Summary

This chapter has covered different approaches to mathematical modelling of influence
networks, opinion dynamics, and external influence —both untargeted and targeted.
The literature around these topics is vast and varied, with a profusion of modelling

variations and little consensus about which models are the most appropriate.

To start with, opinions can be modelled as discrete or continuous variables, leading to
different dynamics and system behaviours. To cover both branches, one model with
binary opinion variables and one model with continuous opinion variables are
included in this thesis. Regarding models with discrete opinions, there is a first
distinction in the literature between dynamics where opinions change in only one
direction (progressive models) and those where opinions can flip back and forth
between different states (non-progressive). While progressive models are popular in
IM for the computer science field, non-progressive models are more appropriate for
opinions that do not require commitment or for regarding longer time scales (Arendt
and Blaha, 2015). A paradigmatic non-progressive model is the Voter Model, which
has a long history of research and presents high levels of tractability (Redner, 2019).
For this reason, and since it has also been empirically proven to match voting data
(Fernandez-Gracia et al., 2014; Braha and de Aguiar, 2017; Vendeville et al., 2021), it
will be employed in this thesis for opinion dynamics with binary opinions. Regarding
models with continuous opinions, the bounded—confidence model certainly enjoys the
widest acceptance and research tradition, both in general opinion dynamics and in the
study of external influence in particular (Noorazar et al., 2020; Sirbu et al., 2017;

Castellano et al., 2009a), so it will be the choice as a model with continuous opinions.

External influence has also been studied from different modelling approaches, ranging
from the introduction of zealots within the network to representations of the media as
external agents that link to specific nodes or as tampering with aspects of the system,
such as the initial opinions or the network structure. Most works related to IM assume
discrete allocations of influence from the optimiser and apply a greedy hill-climbing
algorithm to arrive at an approximate solution. Despite being proposed in the seminal
works of IM (Domingos and Richardson, 2001; Kempe et al., 2003), continuous
allocations have barely been regarded. Moreover, most works only focus on
developing fast and accurate algorithms for solving IM while ignoring the shape of
the solutions’ structure. To cover these gaps, this work introduces a continuous IM

problem where external controllers build links to agents in the network. The aim is to
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develop solutions to the continuous allocation problem, study the structure of such
solutions, and compare them with the solutions obtained from the standard discrete

allocation setting in the literature.

Furthermore, we analyse the role of external influence in a different setting where the
controllers react adaptively to a population that evolves in a consensus—formation
process. For this scenario, we find motivation in the context of political parties that
affect the relative importance that different political dimensions have when
interacting with others and going to the polls, a well-studied phenomenon in the field
of political science (Amorés and Puy, 2010; Feld et al., 2014; Dragu and Fan, 2016; De
Sio and Weber, 2014). However, having external controllers affecting the perceptions
of dimensions in a multi-dimensional opinion space is novel and has never been
approached from the opinion dynamics field. To that end, we study the role of
external agents that compete by affecting the importance mix of opinion dimensions
in the context of a consensus—formation process of a population following the

bounded-confidence dynamics.
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Chapter 3

Continuous Influence Maximisation
for the Voter Dynamics: Optimal
solutions and analysis of the
structure of optimal allocations

Parts of this chapter have been published as a journal paper
(Romero Moreno et al., 2021a), an article in a conference proceedings
(Romero Moreno et al., 2020c), and an extended abstract (Romero Moreno
et al., 2020b).

3.1 Introduction

As we have seen in Sect. 2.3.2, previous research on IM —both on progressive and
non-progressive models— has mainly employed a discrete approach, i.e. identifying a
set of K individuals whose control maximises the share of the desired opinion
(Domingos and Richardson, 2001; Zhang et al., 2016; Yadav et al., 2017; Kuhlman et al.,
2013; Brede et al., 2018; Dezs6 and Barabasi, 2002; Chen et al., 2009; Budak et al., 2011;
Even-Dar and Shapira, 2011; Arendt and Blaha, 2015; Kempe et al., 2003; Lynn and
Lee, 2018; Masuda, 2015; Brede et al., 2018). However, the discretisation of influence
targeting is artificially constraining if campaigners wish to allocate different amounts
of resources to different groups, e.g. weakly targeting one group of nodes while
focusing strong controlling power on another subset of targeted nodes. The latter
strategy can be better captured by a continuous approach where the external
controller can tailor the intensity of influence to individual target nodes (Eshghi et al.,
2020). This approach gives a more suitable model to describe mixed modes of



38 Chapter 3. Continuous Influence Maximisation for the Voter Dynamics

influence campaigns, which typically combine generic messages directed to a broad
public (through radio, television, or billboards) with intense, bespoke promotion to
specific groups of the population.

Although the assumption of discrete targeting is prevalent in most works on influence
maximisation, the seminal works from Richardson and Domingos (2002) and Kempe
et al. (2003) included the possibility of continuous allocation. Due to the linearity of
their continuous allocation version of the problem, Richardson and Domingos (2002)
obtained a closed—formed solution to the maximisation process. Kempe et al. (2003)
made their influence maximisation problem continuous by probabilistically
determining the initial seeds depending on the amount of budget allocated to them.
Although they proposed an approximate gradient hill-climbing algorithm, the
evaluation of their goal function is NP-hard and they do not provide a method for
approximate evaluations. Closer to our work, Lynn and Lee (2016) study influence
maximisation with continuous allocations for the Ising model and derive a mean—field
approximation to obtain optimal influence allocations for the steady-state distribution
given a passive opposing field (equivalent to an opposing external controller). They
prove that their goal function is concave and propose a gradient ascent algorithm that
obtains an e-approximation to the optimal solution in O(1/¢) iterations. To the best of
our knowledge, the only instance of continuous allocations applied for influence
maximisation in the voter model happens in the competitive influence maximisation
problem of Masucci and Silva (2014), where two players can continuously allocate
their influence and a node’s initial opinion is sided with the player that invested the
most on it (an instance of a Colonel Blotto game). This approach only applies to
competitive games and, as mentioned before, is not robust as initial conditions become
irrelevant in the long run in the presence of zealots or noise (Masuda, 2015). To bridge
the gap of continuous influence allocations in the voting dynamics, we formalise the
problem of influence maximisation with continuous allocations (in Sect. 3.2) and
propose a gradient-ascent algorithm to obtain optimal solutions numerically.

Furthermore, a thorough analysing of the structure of the optimal solutions obtained
is prominently lacking in the IM literature, where the focus generally is on improving
algorithmic performance and providing approximation guarantees (Li et al., 2018;
Kempe et al., 2003; Yadav et al., 2017; Lynn and Lee, 2018). A main reason for this gap
is the high dimensionality and complexity of the structure of solutions, as they include
thousands of variables that are typically interconnected in complex network
structures. Therefore, the rest of the chapter is devoted to a detailed analysis of the
structure of optimal solutions to continuous IM, via analytical results and numerical

techniques.

As a first finding, we establish that optimal allocations tend to spread across large
parts of the network (Sect. 3.4). Second, we present two simple heuristics that can be
derived from optimal solutions to continuous IM: a direct response to the nodes
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targeted by the opponent, shadowing (Sect. 3.5), and an indirect response that focuses
on the neighbours of the nodes targeted by the opponent, shielding (Sect. 3.6), which
may be understood as first- and second—order approximations! to optimal solutions,
respectively. By understanding these two types of heuristics, we can provide intuition
on what are the key ingredients of an optimal solution to our continuous IM problem.
Third, we explore to what extent optimal solutions in the continuous and discrete
regimes can be explained by hub targeting, and how this popular heuristic is related
to shadowing and shielding (Sect. 3.7). Fourth, we extend the analysis to the
conventional discrete IM and assess differences between the solutions obtained in the
two regimes (Sect. 3.8). Our results demonstrate that whereas hub preferences are
very important in the discrete setting, shadowing and shielding heuristics are the
predominant factors explaining maximal influence in the continuous case. Finally, we
analyse the game-theoretical scenario where both external controllers actively adapt
their strategy and provide an empirical understanding of the Nash equilibrium

(Sect. 3.9), finding that a unique equilibrium lies on equal targeting of all nodes in the
network. We further quantify the degree to which an opponent strategy can be
exploited by an active controller and find that deviations from optimal allocations are
more detrimental the lower the degree of the node at which they occur.

3.2 Formalisation of the continuous IM problem

The standard version of the voter model assumes a graph G = {V, E} where agents
are identified with nodes: v; € V,i=1,..., N, and edges are influence links between
them: e;;= {v;,v;} € E. We assume that the network is positively weighted, undirected,
and has no self-loops, with W = (w;;) corresponding to its weighted adjacency
matrix. Each agent holds one of two possible opinion states o; € {A, B}, with

i =1,..., N. Agents update their opinions subject to the voter dynamics: at every
iteration, a node is chosen at random and copies the opinion of one neighbour who is

chosen with probability proportional to the weight of their common link.

Further to the standard model, external influence is introduced via zealots as external
controllers (Masuda, 2015; Brede et al., 2018; Chakraborty et al., 2019; Cai et al., 2021).
We assume that there are two external controllers holding different opinions. These
controllers exert influence on the network via unidirectional links with weights w,;
(wy;) that are also taken into account in the updating dynamics of opinions —i.e. they
count as neighbours when performing copying in the opinion dynamics. In the

!Note that we refer to ‘order” here as the distance of node targeting from nodes targeted by the oppo-
nent. In this sense, shadowing can be considered a first—order heuristic because it is related to allocations
given to nodes targeted by the opponent. On the other hand, shielding constitutes a second-order heuris-
tic because it considers nodes in the direct environment of nodes targeted by the opponent. Further—order
shielding is also possible, although not explored in depth here due to its higher complexity and lower
effect.
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continuous regime, controllers can freely decide which nodes they target, with
positive continuous strengths w,;, wy,; € R™ and subject to a budget constraint,

By > L w,i(wy;). The discrete regime is a sub-case of the continuous regime that
only allows two possible weight values, w,;, wy; € {0, g}, where g is a fixed gain. The
number K of nodes thus targeted is related to the budget via K = [B/g].

As presented in Sec. 2.3.2, the behaviour of the opinion dynamics under the voter
model can be studied by considering the evolution of probabilities x;(t) € [0,1] thata
node holds opinion 0; = A at time ¢ (Mobilia et al., 2007; Even-Dar and Shapira, 2011;
Masuda, 2015). From this perspective, the dynamics of a node can be described by the
rate equations

dx; Y wixj+wei Y wii(1—xj) + wy

dt ( l)di+wai+wbi l di + Wai + Wy; G-D

where d; is the weighted degree of a node, d; = Y wij.

Here, we focus on maximising influence in the steady—state of the distribution. As
Masuda (2015) has shown, this system has exactly one equilibrium point x* that is an
attracting state, meaning that the expected asymptotic distribution of opinions over
the network does not depend on the initial opinion distribution. It can be found via
the linear relationship

(L+Wo+Wp)x" =w,, (3.2)

where L is the weighted Laplacian of the network, W, (W}) is a diagonal matrix whose
diagonal entries correspond to w,; (wy;), and bold symbols are column vectors. The
total vote share of nodes holding opinion A at the equilibrium is obtained from

* * 1 -1
X=5 Y xf = NlTx = N1T(L + W, + W) W, (3.3)

To simplify notation, we will use x; and x to refer to the single fixed point

corresponding to x; and x™ in the following.

For the IM problem, without loss of generality, we assume that the controller
favouring A is active, i.e. it seeks to find the best way to distribute its link weights, w,,
with an aim to maximise the vote share of its opinion, X. We generally assume that the
opposing controller, favouring B, is passive, with links wj, that are fixed and known
by the active controller, and that controllers have full information about the network
structure. The IM problem with continuous allocations and for the steady-state can
then be formulated as

1 _
max X, st X= N1T(L+ W + W) W, 1, ;wai <Bs wi>0. (34
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A first step towards solving the continuous IM optimisation problem is finding the
critical points where gradients of the goal function are equal to zero, corresponding to

Ve, X = % 17 (L W, + We) (1~ diag(x)]] =0, (35)

where diag(x;) is a diagonal matrix whose diagonal elements correspond to the
probability vector at the steady—state x = (L + W, + W,) “'W,1. Note that all elements
in Vy, X are positive, since (L + W, + W,) is an M-matrix (Slawski and Hein, 2015),
which are a subset of the inverse-positive matrices (Fujimoto and Ranade, 2004).

Since V4, X = 0 is generally nonlinear in w, —and analytically intractable for the
general case— we propose two different approaches to finding a solution: a numerical
solution via gradient ascent for the general case (Sec. 3.3.1), and analytically studying
a heterogeneous mean-—field approximation (Sec. 3.3.2), which simplifies analytical

calculations under some assumptions.

3.3 Methods and experimental settings

In this section, we present our methodological approach for finding solutions to the
IM problem. We propose two different approaches for the continuous allocation
version of IM: a numerical solution, via a gradient-ascent algorithm (Sec. 3.3.1), and
an analytical solution, obtained via a mean—field approximation that simplifies the
model by lumping nodes with a same degree into classes of nodes showing similar
behaviour (Sec. 3.3.2). Last, Sect. 3.3.3 presents the experimental settings of the
remaining sections of the chapter.

3.3.1 Gradient ascent algorithm for continuous IM in the voter model

The continuous modelling of IM brings a methodological benefit. Solving IM in
discrete control framing is only feasible via combinatorial optimisation, whose exact
solution scales exponentially in time with the number of targets. On the contrary, the
assumption of continuous strengths allows for better mathematical treatment of the
problem, since the problem becomes differentiable and local search techniques can be
applied to finding an optimum. Moreover, due to the concavity of our IM problem in
the strategy space (for a proof, see Appendix A.9), local-search techniques are
guaranteed to arrive at the global optimum (Nesterov, 2004). Here, we employ
gradient ascent as a local-search method, which has previously been used in IM by
Lynn and Lee (2016). This technique is ensured to reach an e-approximation to the
exact solution in O(1/¢) iterations of the algorithm (Nesterov, 2004).
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Our version of the algorithm is shown in Algorithm 1. Starting from a uniform
allocation distribution, each iteration performs a step in the allocation space in the
direction of the gradient, moving to allocations with increasing vote shares for the
controller. Note that we have not included the budget and positivity constraint in the
gradient calculation, so after every iteration, the allocation distribution needs to be
projected back to the regular N-simplex that fulfils both constraints. The projection to
the N-simplex is done following the algorithm developed by Chen and Ye (2011).

Algorithm 1: e-approximation to optimal allocation of influence via gradient ascent
input : B, L, Wy, u, €
output: approximation for wj at the global maximum, X*
1 wfu-:O =B,/N; X*=0=0;
repeat
_ _ -1 . 11t
Ve X1 = 4 [1T(L+ WL+ W,) [T — diag(x! 1)]} (3.5);
wy = w4+ Ve, X'
w!, = Projection of w/, onto the N-simplex constraint;
Xt = LT (L+ W+ W,) Wi (3.3);
Backtracking;
until X! — Xt < ¢;

The parameter y (line 4 of Algorithm 1) regulates the step size. Big steps will generally
speed up the process but may endanger its convergence. To prevent divergence, we
also employ backtracking after each iteration; i.e. the new solution is rejected and the
step size halved if the vote share is lower in the new iteration than in the previous one.
Note that every step requires a N x N matrix inversion, so the time complexity to
reach an e-approximate solution scales with N and € as O(N?/¢).

A test of the quality of the algorithm can be found in Appendix A.2, where we
compare its solutions to analytically obtained ones.

3.3.2 Heterogeneous mean-field approximation

As shown in (3.5), general analytical solutions to the continuous IM problem are hard
to obtain. To cope with this, much of the previous literature has focused on
developing optimisation algorithms (Medya et al., 2019; Nayak et al., 2019) or finding
heuristics that are close to optimal (Abebe et al., 2018; Alshamsi et al., 2018b).
Amongst such heuristics, degree-based heuristics have played a prominent role
(Dezs6 and Barabasi, 2002; Banerjee et al., 2013). We take the latter as inspiration and
develop an approximation that reduces the number of degrees of freedom in the
system by grouping nodes with the same degree. Note that this approximation is only
effective for unweighted networks.



3.3. Methods and experimental settings 43

The heterogeneous mean—field (HMF) approximation assumes that, independent of
the details of individual neighbourhoods, every node is coupled to a mean-field
where the probability of having a node as a neighbour is proportional to their degree
(Moretti et al., 2012; Carro et al., 2016; Hu and Zhu, 2017; Brede et al., 2019b). This
approximation is not always valid but tends to perform well for not overly sparse
networks in the absence of particular degree correlations. The HMF approximation
assumes random connections between nodes and ignores higher-order correlations

that might be present in real-world networks.

Under this approximation, the expected opinion state of a neighbour (x) is presumed
to be the same for every node in the network and equal to

() =51 @xi , (3.6)

where (d) = 1/N Y_; d;. Note that high-degree nodes are more likely to be
encountered as neighbours and hence products by d;/ (d) affect the x;. We thus obtain
probabilities of adopting A in the steady-state as

di{x) 4w,

_— 3.7
di + wa; + wy; (5.7)

i =
But Eq (3.7) can be re-inserted into Eq (3.6), arriving at a self—consistency equation and
leading to the closed—form expression of the vote share as

-1
1 d; diw (Wai + wp;)
XHMF — i ai ai i +
N (; di+wai+wbi> <Z di +wm+wbz> (Z di + wg; + wbz)
Wai

-y —* . (38
+N;di+wui+wbi 9

Finding the optimal allocation in this setting is equivalent to finding w} such that
Vw: XHMF = 0, leading to a system of high-order polynomial equations which is still
hard to solve. Further conditions or assumptions will be presented for its solution
later, namely a Taylor expansion around limits of low and high allocation strengths as
compared to node degree (Sec. 3.5). An assessment of the accuracy of the HMF
approximation on random graphs with bimodal degree distribution can be found in
Appendix A.1).

3.3.3 Experimental settings

For illustration, most experiments shown in this chapter are performed on a
real-world email interaction network (Guimera et al., 2003), which provides a sample
of a network topology related to social networks. This heterogeneous network is
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unweighted and undirected, with a unique component of size N = 1133, mean degree
(d) = 9.62, and degree assortativity 6 = 0.078. Its degree distribution can be seen in
Appendix. A.3. However, the results shown here also apply to more general classes of
complex networks, as it is demonstrated in further experiments on other network
topologies as shown in Appendix A.8.

Regarding the strategies of the passive opponent, we assume them to be non-strategic
in most experiments, focuses her influence evenly among a number K of nodes in the
network chosen at random, although some experiments also explore other strategies,
such as other placings of the K nodes based on network properties, continuous
allocations of strength spreading the whole network, or an opponent who also reacts
strategically to the active controller. Influence budgets are fixed such as their sum
equals to B, + B, = N(d) /30, entailing that, if both budgets are equal and controllers
spread their allocations evenly through the network, the controllers” opinion would be
copied around once every sixty times on average. This forces controllers to be

strategic in the placing of their influence.

We obtain optimal solutions in the continuous regime numerically via the gradient
ascent algorithm, employing u# = 50 as the step size and € = 1070 as the convergence
threshold, with all solutions converging in less than 10° iterations.

Optimal solutions for the discrete regime are obtained numerically via stochastic
hill-climbing — a local-search technique which has been previously used for solving
discrete IM in the voter model (Masuda, 2015; Brede et al., 2018, 2019b). The stochastic
hill-climbing algorithm departs from a random subset of K nodes and iteratively
swaps one of them with a random node in the network. The modified subset is
preserved after each iteration if it performs better than the previous subset, i.e. if it
leads to a higher X (the vote share to the active controller); otherwise, the change is
reversed. This algorithm is typically run for a given number of iterations or until there
has been a specific number of iterations without improvement. We perform stochastic
hill-climbing for 20N iterations or until no change is made in the last 10N iterations,
whichever occurs last.

To facilitate the analysis and description of the optimal allocation profile of numerical
solutions, we have divided allocations into disjoint groups by targeting strength w,;
with respect to the mean allocation (w,). We have thus distinguished four disjoint
groups G = {H, A, V,Z} of nodes with high allocations H = {i | w,; > 8(w,)},
above-average allocations A = {i | 8(w,) > w,; > (w,)}, below-average allocations
V = {i| (w,;) > w,; > 0}, and zero allocations Z = {i | w,; = 0}. We have chosen this
particular partitioning to characterise the four distinct groups that can be observed in
the optimal allocation profile from Fig. 3.1b, which will be used as a reference; this
grouping is mainly employed for illustrative purposes for providing intuition, results

are later extended to general cases. To explore the effect of the local topology around
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nodes (related to the shielding behaviour), we define a second set of disjoint groups

S = {T}, N, R} with nodes that are targeted by the passive controller

(Ty = {i | wp; = g}), direct neighbours of nodes targeted by the passive controller

Ny =1{i ¢ Ty | (3j € Ty | w;j > 0)}) and the remaining nodes (R = {i ¢ (T, UNy)}.
We use the entropy of the allocation distribution as a characterisation of the spread of
optimal allocations, H(w,) = —1log(N) Y_;(w.i/Ba)log(w,i/B,). Note that this
entropy is normalised to the interval [0, 1], which is achieved by the pre-factor log(N).

In Sect. 3.8, we employ heuristics inspired by the optimal solutions found in previous
sections and to compare their effectiveness among the continuous and discrete
regimes. We use four heuristics related to the discrete regime and four related to the

continuous regime, whose implementation details we include below.

* Random. This is a baseline heuristic for the discrete regime, where K random
nodes are targeted.

* Degree—based (discrete). This heuristic targets the K nodes that have either the
highest or the lowest degree in the network, whichever results in the highest

vote share.

 Shadowing (discrete). This heuristic targets exactly the same nodes as the passive

controller.

* Shielding (discrete). Discrete shielding targets K nodes randomly selected from
N, although giving preference to nodes that have multiple neighbours in Tj. If
K > |Np|, the remaining targets are directed to random nodes in R.

* Uniform. This is the baseline strategy for the continuous regime, targeting all
nodes in the network with equal strength w,; = B,/ N.

* Degree—based (continuous). For this heuristic, allocation strengths are linearly
proportional to node degree, w,; o kd;. The proportionality constant k is found
numerically via binary search to maximise vote shares. Note that the uniform
heuristic above is a sub-case of this heuristic with k = 0, so this heuristic will
always perform equal or better than uniform.

¢ Shadowing (continuous). In this heuristic, there are only two possible allocation
strengths, one given to nodes in T, and one given to the remaining nodes. Their
values are determined numerically via binary search to maximise the vote share.
Note that uniform is a sub-case of this heuristic in which both intensities are
equal, so this heuristic will always perform equal or better than uniform.

* Shadowing plus shielding (continuous). This last heuristic is a combination of both
shadowing and shielding heuristics, where nodes are targeted with one of three
possible intensities associated to each group in S = {T;, N}, R}. The values of
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these intensities are determined numerically via binary search to maximise the
vote share. Note that shadowing is a sub-case of this heuristic in which the
allocations to nodes in Nj, and R are equal, so this heuristic will always perform
equal or better than shadowing (and, consequently, also better than uniform).

Note that the proposed heuristics require different amounts of information for their
implementation. Some require the details of the network structure and/or knowledge
about the opponent’s strategy. Others have free parameters and their implementation
requires an exploration of the parameter space, with computations of expected vote
shares for evaluating each value of the parameters. Table 3.1 summarises what

information is required for each of the heuristics along with the nested structure.

TABLE 3.1: Information required by each heuristic (three middle columns) and
nested structure (right column).

Network Opponent’s Parameter | Nested
structure strategy Tuning heuristic
Discrete heuristics
random - - - -
degree—based X - X -
shadowing - X - -
shielding X X -
Continuous heuristics
uniform - - - -
degree—based X - X uniform
shadowing - X X uniform
shadowing plus shielding X X X shadowing

The code for running all experiments and produce all figures in the chapter can be
found at https://git.soton.ac.uk/grmlgl7/continuousim.

3.4 Initial exploration of the structure of optimal allocations

in the continuous IM

We first qualitatively explore the shape of optimal allocations in the continuous
regime. The continuous regime allows for richer allocation decisions as controllers can
reach all nodes in the network and modulate the strength of the allocation given to
each node. If linked to practical examples, this would correspond to campaign
managers using diverse modes of campaigning, potentially mixing a soft campaign
directed at all individuals in a population with stronger campaigning directed at
specific groups. Here, we address the question, if campaign managers would benefit
from using such diverse modes of campaigning. For an initial exploration, we set the
passive controller to target K random nodes in the network with equal strength. In
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FIGURE 3.1: Distribution of optimal influence allocations sorted in descending order
when the passive controller discretely targets a K = 8, b K = 16, and ¢ K = 32
randomly chosen nodes. Both controllers hold the same budget, B, = B, = N (d )/60.
Allocations are coloured by the allocation group in G = {H, A, V, Z} they belong to.

Fig. 3.1, we present optimal control allocations sorted in descending order and
obtained via gradient ascent. Results shown in the three panels of the figure have been
obtained from numerical experiments where the passive controller targets K = 8,

K =16, and K = 32 nodes, respectively, and both controllers hold equal allocation

budgets.

If a controller targeted K nodes in a discrete fashion, allocations to those K targeted
nodes would belong to the high—allocation group H (if K < N/8) and allocations to
the remaining nodes would belong to the zero—-allocation group Z. In contrast, we
consider that a controller makes use of the continuous flexibility if allocations are
spread across the network (with few nodes belonging to Z) and cover a wide range of
strengths. Fig. 3.1b illustrates that even though there is a focus of heavy targeting on
some selected nodes (|H| + |A| = 111) and some nodes remain untargeted (|Z| = 9),
the allocation profile of the remaining nodes (| V| = 1013) is mostly flat, with little
variation of allocations around their mean, std(w,icv)/(wa)icv = 0.11. From these
results, we see that the active controller is making use of the continuous flexibility, as
allocations are widely spread across the network —only |Z| = 7 nodes did not receive

allocation at all— and across strengths —ranging from w,; = 10~! to w,; = 5. Looking
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FIGURE 3.2: a Entropy of optimal allocation distributions in response to passive con-

trollers with discrete allocations that are more or less widely spread (as measured by

the number of nodes K that they target) and different budget ratios. The entropy of

discrete allocations of the passive controller is also depicted (dashed line). b Percentage

enhancement of control by optimal continuous allocations over optimal discrete allo-

cations for varying K and budget ratios. Error bars represent standard errors over 15
experiment samples.

at other values of K (left and right panels from the figure), we note that the allocation
distribution profile flattens as K increases, with a sharper peak when the opponent
targets K = 8 nodes (Fig. 3.1-a), and a much smoother slope with K = 32 (Fig. 3.1—c).
However, an almost-constant spread of allocations across all nodes in the networks

remains present in all cases.

To extend the analysis of the allocation profile to other scenarios, we use the entropy
of the allocation distribution, H(w, ), which characterises the spread of optimal
allocations. Controllers that make use of the targeting flexibility of the continuous
regime will tend to spread their allocations across the network, resulting in higher
entropies. Fig. 3.2a shows that, almost independent of K and budget ratios,
distributions of continuous allocations have considerably larger entropy than those of
their discrete counterparts. We further note that the degree of spread is affected by the
sparseness of the passive controller: the larger K and thus the more widely spread the
strategy of the passive controller is, the more wide-spread optimal allocations are as
well. In contrast, relative budgets ratios do not have a major effect on the entropy of

the allocation distribution.

We next evaluate possible improvements obtainable by campaigning with continuous
influence allocations, as measured by the relative improvement in vote shares gained
over optimal discrete allocations, (X" — X%i5¢) / X4is¢ Tn Fig. 3.2b, we see that
relative improvements are generally in the range of 5-10% against passive controllers
with K < 100, while relative improvements drop below 5% against wide—spread
passive controllers with K > 100. Note that, although the improvements can be small,
they may be of significant importance in winner—takes—all scenarios, such as political
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elections or referendums. Extensions to other network topologies of experiments from
Figs 3.1b and 3.2¢ can be seen in Fig. A.11 of Appendix A.8, showing similar results.

To summarise, we have seen that spreading allocations over the whole network brings
a bigger benefit to an optimal controller than when concentrating them on a few
nodes. We also see that spreading allocations widely is optimal regardless of how
many nodes are targeted by the opponent or the budget ratio between controllers.
However, we also note that in optimal configurations some nodes are targeted much
more strongly than others, with a particular focus on fairly few selected nodes

|H| + |A| = 111, which comprise around 10% of the network. We next explore how
these nodes are chosen, i.e. if they can be related to any of the shadowing, shielding,

or hub preference heuristics.

3.5 First-order optimal responses: Shadowing (or avoidance)

Here, we build on a numerical observation of a rule to achieve optimal control in
Brede et al. (2019a) that allocates control toward nodes also influenced by the passive
controller (shadowing) or allocates control avoiding nodes targeted by the passive
controller. Below, we shall show that shadowing is generally effective when the
optimizer has a larger budget than the passive agent, while avoidance is more

effective otherwise.

In this subsection, we aim to develop analytical intuition behind the shadowing
behaviour for general network topologies. Due to the analytical intractability of the
IM problem on complex networks, we use the heterogeneous mean-field (HMF)
approximation to the opinion dynamics presented in Sec. 3.3.2. In this approximation,
we assume that, independent of the details of individual neighbourhoods, every node
is coupled to a mean-field. The vote share obtained by the approximation (Eq. 3.8) is
non-linear in w,;, so finding analytical expressions for optima is challenging.
Therefore, to get analytical solutions, we focus here on the limiting cases of small and
large external allocations with respect to the connectivity of the network. We thus
perform Taylor series expansions in the limits of (w,; + wy;) < d; and

(wai + wy;) > d;, which allow obtaining closed—form solutions for optimal strategies.

We start by analysing the low allocations limit, (w,; + wy;)/d; < 1, departing from the
HMF approximation of the total vote share at the steady-state:

-1
d; diw Wai + Wp;)
XHMF ai ai bi
(251 +wuz+wbz) (Z:d +waz+wbz> <2d + Wai + Wi -
Wi

+ = — . (39
N;di+wai—l—wbi ( )
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The optimisation of X™F —including the budget constraint _; w,; < B, as a
Lagrangian— can be written as

max X = max
Wy Wy

XHMFE ( Zwal)] , (3.10)

where A is the Lagrange multiplier. As computing V,, X = 0 leads to a system of
polynomial equations for which no explicit solution can be computed, we derive a
first-order approximation to X'™¥ in the limit of a; = (wg; + wy;) /d; — 0. For

easiness of calculations, we can rewrite XHMF ag

-1
1 1 Wai Wi + Wy; 1 o Wai
XHMF:— ai ai i +— i ai ,
N(Xizl—FlX{) (;14—0(1') <Zl: 1+ a; Nzl—FDéiwm'—wai

and then apply the Taylor approximation to it:

XHMF XHMF + Z - aXHM ,
D(iZO
B Wai + Wy; B —Byw,i + Bawy; Wi
XHMF a += ai i (_ a +N ai i ai +
B, + By E d; B, + B, (Ba + Bb)2 Wi + Wyi

By restricting the approximation to its first order and solving 90X /ow,; = 0, we arrive
at optimal allocations in the low-allocations limit, w;, a

L 1 B, Bi+ B, (BatBy)?,
i=3\ B 1) wy + = NG, d;A . (3.11)

S

We can find the value of the Lagrange multiplier A by inserting w’; in the budget

constraint B, = ) ; w,;, leading to the final expression for wgi as

B.+B, 1/(B, d;
SRR S Y T | O P N |
2N Bb b Z]w >Od] ’ Z g ( )

jrwg;>0

where the sums over j : w[L,j > 0 are an effect of the positivity constraint w,; > 0. Note
that

Z wbi:Bb — A=0 <= (Bb—Ba)wbiZBb(Ba—i-Bb)/NVi,

12w, >0

implying that the right term in the square brackets evaluates to zero when
(Bb B,) wy; > By (B, + By)/ N. Otherwise, the solution needs to account for the
wl. = 0 that are breaking the positivity constraint. These can be found by iteratively

computing the sums over Vj, finding all values w,; < 0 that break the constraint,

setting them to zero, and readjusting the remaining values.
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From Eq (3.12), we can observe that optimal allocations on the low-allocation limit w’;
depend linearly on the allocations of the opponent wy; and node degree d;, while both
terms multiplied by a common coefficient whose sign depends on the ratio of budgets:
c= (B,/By—1).If B, > By, i.e. if the active controller is in advantage of resources,
the coefficient c is positive and the active controller allocates more influence to the
nodes that are strongly targeted by the opponent, which corresponds to the
shadowing strategy as discussed above. On the contrary, if B, < By, the coefficient c is
negative and the active controller allocates more influence to the nodes that receive
the least allocation by the opponent, corresponding to avoidance behaviour. Note that,

when the positivity constraints are not active (wgi > 0, Vi), there is no dependence of

L
ai

optimal allocations w’. on node degree d;, as the right term within square brackets is
cancelled. In such cases, optimal allocations only depend on the allocations of the
opponent wy; and the budgets B, and Bj,. Since allocations from the opponent cannot
be negative either, the positivity constraints of the active controller may only activate
when B, < Bj. If they become active, optimal allocations also depend linearly on
node degree d; with a negative coefficient c, giving more allocations to nodes with low
degrees. Hence, there is no scenario in which this analytical solution favours

high-degree nodes.

We proceed similarly in the opposite limit of large allocations with respect to node
degree, d; / (w,; + wp;) < 1. We depart from the optimisation problem in (3.10) and
derive a zeroth—order approximation to XHMF in the limit of a; = d;/ (wg; + wp;) — 0.

XHMF can be rewritten as

-1
1 o d; Wai d;

xHMF _ * i i ai i +
N(Zl+ai> <21+aiwai+wbi> (;1+ai>

i i
1 1 Wi
+7 7
N21+aiwai+wbi

i

and the Taylor expansion evaluated as

1 Wi
(HMF _ 5 HMF 4o SHME _ L ai
;=0 N = wy; + wy,

Solving 90X /dw,; = 0 leads now to optimal allocations in the high-allocations regime

H
wl = T’X Wy (3.13)

w,; as
We can again find the value of the Lagrange multiplier A by reintroducing (3.13) into

the constraint B, = }_; w,; and write the final expression for wﬁ as

wil = | B, + wyi | =———— V& Wy , (3.14)
] Z W
jiwt>0 jiwgt>0 v/ Ub]
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where the sums over j : wﬁ}. > 0 are again arising from the need to fulfil the positivity
constraint w,; > 0. Which w,; are breaking the positivity constraint can also be found
by iteratively setting all values that break the constraint to zero and readjusting the
remaining values, as with optimal solutions in the low-allocation limit.

In the high-allocation limit, optimal allocations are dependent on allocations of the
opponent w;, —in a non-linear fashion— and the available budget 5,. This solution

does not show any dependence on node degree d;.

To verify the validity of the assumptions involved in the above approximations in
both low- and high-allocations limits, we compare the resulting analytical optimal
allocations from Egs. (3.12) and (3.14) to those obtained via numerical experiments. To
cover a wide range of values in wy;, we set the passive controller to target nodes with
strengths wy,; randomly drawn from a uniform distribution, and then rescaled to meet
the budget constraint. In Fig. 3.3, we examine the dependence of optimal responses
w,; on allocations of the passive controller wy; for scenarios in which allocations
generally are smaller (left column), similar (middle column), or larger (right column)
than node degree, and the active controller being in budget superiority (top row), or
inferiority (bottom row). In the figure, results corresponding to the HMF

approximation are given as lines, while numerical results are given as clouds of points.

We observe that, when the active controller is in budget superiority (top row), the
agreement between numerical and analytical results is very good, particularly in the
limiting cases (cf. panels a and ¢). When allocations are similar in magnitude to node
degree (Fig. 3.3b), numerical results are bounded by the analytical results for both

limiting cases.

In contrast, when the active controller is in budget inferiority (bottom row), positivity
constraints are active, so the term that depends on d; activates in the low—-allocations
limit. This is particularly visible for low allocations (Fig. 3.3d), where allocations
follow different trajectories depending on their degree. This effect gradually merges to
the dashed curve related to the solution in the high—allocation limit (c.f. Fig. 3.3e),
which matches quite well numerical results when allocations increase in magnitude
(c.f Fig. 3.3).

3.6 Second-order optimal responses: Shielding (or

anti-shielding)

Above, we have studied first-order responses to opposing strategies, which account
for the most part of the distribution of optimal allocations. This is particularly true for
continuous (or well-spread) allocation distributions, where we have seen that

analytical solutions made by Taylor approximations fit very well numerical results.
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FIGURE 3.3: Comparison of analytical and numerical results related to shadowing
for optimal allocations on an email-interaction network. Each panel shows the de-
pendence of optimal allocations w,; on the allocations of a passive controller wy,; re-
solved by classes of nodes of different degrees, indicated by colour. Columns show
cases where the value of external allocations are generally lower (left), equal (middle),
or higher (right) than node degree, as shown on the top of each panel. Rows show
scenarios where the active controller is in budget superiority with B,/B;, = 10 (top
row), or in budget disadvantage with B,/ B}, = 0.1 (bottom row). The passive controller
targets nodes with flexible strength, with weights randomly drawn from a uniform
distribution. Numerical results are given by a cloud of points coloured by node de-
gree and analytical results are given by curves that correspond to Eqgs. (3.12) (solid lines)

or (3.14) (dashed curves). Lines corresponding to w; are also coloured by node degree

whenever the dependence on node degree activates, while showing only one line ev-
ery six degrees (i.e. for degrees d; =1,7,13,...).

However, such intuition is not satisfactory enough for opponents that target very few
nodes in the network in a discrete manner. In such cases, we need to complement
explanations of optimal allocations with second—order responses (i.e. shielding), for
which we distinguish node classes depending on the distance to the targets of the

opponent.

The idea behind shielding is that nodes that are direct neighbours of the nodes
targeted by the opponent should receive higher allocations than other nodes in the
network. The presence of shielding is then indicated by a strong dependence of
allocations to nodes on the distance to nodes targeted by the opponent. To check the
presence of this effect, we analyse here optimal allocations obtained numerically via
gradient ascent and explore variations on the number of nodes targeted by the
opponent (K). Figure 3.4 shows three cases in which the opponent targets a K = 4,
b K = 32, and ¢ K = 256 random nodes in a discrete manner. We can see there that
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FIGURE 3.4: On the y axis, numerical optimal control allocations of the active con-

troller in the form of a letter—value plot (Hofmann et al., 2017). On the x-axis, shortest

distance to a node targeted by the passive controller who targetsa K = 4, b K = 32,

or ¢ K = 256 random nodes in the network in a discrete fashion. Different levels of

a boxplot represent the median, quartiles, octiles, and so on, while containing points
from 15 repeats of the experiment.

shielding is strongly present when the passive opponent targets a few nodes in the
network (c.f. panel a), but its effect decreases with K (c.f. panel ¢, where differences in
allocations barely vary with the distance). This effect can also be seen in other network
topologies, as shown in Appendix A .4.

If we go back to Fig. 3.1 in Sec. 3.4 and the allocation groups G there defined, we may
wonder how shadowing and shielding can contribute to their explanation. We use a
set of disjoint groups related to shielding S = {T}, N, R} with nodes that are targeted
by the passive controller (T}), direct neighbours of nodes targeted by the passive
controller (N;) and remaining nodes (R) and explore the overlap between the
shielding groups in S and the allocation groups in G for the case where the passive
controller targets K = 16 random nodes in the network (Fig. 3.5a). We observe that
nodes that receive very high (H) or zero (Z) allocation are mainly nodes targeted by
the passive controller (T}), the nodes from A that receive above-average allocations
are mainly the neighbours of the nodes targeted by the passive controller (N;), and
nodes receiving below—-average allocations (V) correspond to those in R. This result
demonstrates that differences in allocations given to nodes in the network can be
largely explained by the combination of shadowing and shielding.

In Figs 3.5b and 3.5¢, we extend the analysis beyond allocation groups in G and to
other values of K by exploring average allocations (w,) given to the shielding groups
in S. When in budget equality (Fig. 3.5b), we observe that average allocations given to
nodes in T, and Nj are much larger than those given to nodes in R for K < 50,
although this difference diminishes for higher K. These results show that both
shielding and shadowing have a significant presence for low K. However, it is worth
recalling from Fig. 3.5a that allocations given to nodes in T}, receive either high or zero
allocations, so its distribution is bimodal and not well captured by the mean value.

Extensions to other network topologies of experiments from Fig. 3.5b can be seen in
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FIGURE 3.5: Analysis of shadowing and shielding heuristics on optimal influence allo-
cations in the continuous regime for an email-interaction network. a Overlap between
the allocation groups in G and shielding groups in S for a passive controller targeting
K = 16 nodes in a discrete fashion. b, ¢ Average allocations given to each group in
S with respect to the total average allocation (w,;) for different number of nodes K
targeted by the passive controller and for b equal budgets or ¢ an active controller in
budget disadvantage. Error bars in b, ¢ represent standard errors calculated from 15
repeats of the experiment. In ¢, points for N in the interval K € [5,35] and for T, in
the whole range do not appear due to their value being equal to zero (and the scale
being logarithmic).

Fig. A.12 of Appendix A.8, pointing to analogous results. Fig. 3.5¢ shows the same
scenarios as in Fig. 3.5b but with the active controller being in budget disadvantage.
Here, nodes in T, receive zero allocation, corresponding to the avoidance behaviour
discussed above. Interestingly, in this scenario nodes in Nj, also receive less allocation
(w,) than those in R for K > 5, so avoidance also appears as a second—order strategy
when in budget disadvantage. So direct (first-order) avoidance of the nodes targeted
by the opponent is complemented by a second—order avoidance (anti-shielding)
provided that the budget disadvantage is large enough. The case of budget advantage
is not shown here, as it is very similar to that of budget equality, only with larger

allocations given to nodes in T,

3.7 Hub preferences and dependence on node degree

The third heuristic that we investigate is hub-targeting or, more generally, a
degree—preference heuristic. We have seen that shadowing and shielding can explain
much of optimal influence strategies in the continuous regime. However, we note that
the effects of shielding and node degree are related, as nodes with high degrees are
more likely to be neighbours of nodes targeted by the opponent and hence should also
receive higher allocations due to shielding. Can a degree—preference heuristic explain
optimal allocations more accurately than shielding? Or is the degree—preference just a

heuristic that approximates the effect of shielding in many situations?
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FIGURE 3.6: Correlations between optimal influence allocations and node degree on
an email-interaction network. a Probability of optimal allocations belonging to A
given node degree d; (solid) and probability of nodes belonging to N, given node de-
gree d; (dashed), with a passive controller targeting K = 16 random nodes in a discrete
fashion. b, ¢ Kendall rank correlation coefficients T between allocation strength w,;
and node degree d; for different K when the active controller targets nodes optimally
(triangles) or following a shielding strategy (circles). In a and b the passive controller
targets random nodes in the network. In ¢, the passive controller targets the nodes
whose neighbours have the lowest possible degree. Error bars represent standard er-
rors over a 60 or b 15 instances of the experiments. Correlations in ¢ correspond to a
single instance of the experiment, as the strategy of the passive controller is determin-
istic.

To test the relation between shielding and a degree—preference strategy, we look at
conditional probabilities of nodes to belong to certain groups depending on their
degree d;. The first conditional probability, P(i € A | d;), relates to nodes that receive
above-average optimal allocation and tests whether there is any dependence of
allocations on node degree. The second conditional probability, P(i € N, | d;),
explores the link between shielding and node degree. These probabilities are shown in
Fig. 3.6a for experiments run on the email-interaction network. It can be seen that
both probability profiles are very similar, so it is very likely that one of these two

heuristics is an artefact of the other one and thus can be superseded.

We generalise the relation of influence allocations w,; and node degree d; by
measuring Kendall rank correlation coefficients T (Kendall, 1957) between both
quantities. A strong preference towards nodes with higher degree would then be
indicated by correlations close to T = 1. Fig. 3.6b shows correlations with node degree
by optimal allocations (squares), and by allocations from a strategy purely based on
shielding (circles) —i.e. equally splitting all resources among nodes in N;. We observe
that both the optimal and shielding strategies show considerable correlations with
node degree for K > 30, where correlations are generally above T > 0.5. The lack of
correlations with node degree for low K and the similarity in correlations between
both strategies suggest that a degree—preference heuristic is only effective when
shielding is correlated to node degree. To further illustrate this point, we perform
another set of experiments in which we ensure that shielding and node degree are not

positively correlated. We achieve this by having the passive controller only targeting
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nodes whose neighbours have the smallest possible degree in the network, thus
effectively displacing the targets of shielding to nodes with low degrees. Indeed, as
shown in Fig. 3.6¢, the correlations of optimal allocations with node degree vanish in
these scenarios, with values below |t| < 0.25, while correlations of the shielding
strategy remain negative with values down to T =~ —0.5. Extensions to other network
topologies of experiments from Fig. 3.6b can be seen in Fig. A.12 in Appendix A.8,
showing similar results. Also, a plot directly comparing node degrees d; and optimal

allocations w,; can be found in Appendix A.6.

In conclusion, a preference towards hubs is appreciable in optimal allocations in the
continuous regime, as high-degree nodes have higher probabilities of receiving higher
allocations than other nodes. However, we argue that these correlations with node
degree are a side effect of the shielding heuristic since nodes with a high degree also
have higher chances of being neighbours of nodes targeted by the opponent. When
we investigate scenarios with low K or with the passive controller targeting peripheral
nodes, we observe the correlations of optimal allocations with node degree vanish,
while being similar to that obtained by a shielding strategy. Therefore, we conclude
that the correlations with node degree seen here are an artefact of the shielding
strategy; optimal allocations can be explained well by the shielding heuristics without
the need for additional assumptions about degree preference. This point is further

developed in the next section.

3.8 Comparison of heuristics and optimal strategies in the

continuous and discrete regimes

In the previous sections, we have obtained optimal allocation strategies via numerical
methods and have analysed the structure of these solutions, while comparing them
with some reference strategies. From these analyses, we have evaluated the
importance of the three proposed explanatory factors (degree preference, shadowing,
and shielding) in the continuous IM by studying their presence in optimal allocations.
In this section, we extend the study to the discrete regime and compare how the three
proposed heuristics perform when the active controller is constrained to discrete
allocations. While targeting hub nodes or nodes with high centrality are common
heuristics that have been shown to perform well in the discrete allocation regime
(Dezs6 and Barabasi, 2002; Chen et al., 2009; Budak et al., 2011; Even-Dar and Shapira,
2011; Masuda, 2015; Arendt and Blaha, 2015; Erkol et al., 2019; Montes et al., 2020)2, we
have shown in Sect. 3.7 that the preference towards hub nodes may be a side effect of a

2 Again, while taking into account the full topology has been shown to perform better than hub heuris-
tics also in the discrete regime (Kempe et al., 2003; Yadav et al., 2017; Lynn and Lee, 2018), previous studies
mainly provide algorithmic approximations to optimal solutions without examining details of the topol-
ogy of resultant optimal influence allocations.
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shielding behaviour. By applying the framework with the three proposed heuristic to
the discrete regime, we aim to explore whether the reported preference towards hub
nodes may also be linked to a shielding behaviour. An extension to the study of the
role of these three heuristics in the discrete regime can be found in Appendix A.7.

In this subsection, we employ an inverse approach for studying the structure of
allocations: we build a set of heuristics based on the three factors and measure the gap
in vote share AX relative to optimal results. The smaller the gap AX of a heuristic to
the numerically determined optimum, the stronger its contribution to optimal
allocations. We employ the following heuristics, whose implementation can be found
in Sect. 3.3, four heuristics related to the discrete regime: Random (targets random
nodes), Degree-based (discrete) (targets nodes with highest or lowest degree), Shadowing
(discrete) (targets the same nodes as the opponent), and Shielding (discrete) (targets
nodes in Nj), and four related to the continuous regime: Uniform (targets all nodes
with equal strength), Degree—based (continuous) (allocation strengths are linearly
proportional to node degree), Shadowing (continuous) (different allocation strengths
given to nodes in T}, and than the remaining nodes), and Shadowing plus shielding
(continuous) (different allocation strenght given to each group in S = {T}, Ny, R}).
Note that, while the proposed discrete heuristics are not necessarily aligned, the
continuous ones are nested (Table 3.1). Therefore, while discrete heuristics can be
directly compared through their performance gaps, continuous strategies need to be
assessed by the marginal performance gap obtained as compared to heuristics in the
lower levels. Also, note that the proposed heuristics require different amounts of
information for their implementation. Some require the details of the network
structure and/or knowledge about the opponent’s strategy. Others have free
parameters and their implementation requires an exploration of the parameter space,
with computations of expected vote shares for evaluating each value of the
parameters. Table 3.1 summarises what information is required for each of the
heuristics along with the nested structure.

Fig. 3.7 illustrates results of the gap in vote share AX for experiments in three budget
scenarios (advantage, equality, and disadvantage) and against a discrete passive
controller who targets K = 16 random nodes in the network. Note that we make a
clear separation between the discrete (purple) and continuous (orange) regimes and
that their vote shares are compared to the discrete or continuous optimal strategies,

respectively.

From Fig. 3.7, we make the following observations about the three budget scenarios.
First, when in budget advantage (panel a), we see that shadowing performs the best
among discrete heuristics (with AX = 1.58 - 10~2) closely followed by the
degree-based heuristic (AX = 2.41 - 1072). Among continuous heuristics, the uniform
(AX = 2.14 - 10~2) and degree-based (AX = 2.09 - 10~2) heuristics perform clearly
worse than shadowing (AX = 2.55 - 1073) and shadowing plus shielding
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FIGURE 3.7: Comparison of various heuristics to optimal allocations on an email—-
interaction network and when the opponent targets K = 16 random nodes in the
network in a discrete fashion. Bars represent the gap in vote share AX of the heuristic
with respect to optimal numerical allocations for three different budget scenarios (as
indicated on the top of the panels). Labels on top of bars refer to the following heuris-
tics: random (rand), degree-based (deg), shadowing (shadw), shielding (shield), uniform
(unif), and shadowing plus shielding (shadw shield). Error bars represent standard er-
rors for 15 instances of the experiments.

Vote share gap to optimal, AX

(AX = 1.89 - 103). We can conclude that, when in budget advantage, shadowing is an
important driver in both the discrete and continuous regimes. Second, for budget
equality (panel b), the degree-based heuristic (AX = 8.99 - 10~%) performs the closest
to the optimal discrete strategy. Among the continuous heuristics, shadowing plus
shielding is again most effective (AX = 2.97 - 102), with the other three heuristics
within the range AX € [5.5-1073,7.0 - 10~3]. We see that, when in budget equality,
node degree is a very important factor in the discrete regime while shadowing plus
shielding is most effective in the continuous regime. Last, when in budget
disadvantage (panel c), the discrete degree-based heuristic (AX = 2.12 - 10~%) again
proves remarkably superior to the other heuristics, which do not perform better than
random allocations. Among the continuous heuristics, shadowing plus shielding
(AX = 7.28 - 10~ %) is again performing best, with the other three performing in the
range AX € [2.33-1073,4.44 - 1073]. In the budget disadvantage scenario, the
degree-based heuristic is again a very important factor in the discrete regime, while
shadowing plus shielding is predominant in the continuous regime. An alternative
assessment of the heuristics based on computational efforts is shown in

Appendix A.10.

In summary, in the discrete regime, node degree is consistently found to be the main
driver for optimal allocations —only slightly surpassed by shadowing when in budget
advantage. In contrast, in the continuous regime, shadowing and shielding have a
considerably stronger effect than node degree across all scenarios. This effect is
particularly pronounced when the active controller is in budget advantage —where
shadowing is very effective or in budget disadvantage —where shielding is dominant.
Reproductions of experiments from Fig. 3.7 in other network topologies can be found
in Figs. A.14 and A.15 from Appendix A.8, showing qualitatively similar results.
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3.9 Optimal strategies when both controllers are active

Up to this point, we have considered a passive opponent who holds a fixed strategy
that is known by the active controller. In this section, we investigate the case where
both controllers actively optimise their strategy. We assume that they simultaneously
choose their strategy without having any information about the opponent’s. However,
since optimal strategies strongly depend on the opponent, we are interested here in
finding a pair of strategies that provide no regret to either controller —i.e. the
pure—strategy Nash equilibrium (Osborne, 1994)— so neither of them is willing to

deviate from it.

We can explore first the Nash equilibrium from the analytical first-order solutions
obtained in Sec. 3.5. Based on Egs. (3.12) and (3.14), and exploiting the symmetry in
exchanging the A and B controllers (as they are both active now), we can find
mutually optimal responses as w,; = B,/ N, wy; = B,/ N —i.e. uniform targeting.
However, it is worth noting that this equilibrium point is not necessarily stable®. In
fact, it can be proven that in the low-budget limit, uniform allocation is an unstable

equilibrium point if the ratio between budgets exceeds 3 + 2v/2.

Alternatively, the Nash equilibrium can be assessed from analytical first-order
approximations by looking at the expression of the total vote shares X in the limiting
cases of low and high allocation strength with respect to node degree (X and X,
respectively). Given a passive controller, we can consider how exploitable such
controller is depending on its influence allocation profile w. For the low—-allocation
limit, this would be

B, 1 (@i — (W)’
L bi bi
X =g g tmr 4 (3.15)

where (wy;) = Bj,/N. We note that the vote share X" obtainable for the active
controller is the higher the more the allocations of the passive controller w;; deviate
from the mean (wy,;). In other words, the passive controller is the more exploitable by
an optimal controller the more her passive strategy deviates from uniform targeting,
and this relation is quadratic. Furthermore, the impact of this deviation is the stronger
the lower the degree d; of the node mis-targeted; thus, contrary to common intuition,
controllers are the more exploitable the less carefully they allocate resources to
low—degree nodes. We numerically confirm this result via a set of experiments on the
email-interaction network and a passive opponent who targets all with strength
(wpi) = Bp/ N except for 40 of them, 20 receiving zero allocations and 20 receiving
double allocations (2(wy;)). These 40 perturbations are only applied to nodes of a

3Stability in this context can be understood from how controllers would repeatedly react after a pertur-
bation from the Nash equilibrium point. If the iterations of reactions after the perturbation asymptotically
drives strategies back to the Nash equilibrium point, it can be said that it is stable.
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specific degree d,. Fig. 3.8 shows the deviations in vote share AX (with respect to the
Nash equilibrium point) when such perturbations are applied to different degrees d,
in the network. Analytical and numerical results match well, with deviations in vote
share AX decreasing with the node degree of the perturbations as AX o« d,, Las
predicted in Eq. (3.15).

10-3 - —— analytical
] y numerical

AX

1074 T T
10° 10!
Degree of perturbated nodes, d,

FIGURE 3.8: Increase in vote share AX for an optimal controller when the passive

opponent deviates from uniform allocation on 40 nodes with degree d,,. Error bars

represent standard errors over 15 instances of the experiment and are smaller than the
symbols.

Conversely, the expression of the vote share X! in the high-allocation limit is

2
B 1 /
XH =1 B,ZTIJBb (N Zl: wbi/<wbi>> . (316)

Again, we find that the vote share X! increases with deviations of the passive
opponent from uniform allocations wy; = (wy,). In this limit, we find no effect of node
degree d;, i.e. controllers are equally exploitable independent of on which nodes they

misallocate resources.

Lastly, uniform targeting at the Nash equilibrium can also be interpreted from the
perspective of the shielding heuristic. A shielding strategy gains more advantage the
more an opponent concentrates their influence on a few nodes, as shown in Fig. 3.5.
Consequently, spreading allocations smoothly across all nodes in the network

prevents controllers from being exploited by the opponent via shielding.

3.10 Discussion

In this chapter, we have studied influence maximisation on the voter model from the
perspective of external controllers that influence nodes in the network via building
links to them. In contrast to most previous literature, which assumes discrete settings

of control, we have presented continuous control allocations. To address this problem,
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we have developed a numerical optimisation approach based on gradient ascent,

which can achieve solutions with arbitrary accuracy and in polynomial time.

Additionally, we have explored the structure of optimal allocations in influence
maximisation for the voter dynamics. Our focus has been on scenarios with two
opposing controllers, one passive and one actively optimising, for which we have
defined the continuous influence maximisation problem. As an initial result, we have
seen that the continuous regime adds some improvement in the objective function
over the discrete regime, which can be linked to the benefits of spreading control
allocations across the whole network. Regarding the structure of optimal allocations,
we have pointed to three important heuristics that can be used for its characterisation:
shadowing, shielding, and degree dependence. Despite the three heuristics playing a
role in explaining optimal allocations in both the continuous and discrete regimes,
their relative contributions vary. While optimal allocations in the discrete regime are
mainly driven by node degree, the shielding and shadowing heuristics are
predominant explanatory factors in the continuous regime. In the game-theoretical
scenario where both controllers simultaneously optimise their influence allocations,
the pure-strategy Nash equilibrium in the continuous regime is assumed when both
controllers uniformly target all nodes in the network —regardless of details of the
network topology.

Our results mainly apply to the scenario in which a controller reacts against a passive
opponent. However, note that this framework can be mapped to the scenario in which
a single controller attempts to influence a population that manifests some resistance to
the external influence, as shown in Brede et al. (2018). In particular, such resistance to
external control is equivalent to a passive opponent who targets nodes with a strength
proportional to the degree of the node, so a degree—dependent strategy becomes much

more predominant when only one external controller is featured.

This chapter contributes to the general understanding of controlling dynamical
processes on networks (Liu and Barabasi, 2016) in three ways. First, it provides three
explanatory factors as tools that can be employed to characterise any solution to a
control problem: degree dependence, shadowing, and shielding. Second, it shows
that, in the particular case of the voter model with external controllers, the
degree—dependence factor is the main driver of controlling solutions in the discrete
regime, while the shadowing plus shielding combination is the main explanatory
factor behind solutions in the continuous regime. Note that our mathematical
framework for the voter model is fully mappable to the DeGroot dynamics with
zealots or to some instances of the Friedkin—Johnsen, so all results here shown are
directly translated to those models. For other opinion models, these results can be
used for guidelines as to what to expect. Lastly, the proposed factors can be employed
as heuristics in cases where optimal solutions cannot be easily obtained numerically,
or alternatively as benchmarks for testing approximately optimal solutions.
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Some of our results relate to other findings from previous literature. Most works refer
to a preference towards hubs when linking optimal solutions to a degree dependence.
However, we have shown that correlations with node degree can also be negative (i.e.
targeting peripheral nodes), particularly when the controller is in budget
disadvantage). Brede et al. (2019a, 2018, 2019b) also show that the preference towards
hub nodes shifts to a preference towards periphery nodes in the discrete regime,
although under other conditions; namely when optimising for short time horizons
(Brede et al., 2019a) or in the presence of noise in the opinion dynamics (Brede et al.,
2018, 2019b). They also suggest that, for short time horizons, the optimal strategy is
also opponent-dependent, shadowing nodes with initially opposing opinions if they
are few and avoiding them when they are many (Brede et al., 2019a). Our results have
pointed to a lack of degree dependence in the continuous case. This independence is
not fully reflected in the studies on the continuous IM on the Ising model with noise
by Lynn and Lee (2017, 2018). Unlike in our results, they find that optimal targets are
strongly related to node degree in the continuous regime, as periphery nodes should
be targeted when levels of noise are low and hub nodes for intermediate levels.
However, when noise levels are high, a uniform allocation of influence is the best
strategy against an also uniform opponent, and hence there is no correlation with
node degree (Lynn and Lee, 2017). In light of these results, studying the inclusion of
noise would be a natural extension to this work, as it could also generate a degree
dependence in the continuous IM for the voter dynamics. A related rationale is
discussed by Yildiz et al. (2013) in their solutions to Influence Maximisation with
discrete allocations. They show that optimal solutions obtained have a ‘bottleneck
property” in that they are placed to shield the opponent’s influence to the rest of the
network. However, their optimal allocations are also placed as far as possible from the
opponent’s, while shielding favours the direct neighbours of the opponent’s targets.

There are many other ways in which this work can be extended. For instance, we use
in our experiments a heterogeneous network that is generally well mixed —without
strong communities— and has very little degree assortativity —i.e. correlations in
node degree across edges. It would be of interest to study the impact of these
topological modifications on shadowing and shielding. A further limitation of our
work is that we have only considered strategies that do not vary over time and
optimisation is set for the long—term steady state. However, campaigners in more
realistic settings might care to achieve their goals in a limited time, and could
probably also vary their strategy at different stages of the dynamics. For an extension
to influence maximisation with dynamic allocations, see e.g. Cai et al. (2021); Brede
et al. (2019a). Furthermore, the structure of the influence network may be uncertain or
dynamic or the opponent may also adapt their strategy. This added complexity
requires a different approach towards influence maximisation, able to cope with

uncertainties by adapting the controller’s strategy. Reinforcement learning techniques
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may be appropriate for these contexts (Tran-Thanh et al., 2021; Mandel and Venel,
2020; Ali et al., 2020).

Additionally, the gradient ascent algorithm can be further improved for a better
performance and scalability. The exact computation of the expected steady—state on
the voter model requires the inversion of a matrix whose size is equal to the number of
nodes in the system, which scales as O(N 3), and must be done at every step of the
gradient ascent algorithm. A possible improvement involves performing this
computation numerically via Jacobi iterations, as the matrices to be inverted are
diagonally dominant (Masuda, 2015), which would speed up the algorithm in very
large networks. A different means to reduce the time complexity of the algorithm is
computing gradients based on the heterogeneous mean—field approximation instead
of the exact formulation. This modification would eliminate the matrix inversion
altogether and drastically reduce computation time at the expense of accuracy,
particularly for networks where this approximation is shown to perform worse (i.e.
sparse, heterogeneous networks). For this case, it would also be advisable to further
test the accuracy of the approximation for other conditions, such as networks with
high degree assortativity or strong community structure. Alternatively, results from
the mean—field approximation could be used as seeds for the Jacobi iterations, which
would significantly reduce the number of iterations while being robust to small
deviations of the mean-field approximation. The step size of the gradient ascent
algorithm could also be chosen in a more principled manner. More theoretical backing
can be given for choosing a step size that guarantees convergence of the algorithm, or
automatic methods other than backtracking for dynamically adapting the step sizes
could be developed. Additionally, the algorithm could be improved by employing the
Hessian of the optimisation function for performing steps instead of the gradient
(Goodfellow et al., 2016).

In conclusion, we have highlighted the impact that having a continuous or discrete
regime may have on both the quality and structure of optimal solutions to network
control. We have provided a methodology to arrive at solutions to the problem plus
three factors that can be used to characterise solutions to control diffusion problems
where opposing external controls influence the network: shadowing, shielding, and
degree dependence. The application of this framework to other contexts may facilitate

comparisons across different modelling decisions and problems.
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Chapter 4

Bias and Influence Maximization:
When to Target Biased Agents?

This chapter is mostly based on a paper published in the conference
proceedings of the conference CompleNet2020 (Romero Moreno et al.,
2020a). All the writing from this chapter (and the original paper) is mine.

4.1 Introduction

The previous chapter investigates the structure of optimal influence on homogeneous
populations that are connected through complex networks. However, as pointed out
by Aral and Dhillon (2018), past approaches to Influence Maximisation often overlook
aspects of heterogeneity in agent behaviour. Specifically, in the context of the
Independent Cascade model, it has been shown that results of IM are strongly affected
by agents’ susceptibility to adopt opinions (Aral and Dhillon, 2018).

In the context of the Voter Model, previous work has already considered a
heterogeneous presence of biases in the adoption of opinions. Biased agents can be
referred to as zealots, although this may cause some confusion with the more-common
interpretation that ‘zealots’ refer to inflexible agents that never change their opinion
(Mobilia, 2003; Mobilia et al., 2007). A more nuanced approach could consider agents
that tend to adopt some of the opinions more easily than others, which typically
accounts for personal biases or external influences not captured in a typical model.
For a clear distinction, this type of agents can be called biased agents or partial zealots
(Masuda et al., 2010).

While Aral and Dhillon (2018) demonstrate that the amount of bias influences optimal
allocations in the IM, they have not explored detailed mechanisms for such

differences. Here, we extend the analysis of optimal allocations of influence to a more



66 Chapter 4. Bias and Influence Maximization

complex and realistic scenario where agents may hold different levels of bias towards
one of the opinions. An optimal campaign manager with limited resources would
never target perfect zealots whose opinions cannot be influenced. However, under
what conditions would she target biased agents and how does this relate to these

agents’ topological position in the social network?

Below, we shall explore these questions for different network topologies. As biased
agents represent partly radicalised agents, answers to the above questions might shed
light on how to reduce radicalisation in social systems (Vendeville et al., 2022). Our
analysis, based on both analytical and numerical results, shows a rich diagram of
preferences and dependencies of allocations to biased and unbiased agents, on degree,
which depend on and vary with the controller’s budget. Our results emphasize that
heterogeneity in agent properties strongly affects strategies for IM on heterogeneous
networks.

The chapter is organised as follows. Section 4.2 includes the presence of bias in the
formulation of the continuous IM problem. Section 4.3 introduces the experimental
settings and the methodologies employed. Sections 4.4, 4.5, and 4.6 present analytical
and numerical solutions to the problem with a single external controller on simple
graph topologies, and later extends the analysis to heterogeneous Barabasi—Albert
networks. Section 4.7 expands the analysis to the case of two external controllers and
bias against either opinion. Last, section 4.8 discusses and summarises our main

conclusions.

4.2 Model

Departing from the basic problem formulation of IM on the VM (Sect. 3.2), we
introduce the following modifications. Bias against opinion A is modelled by an
intrinsic level of bias b 4; that gives the probability for agent i of not copying opinion A
when this should happen according to the rules of the Voter Model (Masuda et al.,
2010). Analogously, an intrinsic level of bias bp; gives the probability that agent i does
not copy opinion B. We assume here that agents can only be biased against one of the
opinions; agents biased against both opinions simultaneously would reflect a level of
stubbornness (Nishi and Masuda, 2013; Martins and Galam, 2013; Pérez-Llanos et al.,
2020), a mechanism slightly different to that of bias, which will be the focus of the
chapter.

For this scenario with biased agents, the rate equations (3.1) for the probability x; of
node i to hold opinion A are re-defined as
dxi

i (1—=0ba;) (1—x)
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dj + Wgi

X wij(1—x;j) + wy

— (1= bgi)x; i,

, (41
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where W = (w;;) is the weighted adjacency matrix and d; = }; wj; is the degree of
node i. Note that the left term on the right-hand side of the equation accounts for the
probability of a node holding opinion B and copying the opinion of a neighbour with
A (which is reduced by the level of bias b4;), while the right term reflects the
probability of a node holding opinion A and copying the opinion of a neighbour with
B (which is reduced by the level of bias bg;).

We again focus on IM in the expected equilibrium state, which is unique and
asymptotically reached irrespective of initial conditions (Yildiz et al., 2013). The
probabilities x; of adopting opinion A in the steady-state can be determined from
dx;/dt =0, leading to the system of N second—order equations

0= (1—bai) ) wix} + (bai — bg;) x} ) wijx; —
i j
— X? [(1 — bBi)(di + wb) —+ (1 — bAi) wm-] + (1 — bAi) Wei . (4.2)

Since this system of equations is hard to solve numerically, vote shares in the
steady—state can alternatively be found by numerical integration of Eq. (4.1).

As we lack an explicit expression for the total vote share X =} ; x7 /N in the
steady-state for general networks, we resort to numerical methods for the
optimisation process. Similarly to the basic formulation of the continuous IM,
gradients can also be computed after the inclusion of biases, so the gradient-ascent
technique from Sec. 3.3.1 is also applicable here. The gradient V,, X can be computed
by first applying partial derivatives to Eq. (4.2),

ox*

0:(1_bAi) ZwijW]]{"’—(bAi_bBl ( Zwl]x +x qua )

ox;
awak

(1= bg;)(di — wpi) + (1 — bai) wai] +0ix(1 —bai)(1—x7), (4.3)

where §;  is the Kronecker delta, with value 1 when i = k and zero otherwise. Eq. (4.3)

is a system of linear equations whose solution gives us the final gradient as

L (1= B,) diag(1—x1)

_1 #\Tq4 _
VwaX—N(Vwax) l_N

(B4 — Bg) d1ag< Zwlj ]>
—1
+(I—BB)(D+Wb)—|—(I—BA)(WQ—W)] 1, (44)

where L is the Laplacian of the network, B4, Bp, and W, are diagonal matrices with
values B ;i) = bai, Bp(iiy = bpi, and W;; = wy;, respectively, bold symbols are vertical
vectors, and the values of x;" are computed via numerical integration, as explained
above.
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4.3 Methods and experimental settings

For the sake of simplicity, we will first consider in Secs. 4.4, 4.5 and 4.6 that there only
is a single external controller (the one favouring opinion A, without loss of generality)
and that agents in the population hold a bias against the controller’s opinion; i.e. we
are interested in optimal strategies for the controller to overcome the population bias.
In Sec. 4.7, we will look at the general case having two external influences — an active
controller and a passive opponent — and agents that can be biased against either
opinion. We consider the population of biased agents against an opinion to be a
minority and hence we set their numbers to 20% of the total population.

To gain progressive understanding about the role of bias in influence maximisation in
the VM, we examine experiments on networks with increasing complexity. First, in
Sec. 4.4, we explore optimal allocations on the complete graph, i.e. without having a
topology at all. This basic experiment will allow us to analytically obtain closed—form
solutions to understand the effect of budget availability and the level of bias on
optimal strategies in the thermodynamic limit of infinitely large networks (N — o).
These analytical results are contrasted with numerical experiments in finite networks
obtained via the gradient ascent algorithm presented in Chapter 3.

Next, in Sec. 4.5, we perform experiments on a bipartite graph. This graph topology
allows to directly study the role of node degree on optimal allocations while removing
the effect of higher—order relations — i.e. neighbours of neighbours. While
closed—form solutions of optimal allocations cannot be obtained for this graph
topology, numerical solutions for infinitely large networks can still be obtained easily
via a numerical solver for polynomial equations. These results are also contrasted with

numerical experiments on finite networks obtained via the gradient ascent algorithm.

In Sec. 4.6, we further increase the complexity of the network topology by performing
experiments on networks with much more heterogeneous degree distributions —i.e.
synthetic Barabasi-Albert networks — whose network structure resembles more the
ones found in real social systems. As the complexity of this scenario is much bigger,
we can only obtain numerical results via the gradient ascent algorithm for this

network topology.

Last, in Sec. 4.7, we study a more general scenario that includes a passive opponent
and three types of agents: unbiased agents, agents biased against A, and agents biased
against B. As the space of parameters greatly increases, we only study the simplest
network topology — the complete graph — and analyse numerical results via

gradient ascent for this scenario.

In all these experiments, numerical integration to find the steady-state was performed
down to a precision in X of 107>, with an exponentially increasing time step, At = 1.5
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The gradient ascent was performed for a maximum of 10 iterations and an initial
learning rate y = 500. Complete and bipartite graphs are of size N = 100, as their
homogeneity limits the effect of the system size. Barabasi—Albert networks are of size
N = 1000 for general explorations of the parameters and of size N = 5000 for
analysing the dependency of allocations on node degree. Barabasi—Albert networks
were generated following preferential attachment rules, with every new node linking
to two existing ones — resulting in an average degree of (d) ~ 4. All the code used for
performing these experiments and producing the figures is available at

https://git.soton.ac.uk/grmlgl7/zealots.

4.4 Complete graph: the roles of the allocation budget and the
level of bias on optimal allocations

We start our analysis with an infinitely large complete graph where a fraction p 4 of
nodes are biased agents with equal bias b4 against opinion A, and the rest of the
nodes are normal (unbiased) agents with b4; = bp; = 0. We assume that there is a
single external controller that allocates the same link weight to agents of the same
type, where w, 4 and w,, are the weights of link allocations given to biased or normal
agents, respectively, and @,4 and @,, express these link weights as fractions with
respect to the incoming links from other peers in the network; i.e. W,4 = w,4/N and
Wan = Wan/ N. Analogously, since the network has infinite size instead of working
with an (infinite) absolute budget B,, we refer to budget densities, B, = B,/ N2, that
represent allotted per-node allocations with respect to the system size if the budget was
evenly spread across all nodes. Note that, since in the complete graph every node is
connected to every other node in the network, B, = 1 implies a budget power that
allows the controller to target all nodes in the network so that agents select the

external controller 50% of the time when following the voting dynamics.

For this scenario, general rate equations from Eq. (4.1) transform into

dxp paxa+(1—pa)xy+Wea 1—paxa—(1—pa)x,
TA —(1-ba)(1- .
dxn:(l_x)prA+(1—pA)xn+zbun_x 1—paxa—(1—pa)x,

dt ! 1+ Wan 4 14 Wan :

(4.5)

The unique decision parameter for the distribution of budget among both types of
agents can be defined by the fraction a4 € [0, 1] of budget allocated to biased agents,
such that . . .
By =0aBy+ (1 —aa)By = pa@oa + (1= 0a)@an,
Wop =0pBa/pa,
Wan = (1 —aa)Ba/ (1= pa) -
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The whole influence budget is then focused on normal agents when a 4 = 0, on biased
agents when a4 = 1, and link weights are equal for both types of agents when

XpA = PA-

The total vote share in the equilibrium for this scenario can be easily derived from
Eq. (4.5) as

_ Ba DCA(l — bA)
bapa

(1—aa) +(1—pa)pa(l —apba)
(1—aa)+(1—pa)pa

" " B
X=paxy+(1—pa)x, > ’
B,

(4.6)
with a boundary at X = 1. From Eq. (4.6), we can see that the vote share generally
increases with budget availability 53, and decreases with the fraction of biased

agents p and their bias b4. Optimal allocations a% can be found by solving

0X/das = 0, arriving at

. _pA(l—pA)< 1 _)
W =1 B = 1), (4.7)

which is bounded at a% = 0. This result shows that, for a given p 4, optimal allocations

target biased agents the more the bigger the budget B, and the smaller their bias b4.
We can also find the switching point of bias b’ at which normal agents start to be

favoured over biased agents (i.e. when a’, = pa),

1 2
b =1-(5-7) - @9)

which increases with the budget 53, and decreases with the density of biased agents
pa-. So a controller with high budget can afford to target biased agents with a higher
bias, and especially when there are fewer of these in the population.

We compare the analytical solutions developed above with numerical results obtained
via gradient ascent as introduced in Sec. 4.2. For this purpose, we analyse how
optimal allocations to biased agents a’ vary with the level of bias b4 and budget
density B, (Fig. 4.1a) and observe the resulting equilibrium vote shares X (Fig. 4.1b).
We note that for low bias b, or high budget density 3,, the controller achieves full
control X = 1 by both analytical and numerical methods (c.f Fig. 4.1b). We do not
show optimal allocations from the gradient ascent algorithm when X = 1 for the sake
of clarity, as in those cases a range of possible allocations already reach the maximum
vote share X = 1 and numerical results —sensitive to the initialisation of the
algorithm— can be noisy. Conversely, analytical optimisations do not take into
account the boundary at X = 1 and provide the most robust strategy. For higher
values of b4 or lower budget density B, (where full control is not possible and X < 1),
allocation strategies from both methods are found to be in perfect agreement, as well

as the equilibrium vote shares X achieved by them.
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FIGURE 4.1: a Optimal fraction of budget given to biased agents a’; and b their result-
ing vote shares in the equilibrium X on a complete network with a fraction of biased
agents equal to p4 = 0.2 and for varying levels of bias b4 and varying budget den-
sity B, = B,/N?. Dashed lines give results obtained via analytical methods (on an
infinite graph) while symbols give results obtained via numerical methods (on graphs
of size N = 100). Optimal influence allocations from numerical methods are omitted
when X = 1 for improved clarity of the graph. The orange, horizontal line is placed at
Wan/Ba = a’ /pa = 1, and represents equal influence weights given to both types of

agents.

In general, optimal strategies favour allocations to biased agents over normal agents

for low values of b, and high values of 3,. This behaviour gradually decreases with

b, switching to favouring normal agents at some critical bias level b’ (in Fig. 4.1a,

crossing the horizontal orange line) and fully avoiding biased agents (a7 = 0) at

another critical bias level b%". Both critical points depend on the budget density 3,.

Equilibrium vote shares reach full control (X = 1) for low values of b4, experience a

steep drop just after leaving the full control regime, and gradually decelerate in their

decrease as b4 increases.

4.5 Bipartite graph: the role of node degree on optimal

allocations

Next, as a way to explore the interplay of node degree and bias, we consider complete

bipartite graphs, i.e. graphs with nodes divided into two groups where nodes from a

group are connected to all nodes in the other group with no intra-group links. We

assume that graphs are infinitely large and that nodes in the smaller group (which we

will refer to as hubs) comprise a fraction p, = 0.2 of the total network and have a bias

ban = b, while nodes from the larger group (periphery) have a complementary bias

bap =1 —b. Analogous to the groups defined above for the complete graph, here we

assume that the external controller allocates the same link weight to agents of the

same type, with w,, and w,;, referring to the link weights connecting each hub or
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periphery node, respectively, to the controller, and @,;, and @, give these weights as
fractions with respect to the number of nodes in the network —i.e. @,, = w,;,/N and
Wap = wap/ N. Rate equations for this case correspond to

d 1— + 1 1—
(1) (1 -y L B (P

dt 1+ Wy 1+ Wy 19)
&:b(l_x>phXh+ﬁ)up_ On Xn '
dt P21+ gy P1+ Wy

We use now the controller’s decision parameter as the fraction o), € [0,1] of budget
given to hub nodes,

Wap = “hBa/Ph/ wap = (1 - Déh)Ba/(l — Ph) ,
leading to a vote share in the equilibrium equal to

(1= b)a,Ba(1 — ap) + pn(1 — pp) (wab + 1)
Ba(1 = an) + pu(1 — pn)

By (1—b)[anBa(1—ay) + pp(1 - pp)]

X =
b pn (1—pn)?

+

4

(4.10)

with again a boundary at X = 1. Optimal allocations &}, can again be found by solving
0X/day, = 0, which results in a fourth-order polynomial equation that we evaluate

numerically.

Figure 4.2 analyses optimal allocations given to hubs on a bipartite network for the
levels of bias defined above, obtained both by analytical and numerical methods.
Figure 4.2a gives the fraction a; of budget allocated to hub nodes for different levels of
bias b and budget density 3,. We note that, for a large budget density (corresponding
to diamonds in the figure), there is a consistent preference in allocations towards hub
nodes (i.e. a; > p; = 0.2) regardless of which group holds a higher bias —except in
the limit of hubs being almost perfect zealots (b4, ~ 1). On the contrary, when the
budget density is low (crosses), optimal allocations quickly switch from fully targeting
hubs («; = 1) to fully targeting periphery nodes («; = 0), even when the bias of
periphery nodes is larger than that of hubs —e.g. when by, = 0.4 and by, = 0.6.
Figure 4.2b gives the resulting equilibrium vote shares X for optimal allocations of
Fig. 4.2a. We note that, for low budgets (crosses), the vote shares obtained in optimal
allocations are the higher the more the bias is concentrated on hubs. In contrast, for
high budgets (diamonds), moderate bias in both groups (ba, ~ ba, ~ 0.5) leads to the
highest vote shares from optimal allocations.

To summarize our findings on simple network topologies, we see that influence
allocations to biased agents are preferred when their bias is low or the available
budget is high, while allocations to normal agents are preferred otherwise. When
nodes of different degrees are present, allocations to hubs are preferred over periphery
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FIGURE 4.2: a Optimal fraction aj, of budget given to hub nodes and b resulting equi-
librium vote shares X on bipartite graphs and for different levels of bias b and bud-
get density B,. Dashed lines give results obtained via analytical methods on infinite
networks, while symbols give results obtained via numerical methods on graphs with
size N = 100. Optimal influence allocations from numerical methods are omitted
when X = 1 for improved clarity of the graph. Hub nodes, with bias b,4;, compose
pn = 0.2 of the network, while periphery nodes compose the remaining 0.8 and have
bias bAp =1- bAh'

nodes when the budget availability is high, even when the bias of hubs is higher than
that of periphery nodes. In contrast, for low budgets, higher influence allocations to
periphery nodes can be preferable even in cases when their bias is higher than that of
hubs. So there is an interplay between bias —with a preference for biased agents
proportional to budget availability— and degree —with a preference for hub nodes

proportional to budget availability.

4.6 Barabasi—Albert networks: the role of degree

heterogeneity

Next, we analyse results on Barabasi—Albert (BA) networks (Barabasi and Albert,
1999) to further explore how the interplay of bias and node degree affects optimal
targeting on heterogeneous networks with structures more akin to real social systems.
The average degree in these networks is (d) ~ 4, resulting in a much more sparse
social system than with complete and bipartite graphs. Furthermore, most nodes have
d; < 4 while a few nodes may be connected to a large proportion of the population. As
above, we induce a uniform bias b4 to a random fraction p4 of the population while

keeping the remaining nodes as normal (unbiased) agents.

We first explore general behaviours by looking at average optimal allocations given to
biased agents and the resulting equilibrium vote shares X (c.f Fig. 4.3). We note
remarkable similarities between the results obtained here and those on the complete
graph (Fig. 4.1) regarding both optimal allocations and equilibrium vote shares. Note
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FIGURE 4.3: a Optimal fraction a’; of budget given to biased agents b and resulting
equilibrium vote shares X on BA networks for varying bias b4 and varying budget
density B, = B./N?. Networks are of size N = 1000, mean degree (d) ~ 4, and with
a random fraction p4 = 0.2 of biased nodes with bias b 4. Every point is the average
over 50 realizations of the experiment, with error bars giving three standard deviations
from the mean. Symbols are omitted for optimal allocations that lead to full control
(X = 1). The horizontal line (orange) represents equal link weights given to both types
of agents on average.

that these similar results are retrieved after a re-scaling of the budget density 5, by

d = (d)/N —as (d) = N in the complete graph. This is related to the notion of effective
budget as discussed by Chinellato et al. (2015). Again, targeting biased agents is
preferred when the bias is low or the available budget is high. This preference slowly
shifts towards normal agents as b4 increases, eventually assigning them higher
influence links —at b, — and even focusing the whole budget on them —at b’".

We next analyse the relationship between optimal allocations and node degree. More
specifically, we want to find whether the link preferences to biased or normal agents
are uniformly held across nodes with different degrees. Figure 4.4 displays optimal
allocations grouped by node degree (w*,), for a given budget density B, = (d)/16
and three different bias parameters b4 = 0.3,0.5,0.9. We note clear correlations
between optimal allocations and node degree in most cases. When the bias is
relatively low (b4 = 0.3, Fig. 4.4a), the external controller exhibits a clear allocation
preference towards high—degree nodes, among both biased and normal agents. For an
intermediate bias (b4 = 0.5, Fig. 4.4b) optimal controls omit allocations to biased
agents that do not have a very low degree, while mildly targeting those with the
lowest degrees. This behaviour relates to our findings for complete bipartite graphs
above, where biased agents at the periphery were preferred over biased agents at hubs
for low budgets and mild bias values. High—degree nodes are still preferred among
normal agents in this scenario. Last, when biased agents are highly stubborn

(ba = 0.9, Fig. 4.4c), they remain untargeted regardless of their degree, while the
correlation with node degree generally decreases for normal agents, with high-degree

nodes also untargeted.
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the mean, both computed in the Fisher transformation domain. Correlations are only

shown for situations in which full control (X = 1) is not achieved. All p-values fall
below 10~20.

We extend the correlation analysis in Fig. 4.4 to other levels of bias and available
budgets by measuring Pearson correlations between (w’;); and d on BA-networks
(Fig. 4.5). We note again clear patterns that are in agreement with Fig. 4.4: hubs are
preferred when the bias is low, with the preference decreasing with b4 and switching
to periphery nodes at some b7 . The switching points are lower for biased agents than
for normal agents and increase with budget availability. Correlations on allocations to
biased agents eventually reach zero, marking the point where they are fully

untargeted.

Combining the information from average allocations given to biased agents (Fig. 4.3)
and average per-degree allocations given to both groups (Fig. 4.5), we obtain the
following general pattern. When the bias is low (but not enough for achieving full
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control of the network), targeting biased agents is preferred over normal agents and
hubs receive more allocation within each group. Preferences for biased agents —and
especially those at hubs— diminish as the bias increases, going through three different
transition points. The first transition point b’ marks a shift of preference towards
normal instead of biased agents and a shift of preference within biased agents for
those having a lower degree instead of hubs. After the second transition point b%*, no
allocation is given to biased agents and the preference for hubs among normal agents
starts to diminish. After the last transition point b%}"*, low—degree nodes are preferred

over hubs among normal agents.

In summary, when networks with heterogeneous degree distributions are studied, a
richer hierarchy emerges due to the interplay between node degree and agent type,
with the following groups (sorted by their difficulty to be controlled in decreasing
order): biased agents at hubs, biased agents at the periphery, unbiased agents at hubs,
and unbiased agents at the periphery.

4.7 General model: Including a passive opponent and agents

biased towards either opinion

Last, we analyse a more general scenario that also includes a passive opponent and in
which there are three types of agents: agents biased against opinion A (ba; > 0),
agents biased against opinion B (bp; > 0), and normal (unbiased) agents

(bai = bp; = 0). For this scenario, we only perform experiments on the complete
graph, as to build intuition of the impact of an opponent in optimal allocations, and of
agents biased against the opponent —i.e. prone to support the active controller’s
opinion — isolating these factors from the effect of the network topology. We assume
that agents biased against opinion A and agents biased against opinion B constitute
each a fraction p4 = pp = 0.2 of the total population, with the remaining p, = 0.6

being normal agents.

As above, we assume that controllers allocate the same link weight to agents of the
same type. We again refer to budget densities to express the budget availability of the
active controller (B, = B,/N?) and of its passive opponent (B, = B,/ N?). Each
controller now has two degrees of freedom when distributing their budget among the
three types of agents, with a4, ap, &, € [0,1], a4 + ap + &, = 1, defining the fraction
of the budget allocated by the active controller to each group, and

Ba, BB, Bn € [0,1], Ba + Bp + Bn = 1, are the analogous choices of the passive

opponent.

We start experiments by fixing the budget of the active controller to B, = 1 and

exploring its optimal allocations for different combinations of the levels of bias b4 and
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FIGURE 4.6: Target group of optimal allocations by the active controller for different
combinations for the levels of bias b4 and b4, in scenarios of a budget equality, b
budget inferiority, and ¢ budget superiority and on a complete graph of size N = 100.
The passive opponent distributes its budget equally among all agents in the network,

ie. ﬁA = PA, ,Bn = Pn, ,BB = PB-

bg, in their whole range of possible values and for three scenarios (Fig. 4.6): budget
equality (B, = B,), budget inferiority (B, = 103,), and budget superiority

(B, = 0.18,). This first analysis assumes that the passive opponent distributes its
budget evenly across all agents —i.e. Ba = pa, Bn = pun, BB = PB-

When in budget equality (Fig. 4.6a), four distinct phases of optimal allocations can be
seen. Phase I and Phase II (topa and bottom-right of Fig. 4.6a, respectively)
correspond to an imbalance in the levels of bias between the two biased groups. In
either case, the active controller targets the least biased of the two groups (ap = 1 and
x4 = 1, respectively), as it will be easier to control. Phase III covers the regime of
similar levels of bias among the two biased groups (top-right of Fig. 4.6a and most of
the diagonal) and is characterised by a full targeting of normal agents by the active
controller (i.e. a, = 1). When both levels of bias are very high (top-right of the
corner), biased agents are very hard to control and all influence is allocated on normal
agents. Last, Phase IV spans the scenario where both levels of bias are low and is
characterised by the active controller splitting its influence evenly among the three
groups, mimicking the opponent’s strategy (lower-left corner of the Fig. 4.6a).

When in budget inferiority (Fig. 4.6b), the phase diagram is qualitatively similar to
that of budget equality, but with an expansion of Phase I, entailing a strong preference
towards targeting agents biased against the opponent, even when their bias is higher
than the bias against the active controller (blue area below the diagonal). Phase II
almost vanishes completely, with only a slight preference to agents moderately biased
against the active controller (b4 < 0.5) if the bias against the opponent is very large
(bp =~ 1). Phase IV of equal targeting all agents completely vanishes. So, in short,
when in budget inferiority, a strong preference towards targetting agents biased
against the opponent is prevalent.
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FIGURE 4.7: Target group of optimal allocations by the active controller for different

combinations for the levels of bias b4 and b4, when the a opponent targets all agents

equally (8 = p) or focuses all her influence on b agents biased against the active con-

troller (B4 = 1), ¢ normal agents (8, = 1), or d agents biased againstAher opinion
(B = 1), on a complete graph of size N = 100 and budgets B, = B, = 1.

When in budget superiority (Fig. 4.6b), the phase diagram is very similar to when in
budget equality, with the exception that i) Phase II is slightly shifted above the
diagonal — reflecting a preference towards agents biased against the active controller
when both levels of bias are similar — and ii) Phase IV vanishes completely —

rejecting the strategy of mimicking the passive opponent by equal targeting.

We then explore variations in the opponent strategy in the scenarios of budget
equality and budget inferiority! by allowing her to concentrate all her influence in one
of the three groups. When in budget equality, there is little variation in optimal
strategies if the opponent changes her strategy (Fig. 4.7). We note that Phase IV of
targetting all agents equally is only present when the opponent also does so (Fig. 4.7a),
while a new Phase V of targeting normal agents appears for low levels of b4 and when
the opponent targets normal agents (low green band of Fig. 4.7c), which reflects a
shadowing behaviour when the situation is favourable for the controller (strong
imbalance of bias of the population against the opponent). Likewise, a Phase V of
targeting normal agents also appears for low levels of bp and when the opponent
targets agents biased against herself (left-hand green band of Fig. 4.7d). This reflects
an avoidance behaviour of the opponent’s targets in an unfavourable situation (strong
imbalance of bias of the population against the active controller).

When in budget inferiority, the changes in optimal strategies are qualitatively similar
but more prominent (Fig. 4.8). When the levels of bias against the active controller are
low (lower side of the phase diagrams), a tendency to shadow the opponent are
clearly visible when the opponent targets agents biased against the active controller
(Fig. 4.8b, red lower-right corner) or when she targets normal agents (Fig. 4.8¢c, green
lower-right corner). Additionally, Phase V corresponding to an avoidance behaviour
is much wider when the opponent targets agents biased against herself (left-hand
band of the Fig. 4.7d), as these agents are not the easiest to control any more since they
are also targeted by a strong opponent.

!Due to the strong similarities of the scenario of budget superiority to that of budget equality, we
relegate the results of the earlier to Appendix B.1
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FIGURE 4.8: Target group of optimal allocations by the active controller when in bud-
get inferiority (B, = 0.15),), for different combinations for the levels of bias b4 and b4,
when the a opponent targets all agents equally (8 = p) or focuses all her influence on
b agents biased against the active controller (84 = 1), ¢ normal agents (8, = 1), or d
agents biased against her opinion (8p = 1), on a complete graph of size N = 100.

In summary, when two controllers — one active and one passive — are present, the
active controller tends to target the agents that are easiest to control when her
situation is unfavourable and targets agents that are harder to control when in a
favourable situation. Which agents are easier or harder to control depends on the
interplay between level of bias of the agents and the opponent’s behaviour; for
example, agents that are biased against the opponent are the easiest to control unless
their level of bias is low and the opponent targets them — or even if their level of bias
is moderate if the opponent has a much larger influence power than the active
controller. Hence, we can also see here a similar shadowing-avoidance behaviour as

explored in Chapter 3 that interplays with the levels of bias.

4.8 Discussion

In this chapter, we have explored influence maximisation on heterogeneous
populations where some agents are biased against one of the opinions. We have first
studied a simpler scenario with a single external controller who aims to control a
population with some agents biased against the controller’s opinion. For this scenario,
we have derived an analytical dependency of the optimal strategy on the other
parameters on complete graphs, to then explore in more detail the role of node degree
on bipartite networks, and degree heterogeneity in Barabasi—Albert networks. Last,
we have studied a more complex scenario where groups of agents biased against
either opinion co-exist, while another passive external controller who opposes the
active controller is also present, and studied optimal allocations under all possible
variations of this richer case.

Based on all these experiments, a general pattern in optimal influence allocations can
be noted. We find that agents that are harder to control — agents biased against the
active controller, hubs in a heterogeneous network, or agents targeted by a strong

opponent — receive more influence allocation when the controller is in a favourable
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position (due to a large budget or a population more biased against the opponent’s
opinion), while agents that are easier to control — unbiased agents, nodes in the
periphery, or agents biased against the opponent’s opinion — receive more allocation
when the controller is in an unfavourable position (small budget or a population more
biased against the controller’s opinion). The transition points between both regimes
generally depend on the levels of bias, the budgets of the controllers, and the fraction

of biased agents in the network.

Our findings fit in the general picture shown in the previous chapter, where shielding
and shadowing also reflect a similar hierarchy of “difficulty in targeting” and where
the order of preference in the hierarchy gets reversed if the controller’s availability is
low and she is in a disadvantageous situation. Analogous observations have also been
seen in previous literature from (Brede et al., 2018) and Brede et al. (2019a), which
found that optimal allocations tend to depend on a trade—off between budget
availability and the difficulty to control agents.

Although we have uncovered the essential effects that different levels of bias have on
influence maximisation, we have limited ourselves to a set of simple scenarios to
decouple the role that the different ingredients have in optimal allocations and that
can serve as baselines for comparison. As we have developed this basic
understanding, more complex scenarios combining all the ingredients here explored
(heterogeneous network topologies, agents biased to either opinion, two external
controllers) can be explored next, with an aim to better reflect real scenarios and link
the model to specific real-world situations. Further extensions to enrich the model
could include a larger heterogeneity in agents’ bias, the possibility of agents to be
‘biased against both opinions simultaneously” (i.e. being stubborn and less susceptible
to social influence in opinion change) or including internal opinions (or ‘innate

preferences’).
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Chapter 5

The effects of party competition on

consensus formation

An abridged version of this chapter has been accepted as a workshop
paper to the 3rd International Workshop on Agent—Based Modelling of Human
Behaviour (ABMHuB’2021), as part of the Alife 2021 conference
(Romero Moreno et al., 2021b).

5.1 Introduction

Opinion polarisation has been a major concern in modern democracies over the last
years, and is even considered a threat to their stability by some authors (Abramowitz
and Saunders, 2008; Hare and Poole, 2014; Ramos et al., 2015a; Carothers and
O’Donohue, 2019). Although moderate levels of polarisation have been positively
associated with some indicators of democratic performance such as turnout (Wilford,
2017), too much polarisation can lead to social fragmentation, political division, and
the inability to reach any compromise between the parties (Somer and McCoy, 2018).
In countries such as the US, recent studies show that polarisation has become a major
force in shaping voters’ attitudes towards policy issues, parties, and even other voters
(Campbell, 2018; Svolik, 2019; Iyengar et al., 2019).

In this context, researchers are interested in determining the role that political actors
(Bischof and Wagner, 2019; Hegselmann and Krause, 2015), social media (Sikder et al.,
2020; Del Vicario et al., 2017), or external agents (Bhat and Redner, 2019; Gaitonde

et al., 2020b) have played in splitting societies” opinions. Evidently, the need for
finding the causes (and ascertaining the remedies) of polarisation has caught the
attention of many researchers from political science (Layman et al., 2006; Boxell et al.,
2017) and sociology (Schweighofer et al., 2020a).
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In this chapter, we study the interrelated dynamics of two processes affecting opinion
dynamics when multiple issues are debated. First, we consider a model to describe the
dynamics of citizens” opinion in the context of consensus formation. Among the
models and micro—foundations employed in the opinion dynamics field, the
bounded—confidence (BC) model has a long tradition in the study of consensus and
polarisation (Ramos et al., 2015a; Deffuant et al., 2002). This interaction model
includes a tolerance threshold that determines the maximum distance in opinion for any
two citizens to interact. The tolerance threshold is a key parameter in system
outcomes, with decreasing values leading population from consensus towards

polarisation and fragmentation (Weisbuch et al., 2003).

Second, our other focus in this work is on the effects of party competition via
campaigning on voters. In political science, most research on party competition
originates from spatial voting theory as introduced by Downs (1957), where citizens
hold political positions on a multidimensional political space and vote for parties
according to the distance between their opinions and those of the parties. In this
context, party competition is mainly investigated from two different approaches. In
the first, parties are considered to compete for votes by moving towards positions that
can attract larger vote shares (Laver and Sergenti, 2011; Miller and Stadler, 1998;
Adams and Merril, 1999; Alvarez et al., 2000). However, parties are constrained within
their position because changing them might be costly, as they may lose credibility to
the electorate (De Sio and Weber, 2014). In the second approach, parties compete for
vote shares by adjusting the saliency given to the different political dimensions (e.g. by
campaigning) to promote aspects of the debate in which they hold favourable
positions relative to the electorate (Dragu and Fan, 2016; Amorés and Puy, 2010; Feld
et al., 2014; De Sio and Weber, 2014).

In this chapter, we unite two disjoint branches of research by studying how party
competition interferes with processes of consensus—formation in a two—dimensional
political opinion space. More specifically, we investigate a model of party competition
via saliency adjusting and couple its dynamics to a model of consensus—formation and
polarisation via the bounded—confidence model. This setting allows us to explore the
effect of external controllers in opinion dynamics systems from the perspective of
adaptive controllers that react to the opinion dynamics in similar time scales. We
discover that the effects of party competition on consensus formation may be very
different depending on party positions in the political space. Below, we illustrate that
party competition can foster consensus formation in some scenarios, but may also
promote polarisation in others. We find that these differences in effects are strongly
linked to the adaptive behaviour of saliency changing by the parties, with shifts in
saliency promotion strategies favouring consensus. We further explore the
characteristics of the constellation of party positions that lead to either behaviour, and
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expand the inspect the role of the size of the party system in the outcomes. Last, we
explore how embedding the agents into a sparse social network affects the dynamics.

5.2 A Model for party competition and consensus—formation

processes

Our purpose is to model interactions between party and opinion dynamics in the
formation of consensus within a society. First, we consider a population of citizens or
voters that hold individual political opinions, modelled as multidimensional
continuous opinions, an assumption common in both the opinion dynamics
(Castellano et al., 2009a) and political science (De Sio and Weber, 2014) fields.
Examples of typical political dimensions regarded in the political science literature are
the economic left-right, or the social GAL-TAN (Green—Alternative-Liberal,
Traditional-Authoritarian-Nationalism). We then let opinions in these dimensions
evolve subject to peer interactions following the well-known bounded-confidence
model (Weisbuch et al., 2003).

Second, we also consider a set of parties, each of which holds a fixed opinion in the
political space. Parties compete for votes by adjusting the emphasis with which they
promote the various political dimensions. In other words, they affect the perceived
importance —or saliency— of the dimensions. The role of saliency competition has
been emphasised by many political scientists in the past (Amorés and Puy, 2010; De
Sio and Weber, 2014; Feld et al., 2014). We assume that citizens cast their vote in a
probabilistic fashion according to their perceived distance to the parties (Burden, 1997;
Alvarez and Nagler, 1998). Parties then promote the different dimensions as to
increase their vote share by promoting dimensions in which they have a favourable
position with respect to the electorate, thus changing the perception of distances in the
population. Hence, the dynamics of party competition and consensus formation
interact, as the consensus dynamics is affected by perceived distances between
citizens’ positions. We proceed by giving details and a formalisation of the models of

opinion and party competition below.

5.2.1 Opinion dynamics model

Consider a population of citizens whose opinions are initially uniformly spread in a
D-dimensional space of opinions constrained to the interval [—1, 1], i.e.

o € O = [-1,1]P. Opinion dynamics follow the bounded—confidence (BC) model
introduced by Deffuant et al. (2000), although extended to multiple dimensions. This
implies that a distance metricd : O x O — R needs to be defined and the update of
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opinions when two randomly chosen agents i and j encounter at each time step ¢ is
given by

1—a 0j1 +wnoj; ifd 0it,0i+ < )

Ojt+1 = { ( o, I (03¢, 031) (5.1)

0i¢ otherwise,

where a € [0,1/2] is the concession parameter and citizen j also simultaneously
updates her opinion 0;+,1 in an analogous move. We assume that distances in opinion
are affected by the perception of the importance of the various dimensions,
represented by a normalised vector of saliencies w; € [0,1],d = 1, ..., D that sums up
to one. Accordingly, we employ a normalised weighted Euclidean distance! as our

distance metric, given by

1| & 2
d(o;,0j) = 5 Y w, (ol@ - o](d)> . (5.2)
d=1

The basic formulation of the BC model assumes that any two citizens can encounter. A
more realistic variation, would restrict the possibility of encounters by defining a
social network where agents are identified with nodes and edges define possible
pairwise encounters. Therefore, at each time step ¢, a random edge is selected and the
citizens that are linked by it have an encounter. More details about the BC model, see
Sect. 2.2.2.

5.2.2 Model of party competition

On top of the population of voting citizens, we also consider a number of parties

k =1,...,K that have fixed positions in the opinion space p, € O. According to
probabilistic models of spatial voting (Burden, 1997; Alvarez and Nagler, 1998), party
k is assumed to receive a vote from citizen i at time ¢, i.e. v;; = k, with a probability
that is related to the distance of their respective opinions and the distance of the
citizen’s opinion to the other parties:

exp(—yd(ois py))
P00, = ) — , 5.3
(U,t ) ZleeXp(_’Yd(oirt’pl)) ( )

where 7y parametrises the range of party influence. For large <y, parties have a small

range of attraction around their core positions in opinion space; for small 7y, parties

can attract voters with more strongly deviating opinions?.

IFortunato et al. (2005) compared results between a 1-norm Manhattan and a 2-norm Euclidean dis-
tance metrics on a 2D Hegselmann-Krause bounded—confidence model and found little effect of this deci-
sion on the resulting stationary clusters.

2Note that with Y — o0, a deterministic model of voting is recovered, where votes are always given
to the party whose position is closest to the citizen. Lower values of 7y imply the notion of uncertainty in
choice, as there may be hidden attributes not modelled in voting space or voters may not vote for “what
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We assume that each party k has a vector of saliency promotion w*) = (wgk), e wlgk))

normalised to Y57, w((ik) = 1, as to model a resource constraint in party campaigning.
Following Amorés and Puy (2010) and Dragu and Fan (2016), citizens aggregate the
overall effect of all parties” campaigning efforts —which determines the overall
saliency w in the population— via a function f : [0,1]P*X — [0,1]P, which is assumed
to be differentiable and monotonic. For the purposes of this study, we consider the
simple aggregation function wy = 1/KYr_, w‘(ik), where the total saliency of each

dimension w; is the average of saliency promotions given by parties to that dimension.

Each party k attempts to maximise its expected vote share from the electorate at each
time step t by directing attention to political dimensions beneficial to gaining votes,
i.e. by adjusting its vector of saliency promotion wfk) through campaigning. In the
following, we consider parties to be myopic; i.e. we assume that they attempt to
maximise their expected vote share at the current time Vi, = 1/N YN P(v;; = k)
without considering the vote share at a future time ' > t and not accounting for the
strategy of the opponents or the dynamics of opinions. This reflects parties with
bounded rationality and limited information (Laver and Schilperoord, 2007). We
assume that parties adjust their saliency promotion at a time scale T, modelled by
implementing changes in saliency promotion only after every 7 time steps of the

opinion dynamics.

To model rational parties that have local knowledge of the effects of changing their
campaigning efforts, we assume that parties follow a gradient dynamics, adjusting
their saliency promotion in the direction of largest gain in expected vote share

V 0 Vi t, which is given by

=

N N
Voo Vit = 1/N Y Vo By = 7/N Y- Py (Zpi(,f)vmdf,tz) - vw(")dz‘,tk)> , (54
i=1 i=1 =1

where Pi(,t() = P(v;; = k), df? =d(ois, pi),and I =1,...,Kis a summation index over
parties. For the aggregation function introduced above, we have

odiy _ 1 @ @) 41
5~ 5K (ol = p") ay" (5.5)
d

Specifically, after every T updates of the bounded—confidence dynamics of opinion

formation, parties adjust saliencies via

wgl_?l =w +e/y Vo Vit (5.6)

is best for them”, i.e. they may not be fully rational. Similar forms to (5.3) are common in choice theory
(Anderson et al., 1992; McFadden, 1994)
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which is then projected® into the budget constraint Y2, wlglk) = 1 and the feasible
region wb(ik) € [0,1]. In the above, we introduce the parameter € € Ro, which models
the time scale at which parties can perform saliency adjustments. Note that a choice of
€ = O retrieves the BC model in which opinions evolves without any effect from party

competition?.

5.3 Methods and experimental settings

We explore the proposed model and its outcomes via agent-based simulations, as
analytical solutions are hard to obtain due to the non-linearities and complex
interactions of the model. We will perform experiments on the case of D = 2
dimensions of the opinion space. This setting already serves to illustrate the richness
of possible model outcomes while still allowing intuitive understanding of the model
behaviour via visual inspection of the evolving opinions. Moreover, two—dimensional
opinion spaces are pervasive in political science research, since the standard
assumption is that political competition is spanned over an economic and a
socio—cultural dimension in most democratic countries (Enyedi and Deegan-Krause,
2010). We will perform most of our analysis with K = 3 political parties, which is a
typical configuration — e.g. the political system in the UK or in Spain before the 2008
crisis. Regarding the size of the population, although we are interested in political
systems potentially comprising millions of citizens, we set their number to N = 10°, as
a trade—off between computational constraints and the quality of the results. A set of
experiment testing other system sizes can be found in Appendix C.1.

The parameters a, <y, T, and € relate to the time scales at which both types of dynamics
— citizens’ opinions and party saliency promotions — evolve, while they do not affect
other aspects of the dynamics. As we are interested in the interaction between both
types of dynamic, we want them to occur at similar time scales and we select these
four time—scale parameters in a trial-and-error process that allow for this interaction
while keeping simulation times manageable. These are a concession rate at « = 1/4,
the range of party influence in voting preferences at y = 10, the saliency—changing
period at T = N/2, and the speed of saliency change at € = 64.

Regarding initial conditions at the start of each simulation, we sample initial opinions
of citizens from a uniform probability distribution over the opinion space O. Party
opinions are also sampled this way, although they remain fixed throughout the
simulation, and they start promoting all political dimensions with equal intensity,

wgkt)zo = wgkt)zo = 1/2 (i.e. a neutral saliency mix). We run simulations until the

3The projection is implemented by setting negative values to zero and normalising the resulting vector.

“Note that we have introduced two parameters (¢ and 7) related to the time scale at which parties
adjust their promotion strategies. The purpose of such redundancy of parameters is to limit computations
of gradients and thus improve computational efficiency.
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stationary state has been reached, which we define by two conditions. First, the
difference in the standard deviation of citizens” opinion in the last 507 time steps must
be lower than 107%, i.e. [std(0;—50c) — std(o¢)] < 10~%. Second, total absolute changes
in saliency promotion by each party in the last 507 time steps must be lower than
0.005, i.e. Y4 |wl) s — w'| < 0.005.

Since the stochastic elements of the model (e.g. choosing two random agents at each
time step) may affect the outcomes, it is important that enough simulations and
statistical analyses are performed to provide enough confidence that what is observed
is not a result of chance alone. Unless otherwise specified, for each parameter
combination in each experiment, we run 30 simulations and show averages of the

outcome variables, along with standard deviations.

Regarding the outcomes of the model, we are mainly interested in the phenomena of
populations arriving to a state of consensus, polarisation, or fragmentation. Following
previous work on the BC model (Lorenz, 2007), these outcomes can be operationalised
by analysing the number of clusters in the stationary state of the simulation. However,
defining clusters is not a univocal task. Here, we exploit the role of the confidence
threshold ¢ in preventing further interaction and identify clusters by dividing the
space into a [2/J] x |2/4] grid, thus ensuring that the maximum separation of any
two opinions within a cell of the grid is approximately /2 times smaller than & (in the
two—dimensional case) and hence any two citizens whose opinions are within the
same grid can still potentially interact. We define a cluster as groups of consecutive
cells in this grid, while different clusters are separated by a band empty cells in the
grid. We ignore fine—grained noise that remains due to numerical methods by

regarding cells that contain less than 0.5% of the total population as empty.

Still, the number of clusters alone may be misleading, as it can be influenced by the
occurrence small clusters, so we also incorporate the information of clusters size to
define the effective number of clusters, given by ¢ = 1/ Y. (s/N)?, where s, is the size of
cluster c. With this measure, full consensus corresponds to ¢ ~ 1, and paradigmatic
(maximum) polarisation to ¢ ~ 2, meaning that the population is divided into two
clusters of similar size. Values of ¢ € (1,2) generally entail the presence of two clusters
of unequal size, and ¢ > 2 corresponds to fragmentation into more than two clusters.
In this chapter, we will consider an outcome of ‘consensus’ for ¢ < 1.5, an outcome of

"polarisation” for 1.5 < ¢ < 2.5 and an outcome of ‘fragmentation” for ¢ > 2.5.

In previous research on the bounded—confidence model, it has been shown that the
tolerance threshold 0 is a key parameter whose values determine the regimes of these
three outcomes (Hegselmann and Krause, 2002; Weisbuch et al., 2003; Lorenz, 2007).
Therefore, we define the transition value J4.1 > as the middle point between the
lowest ¢ that results in consensus (¢ < 1.5) and the highest § that results in

polarisation (¢ > 1.5). We define an analogous transition value 64,2 as the middle
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point between the lowest ¢ that results in polarisation (¢ < 2.5) and the highest ¢ that
results in fragmentation (¢ > 2.5).

In our experiments here, we aim to explore how the inclusion of party dynamics
affects the outcomes of the opinion dynamics. For this purpose, we first generate
many random party configurations and characterise the different alterations that party
dynamics have on opinion outcomes (Sect. 5.4), finding three possible effects:
fostering polarisation, fostering consensus, or not altering the opinion dynamics. To
better understand the mechanisms behind these effects, we analyse in more detail
single runs of each, thus gaining insight of of the interactions between the saliency
strategies and opinion dynamics (Sect. 5.5). A behaviour that we hypothesise is
behind the fostering of consensus is a change of in the saliency promotion of parties
during the simulation. We thus measure the number of saliency changes oy of party k as
the number of times two consecutive updates in its saliency promotion have different

signs, i.e. 0 = 3 ¥y (1 — sign (wf&,t:m) sign (w{gllil,t:(m—l)r>>'

In Sect. 5.6, we go one step further by exploring which characteristics of the party
configurations may be behind producing the different saliency-changing behavours.
To test for different characteristics of the party systems, we curated a set of features
related to the location and geometry of the party system, including the following;:

¢ The Euclidean distance of each party to the centre of the space and their mean
distance to the centre of the space (4 features).

¢ The diagonality of each party opinion, i.e. whether they are closer to the
principal axes (zero diagonality) or to the diagonals (diagonality equal to one),
and the mean diagonality of the party system (8 features).

* Angles of the triangle that the three party opinions form (3 features).
* Area of the triangle that the three party opinions form (1 feature).
* Pairwise distances between the three party opinions (3 features).

¢ Pairwise absolute differences between party angles when polar coordinates are

used (3 features).
¢ Distance to the closest boundary of each party (3 features).

¢ Distance of the centre of mass of the three parties to the centre of space (1

feature).

Using the above features, we train a decision tree (Krzywinski and Altman, 2017) to
classify party configurations into the above three possible effects. We use a decision
tree due to its high interpretability and its ability to automatically find the most
divisive features. We use the entropy as a measure the quality of splits and, to have a
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balanced dataset, we give weights to each sample inversely proportional to the
number of samples in its corresponding class. To keep a high interpretability of the
tree and prevent over—fitting, we restrict the depth of the tree to a maximum level of 4
and only keep leaves if they contain more than 10% of the (weighted) samples.

In Sect. 5.7, we extend experiments to other numbers of parties K to examine how the
size of the party system affects their influence in the opinion dynamics, by performing

a similar analysis as in Sect. 5.4 and contrasting results among the different K.

Our experiments assume that citizens can communicate with any other citizen
indistinctly. This assumption is particularly unrealistic when considering large
populations, so we finally perform a set of experiments where we impose a social
network structure onto the population — with interactions only possible between
connected agents — and explore how this modification alters previous results. In
these, we build Erdos—Renyi random networks, which are commonly used in
agent-based models of opinion dynamics (Amblard et al., 2015), with a probability

p = (d)/N of each link to exist as to produce an expected node degree of (d) = 10, i.e.
p=10"*%

We conclude the section with a summary of all parameters of the model and the
values chosen for our experiments (Table 5.1). The code used to run all experiments
and produce the figures can be found at

https://git.soton.ac.uk/grmlgl7/bc-polarisation.

Parameter Definition Values in our experiments
DeN Number of dimensions D=2
KeN Number of parties K = 3 (except Sect. 5.7)
NelN Number of citizens N =10°
0 €10,1] BC tolerance threshold 0 € [0.12,0.245] (varying)
a €1]0,1/2] Concession rate upon interaction x=1/4
vyeR, Range of party influence v =10
TeN Strategy—changing period T=N/2
€ € Rop+  Change rate of saliency promotion €=064
p € [0,1] Probability of a link to exist p={(d)/N=10""*

TABLE 5.1: Parameters of the model and the values we employ in our experiments (if
not specified otherwise when introducing an experiment). The last parameter, p, only
affects to the last set of experiments, which include a social network structure.

5.4 Effects of party competition on consensus formation

We begin our experiments with an analysis of how the presence of party dynamics
affect the outcomes of consensus, polarisation, and fragmentation. For this purpose,
we generate 500 random party configurations and characterise the alterations that

party dynamics make to the transition values é4.1-,2 and d¢.2 2. For each party
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configuration, we run a grid of experiments in the range § = [0.155,0.235] in intervals
of Aé = 0.05, with 10 simulations per 6 and use these to find Jy.1-,2 and dp2—2+ as the
middle points between consecutive s that produce different outcomes.

Figure 5.1a shows results for these experiments including the combinations of
transition values for all the sampled party configurations. We analyse first results
regarding the value of § that marks the transition from consensus to polarisation
(0¢:1-2), which corresponds to the x-axis of the plot. As a reference, the case with no
party dynamics is shown by a black cross, with values é4.1-,2 = 0.2025 and

Op2—2+ = 0.1975. Cells to the left of the cross, with 6412 < 0.2, imply that the party
configuration led to an outcome of consensus for values of 6 where not having a party
competition would have led to polarisation, i.e. the party dynamics are ‘fostering
consensus’. These comprise 86 (17.2%) of the 500 sampled party configurations. In
contrast, cells to the right of the cross, with 4.1 > > 0.205, contain party
configurations that led to a an outcome of polarisation for values of § where not
having party competition would have led to consensus, i.e. the party dynamics are
‘fostering polarisation’. These comprise 351 (70.2%) of the 500 sampled party
configurations. Furthermore, the outcome of 6512 = 0.2275 and Jp:» +24 = 0.1675 is
particularly common, with 180 (36%) party configurations producing it (yellow square
on the right side of Fig. 5.1a). Cells in the middle band, with 4.1 > = 0.2025, are party
dynamics that did not modify the transition value é,.1-,», comprising 63 (12.6%) cases,
out of which 25 (5%) did not alter neither é4.1,2 nor 64,2+ as compared to the
baseline of no party competition.

Regarding the values of J that mark the transition from polarisation to fragmentation
(0p:2—2+, y-axis), we note that party competition never led to an outcome of
fragmentation where its absence would have led to polarisation (or consensus), which
can be seen in the absence of cells above the ‘no-party’ cross. Moving down from the
‘no-party’ cross implies that party configurations led to regimes of polarisation where

no party dynamics would have led to fragmentation.

Next, we will examine in more detail the mechanisms that result in party competition

fostering of polarisation or consensus.

5.5 The mechanisms behind the fostering—polarisation or

fostering—consensus effects of party competition

To examine in more detail the mechanisms behind fostering polarisation or consensus,
we will analyse two party configurations that lead to either outcome, plus a party
configuration that does not modify the opinion dynamics. To examine the fostering of
polarisation, we select one of the party configurations p” from the group with the
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FIGURE 5.1: a Histogram of phase transitions é4.1-,2 and J¢:22+ for 500 randomly
sampled party configurations. The black cross indicates the phase transitions of the
no-party baseline, while solid lines separate the different classes of outcomes, from
left to right: fostering consensus, no effect on the opinion dynamics, and fostering
polarisation. b Dependence of the effective number of clusters ¢ on the BC toler-
ance threshold J for parties positioned in a polarisation-fostering configuration p”
(orange), a consensus—fostering configuration pC (red), or without party competition
(purple). Error bars represent the standard deviation over 30 simulation runs.

most common outcome of 8 ,, = 0.2275,8,, . = 0.1675 (red square on the right
side of Fig. 5.1a)°. To examine the fostering of consensus, we select a party
configuration p© with the strongest fostering—consensus effect

(5(%:1_>2 = 0.1825, 5(%:2%% = 0.1675, red square on the left side of Fig. 5.1a) 6. Asa
reference, we select a party configuration p" from the group that did not affect the
opinion dynamics (red square around the black cross in Fig. 5.1a)".

The dependence of their resulting effective number of clusters ¢ on tolerance
parameters ¢ for these three party configurations are shown in more detail in Fig. 5.1b.
There, we can see three interesting regimes with differences to the baseline of no
competition: i) party competition resulting in polarisation where its absence would
lead to consensus — i.e. the outcome of the fostering—polarisation party configuration
p® in the regime §* € [0.205,0.225]; ii) party competition resulting in polarisation
where its absence would lead to fragmentation — i.e. the outcome of the
fostering—polarisation party configuration p” in the regime 6** € [0.17,0.2]; and iii)
party competition resulting in consensus where its absence would lead to polarisation
or fragmentation — i.e. the outcome of the fostering—consensus party configuration p©
in the regime 6*** € [0.185,0.2]. We will examine single simulation runs within each of

these regimes next to uncover the mechanisms that may be behind these behaviours.

5The party opinions of the selected party configuration from pp correspond to p;_; = (0.25,0.79),
Pr—p = (0.55,-0.55), and p;_5 = (—0.4,0.75).

®The party opinions of the selected party configuration in p© correspond to p,_; = (0.15,0.34), p_, =
(0.11,—-0.58), and p;_5 = (—0.64,0.05).

"The party opinions of the selected party configuration in p™ correspond to p,_; = (0.71,-0.89),
Pr—p = (—=05,0.31), and p = Ny_3 = (0.16,0.13).
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The first simulation setting illustrates how party competition can foster polarisation
where its absence would result in consensus. In Fig. 5.2, we show in detail the
evolution of two simulation runs for §* = 0.22 and party configuration pP. The top
and middle rows of the figure show three time steps of two analogous simulation
runs; one run where there is no party competition (top row) — so the perceived
saliency for both dimensions remains equal in the whole simulation — and one run
where parties compete to increase their vote share and affect the perceived saliency of
topics (middle row). For a fair comparison, we set the same seed of the random
number generator for both runs, meaning that initial conditions are identical (c.f. the
left panel in both rows), as well as the pattern of citizen pairs chosen to interact at each
time step. Panels on the right column illustrate stationary distributions of citizen
opinions, with clusters differentiated by colours and whose sizes are shown in the
legend®. When there is no party competition (top row), we can see that opinions first
gather forming a cross with its centre empty (top—middle panel) that then shrinks
down into a single cluster i.e. a state of consensus (top-right panel). In contrast, when
including party competition (middle row) opinions first gather into two clusters
(central panel) that are preserved until the stationary state, arriving at a state of
polarisation, with two big clusters of similar size (middle-right panel).

The bottom row of Fig 5.2 gives the evolution of different metrics over time for the
scenario with party competition. The evolution of each party’s expected vote share is
shown in the left panel, the evolution in standard deviation of citizens’ opinion in the
middle panel, and the evolution of parties” saliency promotion of the first dimension
w41 in the right panel”. From the bottom-right panel, it can be seen that, very early in
the simulation, the perceived saliency of dimension d = 1 (dashed line) is higher than
wy > 0.5, as parties k = 2,3 give full promotion to that dimension and disregard
dimension d = 2. Consequently, citizens give more saliency to dimension d = 1 also
when perceiving their distances to other citizens, leading to two clusters aligned along
this dimension (see the interim state from the central panel of the figure). This
outcome can be understood if changes in perceived saliency are likened to
deformations of the opinion space. When one dimension from the saliency mix is
favoured, the opinion space ‘elongates” along such dimension and ‘shrinks’ in the

other dimensions, so clusters align along the favoured dimension.

The second simulation setting illustrates how party competition can foster
polarisation where its absence would result in fragmentation. Fig. 5.3 shows the
evolution of two simulation runs for §** = 0.195 and party configuration pP, with
results laid out in analogy to those in Fig. 5.2 and using the same seed of the random
number generator as well. In the top row, we again see the evolution of the model

8Note that cluster sizes do not sum up to N as some agents are scattered into groups smaller than 0.5%
of the population and therefore not counted as clusters.

?Note that parties” promotion of the second dimension w,_; is redundant, as ) ;w; = 1, i.e. wy =
1-—- w1.
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FIGURE 5.2: Simulation run for a fostering—polarisation party configuration (p) in
the regime where party competition fosters polarisation while the population would
arrive at consensus in its absence, with 6* = 0.22. The first two rows show the initial
conditions (left column), a middle snapshot of the simulation (middle column), and
the stationary outcome (right column) for runs without (top row) and with (middle
row) party competition. Coloured crosses indicate parties” opinions and the shown
area covers the whole opinion space O. In the right column, opinions are coloured by
the cluster they belong to, while legends show cluster sizes. The bottom row shows
the evolution of each party’s expected vote share (left), dispersion in citizens’ opinion
(middle), and parties” promotion of dimension d = 1 (right).
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FIGURE 5.3: Simulation run for a fostering—polarisation party configuration (p”) in
the regime where party competition fosters polarisation while the population would
arrive at fragmentation in its absence, with §** = 0.195. The first two rows show the
initial conditions (left column), a middle snapshot of the simulation (middle column),
and the stationary outcome (right column) for runs without (top row) and with (mid-
dle row) party competition. Coloured crosses indicate parties” opinions and the shown
area covers the whole opinion space O. In the right column, opinions are coloured by
the cluster they belong to, while legends show cluster sizes. The bottom row shows
the evolution of each party’s expected vote share (left), dispersion in citizens” opinion
(middle), and parties” promotion of dimension d = 1 (right).

without party competition. However, we can see for this smaller tolerance threshold
6** that opinions gather more at the corners of the cross, leaving a wider gap in the
centre (top—middle panel). This in turn results in the four corners developing into its
own clusters, leading to fragmentation (top-right panel). The inclusion of party
configuration p” leads to a very similar outcome than in Fig. 5.2, arriving at a state of
polarisation (middle row). The evolution of the different metrics over time for this

setting (bottom row) is also very similar to the case of Fig. 5.2 with §* = 0.22.
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FIGURE 5.4: Simulation run for a fostering—consensus party configuration (p©) in the
regime where party competition fosters consensus while the population would arrive
at fragmentation in its absence, with §*** = 0.195. The first row shows the initial
conditions (left column), a middle snapshot of the simulation (middle column), and
the stationary outcome (right column) for runs without (top row) and with (middle
row) party competition. Coloured crosses indicate parties’ opinions and the shown
area covers the whole opinion space O. In the top-right panel, opinions are coloured
by the cluster they belong to, while legends show cluster sizes. The bottom row shows
the evolution of each party’s expected vote share (left), dispersion in citizens” opinion
(middle), and parties” promotion of dimension d = 1 (right).

The third simulation setting illustrates how party competition can foster consensus
where its absence would result in polarisation or fragmentation, as shown in Fig. 5.4,
with §*** = 0.195, party configuration pC, and same seed of the random number
generator as in Figs. 5.2 and 5.4. As we have selected *** = §***, we omit the row
showing the simulation when there is no party competition, which can be seen at the
top row of Fig. 5.3. The inclusion of party configuration p¢ (middle row) now first
drives the population into two clusters (central panel) which then join into a single big
cluster corresponding to a state of consensus. The evolution of party saliency in this
setting present a characteristic shift in saliency promotion at around t ~ 40T
(bottom-right panel) and can explain the big difference in effect on the outcomes.
Since dimension d = 1 was overall favoured before the shift, two clusters along that
dimension formed (see the central panel). However, dimension d = 2 becomes
predominantly promoted after the shift, and most citizens have very similar opinions

in this dimension, so the two clusters join, leading to consensus of the population.

Last, we show a simulation setting in which party competition does not affect the
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FIGURE 5.5: Simulation run for a party configuration p" with no effect in the opin-
ion dynamics for 6 = 0.195. The first row shows the initial conditions (left column),
a middle snapshot of the simulation (middle column), and the stationary outcome
(right column) for runs without (top row) and with (middle row) party competition.
Coloured crosses indicate parties” opinions and the shown area covers the whole opin-
ion space O. In the top-right panel, opinions are coloured by the cluster they belong
to, while legends show cluster sizes. The bottom row shows the evolution of each
party’s expected vote share (left), dispersion in citizens’ opinion (middle), and parties’
promotion of dimension d = 1 (right).

opinion dynamics, shown in Fig. 5.5, with § = §** = 0.195, party configuration pN,
and same seed of the random number generator as in Figs. 5.2, 5.4, and 5.3. We omit
again the simulation run without party competition, shown at the top row of Fig. 5.3,
where the evolution of citizen opinions is identical as when including party
configuration pN (middle row of Fig. 5.5). Regarding the evolution of party saliency in
this setting (bottom-right panel), we note a full promotion of each dimension by two
parties from the beginning of the simulation, while the third party promotes both
dimensions almost equally for the whole simulation. Therefore, the aggregated
saliency results in citizens perceiving both dimensions equally, which is an identical

setting to when there is no party competition.

From these single simulation runs, we have drawn a set of hypotheses linking the
different effects that party competition may have on opinion dynamics to the
combined behaviours of parties in saliency promotion. The promotion of polarisation
is hypothesised to be caused by a strong imbalance in saliency promotion that reduces
the dimensionality of the opinion space and that remains unchanged for the whole

simulation time. In contrast the promotion of consensus is a result of an interplay of
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FIGURE 5.6: a Dependence of the effective number of clusters ¢ on the BC toler-

ance threshold J for a fostering—consensus party configuration (green), a fostering—

polarisation party configuration (blue), or without party competition (green). b De-

pendence of the average number of saliency changes (0y) over parties and simulation

runs for the same experiments. Error bars represent the standard deviation over 30
simulation runs.

the opinion and party dynamics characterised by shifts in the saliency promotion
behaviour, which in turn serves to aggregate citizen opinions in the two dimensions
one at a time, i.e. is a result of the adaptive behaviour of the external controllers
reacting to the dynamics of the opinions. Last, a symmetry in the saliency promotion
attempts cancels out their aggregated effect, resulting in no effect in the dynamics of

citizen opinions.

While the particular simulations shown above allow us to understand the different
effects that party competition emerging from the proposed model, the analysis is
restricted to single runs. One may wonder how robust the observed effects are with
respect to the stochasticity of the model. To verify the generalisation of the hypothesis
regarding the behaviours in saliency promotion, we extend the analysis to other
values of  and calculate averages over multiple runs of the opinion dynamics.

Fig. 5.6b illustrates the dependence of the mean effective number of clusters ¢ on the
tolerance threshold ¢ for the party configurations explored above. The figure shows
that the number of changes remains consistent along the phases of Fig. 5.6a. Indeed,
the polarising behaviour from Fig. 5.2 corresponds to zero changes in the direction of
saliency updates (blue line). In contrast, undergoing two or more changes in direction

of saliency update (green line) results in consensus promotion.

5.6 Party configurations that promote consensus or

polarisation

Above, we have seen how the party behaviour can affect opinion dynamics and the
outcome of the consensus—forming process. Here, we look one step further by
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inspecting how the characteristics of the party configuration are linked to the different
party behaviours in saliency promotion that in turn affect opinion dynamics. To
investigate the link, we take the 500 party configurations generated in the experiments
of Sect. 5.4 and label them according to whether the effect they have in the opinion
dynamics: ‘fostering polarisation” (351 configurations), ‘fostering consensus’ (86
configurations), or ‘no effect’ (63 configurations). We then run a decision tree
algorithm to classify them based on the party system features and inspect the decision

rules generated by the trees.

The resulting tree has an accuracy of 56.1%. To find where the decision tree
misperformed, we can inspect the confusion matrix that compares how the classes that
model predicted only from the features of the party system relate to the real classes
resulting from the simulations (Fig. 5.7a). The confusion matrix shows that when the
model uses the features to predict a fostering of polarisation, these are indeed party
configurations that foster polarisation (in around 90% of the cases). Therefore, the rule
dictating that the centre of mass of the triangle must have a distance to the centre of
the space smaller than 0.405 (left-most box of Fig. 5.7b), is able alone to identify
configurations that foster polarisation with a high precision. A further second rule
dictating that the two smaller angles of the triangle should be smaller than 41.3° (i.e.
the largest angle is larger than 97.4°), favouring obtuse—angled triangles.

On the contrary, as the decision tree tends to misclassify fostering consensus or not
affecting the opinion dynamics, giving these labels more often that not to party
configurations whose effects differ (left and middle columns of Fig. 5.7a). Therefore,
the rules to identify these effects should be disregarded as not informative (upper
branch of the tree in Fig. 5.7)

We can conclude that party systems (of three parties) that are well centred around the
space and that form an obtuse-angled triangle tend to foster polarisation. This
distribution seems to generate an imbalance of saliency promotion, with two of the
three parties promoting one of the dimensions and maintaining this behaviour

throughout the whole process.

5.7 Extending to other numbers of parties

Experiments so far have only covered the specific case of K = 3 parties, where party
competition mostly has a fostering—polarisation effect, along a significant percentage
of configurations fostering consensus or without having effect on the opnion
dynamics. In this section, we explore party systems with a range of other numbers K
of parties, from K = 2 to K = 7. For each K, we randomly sample 500 party
configurations and find the location of the two phase transitions 4.1 2 and ép.2-52+ (as

in Sect. 5.4) and classify their effect in opinion dynamics according to J¢.1-,2, with a



5.7.  Extending to other numbers of parties 99

Confusion Matrix

consensus
'

35 44 7
>
® t
g S- 7 40 16
<
c
°
®
2 45 81 225
]
°
a
l i
consensus no party polarisation

Predicted

samples = 17
value = [0.257, 0. 458 0 285]

class = no party

distance to bound 0 <= 0.533 angle parties 1-2 <= 114.607
samples = 50.4% samples = 32.6%
True | value = [0.454, 0.369, 0.177] value = [0.535, 0.332, 0.133]

samples = 10.6%
value = [0.542, 0.148, 0.31]
class = consensus

samples =
value = [0.457, O 463 0 08]
class = no party

centre of mass <= 0.405
samples = 100.0%

value = [0.333, 0.333, 0.333]

class = consensus

angle parties 1-2 <= 160.434
samples = 22.0%
value = [0.533, 0.385, 0.082]

class = consensus

class = consensus

class = consensus

tri anglesl <= 41 343

samples =
value = [0.717, 0. 196 0.088]
class = consensus

samples = 21.4%
value = [0.173, 0.27, 0.557]
class = polarisation

class = polarisation

samples = 28.2%

value [8 0, 0.251, 0.749]
class = polarisation

FIGURE 5.7: a Confusion matrix of the decision tree comparing showing the combina-
tions of predicted effects (columns) and actual effects (row) of party configurations in
the opinion dynamics. b Decision tree structure. The top line of each branching box
shows the decision rule for branching, with the outgoing top branch corresponding to
the condition satisfied and the outgoing bottom branch otherwise. Shown significant
features are the distance of the centre of mass to the centre of the space (‘centre of mass’),
the amplitude of the second smaller angle (‘tri_angles1’), the distance to the boundary
of the space by the closest party to it (‘distance to bound 0’), and the second smallest an-
gle between two parties if in polar coordinates (‘angle between parties 1-2"). Other lines
in each box contain the percentage of party configurations within the group (‘samples’),
the weighted fraction of each class within the group (in the following order: consensus,
no change, polarisation), and the predominant class in the group (class). The total tree
accuracy is 56.1% out of 500 samples.

value of J¢.1 52 < 0.2 implying a fostering—consensus effect, J4.1,2 > 0.205 a
fostering—polarisation effect, and dy.1 2 = 0.2025 no effect in the opinion dynamics.
Phase diagrams for each K can be found in Appendix C.2.

Figure 5.8 shows how the presence of these three outcomes varies with the number of
parties K present in the political system. We note that polarisation (orange line) is the
most common outcome, happening more than 50% of the time and varying little with
K, except when K = 2. The case of K = 2 parties stands out for rarely affecting the
opinion dynamics (85% of the party configurations have no effect). This behaviour is
related to the mechanisms shown in Fig. 5.5, presenting a very balanced saliency
aggregation, which is a much easier outcome to achieve with the higher symmetrical
scenario of having two parties. Indeed, as party competition is a zero-sum game and

parties in our model having equal power to affect saliency it is usual that parties
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FIGURE 5.8: Proportion of party configurations producing each of the three possible
effects: no effect on the opinion dynamics (blue), fostering consensus (green), and
fostering polarisation (orange).

support different dimensions. This effect is repeated in a weakened form when K = 4
(28% of the time), as again parties may split in a symmetrical 2-vs-2 behaviour,
although the presence of more parties renders this outcome more unlikely (around
16% of the time). Remarkably, outcomes of consensus promotion (in red) have a very

mild presence (around 6%), only modestly more significant for K = 3 (17%).

5.8 Including social network structure

All experiments above assume that citizens can communicate with any other citizen
indistinctly, an particularly unrealistic assumption when considering large
populations, as there are clear limits in how many different others an individual can
interact with (Tamarit et al., 2018). In this section, we explore a more realistic scenario
in which citizens are embedded in a social network and only interact with a small set
of close connections (‘neighbours” in the graph terminology) and how this sparser
social network structure affects the opinion dynamics and the effects that party
competition has on them. As a network architecture, we use Erdos—Renyi random
networks, which are commonly used in agent-based models of opinion dynamics
(Amblard et al., 2015), and which can substantially increase the sparsity of the
connections while keeping a similar overall structure than the complete network
(Newman, 2003). We build the network as to produce an expected node degree of

(d) = 10, which is a realistic connection pattern in real-world scenarios.

Figure 5.9a shows the dependence of outcomes on the tolerance threshold ¢ for three
cases: one without party competition, one with a party configuration that fostered
consensus in the all-to-all case, and one which fostered polarisation in the all-to-all
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FIGURE 5.9: a Dependence of the effective number of clusters ¢ on the BC toler-
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pendence of the average number of saliency changes (0y) over parties and simulation

runs for the same experiments. Error bars represent the standard deviation over 10
simulation runs.

case. The first finding that stands out is a general shift of all phase transitions to lower
values of tolerance threshold §, implying that consensus can be achieved with lower
values of the tolerance threshold. For instance, when there is no party competition
(pink), the transition from consensus to fragmentation is at 641 ;2 = 0.1625, while it
was at dp:1 52 = 0.2025 in the all-to-all scenario. Similar shifts in the tolerance
threshold are apparent for the two party configurations tested, although the inclusion
of social network did not alter their effect of fostering consensus and polarisation,

respectively.

Figure 5.9b shows the average number of saliency changes per party and simulation
(%) for each of the two party configurations and for different values of . As in the
all-to-all case, the party configuration fostering consensus showcased various
changes in their saliency promotion strategies, while the party configuration fostering

polarisation remained static in its saliency strategy.

5.9 Discussion

In this chapter, we have studied the interrelated dynamics of party competition via
saliency adjustment and opinion dynamics in the form of a bounded-confidence
model, thus exploring the feedback dynamics of adaptive, external controllers and
opinion dynamics that act in similar time scales. In an exploration of different
parameter regimes, we have pointed to three possible effects that party competition
may have on consensus formation depending on the number of competing parties and
their configuration. The first effect refers to party competition fostering a polarised
state of the society. This outcome results from parties chiefly promoting the same
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political dimension for the whole opinion formation process, making the electorate
more divided along this dimension. In contrast, the second effect is the fostering of
consensus, which happens when parties alternate saliency promotion between
different political dimensions. Such behaviour initially creates division along one
political dimension, and then withdraws importance from it, allowing the clusters of
opinion to merge. Last, the third effect is a lack of effect, with parties saliency
promotion aggregating to a balanced saliency mix that is equivalent to the unaltered

state of the system.

The presence of these effects, however, is asymmetric and dependent on party
configuration and numbers. While the promotion of polarisation is consistent in most
studied cases, consensus fostering is a rarer effect, happening slightly more often
when K = 3 parties are competing. We found that a party configuration of three
parties whose centre of mass is near the centre of the opinion space is linked to a
fostering—polarisation effect, and even more if the triangle they form is obtuse—angled.
On the contrary, the presence of only K = 2 parties competing is particular in that it
has negligible effects on the opinion dynamics due to the symmetry of the scenario
that crates a zero-sum game that causes their actions to cancel out. This symmetry
effect is also seen at a much smaller scale when K = 4. An interesting modification
that would break this asymmetry and potentially arrive at other interesting
phenomena is changing the saliency aggregation function to possibly make a party’s
contribution to the total saliency proportional to their attained vote share, or to their

distance to the citizen’s opinion.

Embedding the population into a sparse social network has the effect of shifting the
phase transitions to lower values of the tolerance threshold implying that consensus is
more easily achieved with sparser social connections. This effect has also been
previously observed in 1D bounded—confidence models and it has been linked to the
presence of bridges that facilitate the interaction of clusters, in both uniform random
graphs and scale—free networks (Schawe et al., 2021). However, the introduction of a
social structure does not seem to alter the effects that party competition have in the

opinion dynamics once the shift to lower values of the threshold is accounted for.

There are many possible extensions to this work, as there are many ingredients in the
model that could be modified or further explored. We expose here a few of particular
interest. First, the examination of which features of the party system configuration are
responsible for each effect can be extended. Although decision trees are exceptional in
their interpretability, their approach is a greedy one — selecting one feature at a time
to compute each split — so their solutions are not necessarily optimal and are unable
to express concepts such as XOR (Krzywinski and Altman, 2017). However, maybe the
effects are better described by combinations of several features, which would require
more sophisticated approaches. Second, we have studied a scenario with only two

dimensions. The case of a three-dimensional opinion spaces is also worth exploring,
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as political spaces with three dimensions is also common among Western democracies
(Reiljan et al., 2020). Also, we have assumed static scenario, where the number of
parties and dimensions are fixed from the beginning of the simulation. However, it
would be interesting to explore the appearance of a new dimension or a new party
some time after the simulation has started, which is a scenario common in the
emergence of populist parties (Tavits, 2008). Last, the inclusion of turnout and
abstention in voting — when a citizen has no party near her in the opinion space —
would be of particular interest (Fowler and Smirnov, 2005), as well as allowing parties
to move their positions (with restrictions) in the opinion space (Fowler and Laver,
2008).

Furthermore, we have made a number of choices in the model with potentially strong
impacts on the results. For instance, we have assumed a 2-norm Euclidean metric as
the distance metric, while some other works in bounded-confidence models have
employed the 1- or the co- norms instead (Lorenz, 2008; Fortunato et al., 2005).
Likewise, we have assumed that all parties have equal power in affecting the
perceived saliency of the population and that their efforts are aggregated linearly,
which are both unrealistic assumptions. It would be particularly interesting to couple
the influence power of a party to its instantaneous vote share or to the distance in
opinion space to the citizens they are affecting. Additionally, other mechanisms of
update of party saliency can be explored, such as stochastic hill-climbing (Kollman
etal., 1992).
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Chapter 6
Summary and conclusions

This thesis has advanced the understanding of how external control interacts with
opinion dynamics under scenarios with multiple external controllers, developing and
analysing strategies of optimal targeting, and studying their interference with opinion
dynamics processes when they react adaptively. We have first studied the scenario of
external controllers as ‘perfect optimisers’ that attempt to promote one of two choices
in a social group embedded in a network of interactions. Under the assumptions that
controllers have full knowledge of the context, that they compete against an opponent,
and that they can spread their influence attempts continuously among the individuals
in the social group, we have developed a gradient-ascent algorithm that provides
optimal solutions to the influence maximisation problem of optimally distributing the
influence, with guarantees that a very good approximation of the optimal solution is
found in polynomial time. This is a major advantage over influence maximisation
when formulated with discrete influence targets — which is an NP-hard problem
(Kempe et al., 2003), and much research has focused on finding approximations that

obtain good enough solutions in reasonable time (Li et al., 2018).

More importantly, we have provided a detailed intuition on what aspects of the
influence strategies make them successful when facing an opponent, in scenarios with
different levels of power imbalance. We have used an analytical and numerical
exploration of the structure of optimal solutions and arrived at two heuristics that can
explain a big part of the observed optimal allocations. These heuristics — that we term
shadowing and shielding — correspond respectively to first- and further—order
reactions to the opponent’s behaviour — where order refers to the distance to the
nodes targeted by the opponent. Both heuristics depend greatly on the strategy of the
opponent and the ratio of influence budgets, and only marginally on structural
properties of the nodes, such as node degree. Notably, the shielding heuristic explains
well why nodes with a high degree tend to be good targets for influence maximisation,
as these nodes have higher chances of being neighbours of those targeted by the
opponent. Therefore, a basic degree-based heuristic (Dezs6é and Barabasi, 2002) would
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be sensible if the active controller does not have any information about the allocations
of the opponent, which goes in line with much of the previous literature. However, we
have also shown that shadowing and shielding only partly explain optimal allocations
in the classical approach with discrete allocations, where the degree-based heuristic
has a proper contribution on its own (i.e. beyond shielding) to optimal solutions. This
detailed analysis of the structure of optimal solutions is absent in most previous work,
which mainly focuses on developing algorithmic solutions to the problem (Li et al.,
2018; Kempe et al., 2003; Yadav et al., 2017; Lynn and Lee, 2018).

We have then studied an extension of the above scenario where the social group is
heterogeneous and individuals may be biased, i.e. they prefer one of the opinions,
which is adopted with higher probability (Masuda et al., 2010). We have extended the
question of optimal targetting to this context and studied when it is strategically
optimal to target the biased agents or the unbiased ones. By adapting the
gradient—ascent algorithm to this scenario, we have been able to analyse its optimal
solutions and showed that targeting individuals biased against the external controller
is only optimal if the controller has an advantageous position of high influence budget
(and higher than the opponent) or an aggregate bias of the social group favouring her
target opinion; while if in a disadvantageous position optimal strategies target
individuals “on her side”, i.e. biased against the opposing opinion. Furthermore,
optimal controllers with large budgets allocate more influence to high—degree nodes
(hubs) while preferring low—degree nodes (periphery) when the available budget is

small, creating an interplay between node degree and the level of bias.

Last, to cover different context and assumptions of external control, we have shifted
the focus to controllers as ‘imperfect optimisers’, i.e. having limited information about
the social dynamics, its structure, or the strategy of the opponents, so that they can
only react optimally to the instant state of the system in a form of adaptive control.
More specifically, we have drawn inspiration from the context of political parties that
campaign for votes while the population of citizens follows a consensus—formation
process, where opinions are placed in a multidimensional political space, and with
both dynamics occurring at similar time scales. We have studied the effects that these
adaptive controllers may induce on the dynamics of the population when myopically
seeking votes, and found that their interference can foster polarisation of opinions,
although, surprisingly, they can also have the opposite effect and assist in the arrival
at a consensus. The effect produced depends on the configuration of the party system,
such as the number of parties and their spatial distribution, with the promotion of
polarisation being a much more prevalent and consistent outcome than of consensus.
When the party system involves three parties, the promotion of consensus is more
likely when they are well centred in the political space and form an obtuse-angled
triangle. If the population is embedded in a sparse, random social network, it is more
prone to reach a consensus state, but the effects that party competition has on this
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process remain qualitatively similar than in the scenario where any citizen can interact
with any other. The role of external controllers affecting the importance of different
opinion dimensions when perceiving distances has not previously been studied,
which has a relevant role in the political realm in the context of voting (Dragu and
Fan, 2016; Feld et al., 2014; De Sio and Weber, 2014; Amorés and Puy, 2010). We
provide the first account of this setting and its relation to consensus processes.

In summary, we have studied external control in a series of scenarios and assumptions
to better understand its optimality and effects on opinion dynamics processes and in
the presence of multiple controllers. Our findings provide tools to obtain optimal
targetting strategies, as well as intuition on how these look like in the form of
heuristics. These heuristics not only serve as shortcuts to arrive at good enough
solutions, but they can also be templates that facilitates comparison of optimal
strategies to other scenarios and model assumptions. The tools and findings provided
can be applied to diverse contexts, such as policy making, political scenarios,
marketing, or technological promotion and epidemic control, where they can be useful
to bring particular states to social groups, combat an opponent doing so, gain insight
on how to prevent external influence to be effective, or be aware of the side effects that

external control may have in the opinion dynamics.

6.1 Critical evaluation and future work

Although significant, our contribution is a small drop in the face of the challenges that
the study of external control brings. This is because it is an incredibly complex
phenomenon for which there are clear limits in the access to information on its
working — opinions are not easy to conceptualise and measure, and particularly more
during the longer period of times required to probe their evolution and at the same
time as the trace of interactions — as well as from the external controllers — they tend
to be rather secretive and avoid reporting their strategies and their findings.
Furthermore, it the phenomenon studied calls for a highly multi-disciplinary
approach, as it requires understanding of phenomena at different levels: cognitive
processes that trigger when adopting new opinions (cognitive science), patterns of
interactions in populations (social sciences), how external controllers operate
(marketing and political science), how micro-behaviours can result in emerging
phenomena (complex systems), optimisation tools to find best strategies (computer
science), and how competing agents arrive at a joint optimal strategy (game theory).
This thesis is mostly based on research and tools from computer science and complex
systems, while drawing insights from the previous ones. However, fully
understanding the problems from all the perspectives is outside the scope of this
thesis, and can be better approach with a multi-disciplinary team, which may be able
to go beyond some of the limitations of this work, which are listed in the following.
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First, we have attempted to cover different assumptions and scenarios, while at the
same time we attempted to keep them as abstract as possible with the aim to preserve
the generality of the methods and findings and their applicability. However, this
generality risks blurring the link to real applications. Therefore, it would be important
to probe the validity of the findings by linking them to specific instances of external
control cases for which data is available. This can include e.g. cases of elections, for
which there is data about the campaigns in the media and polls regarding the voters’
preferences (Moya et al., 2017; Sobkowicz, 2016).

Related to the previous concern, the choices taken to model the opinion dynamics
processes may have fundamental effects in the behaviours emerging (Sobkowicz,
2015; Flache et al., 2017). Models are only useful if they are simple yet credible, and
convey the fundamental mechanisms responsible for the research phenomenon
studied. Striking this balance requires expertise and insights from application domain
(Mueller and Tan, 2018; Schweighofer et al., 2020b). In this work, we have spared
ourselves such a challenge by relying on widely accepted and studied models from
the opinion dynamics field. We have chosen two paradigmatic models from the
discrete and continuous opinion families — the voter model and the
bounded-confidence model, respectively. However, other suitable models could also
include further mechanisms, and it may be important to account for them. One of
such mechanisms is complex contagion (Alshamsi et al., 2018b). by which the
probability of adopting an opinion behaves non-linearly on the number of neighbours
holding it, a property that is held by models such as the majority rule (Galam and
Jacobs, 2007; Nguyen et al., 2020), the g-voter model (Castellano et al., 2009b), or the
Glauber dynamics of the Ising model (Ising, 1925). It would be interesting to

investigate whether our findings hold under this family of opinion dynamics models.

Furthermore, we have employed a variety of complex network topologies that are
commonly used in the study of social phenomena and that reproduce some of the
known characteristics of real social networks (Newman, 2003; Amblard et al., 2015).
However, richer representations of the social interactions could be employed. For
instance, the experiments and findings could be expanded to directed networks with
asymmetric effects in opinion interactions, multi-layer networks that convey parallel
interactions of different nature, higher—order networks that capture interactions
involving multiple individuals, temporal networks where interactions are time
stamped, or dynamical network with an evolving architecture. Although we do not
expect our findings to change much under these scenarios, they should be tested and
differences in findings accounted for.

Further limitations of the current work come from other assumptions in the studied
scenarios. For instance, in the first scenario we have assumed that optimisers are
‘perfect’, i.e. they have full information of the social structure and the opinion
dynamics. Although this is useful in that it has been used to derive heuristics that do
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not need full information to generate optimal strategies, scenarios with partial
information would deserve further study (Cai et al., 2022). A second assumption
relates to the aim of the perfect optimisers to maximise their influence in the long—run
(or any time scale larger than that of the opinion dynamics) while in many situations
they are constrained by a very limited time frame in which the need to achieve their
goals (Brede et al., 2019a). Such scenario introduces additional complexities in the
computation of an optimal strategy (Cai et al., 2021), although in the limit of very
short time horizons the scenario may be similar to that of adaptive controllers studied
in the thesis.

Regarding the research problem, other interesting questions could be approached
using the models and tools developed here. One important question is how can social
dynamics be modified to make the social group more resilient to external control. This
can be approach by examining which topological features of a social network — such
as degree heterogeneity, degree assortativity, or community structure — facilitates or
hinder the controllability of the social group, or how modification in the patterns of
interactions or in the rules of the dynamics can achieve similar goals (Lorenz and
Urbig, 2007; Li et al., 2020). A related problem with similar modelling requirements is
that of sensing enhancement, by which the social group aims to follow an external signal
(the ‘truth’) and alters its patterns of interaction with respect to the external signal to

collectively become robust to errors in its perception (Brede and Romero-Moreno,
2022)

In conclusion, opinion dynamics and its derivations is still an area of research that
offers much space for exploration, while highly relevant in the wake of recent social
phenomena. Indeed, the research field is currently highly active and progressively
enriching from the collaboration of various disciplines, bridging the gaps from the
social and psychological sciences (Sobkowicz, 2015; Mueller and Tan, 2018;
Schweighofer et al., 2020b). Linking the profusion of studies in models of opinion
dynamics to specific and real scenarios would further benefit the understanding of the
behaviour of external control in social groups. Furthermore, as data about social
interactions is produced at higher rates and quantities, its availability may facilitate
the task of model validation and the use of data—driven approaches. Therefore,

research in the field can be expected to grow in quantity and quality in the near future.
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Appendix A

Appendix to Chapter 3

A.1 Testing the HMF approximation

In the following, we consider random networks with bimodal degree distribution as a
simple class of leader—follower type networks. Leader—follower topologies are
frequently found on different social formations, such as social media (Rathnayake and
Suthers, 2016) or corporate hierarchies (Tichy et al., 1979). We employ synthetic
random networks that contain nodes with only two possible degrees: d; (followers)
and dy > d (leaders), whose proportions are denoted by p and 1 — p, respectively.
Varying the values of d; and d; allows us to control the connectivity and heterogeneity
of the resulting networks. We also introduce influence allocation variables, « € [0, 1]
for the A- and B-controller, respectively, that reflect the percentage of the budget
allocated to low-degree nodes, with 1 — a and 1 — B corresponding to the percentage
of the budget that each controller allocates to nodes with high degrees. We further
assume that controllers target nodes of the same group with equal strength, with
allocations of the A-controller to nodes of each group corresponding to w,; = aB,;/p
and wg, = (1 —a)B,/(1 — p), and analogous formulations for the B-controller with B.
From (3.8), the HMF approximation for the vote share in this class of networks can be

computed as

xHMF _ pd + (1—p)d; % P Wady (1—p)wadz \ |
ditwntwy | datwe+wp ditwatwyy | datwetwy (A1)
> p@atwp)dr | (1-p)(we+wy)ds -1 + PWa1 (1-p)wa )
d1+wa +wy dy+wa+wyy ditwatwy | dtwetwyy )

In this reduced setting, the controller has a single degree of freedom, «, and needs to
solve dX™™F /9a = 0. The solution to this high-order polynomial, a*, can be found via

numerical methods.

To validate the accuracy of the approximation, we compare the vote shares obtained

via (A.1) to exact results calculated directly from (3.2) on leader—follower networks.
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FIGURE A.1: Errors in vote share of the HMF approximation with respect to the exact
solution on leader—follower networks with fixed low degree d; = 2, and varying mean
({(d)) and high (d;) degrees. Budgets are the same for both controllers and equal to
N(d) /3. Error bars correspond to the standard deviation of errors across 15 randomly
generated networks of size N = 1000. In panel (a), the A-controller only targets high—
degree nodes, while the B-controller only targets low—-degree nodes. In panel (b), link
weights from the A-controller to high—degree nodes are 33% less strong than weights
given if allocations were uniformly distributed. Similarly, low degree nodes receive
from the B-controller 67% of the strength they would receive if allocations were uni-
form across all nodes.

Random networks of size N = 1000 are sampled from configuration models (Bayati

et al., 2010) that enforce pN nodes to have degree d; and (1 — p) N nodes to have
degree d,. To preserve the degree of connectivity across different networks while
varying the degree heterogeneity, we fix an average degree (d) = pd; + (1 — p)d, and
make joint changes in p and d». We consider controllers that target all nodes from each
group with equal allocation. Due to general symmetries, only two dynamic degrees of
freedom remain in the system, x;—4, and x;—4, (x1 and x; from now on).

To reduce the exploration space, we assume that both controllers have equal budgets
B, = By and —to create some asymmetry— we assume they target high— and
low—degree nodes differently. Specifically, the A-controller targets low—degree nodes
with higher strength than high—degree nodes (« > p), and the B-controller targets
high—degree nodes more strongly than low—degree nodes (8 < p).

Figure A.1 compares mean—field vote shares XHMF gbtained via (A.1) to the exact
solution obtained from solving (3.2). Experiments are performed with low—-degree
di; = 2, budgets B = N(d) /3, and different combinations of high degree d,, average
degree (d), and budget allocations «, B. As it can be seen in Fig. A.1a, errors in the
HMEF approximation increase as (d) decreases —i.e. the sparser networks are. While
the highest error for (d) = 2.5 reaches a magnitude of 0.05 in vote share, errors drop
below 0.02 in vote share for (d) = 4 and are under 10~3 for mean degrees larger than
(d) = 7. When comparing experiments with the same (d) (across the same line), we
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observe that the approximation has higher accuracy for networks with lower levels of
heterogeneity (low d), with errors becoming negligible as d, approaches (d).

While in Fig. A.1a the A-controller focuses all its weight on low—degree nodes and the
B-controller exclusively focuses on high-degree nodes, in Fig. A.1b we explore a more
balanced budget allocation, with /p = (1 —«)/(1 — p) = 0.67. This more nuanced
setting qualitatively preserves the effects that (d) and d, have on errors, but improves
the approximation accuracy in all scenarios, drawing down the maximum error of

(d) = 2.5 to around 0.007 in vote share, and the error of higher values of (d) to around
0.002 vote share and below.

Results from these experiments demonstrate that errors of the HMF approximation on
leader—follower networks stay below 0.02 vote share for networks with (d) > 4, while
they can be O(10~3) when controllers do not concentrate all their budget on a subset
of nodes in the network. Although not shown in the figures, changing other
parameters (e.g. increasing dy, or B, and B},) can bring the upper bound of errors
further down by one order of magnitude.

A.2 Testing the GA algorithm for IM

In this section, we first present a single run of the GA algorithm on a leader—follower
network and compare its optimal allocations to analytical solutions obtained from the
HMF approximation. We will be using X“* and X" to refer to exact vote shares
(obtained via (3.2)) when the A-controller uses optimal allocations obtained
analytically (X2"?) or via gradient-ascent (X54).

Figure A.2 shows different aspects of a sample run of the gradient ascent algorithm.
Figure A.2a gives the vote share increase through the iterations of the run. At the first
iteration, the A-controller starts distributing the budget equally among all nodes. The
difference in resulting vote share between this initial strategy, with X§* = 0.2355, and
the final strategy found by the GA, with X¢4 = 0.2502, accounts for

XCA — X§A = 0.0148. We also find that the exact vote share of the optimal allocation
given by the analytical solution, X*"* = 0.2501, is almost identical to the GA solution,
XGA = 0.2502, and one order of magnitude lower than errors in vote share of the HMF
approximation: |X*"® — X8 | = 0.0022. Fig. A.2b shows the optimal allocation found
by the algorithm for every single node. Nodes with identical degrees receive similar
allocations, which is in good agreement with the assumption of uniform spreading
across nodes of the same group, although small fluctuations resulting from different
topological positions of the nodes in the network can be noted. Fig. A.2c illustrates the
working of the gradient ascent algorithm. The axes of this sub-figure represent the
average influence allocation to low (d1) and high (d>) degree nodes. The green line
gives the N-simplex constraint. Blue points represent the steps taken by the GA
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FIGURE A.2: (a) Improvements in vote share throughout the iterations (on log scale),

(b) resulting individual node allocations and (c) gradient steps of a single sample run

of the gradient ascent algorithm. This sample run is performed on a network of size

N = 200, fraction of low-degree nodes p = 0.5, low degree d; =2, high degree d, =6,

budgets B, = 1 and B;, = 4, allocation to low—degree nodes by the B-controller 8 =

0.8, and step size of the GA pu = 3. The solid green line in (b) indicates the optimal
allocation from the analytical solution.

algorithm and orange points give the projections back onto the simplex, with
projecting lines in red. The final fraction of the budget allocated to low—degree nodes
by the GA algorithm, aga = 0.0988, barely differs from that given to low degree nodes
by the analytical solution, x;n, = 0.0977.

Figure A.3 compares analytical and GA optimal allocations for networks with bimodal
degree distribution with varying network parameters (d) and d,. Based on the
approximation errors shown in Sec. A.1, the network characteristics have been chosen
for low errors of the approximation, thus ensuring accurate analytical solutions to
optimal allocations. Figure A.3a illustrates the gain in vote share when using the GA
solutions as compared to analytical solutions, i.e. X®A — X, Differences are of the

order of 10~ or less (for less sparse networks). Panel (b) of the same figure shows
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FIGURE A.3: (a) Differences in resulting vote share between analytical and numerical

solutions, and (b) errors of the HMF estimation of the vote share in the analytical solu-

tion, and their dependence on degree heterogeneity (measured by d) and connectivity

(measured by (d)). Points represent averages over 15 randomly generated networks of

size N = 1000 and error bars give standard deviations. Other parameters correspond
tod, =3, B, = B, =2N(d)/3,and B/p = 0.5.

errors in vote share of the HMF estimation for the analytical solutions employed in
panel (a). Errors are of the order of 1073 and behave as expected from the results in
Sec. A.1. Solutions of optimal influence allocations determined by the two methods
are in very good agreement in most scenarios, with differences of the order of 10~*
even when errors of the HMF approximation are of the order of 10-3. However, the
GA algorithm achieves a slightly better performance than the approximation in all
cases. This can be explained by the capability of the GA algorithm to take into account
each node’s specific topological position, while the HMF approximation only works

with average properties of nodes of the same degree.

A.3 Details of the network employed

For all experiments in the main manuscript, we have used an email interaction
network (Guimera et al., 2003) as an example of a common topology found in social
networks. This heterogeneous network is unweighted and undirected, with a unique
component of size N = 1133, mean degree (d) = 9.62, and degree assortativity

6 = 0.078. Its degree distribution can be seen in Fig A.4. Experiments on other

network topologies are shown below.
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FIGURE A .4: Degree distribution of the studied network.

A4 Numerical experiments of shielding in various network

topologies

The idea behind shielding is that nodes that are direct neighbours of the nodes
targeted by the opponent should receive higher allocations than other nodes in the
network. The presence of shielding is then indicated by a strong dependence of
allocations to nodes on the distance to nodes targeted by the opponent. We analyse
here optimal allocations obtained numerically via gradient ascent on a variety of

complex networks and check the presence of this effect.

For these experiments, we employ networks of size N = 361 with the following
topologies: 2D lattices, small-world networks (Watts and Strogatz, 1998) (from a ring
with connectivity d = 4 and a rewiring probability p = 0.2), Barabasi-Albert (BA)
networks Barabési and Albert (1999) (with every new node wiring to m = 1 node),
and random regular graphs with degree d = 4. As an initial exploration, we set the
passive controller to spend the whole budget on a single node. This node corresponds
to the central position for the 2D grids, the highest degree node for BA networks, and
is randomly chosen for the other two network topologies.

Fig. A.5 shows average optimal allocations as a function of distance from the
B-targeted node, with the top row showing scenarios where the A-controller is in
budget disadvantage, while at budget advantage at the bottom row. A clear pattern
stands out in the figure. We observe a clear preference for control allocations to nodes
directly surrounding the B-targeted node (distance one), with allocation strengths
diminishing with the distance. This shielding strategy is found independent of
resource advantage or disadvantage and in all studied network topologies. Moreover,
we note that non-negligible control allocations tend to be also given to nodes very far
away from the B-targeted nodes —particularly visible in the case of 2D lattices—
reinforcing the idea that a spread of allocations through the whole network is always
beneficial.
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FIGURE A.5: Dependence of optimal allocations w,; on the distance to the node tar-

geted by the opponent when the opponent’s budget is four times higher (top row)

or half (bottom row) than that of the active controller, whose budget is fixed at

B, = 2N /3. Boxplots gather allocations for each distance and across 15 repetitions

of the experiments. Networks are of size N = 1089, and from left to right: 2D reg-

ular lattices, small-world networks (k = 4, p = 0.2), Barabasi-Albert (BA) networks
(m = 1) and random 4-regular graphs.

A.5 Analytical inspection of shielding

This section provides an analytical understanding of the shielding effects observed in
the numerical experiments of Sect. 3.6. For a basic model that can capture shielding
while at the same time being mathematically tractable, we neglect the effects of degree
heterogeneity and focus on regular random graphs; i.e. random graphs where all
nodes have the same degree d. To proceed, we consider a B-controller who targets
only a randomly selected fraction 0 < pg < 1 of the nodes in the network and with
uniform strength wy,; = B;,/ Npg. Below, we develop a mean-field approximation for
this scenario, evaluate its validity, and compare analytical solutions to IM obtained

from the approximation with numerical results obtained via gradient ascent.

A.5.1 Neighbour Mean-Field Approximation for K-Regular Graphs

Here, we recover the three disjoint groups related to shielding, S = {T}, N;, R}, that
were introduced in Sec. 3.3. Our mean-field approximation assumes that, irrespective
of exact topological positions, all nodes within the same group in S have identical
states, and nodes of different groups are connected at random. Note that the grouping
above includes nodes of distance two or higher into the same group R, so
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improvements of the method might be possible by distinguishing between second-
and higher—order neighbours.

The probabilities of adopting opinion A for the nodes of each group can be defined by
xp, XN, and xg, respectively, with their density in the network defined by pg, pn, and
PR, subject to pp + pn + pr = 1. Whereas pp is a given parameter, oy and pgr must be
derived from the network topology. For our assumption of random mixing of nodes
and random targeting by the controller, this calculation is simple. Nodes belonging to
R satisfy that (1) they are not targeted by the B-controller, which happens with
probability 1 — pp, and (2) none of their d neighbours is targeted by the B-controller

d+1

either, which happens with probability (1 — pp)¢. Consequently, pr = (1 — pp)“*! and

pn can be derived from the sum of probabilities to one: py = 1 — pp — pr.

To solve the influence maximization problem, the A-controller must decide how to
optimally split her budget among the groups via determining w,p, w,n, and w,r (i.e.
the allocation strength directed to each node in T, Nj, and R, respectively) subject to
the budget constraint w,g pp + wan PN + War pr < Ba/N. Using Eq. (3.2), we obtain
the mean—field vote shares for the groups as

d (vpjs *B + YN|B *N) + Wap

o= d+w.p + By/pB ’
d (’YB|N XB + YN|N XN + YR|N XR) + WaN

_ , A2
AN d+ w,Nn ( )
e — d (Yn|R ¥N + YRR XR) + WaR

R — d+ War 7

where vy x represents the probability for an edge to be attached to a node from group
Y while the other edge is attached to a node from group X. The calculation of this
probability is straight-forward for 7yp:

VBB = YB =B, YNp=1-p5B. (A.3)

At the other end, for 7y, the node at the other side of the edge will also belong to R if

none of its other d — 1 edges is linked to a node in T:

)d—l

YRR = (1—ps , TNR =1- (1- PB)d_1 . (A4)

Finally, for yy|y, the use of Bayes’ rule leads to

ven = YNpYB/IN = (1—pB)pB/ON,
YRN = INRIR/AN = [1—(1—pp)" ] pr/pN, (A.5)

NN = 1—7pN—TrRN -
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FIGURE A.6: Evaluation of the shielding mean-field approximation on 3-regular net-
works. Exact solutions and mean—field approximation of vote shares within the three
groups in S for an opponent that targets a varying fraction of nodes, pp, and hold-
ing a varying relative budget, B,/ B,. Points from the exact solution, xg, are averages
over 15 randomly generated networks of size N = 1000, with error bars correspond-
ing to the upper and lower mean absolute deviations of vote shares within the group.
Results from the mean-field approximation, x2, are given by dashed lines. The titles
show the derived fractions of neighbours of each group present in the network. The
budget for the active controller is B, = N /2.

Equation (A.2) can be made explicit via
x = [diag(d + w, + wy) —Td] " w,, (A.6)

where bold symbols are vectors y = [y yn yr]! and I is the matrix containing the
cross-probabilities between groups, I';; = (;;). Optimal allocations for the three
groups can then be found by differentiating the estimated total vote share, X™ = pTx,
with respect to the allocation parameters, w,, and equating to zero: Vy, xmf =0,
leading to a system of three non-linear, polynomial equations that can be solved

numerically.

To test the accuracy of the mean—field approximation, we compare predictions for
stationary vote shares for the three groups of nodes to exact analytical solutions based
on Eq. (3.2), for which we take the full network structure into account. To devise a set
of test scenarios, we assume that the B-controller distributes her resources equally
among different fractions pp of nodes of the network, while we spread allocations

from the A-controller uniformly across the network (i.e. w,; = B,/ N Vi).

Figure A.6 shows the differences in vote share between exact, xs, and approximate,
xM, estimations of vote shares for each of the three groups, and for scenarios with a
varying fraction of B-targeted nodes (pp) and B-controller’s budget (5;). As expected,
we generally observe a decline in vote shares with increasing B;,. Qualitative
dependencies are well captured by the mean-field approach. In more detail, the left
panel of Fig. A.6 shows the case of pp = 0.01, implying that roughly a fraction

pn = 0.03 of nodes are adjacent to them. We note that the mean vote share of nodes T
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and R is accurately estimated by the mean—field approximation (xglf ~ X, x}{‘f /A XR),
while the vote share of the nodes in Nj, is slightly overestimated over the whole range
of budgets (x@f > xy). In the middle panel, we set pp = 0.1, implying py = 0.24 and
pr = 0.66. For this scenario, mean—field results for all groups are in very good
agreement with numerical results. Last, as shown in the right hand panel of Fig. A.6,
we also consider pp = 0.3, py = 0.46, pr = 0.24. Mean—field estimates are again in

good agreement, but some slight systematic underestimation of x is observed.

In general, mean—field estimates for nodes in T}, prove highly accurate. This is
expected, as nodes in T, are heavily influenced by the B-controller and less susceptible
to network effects. The estimation errors for the other two groups are caused by two
different limitations of the approximations. The first limitation results from treating all
nodes in R as a uniform group, even though they have different distances to nodes in
N; and, consequently, different vote shares. This limitation is most prominent for low
densities of pp and we see its effects in Fig. A.6-left. Here, we observe an
over-estimation of xy, which is caused by an over-estimation of vote shares of second
neighbours of B-controlled nodes. The second limitation of our mean-field approach
is not subdividing nodes in N, into separate classes depending on exact numbers of
adjacent nodes in T, or R. However, as nodes in T}, are allocated randomly, nodes in
N;, may have different numbers of neighbours in T;. As a result, nodes in Nj, having
more neighbours in T}, than the average will have smaller probabilities of adopting A,
but at the same time, a lack of remaining connections to nodes in R implies that they
have a reduced impact on this last group. In contrast, nodes in N, with fewer
neighbours belonging to T;, than the average have higher probabilities to adopt A and
a larger impact on R. Hence, the mean-field approach underestimates vote shares of
nodes in R. This situation is particularly prominent when pj3 is relatively large, which
corresponds to the cases shown in Fig. A.6-right.

A.5.2 Analytical Results on Shielding and comparison to Numerical
Results

In this section, we compare optimal control allocations obtained numerically via
gradient ascent and optima calculated from mean-field estimates via solving

Vuw, X™f — 0, which allows us to re-assess the roles of shielding and shadowing. As in
the previous subsection, experiments are run on K-regular networks with a passive
opponent targeting a varying fraction of nodes pp and with varying relative budget
B/ B,.

Figure A.7 presents the optimal allocations given by both numerical and analytical
solutions (top row) and the intensity of shielding in the allocations (bottom row). In
the top row, we note a particular pattern in optimal allocations to nodes in Ty, (in blue):

allocations are roughly inversely proportional to the budget of the B-controller and
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FIGURE A.7: Dependence of optimal control allocation for the three groups in S (top)
and shielding strength (bottom) on relative budgets (B, /B,) for varying fractions of

B-targeted nodes (op) on 3-regular graphs. Analytical solutions correspond to w3g?

(dashed lines), and numerical solutions quSA (dots) are averaged over 15 randomly gen-

erated networks of size N = 1000, with vertical lines corresponding to the upper and

lower mean absolute deviations of allocations within a group. Titles of panels also

show the derived fractions of nodes in Nj (on) and nodes in R (pg). The active con-
troller has a fixed budget of B, = N/2

vanish at a point near budget equality. This finding relates again to the shadowing
behaviour already shown in Sect. 3.5. Regarding nodes in Nj, (in orange) and in R (in
red), we note that generally w,n > w,r, i.e. we establish the presence of a shielding

effect for all parameter settings.

In the scenario of pp = 0.01 (left), analytical solutions generally assign more budget to
nodes in N, than numerical solutions. This difference is likely due to the mean-field
approximation ignoring the role of second neighbours, while these nodes can be used
to produce a second barrier of shielding that protects further neighbours (as was seen
in Fig. A.5). The optimal allocations given by both methods match very well for

e = 0.1 (middle). For pp = 0.3 (right), the analytical allocations underestimate the
benefits of shielding. This can be an effect of the mean—field approximation not
differentiating between the number of neighbours from R that a node in N has; only
a subgroup of nodes in Nj, is in direct contact with any neighbours in R, and focusing
on those makes shielding more effective. For high values of the opponent’s budget,
there are nodes in Nj, in the numerical solutions that receive even less allocation than
nodes in R (panel bottom-right). These are those nodes in N, whose three neighbours
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belong to T}, (not shown), so resources allocated to them do not spread their impact to
other nodes and therefore have little effect. The intensity of shielding is higher the
lower the pp (panel bottom-left).

A.6 Dependence of optimal influence allocations in the

continuous regime on node degree

In this section, we directly show the relation between optimal allocations and node
degree in the continuous regime. Fig A.8a shows the dependence of optimal
allocations on the weighted degree of nodes for the reference case of K = 16 random
nodes targeted by the opponent. This scenario shows some degree of correlation
between optimal influence allocations and node degree (with a Kendall rank
coefficient of T = 0.37, as can be seen in Fig 3.6b). In contrast, Fig A.8b shows a similar
scenario, but with the passive opponent not choosing her targets randomly but only
targeting nodes whose neighbours have the lowest possible degree. We can see here
that correlations are not as evident; the Kendall rank coefficient is T = 0.05, as can be
seen in Fig 3.6c. For instance, nodes whose weighted degree is above d; = 40 receive
very little allocation, and nodes with degree two, three and four receive higher

i h ”

allocation than most nodes with higher degree.
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FIGURE A.8: Dependence of optimal influence allocations w,; in the continuous

regime on node degree d;. The passive controller targets K = 16 nodes in the network

a randomly chosen or b whose neighbours have the lowest possible degree. Error bars

represent standard errors of the mean (over all nodes with same degree). The total
budget of both controllers sums up to B, + B, = N(d)/30.

A.7 Shadowing, shielding and hub preferences in the discrete

regime

In this section, we investigate the role that shadowing, shielding and node degree
have in optimal allocations in the discrete regime against a passive controller who

targets random nodes. We illustrate our results through numerical experiments for
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which we set both controllers to target K nodes in the network and vary K and the
budget ratio r = B,/ By,

To test for the presence of shadowing, we measure the fraction p =P(i € T, | i € T})
of nodes targeted by the passive controller (T, = {i | wy; = g}) that are also targeted
by the active controller (T, = {i | w,; = g}). A strong presence of shadowing would be
indicated by high values of ¢, i.e. ¢ > 0.5. We take as a reference the fraction ¢r
obtained by an active controller who just targets random nodes in the network.
Results strongly depend on the budget ratio of both controllers, as shown in Fig A.9a.
For equal budgets (rhombi), the active controller targets around 20% of the nodes
targeted by the passive controller (¢ ~ 0.2) for most K. This is significantly different
from the random behaviour for K < 50, with ¢r ~ 0. So we can affirm that there is
some presence of shadowing in the equal budget scenario, albeit very weak (¢ = 0.2).
When in budget advantage (squares), shadowing is generally present with ¢ > 0.6 for
most K, so shielding is clearly present. In contrast, when in budget disadvantage
(circles) the controller completely avoids targeting the nodes targeted by the passive
controller, as ¢ ~ 0 for all K. In conclusion, we see that optimal first-order strategies
are qualitatively similar in the continuous and discrete regimes: with shadowing
when in budget advantage, avoidance when in budget disadvantage, and a weak

form of shadowing when in budget equality.
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FIGURE A.9: Amount of a shadowing, b shielding, and ¢ degree dependence present

in optimal discrete allocations for a range of numbers of nodes K targeted by either

controller and different budget ratios r = B,/ B;,. Error bars represent standard errors

over 15 instances of the experiments and the total budget of both controllers sums up
to B, -I—Bb = N<d>/30.

To test for the presence of shielding in the discrete regime, we measure the probability
IT that optimal allocations are directed towards neighbours of the nodes targeted by
the passive controller, i.e. we measure P(i € Ny, | i € (T, N —T,)). Shielding would be
evident with high values of I'l. Note that we decouple the effect of shadowing in the
probability by including the condition i € —T). Since shielding and node degree are
related insofar as nodes with high degree are more likely to be in Nj;, we compare the
results with what would be obtained by an active controller who targets the nodes
with the highest degree in the network, labelled as I'1y. Results are again found to
depend on the budget ratio r, as shown in Fig A.9b. When in budget equality (rhombi)
or superiority (squares), shielding-related probabilities IT steadily increase with K.
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However, these results are very similar to those obtained by the hub-targeting strategy
Iy so, inversely to what happens in the continuous regime, these values of I1T likely
are an artefact of a high-degree preference. Different to the other two scenarios, when
in budget disadvantage (circles) shielding-related probabilities are below IT < 0.4 and
largely unaffected by K. These low values of IT can be linked to an anti-shielding
behaviour, where neighbours of the nodes targeted by the opponent tend to be

avoided, as shown for the continuous regime (Fig 3.5b).

Last, we investigate the degree dependence of optimal allocations by looking at the
mean degree of nodes targeted by the active controller (d)r,. We normalise these
measurements via two reference strategies: targeting nodes with the highest (H) and
lowest (L) degrees in the network. These reference strategies serve as upper and lower
bounds on the obtainable average degree, respectively, with the normalised mean
degree as & = ((d)t1, — (d)r)/ ({d)g — (d)1). Based on the resulting J, as seen in

Fig A.9c, we make three different observations depending on the budget ratio
between controllers. First, when in budget equality (rhombi), the mean targeted degree
stays above 6 > 0.8 irrespective of K, so the optimal strategy is greatly focused on
targeting high-degree nodes. Second, when in budget disadvantage (circles), there is a
transition in §, as > 0.8 for K < 30 and ¢ < 0.5 for K > 100. This behaviour can be
interpreted as an effect of anti-shielding: when K is low, hubs are targeted often since
there is a preference towards hubs and they have low chances of belonging to Ny.
However, for large K, nodes with high degree almost surely belong to the group Ny,
which tend to be avoided, as seen in Fig A.9b. Last, when in budget advantage
(squares), mean targeted degrees are in the range § € (0.4,0.65) for all K. The lower ¢
as compared to the budget equality scenario is a result of the preference towards
high-degree nodes being partially discounted by the shadowing behaviour.

To summarise, we have seen the effect that the three proposed heuristics have in the
discrete regime. First, related to degree dependence, optimal strategies in the discrete
regime strongly favour targeting high-degree nodes in most scenarios. This preference
only gets discounted by shadowing when the active controller is in budget advantage,
and by anti-shielding when in budget disadvantage if controllers target many nodes
in the network. Second, the presence of first-order strategies is only significant when
in budget inequality, leading to shadowing when in budget advantage and to
avoidance when in budget disadvantage. Shielding is not present in any scenario of
the discrete regime, although anti-shielding is present when in budget disadvantage.

A.8 Extension to other network topologies

In this section, we have extended a selection of the experiments in Chapter 3 to other
complex network topologies. We have chosen two synthetic networks



A.8. Extension to other network topologies 125

—Barabasi—Albert networks (Dezs6 and Barabési, 2002) and scale-free networks built
via configuration models (Bayati et al., 2010) —and two real-world networks —a trust
network (Massa et al., 2009) and a friendship network (Mastrandrea et al., 2015).
Barabasi—Albert (BA) networks have been generated with each new node linking to
five previous nodes. The scale-free networks have been generated via the
configuration model (Molloy and Reed, 1995) with an exponent of v = 3 and setting
the minimum number of connections per node to five. These parameters have been
chosen experimentally in such a way as to generate networks with similar
connectivity level (d) as in the email interaction network from Chapter 3. Similarly,
networks have been generated with the same number of nodes as the e-mail
interaction network, namely N = 1133. Among the real-world networks, the online
social network data corresponds to a weighted trust network among the users from
the online social network Advogato (Massa et al., 2009; Rossi and Ahmed, 2015). The
other real-world network corresponds to a self-reported friendship network between
students in a high school in Marseilles, France, in December 2013 (Mastrandrea et al.,
2015). For both real-world network, we have employed the biggest component of the
network, ignored self-loops, and made the networks undirected. Table A.1 contains
summary statistics of all studied networks. Note that the Friendship network has a
stronger assortativity (0.26) than the other networks (< 0.1).

Network N  Mean degree Max degree Assortativity
Email interaction | 1133 9.62 71 0.078
Barabasi-Albert | 1133 9.96 129.2+43 —0.051 £0.003
Scale-free 1133 9.22£0.03 110.0£1.0 —0.043 £0.003
Advogato 5054 13.13 747 —0.095
Friendship 128 6.27 17 0.260

TABLE A.1: Statistics of the network employed on the main manuscript (Email inter-
action) and the networks employed here for the extension of experiments (Barabasi-
Albert, Scale-free, Advogato, and Friendship).

In more detail, we have repeated the experiments from Fig 3.1b —profile of optimal
allocations—, Fig 3.2b —performance enhancement of using continuous allocations
over discrete allocations—, Fig 3.5b —shadowing and shielding behaviours in the
continuous regime—, Fig 3.6b —correlations between allocation strength and node
degree—, and Fig 3.7—comparison of various heuristics to optimal allocations.

Fig A.10 shows the profile of optimal allocation distribution for each network
topology. These figures are analogous to Fig3.1b in the main manuscript. For the
real-world networks Advogato and Friendship, the number K of nodes targeted by
the opponent has been chosen as to preserve the percentage of nodes in the network
targeted. Optimal allocations for the five studied network topologies share a very
similar profile, with a smoother allocation profile visible for the Friendship network.
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FIGURE A.10: Distribution of optimal influence allocations for various network
topologies. Allocations are sorted in descending order and the passive controller dis-
cretely targets around 1.5% of the nodes in the network (i.e., a,b,c K =16, d K =71,
e K = 2), randomly chosen, and both controllers hold the same budget B = N(d;) /60.
Allocations are coloured by the allocation group in G they belong to.

Fig A.11 shows the percentage enhancement of control of continuous versus discrete
optimal allocations for all network topologies studied here. These figures are
analogous to Fig 3.2b in the main manuscript. The enhancement of control is generally
similar for the five studied network topologies. A stronger effect can be seen in the
Friendship network, where enhancement go up to 25% when budgets are equal and

the opponent targets only one node in the network.

Fig A.12 shows the average allocation strength given to nodes in the allocation groups
related shadowing and shielding, S = {T}, N}, R} for all network topologies studied.
These figures are analogous to Fig 3.5b in the main manuscript. Shadowing and
shielding generally have a similar effect in all of the studied networks, although
shadowing is more and less present in the Advogato and Friendship networks,

respectively. This effect could be related to the network size.

Fig A.13 compares the Kendall rank correlation coefficients T between allocation
strength w,; and node degree d; between optimal allocations (squares/triangles) and
allocations purely driven by a shielding heuristics (circles). These figures are
analogous to Fig 3.6b in the main manuscript. The five network topologies show very
similar behaviour regarding these correlations, both in optimal allocations and

shielding heuristics.
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FIGURE A.11: Percentage enhancement of control by optimal continuous allocations

over optimal discrete allocations for various network topologies, with varying K

(number of targeted nodes by discrete strategies) and budget ratios. Error bars rep-

resent standard errors over 15 experiment samples (5 in the case of d) and the total
budget of both controllers sums up to B, + B, = N(d) /30.

Last, Figs A.14 and A.15 explore the effectiveness of different heuristics as compared
to the optimised numerical results in the network topologies studied. The
performance of each heuristic is captured by the difference in vote share AX between
the heuristic and the numerically optimised numerical result. The smaller the gap in
obtainable vote share AX between a heuristic and the numerically determined
optimum, the stronger its contribution of the heuristic to optimal allocations. The
tigures illustrate results of the vote share gap for the five network topologies studied
here, for three budget scenarios (advantage, equality, and disadvantage), and against a
discrete passive controller who targets around 1.5% of the nodes in the network
randomly chosen. Note that we make a clear separation between the discrete (purple)
and continuous (orange) regimes and that their vote shares are compared to the
discrete or continuous optimal strategies, respectively. The details of the
implementation of each heuristic can be found in Sect. 3.3.3. These figures are
analogous to Fig 3.7 in the main manuscript. Heuristics perform very similarly on
four of the five network topologies in all scenarios. However, the network Friendship
from Fig A.15 shows a remarkably different behaviour in the discrete regime in that
the degree—dependent heuristic does not perform significantly better than the other

discrete heuristics.
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FIGURE A.12: Average optimal allocations given to groups related to shadowing and

shielding in various network topologies. Average allocations are normalised with re-

spect to the total average allocation (w,;) and both controllers hold equal budgets

B = N(d)/60.. Ty is the set of nodes targeted by the passive opponent, Ny, is the set

of nodes that are neighbours of the nodes in T}, and R comprises the remaining nodes

that do not belong to any of the other two groups. Error bars represent standard errors
over 15 experiment samples (5 in the case of d).

A.9 Proof of concavity

We want to prove that the goal function X = 1/N 17 (L + W, + W,)"'W,1 is concave
with respect to w, € RT. This is important as it guarantees that the gradient ascent
optimisation technique reaches the global maximum of the problem.

We note that our model can be mapped to that of Abebe et al. (2018), which considers
opinion dynamics with innate opinions s; € [0, 1] and different susceptability of
persuasion «; € [0, 1] for each node, given by

Lieng) Xj(f)
deg(i) '

where N(i) is the neighbourhood of node i and deg(i) is the degree of node i (d;). This

expression of the dynamics can be mapped to ours (Eq. 3.1 of the main manuscript) by

xi(t+1) = a;s; + (1 — ;) (A7)

applying the transformations s; = w,; / (w,; + wy;) and
a; = (wgi + wy;)/ (d; + Wi + wy;). Similar to our work, they maximise the vote share of

opinions in the equilibrium by optimally adjusting a; and prove the concavity of the
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FIGURE A.13: Kendall rank correlation coefficients T,,; between allocation strength
w,; and node degree d; in the continuous and discrete regimes and for various net-
work topologies. The active controller targets nodes optimally (squares) or following
a shielding strategy (circles). The passive controller targets random nodes in the net-
work and the total budget of both controllers sums up to B, + B, = N(d)/30. Error
bars represent standard errors over 15 experiment samples (5 in the case of d).

goal function, Z = 17[I — (I — A)P ]~ As, with respect to a;, where A is a diagonal

matrix with A;;

matrix with D;;

Z=1T[1-(I-

=111 —[I — (W, + Wy)(D + W, + W) ] DIW] 1D + W, + W,) ' W,1

AP 1As

(A9)

=1"(D+ W, + W, — W) 'W,1

=17(L+ W, + W) 'W,1

where we have used the following facts:

A=W, +W,)(D+W,+W,)},

ol =(0Q)™!

(provided both matrices are symmetric),

L=D-W.

(A11)

s =W,(W, + W) 11,

w;, P is the random walk matrix P = D~'W, and Dis a diagonal

d;. But Z is also equivalent to our vote share X, as

(A.10)

@3

'NX, (A8)

(A.9)

(A.10)

(A.11)
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FIGURE A.14: Comparison of various heuristics to optimal allocations. Bars repre-
sent the gap in vote share AX of the heuristics with respect to optimal numerical al-
locations for three different budget scenarios (as indicated on the top of the panels).
Each bar represents one of the following heuristics: random (rand), degree-based (deg),
shadowing-based (shadw), shielding-based (shield), uniform targeting (unif), combina-
tion of shadowing and shielding (shadw shield). The passive controller targets K = 16
random nodes in the network in a discrete fashion. Error bars represent standard er-
rors for 15 instances of the experiments and the total budget of both controllers sums
up to B, + B, = N(d)/30.
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FIGURE A.15: Comparison of various heuristics to optimal allocations. Bars repre-
sent the gap in vote share AX of the heuristics with respect to optimal numerical al-
locations for three different budget scenarios (as indicated on the top of the panels).
Each bar represents one of the following heuristics: random (rand), degree-based (deg),
shadowing-based (shadw), shielding-based (shield), uniform targeting (unif), combina-
tion of shadowing and shielding (shadw shield). The passive controller targets a K = 71
or b K = 2 random nodes in the network in a discrete fashion. Error bars represent
standard errors for 15 instances of the experiments and the total budget of both con-
trollers sums up to B, + B, = N(d) /30.

Since the mappings in (A.9) are monotonic in W,, the proof of concavity from Abebe

et al. (2018) can be applied to our problem by following analogous steps.

A.10 TIterations to optimal IM of the proposed heuristics

This section explores an alternative assessment of the proposed heuristics for IM. In
Fig 3.7 of the main manuscript, we investigate gaps in vote share AX between each of
the heuristics and the optimal strategy obtained numerically. Here, we provide an
alternative assessment of the heuristics measuring computational costs to achieve
similar quality solutions by performing numerical optimisation using gradient ascent.
To achieve this we measure how many iterations of gradient-ascent are needed to
reach vote shares X corresponding to each of the heuristics (Fig A.16). That is, good
heuristics correspond to large a number of iterations (i.e. high computational costs to

achieve similar solutions) and poor heuristics to low numbers of iterations (or low
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computational costs to achieve similar outcomes by optimisation). From the figure, we
can observe that all discrete strategies (purple) are already surpassed with less than 10
iterations of the gradient-ascent algorithm. In fact, in most cases the discrete shadowing

and shielding strategies are already surpassed with a single iteration of the algorithm.

Continuous heuristics (orange) are generally one order of magnitude better than

discrete strategies (purple).
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BB degree |a I degree b 5 [ degree C
| shga;dowing shadowigng — dlscr-ete shadowing ¢
shielding shielding continuous shielding
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10° 10 102
Iters of GA for same X

103

10° 10 102
Iters of GA for same X

103

10° 10 102
Iters of GA for same X

FIGURE A.16: Alternative assessment of the proposed heuristics. On the x-axis, the
number of iterations of the gradient-ascent algorithm required for obtaining a similar
level of performance than the corresponding heuristic. On the y-axis, bars represent-
ing one of the following heuristics: degree-based (degree), shadowing-based (shadow-
ing), shielding-based (shielding), uniform targeting (uniform), combination of shadow-
ing and shielding (shadow shield). The passive controller randomly targets K = 16
nodes in the network in a discrete fashion and the total budget of both controllers
sums up to B, + B, = N(d)/30. Three budget scenarios are depicted (as indicated
on the top of the panels). Error bars represent standard errors for 15 instances of the
experiments. The initial allocation of the gradient-ascent algorithm is set at a discrete

allocation on K random nodes.
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Appendix B

Appendix to Chapter 4

B.1 Phase diagram of optimal targetting for an active

controller who is in budget superiority against a passive

controller with varying targetting strategies
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o
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FIGURE B.1: Target group of optimal allocations by the active controller when in bud-
get superiority (B, = 10By), for different combinations for the levels of bias b4 and b4,
when the opponent targets all agents equally (8 = p) or focuses all her influence on
agents biased against the active controller (84 = 1), normal agents (3, = 1), or agents
biased against her opinion (85 = 1), on a complete graph of size N = 100.
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Appendix C

Appendix to Chapter 5

C.1 Role of system size on consensus—forming process under

party competition

Here, we explore the role of system size — i.e. number of agents N — on the effects
that party competition has on opinion dynamics outcomes. Fig. C.1 presents similar
experiments as in Fig. 5.1b, but varying N over several orders of magnitude. From the
left panel, with a system size 100 times smaller than in Chapter 5, it can be seen that
low number of agents introduces substantial stochasticity in the model and the phase
transition structure is mostly lost. However, the consensus promoting effect can still
be perceived, as the effective number of clusters is consistently lower when party
competition is present. The other panels, starting from N = 10* and with system sizes
increasing by factors of 10, reveal a phase landscape with increasing sharpness, as the
widths of the phase transitions narrow. It could be expected that in the limit of

N — oo, phase transitions become step functions. In light of these observations, we
can conclude that the effect of finite sizes does not qualitatively affect the results
shown in Chapter C with populations larger than N > 10%.

N: 1000 N: 10000 N: 100000 N: 1000000

party layout
«  no party
+  CONSensus

w
I

Effective number of clusters, ¢
w

L e e e e AN B e L e e e L L B e L e e e L LB L e e e e LA
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BC threshold, 6 BC threshold, 6 BC threshold, 6 BC threshold, 6

FIGURE C.1: Effects of different system sizes N: 103 (left-most), 10* (middle-left), 10°
(middle-right), 10° (right-most). Points represent mean values and error bars standard
deviations over 10 runs of the experiment.
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C.2 Phase diagrams of transitions from consensus to
polarisation to fragmentation for different number K of
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FIGURE C.2: Histogram of phase transitions é4.1-,2 and d¢.2 2+ for 500 randomly sam-

pled party configurations for each K € {2,...,7}. The black cross indicates the phase

transitions of the no—party baseline, while solid lines separate the different classes of

outcomes, from left to right: fostering consensus, no effect on the opinion dynamics,
and fostering polarisation.



137

References

Abebe, R., Kleinberg, J., Parkes, D., and Tsourakakis, C. E. (2018). Opinion Dynamics
with Varying Susceptibility to Persuasion. In Proceedings of the 24th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining - KDD 18, pages
1089-1098, New York, New York, USA. ACM Press.

Abramowitz, A. I. and Saunders, K. L. (2008). Is Polarization a Myth? The Journal of
Politics, 70(2):542-555.

Adams, J. and Merril, S. (1999). Modeling Party Strategies and Policy Representation
in Multiparty Elections: Why Are Strategies so Extreme? American Journal of Political
Science, 43(3):765.

Albanese, F,, Pinto, S., Semeshenko, V., and Balenzuela, P. (2020). Analyzing mass
media influence using natural language processing and time series analysis. Journal
of Physics: Complexity, 1(2):025005.

Albi, G., Herty, M., and Pareschi, L. (2015). Kinetic description of optimal control
problems and applications to opinion consensus. Communications in Mathematical
Sciences, 13(6):1407-1429.

Ali, K., Wang, C.-Y,, Yeh, M.-Y,, and Chen, Y.-S. (2020). Addressing Competitive
Influence Maximization on Unknown Social Network with Deep Reinforcement
Learning. In 2020 IEEE/ACM International Conference on Advances in Social Networks
Analysis and Mining (ASONAM), volume 1, pages 196-203. IEEE.

Alshamsi, A., Pinheiro, E. L., and Hidalgo, C. A. (2018a). Optimal diversification
strategies in the networks of related products and of related research areas. Nature
Communications, 9(1):1328.

Alshamsi, A., Pinheiro, F. L., and Hidalgo, C. A. (2018b). Optimal diversification
strategies in the networks of related products and of related research areas. Nature
Communications, 9(1):1328.

Altarelli, F,, Braunstein, A., Dall’Asta, L., Wakeling, J. R., and Zecchina, R. (2014).
Containing epidemic outbreaks by message-passing techniques. Physical Review X.



138 REFERENCES

Alvarez, R. M. and Nagler, J. (1998). When Politics and Models Collide : Estimating
Models of Multiparty Elections. American Journal of Political Science, 42(1):55-96.

Alvarez, R. M., Nagler, ]., and Bowler, S. (2000). Issues, Economics, and the Dynamics
of Multiparty Elections: The British 1987 General Election. American Political Science
Review, 94(1):131-149.

Amblard, F,, Bouadjio-Boulic, A., Sureda Gutiérrez, C., and Gaudou, B. (2015). Which
models are used in social simulation to generate social networks? a review of 17
years of publications in JASSS. In 2015 Wint. Sim. Conf., pages 4021-4032.

Amorés, P. and Puy, M. S. (2010). Indicators of electoral victory. Public Choice,
144(1-2):239-251.

Anderson, S. P.,, de Palma, A., and Thisse, J.-F. (1992). Discrete Choice Theory of Product
Differentiation. The MIT Press, Cambridge, MA.

Aral, S. and Dhillon, P. S. (2018). Social influence maximization under empirical
influence models. Nature Human Behaviour, 2(6):375-382.

Arendt, D. L. and Blaha, L. M. (2015). Opinions, influence, and zealotry: a
computational study on stubbornness. Computational and Mathematical Organization
Theory, 21(2):184-209.

Atienza-Barthelemy, J., Martin-Gutierrez, S., Losada, J. C., and Benito, R. M. (2019).
Relationship between ideology and language in the Catalan independence context.
Scientific Reports, 9(1):17148.

Axelrod, R. (1997a). The Complexity of Cooperation: Agent-Based Models of Competition

and Collaboration. Princeton University Press.

Axelrod, R. (1997b). The Dissemination of Culture. Journal of Conflict Resolution,
41(2):203-226.

Axelrod, R., Daymude, ]. J., and Forrest, S. (2021). Preventing extreme polarization of
political attitudes. Proceedings of the National Academy of Sciences, 118(50).

Axelrod, R. and Hamilton, W. D. (1981). The evolution of cooperation. science,
211(4489):1390-1396.

Badawy, A, Ferrara, E., and Lerman, K. (2018). Analyzing the digital traces of
political manipulation: The 2016 russian interference twitter campaign. In 2018
IEEE/ACM International Conference on Advances in Social Networks Analysis and
Mining (ASONAM), pages 258-265.

Bakshy, E., Hofman, J. M., Mason, W. A., and Watts, D. J. (2011). Everyone’s an
influencer: Quantifying influence on twitter. In Proceedings of the Fourth ACM
International Conference on Web Search and Data Mining, WSDM "11, page 65-74, New
York, NY, USA. Association for Computing Machinery.



REFERENCES 139

Bakshy, E., Rosenn, I., Marlow, C., and Adamic, L. (2012). The role of social networks
in information diffusion. In Proceedings of the 21st international conference on World
Wide Web - WWW “12, pages 519-528, New York, New York, USA. ACM Press.

Banerjee, A., Chandrasekhar, A. G., Duflo, E., and Jackson, M. O. (2013). The Diffusion
of Microfinance. Science, 341(6144):1236498.

Barabasi, A.-L. and Albert, R. (1999). Emergence of Scaling in Random Networks.
Science, 286(5439):509-512.

Battiston, E.,, Cencetti, G., lacopini, I., Latora, V., Lucas, M., Patania, A., Young, J.-G.,
and Petri, G. (2020). Networks beyond pairwise interactions: Structure and
dynamics. Physics Reports, 874(June):1-92.

Bayati, M., Kim, J. H., and Saberi, A. (2010). A Sequential Algorithm for Generating
Random Graphs. Algorithmica, 58(4):860-910.

Bharathi, S., Kempe, D., and Salek, M. (2007). Competitive Influence Maximization in
Social Networks. In Internet and Network Economics, pages 306-311. Springer Berlin
Heidelberg, Berlin, Heidelberg.

Bhat, D. and Redner, S. (2019). Nonuniversal opinion dynamics driven by opposing
external influences. Physical Review E, 100(5):050301.

Bhat, D. and Redner, S. (2020). Polarization and consensus by opposing external
sources. Journal of Statistical Mechanics: Theory and Experiment, 2020(1):013402.

Bimpikis, K., Ozdaglar, A., and Yildiz, E. (2016). Competitive Targeted Advertising
Over Networks. Operations Research, 64(3):705-720.

Bischof, D. and Wagner, M. (2019). Do voters polarize when radical parties enter
parliament? American Journal of Political Science, 63(4):888-904.

Biswas, S., Lima, F. W. S., and Flomenbom, O. (2018). Are Socio-Econo-Physical
Models Better to Explain Biases in Societies? Reports in Advances of Physical Sciences,
02(02):1850006.

Borondo, J., Morales, A.]., Losada, J. C., and Benito, R. M. (2012). Characterizing and
modeling an electoral campaign in the context of Twitter: 2011 Spanish Presidential

election as a case study. Chaos: An Interdisciplinary Journal of Nonlinear Science,
22(2):023138.

Boudin, L., Monaco, R., and Salvarani, F. (2010). Kinetic model for multidimensional
opinion formation. Physical Review E, 81(3):036109.

Boxell, L., Gentzkow, M., and Shapiro, J. M. (2017). Is the internet causing political
polarization? Evidence from demographics. Technical report, National Bureau of
Economic Research.



140 REFERENCES

Braha, D. and de Aguiar, M. A. M. (2017). Voting contagion: Modeling and analysis of
a century of U.S. presidential elections. PLOS ONE, 12(5):e0177970.

Brede, M., Restocchi, V., and Stein, S. (2018). Resisting influence: How the strength of
predispositions to resist control can change strategies for optimal opinion control in
the voter model. Frontiers in Robotics and Al, 5:34.

Brede, M., Restocchi, V., and Stein, S. (2019a). Effects of time horizons on influence
maximization in the voter dynamics. Journal of Complex Networks, 7(3):445-468.

Brede, M., Restocchi, V., and Stein, S. (2019b). Transmission errors and influence
maximization in the voter model. Journal of Statistical Mechanics: Theory and
Experiment, 2019(3):033401.

Brede, M. and Romero-Moreno, G. (2022). Sensing Enhancement on Social Networks:
The Role of Network Topology. Entropy, 24(5):738.

Brede, M. and Romero Moreno, G. (2022). Sensing enhancement on complex
networks. In Benito, R. M., Cherifi, C., Cherifi, H., Moro, E., Rocha, L. M., and
Sales-Pardo, M., editors, Complex Networks & Their Applications X, pages 353-364,
Cham. Springer International Publishing.

Broido, A. D. and Clauset, A. (2019). Scale-free networks are rare. Nature
Communications, 10(1):1017.

Brooks, H. Z. and Porter, M. A. (2020). A model for the influence of media on the
ideology of content in online social networks. Physical Review Research, 2(2):023041.

Budak, C., Agrawal, D., and El Abbadi, A. (2011). Limiting the spread of
misinformation in social networks. In Proceedings of the 20th international conference
on World wide web - WWW 11, page 665, New York, New York, USA. ACM Press.

Budge, I. and Farlie, D. (1983). Explaining and predicting elections : issue effects and party

strategies in twenty-three democracies. Allen & Unwin.

Burden, B. C. (1997). Deterministic and Probabilistic Voting Models. American Journal
of Political Science, 41(4):1150.

Cai, Z., Brede, M., and Gerding, E. (2021). Influence Maximization for Dynamic
Allocation in Voter Dynamics. In Studies in Computational Intelligence, volume 943,

pages 382-394. Springer International Publishing.

Cai, Z., Gerding, E., and Brede, M. (2022). Accelerating opponent strategy inference
for voting dynamics on complex networks. In Benito, R. M., Cherifi, C., Cherifi, H.,
Moro, E., Rocha, L. M., and Sales-Pardo, M., editors, Complex Networks & Their
Applications X, pages 844-856, Cham. Springer International Publishing.



REFERENCES 141

Campbell, J. E. (2018). Polarized: Making sense of a divided America. Princeton University
Press.

Carletti, T., Fanelli, D., Grolli, S., and Guarino, A. (2006). How to make an efficient
propaganda. Europhysics Letters (EPL), 74(2):222-228.

Carothers, T. and O’Donohue, A. (2019). Democracies divided: The global challenge of
political polarization. Brookings Institution Press.

Carro, A., Toral, R., and San Miguel, M. (2013). The Role of Noise and Initial
Conditions in the Asymptotic Solution of a Bounded Confidence,
Continuous-Opinion Model. Journal of Statistical Physics, 151(1-2):131-149.

Carro, A., Toral, R., and San Miguel, M. (2016). The noisy voter model on complex
networks. Scientific Reports, 6(1):24775.

Castellano, C., Fortunato, S., and Loreto, V. (2009a). Statistical physics of social
dynamics. Reviews of Modern Physics, 81(2):591-646.

Castellano, C., Mufioz, M. A., and Pastor-Satorras, R. (2009b). Nonlinear g-voter
model. Physical Review E, 80(4):041129.

Chakraborty, S., Stein, S., Brede, M., Swami, A., de Mel, G., and Restocchi, V. (2019).
Competitive influence maximisation using voting dynamics. In Proceedings of the
2019 IEEE/ACM International Conference on Advances in Social Networks Analysis and
Mining, pages 978-985, New York, NY, USA. ACM.

Chen, W., Lakshmanan, L. V., and Castillo, C. (2013). Information and Influence
Propagation in Social Networks. Synthesis Lectures on Data Management, 5(4):1-177.

Chen, W., Wang, C., and Wang, Y. (2010a). Scalable influence maximization for
prevalent viral marketing in large-scale social networks. In Proceedings of the 16th
ACM SIGKDD international conference on Knowledge discovery and data mining - KDD
"10, page 1029, New York, New York, USA. ACM Press.

Chen, W., Wang, Y., and Yang, S. (2009). Efficient influence maximization in social
networks. In Proceedings of the 15th ACM SIGKDD international conference on
Knowledge discovery and data mining - KDD "09, page 199, New York, New York, USA.
ACM Press.

Chen, W, Yuan, Y., and Zhang, L. (2010b). Scalable Influence Maximization in Social
Networks under the Linear Threshold Model. In 2010 IEEE International Conference
on Data Mining, pages 88-97. IEEE.

Chen, Y. and Ye, X. (2011). Projection Onto A Simplex. arXiv.



142 REFERENCES

Chinellato, D. D, Epstein, I. R., Braha, D., Bar-Yam, Y., and de Aguiar, M. A. M. (2015).
Dynamical Response of Networks Under External Perturbations: Exact Results.
Journal of Statistical Physics, 159(2):221-230.

Chitra, U. and Musco, C. (2020). Analyzing the Impact of Filter Bubbles on Social
Network Polarization. In Proceedings of the 13th International Conference on Web Search
and Data Mining, pages 115-123, New York, NY, USA. ACM.

Choi, D., Chun, S., Oh, H., Han, J., and Kwon, T. (2020). Rumor Propagation is
Amplified by Echo Chambers in Social Media. Scientific Reports, 10(1):310.

Cioffi-Revilla, C. and Rouleau, M. (2010). Mason rebeland: An agent-based model of
politics, environment, and insurgency. International Studies Review, 12(1):31-52.

Clifford, P. and Sudbury, A. (1973). A model for spatial conflict. Biometrika,
60(3):581-588.

Colaiori, F. and Castellano, C. (2015). Interplay between media and social influence in
the collective behavior of opinion dynamics. Physical Review E - Statistical, Nonlinear,
and Soft Matter Physics, 92(4):1-9.

Condie, S. A. and Condie, C. M. (2021). Stochastic events can explain sustained
clustering and polarisation of opinions in social networks. Scientific Reports,
11(1):1355.

Crokidakis, N. (2012). Effects of mass media on opinion spreading in the Sznajd
sociophysics model. Physica A: Statistical Mechanics and its Applications,
391(4):1729-1734.

De, A., Bhattacharya, S., and Ganguly, N. (2018). Demarcating Endogenous and
Exogenous Opinion Diffusion Process on Social Networks. In Proceedings of the 2018
World Wide Web Conference on World Wide Web - WWW “18, pages 549-558, New York,
New York, USA. ACM Press.

De Domenico, M. and Altmann, E. G. (2020). Unraveling the Origin of Social Bursts in
Collective Attention. Scientific Reports, 10(1):4629.

De Sio, L. and Weber, T. (2014). Issue Yield: A Model of Party Strategy in
Multidimensional Space. American Political Science Review, 108(4):870-885.

Deffuant, G., Amblard, E., Weisbuch, G., and Faure, T. (2002). How can extremism
prevail? A study based on the relative agreement interaction model. Journal of

artificial societies and social simulation, 5(4).

Deffuant, G., Neau, D., Amblard, F.,, and Weisbuch, G. (2000). Mixing beliefs among
interacting agents. Advances in Complex Systems, 3:87-89.



REFERENCES 143

DeGroot, M. (1974). Reaching a consensus. Journal of the American Statistical
Association, 69:118-121.

Del Vicario, M., Scala, A., Caldarelli, G., Stanley, H. E., and Quattrociocchi, W. (2017).
Modeling confirmation bias and polarization. Scientific Reports, 7(December
2016):1-9.

Del Vicario, M., Vivaldo, G., Bessi, A., Zollo, F., Scala, A., Caldarelli, G., and
Quattrociocchi, W. (2016). Echo Chambers: Emotional Contagion and Group
Polarization on Facebook. Scientific Reports, 6(1):37825.

Dezs6, Z. and Barabaési, A.-L. (2002). Halting viruses in scale-free networks. Physical
Review E, 65(5):055103.

Dhamal, S., Chahed, T., Ben-Ameur, W., and Altman, E. (2018). Optimal multiphase
investment strategies for influencing opinions in a social network. Proceedings of the
International Joint Conference on Autonomous Agents and Multiagent Systems, AAMAS,
3:1927-1929.

Domingos, P. and Richardson, M. (2001). Mining the network value of customers. In
Proceedings of the Seventh ACM SIGKDD International Conference on Knowledge
Discovery and Data mining - KDD "01, pages 57-66, New York, New York, USA. ACM
Press.

Dong, Y., Ding, Z., Martinez, L., and Herrera, F. (2017). Managing consensus based on
leadership in opinion dynamics. Information Sciences, 397-398:187-205.

Downs, A. (1957). An economic theory of political action in a democracy. Journal of
political economy, 65(2):135-150.

Dragu, T. and Fan, X. (2016). An Agenda-Setting Theory of Electoral Competition. The
Journal of Politics, 78(4):1170-1183.

Enyedi, Z. and Deegan-Krause, K. (2010). Introduction: The structure of political
competition in western europe. West European Politics, 33(3):415-418.

Epstein, J. M. and Axtell, R. (1996). Growing artificial societies: social science from the
bottom up. Brookings Institution Press.

Erdos, P. and Rényi, A. (1959). On random graphs i. Publicationes Mathematicae
Debrecen, 6:290-297.

Erkol, S., Castellano, C., and Radicchi, F. (2019). Systematic comparison between
methods for the detection of influential spreaders in complex networks. Scientific
Reports, 9(1):1-11.



144 REFERENCES

Eshghi, S., Preciado, V. M., Sarkar, S., Venkatesh, S. S., Zhao, Q., D'Souza, R., and
Swami, A. (2020). Spread, Then Target, and Advertise in Waves: Optimal Budget
Allocation Across Advertising Channels. IEEE Transactions on Network Science and
Engineering, 7(2):750-763.

Even-Dar, E. and Shapira, A. (2011). A note on maximizing the spread of influence in
social networks. Information Processing Letters, 111(4):184-187.

Fekom, M., Vayatis, N., and Kalogeratos, A. (2019). Sequential Dynamic Resource
Allocation for Epidemic Control. In 2019 IEEE 58th Conference on Decision and
Control (CDC), pages 6338-6343. IEEE.

Feld, S. L., Merrill, S., and Grofman, B. (2014). Modeling the effects of changing issue
salience in two-party competition. Public Choice, 158(3-4):465—-482.

Ferndndez-Gracia, J., Suchecki, K., Ramasco, J. J., San Miguel, M., and Eguiluz, V. M.
(2014). Is the Voter Model a Model for Voters? Physical Review Letters,
112(15):158701.

Flache, A., Mis, M., Feliciani, T., Chattoe-Brown, E., Deffuant, G., Huet, S., and
Lorenz, J. (2017). Models of Social Influence: Towards the Next Frontiers. Journal of
Artificial Societies and Social Simulation, 20(4).

Fortunato, S., Latora, V., Pluchino, A., and Rapisarda, A. (2005). Vector opinion
dynamics in a bounded confidence consensus model. International Journal of Modern
Physics C, 16(10):1535-1551.

Fowler, J. H. and Laver, M. (2008). A Tournament of Party Decision Rules. Journal of
Conflict Resolution, 52(1):68-92.

Fowler, J. H. and Smirnov, O. (2005). Dynamic Parties and Social Turnout: An
Agent-Based Model. American Journal of Sociology, 110(4):1070-1094.

Friedkin, N. E. and Johnsen, E. C. (1990). Social influence and opinions. The Journal of
Mathematical Sociology, 15(3-4):193-206.

Fujimoto, T. and Ranade, R. R. (2004). Two characterizations of inverse-positive
matrices: the Hawkins-Simon condition and the Le Chatelier-Braun principle.
Electronic Journal of Linear Algebra, 11(1).

Gaitonde, ., Kleinberg, J., and Tardos, E. (2020a). Adversarial Perturbations of
Opinion Dynamics in Networks. In Proceedings of the 21st ACM Conference on
Economics and Computation, pages 471-472, New York, NY, USA. ACM.

Gaitonde, J., Kleinberg, J., and Tardos, E. (2020b). Adversarial Perturbations of
Opinion Dynamics in Networks. In Proceedings of the 21st ACM Conference on
Economics and Computation, pages 471-472, New York, NY, USA. ACM.



REFERENCES 145

Galam, S. (2002). Minority opinion spreading in random geometry. Eur. Phys. . B,
25:403.

Galam, S., Gefen, Y., and Shapir, Y. (1982). Sociophysics: A new approach of
sociological collective behaviour. i. mean-behaviour description of a strike. J. Math.
Sociol., 9:1-13.

Galam, S. and Jacobs, F. (2007). The role of inflexible minorities in the breaking of
democratic opinion dynamics. Physica A: Statistical Mechanics and its Applications,
381:366 — 376.

Garcia, D., Mendez, E, Serdiilt, U., and Schweitzer, F. (2012). Political polarization and
popularity in online participatory media. In Proceedings of the first edition workshop on
Politics, elections and data - PLEAD “12, page 3, New York, New York, USA. ACM
Press.

GARCIA-DIAZ, C., ZAMBRANA-CRUZ, G., and VAN WITTELOOSTUIJN, A. (2013).
POLITICAL SPACES, DIMENSIONALITY DECLINE AND PARTY
COMPETITION. Advances in Complex Systems, 16(06):1350019.

Ghezelbash, E., Yazdanpanah, M. J., and Asadpour, M. (2019). Polarization in
cooperative networks through optimal placement of informed agents. Physica A:
Statistical Mechanics and its Applications, 536:120936.

Gionis, A., Terzi, E., and Tsaparas, P. (2013). Opinion Maximization in Social
Networks. arXiv e-prints.

Goldenberg, J., Libai, B., and Muller, E. (2001). Talk of the network: A complex systems
look at the underlying process of word-of-mouth. Marketing Letters, 12(3):211-223.

Gonzélez-Avella, J. C., Eguiluz, V. M., Cosenza, M. G., Klemm, K., Herrera, J. L., and
San Miguel, M. (2006). Local versus global interactions in nonequilibrium
transitions: A model of social dynamics. Physical Review E, 73(4):046119.

Goodfellow, L., Bengio, Y., and Courville, A. (2016). Deep Learning. MIT Press.
http://www.deeplearningbook.org.

Goyal, M. and Manjunath, D. (2020). Opinion Control Competition in a Social
Network. In 2020 International Conference on COMmunication Systems & NETworkS
(COMSNETS), pages 306-313. IEEE.

Goyal, S., Heidari, H., and Kearns, M. (2019). Competitive contagion in networks.
Games and Economic Behavior, 113:58-79.

Grabisch, M. and Rusinowska, A. (2020). A Survey on Nonstrategic Models of
Opinion Dynamics. Games, 11(4):65.


http://www.deeplearningbook.org

146 REFERENCES

Granovetter, M. (1978). Threshold Models of Collective Behavior. American Journal of
Sociology, 83(6):1420-1443.

Guare, J. (1990). Six Degrees of Separation: A Play. A Vintage original. Vintage Books.

Guimera, R., Danon, L., Diaz-Guilera, A., Giralt, F., and Arenas, A. (2003). Self-similar
community structure in a network of human interactions. Physical Review E,
68(6):065103.

Hamill, L. and Gilbert, N. (2009). Social circles: A simple structure for agent-based
social network models. Journal of Artificial Societies and Social Simulation, 12(2):3.

Han, T. A., Lynch, S., Tran-Thanh, L., and Santos, F. C. (2018). Fostering Cooperation
in Structured Populations Through Local and Global Interference Strategies. In
Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence,
volume 2018-July, pages 289-295, California. International Joint Conferences on

Artificial Intelligence Organization.

Hare, C. and Poole, K. T. (2014). The Polarization of Contemporary American Politics.
Polity, 46(3):411-429.

Hegselmann, R., Konig, S., Kurz, S., Niemann, C., and Rambau, J. (2015). Optimal
opinion control: The campaign problem. Journal of Artificial Societies and Social

Simulation, 18.

Hegselmann, R. and Krause, U. (2002). Opinion dynamics and bounded confidence:
Models, analysis and simulation. JASSS, 5(3).

Hegselmann, R. and Krause, U. (2015). Opinion dynamics under the influence of
radical groups, charismatic leaders, and other constant signals: A simple unifying
model. Networks & Heterogeneous Media, 10(3):477-509.

Helbing, D. and Weidlich, W. (1995). Quantitative Sociodynamics - Subject, Methods,
Results and Perspectives. Kolner Zeitschrift Fur Soziologie Und Sozialpsychologie.

Hoferer, M., Bottcher, L., Herrmann, H. J., and Gersbach, H. (2020). The impact of
technologies in political campaigns. Physica A: Statistical Mechanics and its
Applications, 538:122795.

Hofmann, H., Wickham, H., and Kafadar, K. (2017). Letter-Value Plots: Boxplots for
Large Data. Journal of Computational and Graphical Statistics, 26(3):469-477.

Holley, R. A. and Liggett, T. M. (1975). Ergodic theorems for weakly interacting
infinite systems and the voter model. The Annals of Probability, 3(4):643-663.

HOLYST, J. A., KACPERSK]I, K., and SCHWEITZER, E. (2001). SOCIAL IMPACT
MODELS OF OPINION DYNAMICS. In Annual Reviews Of Computational PhysicsIX,
volume 9, pages 253-273. WORLD SCIENTIFIC.



REFERENCES 147

Hu, H. and Zhu, J. J. H. (2017). Social networks, mass media and public opinions.
Journal of Economic Interaction and Coordination, 12(2):393—411.

Ising, E. (1925). Beitrag zur Theorie des Ferromagnetismus. Zeitschrift fiir Physik,
31(1):253-258.

Iyengar, S., Lelkes, Y., Levendusky, M., Malhotra, N., and Westwood, S. J. (2019). The
origins and consequences of affective polarization in the united states. Annual
Review of Political Science, 22:129-146.

Jager, W. and Amblard, F. (2005). Uniformity, Bipolarization and Pluriformity
Captured as Generic Stylized Behavior with an Agent-Based Simulation Model of
Attitude Change. Computational & Mathematical Organization Theory, 10(4):295-303.

Jain, M., Jaswani, A., Mehra, A., and Mudgal, L. (2021). EDGly: detection of influential
nodes using game theory. Multimedia Tools and Applications, (February).

Javarone, M. A. (2014). Network strategies in election campaigns. Journal of Statistical
Mechanics: Theory and Experiment, 2014(8):P08013.

Jedrzejewski, A. and Sznajd-Weron, K. (2019). Statistical Physics Of Opinion
Formation: Is it a SPOOF? Comptes Rendus Physique, 20(4):244-261.

Kacperski, K. and Holyst, J. A. (2000). Formation of Opinions under the Influence of
Competing Agents — a Mean Field Approach. In Traffic and Granular Flow '99, pages
69-80. Springer Berlin Heidelberg, Berlin, Heidelberg.

Kandhway, K. and Kuri, J. (2014). How to run a campaign: Optimal control of SIS and
SIR information epidemics. Applied Mathematics and Computation, 231:79-92.

Kempe, D., Kleinberg, J., and Tardos, E. (2003). Maximizing the spread of influence
through a social network. In Proceedings of the Ninth ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, KDD "03, pages 137-146.

Kendall, M. G. (1957). Rank Correlation Methods. Biometrika, 44(1/2):298.

Kermack, W. O. and McKendrick, A. G. (1927). A contribution to the mathematical
theory of epidemics. Proceedings of the Royal Society of London. Series A, Containing
Papers of a Mathematical and Physical Character, 115(772):700-721.

Kivela, M., Arenas, A., Barthelemy, M., Gleeson, J. P., Moreno, Y., and Porter, M. A.
(2014). Multilayer networks. Journal of Complex Networks, 2(3):203-271.

Kohring, G. A. (1996). Ising Models of Social Impact: the Role of Cumulative
Advantage. Journal de Physique I, 6(2):301-308.

Kollman, K., Miller, J. H., and Page, S. E. (1992). Adaptive Parties in Spatial Elections.
American Political Science Review, 86(4):929-937.



148 REFERENCES

Kramer, A. D. L., Guillory, J. E., and Hancock, J. T. (2014). Experimental evidence of
massive scale emotional contagion through social networks. Proceedings of the
National Academy of Sciences, 111(29):10779-10779.

Krzywinski, M. and Altman, N. (2017). Classification and regression trees. Nature
Methods, 14(8):757-758.

Kuhlman, C. J., Kumar, V. A., and Ravi, S. (2013). Controlling opinion propagation in
online networks. Computer Networks, 57(10):2121-2132.

Kurahashi-Nakamura, T., Méds, M., and Lorenz, J. (2016). Robust Clustering in
Generalized Bounded Confidence Models. Journal of Artificial Societies and Social
Simulation, 19(4).

Kurz, S. (2015). Optimal control of the freezing time in the Hegselmann—-Krause
dynamics. Journal of Difference Equations and Applications, 21(8):633-648.

Kurz, S. and Rambau, J. (2011). On the Hegselmann—Krause conjecture in opinion
dynamics. Journal of Difference Equations and Applications, 17(6):859-876.

Laguna, M. E, Abramson, G., and Iglesias, J. R. (2013). Compelled to do the right
thing. The European Physical Journal B, 86(5):202.

Lallouache, M., Chakrabarti, A. S., Chakraborti, A., and Chakrabarti, B. K. (2010).
Opinion formation in kinetic exchange models: Spontaneous symmetry-breaking
transition. Physical Review E, 82:056112.

Langton, C. G. (1995). Artificial Life: An Overview. The MIT Press.

Latané, B. (1981). The psychology of social impact. American Psychologist,
36(4):343-356.

LAVER, M. (2005). Policy and the Dynamics of Political Competition. American
Political Science Review, 99(2):263-281.

Laver, M. and Schilperoord, M. (2007). Spatial models of political competition with
endogenous political parties. Philosophical Transactions of the Royal Society B:
Biological Sciences, 362(1485):1711-1721.

Laver, M. and Sergenti, E. (2011). Party Competition: An Agent-Based Model. Princeton

University Press, Princeton.

Layman, G. C., Carsey, T. M., and Horowitz, J. M. (2006). Party polarization in
american politics: Characteristics, causes, and consequences. Annu. Rev. Polit. Sci.,
9:83-110.

Lehrer, R. and Schumacher, G. (2018). Governator vs. Hunter and Aggregator: A
simulation of party competition with vote-seeking and office-seeking rules. PLOS
ONE, 13(2):e0191649.



REFERENCES 149

Leskovec, J., Adamic, L. A., and Huberman, B. A. (2007). The dynamics of viral
marketing. ACM Transactions on the Web, 1(1):5.

Li, G., Motsch, S., and Weber, D. (2020). Bounded confidence dynamics and graph
control: Enforcing consensus. Networks & Heterogeneous Media, 15(3):489-517.

Li, Y., Chen, W.,, Wang, Y., and Zhang, Z.-1. (2013). Influence diffusion dynamics and
influence maximization in social networks with friend and foe relationships. In
Proceedings of the sixth ACM international conference on Web search and data mining -
WSDM 13, page 657, New York, New York, USA. ACM Press.

Li, Y, Fan, J., Wang, Y., and Tan, K.-L. (2018). Influence Maximization on Social
Graphs: A Survey. IEEE Transactions on Knowledge and Data Engineering,
30(10):1852-1872.

Lim, S. L. and Bentley, P. J. (2022). Opinion amplification causes extreme polarization
in social networks. Scientific Reports, 12(1):18131.

Lin, S.-C., Lin, S.-D., and Chen, M.-S. (2015). A learning-based framework to handle
multi-round multi-party influence maximization on social networks. In Proceedings
of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, KDD "15, pages 695-704.

Liu, S, Ying, L., and Shakkottai, S. (2010). Influence maximization in social networks:
An ising-model-based approach. In 2010 48th Annual Allerton Conference on
Communication, Control, and Computing (Allerton), pages 570-576. IEEE.

Liu, Y.-Y. and Barabasi, A.-L. (2016). Control principles of complex systems. Reviews of
Modern Physics, 88(3):035006.

Liu, Y.-Y,, Slotine, J.-J., and Barabaési, A.-L. (2011). Controllability of complex networks.
Nature, 473(7346):167-173.

Lorenz, J. (2007). Continuous opinion dynamics under bounded confidence: A survey.
International Journal of Modern Physics C, 18(12):1819-1838.

Lorenz, ]. (2008). Fostering Consensus in Multidimensional Continuous Opinion
Dynamics under Bounded Confidence. In Managing Complexity: Insights, Concepts,
Applications, volume 2008, pages 321-334. Springer Berlin Heidelberg, Berlin,
Heidelberg.

Lorenz, ]. and Urbig, D. (2007). About the power to enforce and prevent consensus by

manipulating communication rules. Advances in Complex Systems, 10(02):251-269.

Lu, Q., Korniss, G., and Szymanski, B. K. (2009). The Naming Game in social
networks: community formation and consensus engineering. Journal of Economic
Interaction and Coordination, 4(2):221-235.



150 REFERENCES

Lynn, C. and Lee, D. (2018). Maximizing activity in ising networks via the tap
approximation. In Proceedings of the Thirty-Second AAAI Conference on Artificial
Intelligence, (AAAI-18), the 30th innovative Applications of Artificial Intelligence
(IAAI-18), and the 8th AAAI Symposium on Educational Advances in Artificial
Intelligence (EAAI-18), New Orleans, Louisiana, USA, February 2-7, 2018.

Lynn, C. W. and Lee, D. D. (2016). Maximizing influence in an ising network: A
mean-field optimal solution. In Proceedings of the 30th International Conference on
Neural Information Processing Systems, NIPS'16, pages 2495-2503.

Lynn, C. W. and Lee, D. D. (2017). Statistical mechanics of influence maximization
with thermal noise. EPL (Europhysics Letters), 117(6):66001.

Macy, M. W,, Ma, M., Tabin, D. R., Gao, ]., and Szymanski, B. K. (2021). Polarization
and tipping points. Proceedings of the National Academy of Sciences, 118(50).

Mai, V. S. and Abed, E. H. (2019). Optimizing Leader Influence in Networks Through
Selection of Direct Followers. IEEE Transactions on Automatic Control,
64(3):1280-1287.

Majeed, A. and Rauf, I. (2020). Graph theory: A comprehensive survey about graph
theory applications in computer science and social networks. Inventions, 5(1).

Mandel, A. and Venel, X. (2020). Dynamic competition over social networks. European
Journal of Operational Research, 280(2):597-608.

Martins, A. C. R. (2008). Continuous opinions and discrete actions in opinion
dynamics problems. International Journal of Modern Physics C, 19(04):617-624.

Martins, A. C. R. and Galam, S. (2013). Building up of individual inflexibility in
opinion dynamics. Physical Review E, 87(4):042807.

Marvel, S. A., Hong, H., Papush, A., and Strogatz, S. H. (2012). Encouraging
moderation: Clues from a simple model of ideological conflict. Physical Review
Letters, 109(11).

Mais, M., Flache, A., and Helbing, D. (2010). Individualization as Driving Force of
Clustering Phenomena in Humans. PLoS Computational Biology, 6(10):e1000959.

Massa, P, Salvetti, M., and Tomasoni, D. (2009). Bowling alone and trust decline in
social network sites. In Dependable, Autonomic and Secure Computing, 2009. DASC’09.
Eighth IEEE International Conference on, pages 658-663. IEEE.

Mastrandrea, R., Fournet, J., and Barrat, A. (2015). Contact Patterns in a High School:
A Comparison between Data Collected Using Wearable Sensors, Contact Diaries
and Friendship Surveys. PLOS ONE, 10(9):e0136497.



REFERENCES 151

Masucci, A. M. and Silva, A. (2014). Strategic resource allocation for competitive
influence in social networks. In 2014 52nd Annual Allerton Conference on
Communication, Control, and Computing (Allerton), pages 951-958. IEEE.

Masuda, N. (2015). Opinion control in complex networks. New Journal of Physics,
17:1-11.

Masuda, N., Gilbert, N., and Redner, S. (2010). Heterogeneous voter models. Phys.
Rev. E, 82:010103.

McFadden, D. (1994). Conditional logit analysis of qualitative choice behavior. In
Zarembka, P, editor, Frontiers in Econometrics, pages 105-142. Academic Press, New
York.

McFaul, M. and Kass, B. (2019). Understanding Putin’s Intentions and Actions in the
2016 U.S. Presidential Election.

Medya, S., Silva, A., and Singh, A. (2019). Influence Minimization Under Budget and
Matroid Constraints: Extended Version. arXiv e-prints, pages , arXiv:1901.02156.

Meguid, B. M. (2005). Competition Between Unequals: The Role of Mainstream Party
Strategy in Niche Party Success. American Political Science Review, 99(3):347-359.

Meyer, T. M. and Wagner, M. (2019). It sounds like they are moving: Understanding
and modeling emphasis-based policy change. Political Science Research and Methods,
7(4):757-774.

Milgram, S. (1967). The small world problem. Psychology today, 2:60-67.

Miller, J. H. and Stadler, P. E. (1998). The dynamics of locally adaptive parties under
spatial voting. Journal of Economic Dynamics and Control, 23(2):171-189.

Mirtabatabaei, A., Jia, P., and Bullo, F. (2014). Eulerian Opinion Dynamics with
Bounded Confidence and Exogenous Inputs. SIAM Journal on Applied Dynamical
Systems, 13(1):425-446.

Mobilia, M. (2003). Does a single zealot affect an infinite group of voters? Phys. Rev.
Lett., 91:028701.

Mobilia, M., Petersen, A., and Redner, S. (2007). On the role of zealotry in the voter
model. Journal of Statistical Mechanics: Theory and Experiment,
2007(08):P08029-P08029.

Molloy, M. and Reed, B. (1995). A critical point for random graphs with a given degree
sequence. Random Structures & Algorithms, 6(2-3):161-180.

Montes, E., Jaramillo, A. M., Meisel, J. D., Diaz-Guilera, A., Valdivia, J. A., Sarmiento,
O. L. and Zarama, R. (2020). Benchmarking seeding strategies for spreading



152 REFERENCES

processes in social networks: an interplay between influencers, topologies and sizes.
Scientific Reports, 10(1):3666.

Morales, A., Borondo, J., Losada, J., and Benito, R. (2014). Efficiency of human activity

on information spreading on Twitter. Social Networks, 39:1-11.

Moretti, P, Liu, S. Y., Baronchelli, A., and Pastor-Satorras, R. (2012). Heterogenous
mean-field analysis of a generalized voter-like model on networks. The European
Physical Journal B, 85(3):88.

Moya, 1., Chica, M., Sdez-Lozano, ]J. L., and Cordén, 0. (2017). An agent-based model
for understanding the influence of the 11-M terrorist attacks on the 2004 Spanish
elections. Knowledge-Based Systems, 123(November 1980):200-216.

Mueller, S. T. and Tan, Y.-Y. S. (2018). Cognitive perspectives on opinion dynamics: the
role of knowledge in consensus formation, opinion divergence, and group
polarization. Journal of Computational Social Science, 1(1):15-48.

Muis, J. (2010). Simulating Political Stability and Change in the Netherlands
(1998-2002): an Agent-Based Model of Party Competition with Media Effects
Empirically Tested. Journal of Artificial Societies and Social Simulation, 13(2).

Muis, J. and Scholte, M. (2013). How to find the ‘winning formula’? Conducting
simulation experiments to grasp the tactical moves and fortunes of populist radical
right parties. Acta Politica, 48(1):22-46.

Musco, C., Musco, C., and Tsourakakis, C. E. (2018). Minimizing Polarization and
Disagreement in Social Networks. In Proceedings of the 2018 World Wide Web
Conference on World Wide Web - WWW “18, pages 369-378, New York, New York,
USA. ACM Press.

Myers, D. G. (1978). Polarizing effects of social comparison. Journal of Experimental
Social Psychology, 14(6):554-563.

Nayak, A., Hosseinalipour, S., and Dai, H. (2019). Smart Information Spreading for

Opinion Maximization in Social Networks. arXiv e-prints.

Nesterov, Y. (2004). Introductory lectures on convex optimization : a basic course. Kluwer
Academic Publishers, Boston.

Newman, M. E. J. (2003). The Structure and Function of Complex Networks. SIAM
Review, 45(2):167-256.

Nguyen, V. X,, Xiao, G., Xu, X.-J., Wu, Q., and Xia, C.-Y. (2020). Dynamics of opinion
formation under majority rules on complex social networks. Scientific Reports,
10(1):456.



REFERENCES 153

Nishi, R. and Masuda, N. (2013). Collective opinion formation model under Bayesian
updating and confirmation bias. Physical Review E, 87(6):062123.

Nocedal, J. and Wright, S. J. (1999). Numerical optimization. Springer.

Noorazar, H. (2020). Recent advances in opinion propagation dynamics: a 2020
survey. The European Physical Journal Plus, 135(6):521.

Noorazar, H., Vixie, K. R., Talebanpour, A., and Hu, Y. (2020). From classical to
modern opinion dynamics. International Journal of Modern Physics C, 31(07):2050101.

Norman, A. (2016). Why we reason: intention-alignment and the genesis of human
rationality. Biology & Philosophy, 31(5):685-704.

Nowak, A., Szamrej, J., and Latané, B. (1990). From private attitude to public opinion:
A dynamic theory of social impact. Psychological Review, 97(3):362-376.

Oestereich, A., Pires, M., Duarte Queirés, S., and Crokidakis, N. (2020). Hysteresis and
disorder-induced order in continuous kinetic-like opinion dynamics in complex
networks. Chaos, Solitons & Fractals, 137:109893.

Osborne, M. (1994). A course in game theory. MIT Press, Cambridge, Mass.

Palombi, F,, Ferriani, S., and Toti, S. (2017). Influence of periodic external fields in
multiagent models with language dynamics. Physical Review E, 96(6):062311.

Panovska-Griffiths, J., Swallow, B., Hinch, R., Cohen, J., Rosenfeld, K., Stuart, R. M.,
Ferretti, L., Di Lauro, F, Wymant, C., Izzo, A., et al. (2022). Statistical and
agent-based modelling of the transmissibility of different sars-cov-2 variants in
england and impact of different interventions. Philosophical Transactions of the Royal
Society A, 380(2233):20210315.

Panzarasa, P., Opsahl, T., and Carley, K. M. (2009). Patterns and dynamics of users’
behavior and interaction: Network analysis of an online community. Journal of the
American Society for Information Science and Technology, 60(5):911-932.

Peng, S., Zhou, Y., Cao, L., Yu, S., Niu, J., and Jia, W. (2018). Influence analysis in social
networks: A survey. Journal of Network and Computer Applications,
106(January):17-32.

Peres, L. R. and Fontanari, J. F. (2011). The media effect in Axelrod’s model explained.
EPL (Europhysics Letters), 96(3):38004.

Pérez-Llanos, M., Pinasco, ]. P., and Saintier, N. (2020). Opinion attractiveness and its
effect in opinion formation models. Physica A: Statistical Mechanics and its
Applications, 559:125017.



154 REFERENCES

Pineda, M. and Buendia, G. (2015). Mass media and heterogeneous bounds of
confidence in continuous opinion dynamics. Physica A: Statistical Mechanics and its
Applications, 420:73-84.

Pineda, M., Toral, R., and Herndndez-Garcia, E. (2009). Noisy continuous-opinion
dynamics. Journal of Statistical Mechanics: Theory and Experiment, 2009(08):P08001.

Porfiri, M. and di Bernardo, M. (2008). Criteria for global pinning-controllability of
complex networks. Automatica, 44(12):3100-3106.

Proskurnikov, A. V. and Tempo, R. (2017). A tutorial on modeling and analysis of
dynamic social networks. Part I. Annual Reviews in Control, 43:65-79.

Proskurnikov, A. V. and Tempo, R. (2018). A tutorial on modeling and analysis of
dynamic social networks. Part II. Annual Reviews in Control, 45:166-190.

Quattrociocchi, W., Caldarelli, G., and Scala, A. (2015). Opinion dynamics on
interacting networks: media competition and social influence. Scientific Reports,
4(1):4938.

Quattrociocchi, W., Conte, R., and Lodi, E. (2011). Opinions manipulation: Media,
power and gossip. Advances in Complex Systems, 14(04):567-586.

Rabinowitz, G. and Macdonald, S. E. (1989). A Directional Theory of Issue Voting.
American Political Science Review, 83(1):93-121.

Rahmattalabi, A., Barman-Adhikari, A., Vayanos, P., Tambe, M., Rice, E., and Baker, R.
(2018). Influence maximization for social network based substance abuse
prevention. In Mcllraith, S. A. and Weinberger, K. Q., editors, Proceedings of the
Thirty-Second AAAI Conference on Artificial Intelligence, (AAAI-18), the 30th innovative
Applications of Artificial Intelligence (IAAI-18), and the 8th AAAI Symposium on
Educational Advances in Artificial Intelligence (EAAI-18), New Orleans, Louisiana, USA,
February 2-7, 2018, pages 8139-8140. AAAI Press.

Ramos, M., Shao, J., Reis, S. D. S., Anteneodo, C., Andrade, J. S., Havlin, S., and
Makse, H. A. (2015a). How does public opinion become extreme? Scientific Reports,
5(1):10032.

Ramos, M., Shao, J., Reis, S. D. S., Anteneodo, C., Andrade, J. S., Havlin, S., and
Makse, H. A. (2015b). How does public opinion become extreme? Sci. Rep., 5:10032.

Rathnayake, C. and Suthers, D. D. (2016). Networked Solidarity: An Exploratory
Network Perspective on Twitter Activity Related to #illridewithyou. In 2016 49th
Hawaii International Conference on System Sciences (HICSS), pages 2058-2067. IEEE.

Redner, S. (2019). Reality-inspired voter models: A mini-review. Comptes Rendus
Physique, 20(4):275-292.



REFERENCES 155

Reiljan, A., Kutiyski, Y., and Krouwel, A. (2020). Mapping parties in a
multidimensional European political space: A comparative study of the EUvox and
euandi party position data sets. Party Politics, 26(5):651-663.

Richardson, M. and Domingos, P. (2002). Mining knowledge-sharing sites for viral
marketing. In Proceedings of the eighth ACM SIGKDD international conference on
Knowledge discovery and data mining - KDD "02, page 61, New York, New York, USA.
ACM Press.

Roman, S., Palmer, E., and Brede, M. (2017). The dynamics of human-environment
interactions in the collapse of the classic maya. Ecological Economics, 146:312-324.
accepted in Ecological Economics.

Romero Moreno, G., Chakraborty, S., and Brede, M. (2021a). Shadowing and
shielding: Effective heuristics for continuous influence maximisation in the voting
dynamics. PLOS ONE.

Romero Moreno, G., Manino, E., Tran-Thanh, L., and Brede, M. (2020a). Zealotry and
Influence Maximization in the Voter Model: When to Target Partial Zealots? In
Springer Proceedings in Complexity, pages 107-118.

Romero Moreno, G., Padilla, J., and Brede, M. (2021b). The effects of party competition
on consensus formation. In 3rd International Workshop on Agent-Based Modelling of
Human Behaviour (ABMHuB’2021).

Romero Moreno, G., Tran-Thanh, L., and Brede, M. (2020b). Continuous influence
maximisation for the voter dynamics: is targeting high-degree nodes a good
strategy? In Proc. of the 19th International Conference on Autonomous Agents and
MultiAgent Systems (AAMAS 2020), Auckland, New Zealand, May 9-13, 2020.
IFAAMAS, 3 pages.

Romero Moreno, G., Tran-Thanh, L., and Brede, M. (2020c). Shielding and Shadowing:
A Tale of Two Strategies for Opinion Control in the Voting Dynamics. In Complex
Networks and Their Applications VIII. COMPLEX NETWORKS 2019, volume 881,
pages 682-693. Springer, Cham.

Rossi, R. A. and Ahmed, N. K. (2015). The network data repository with interactive
graph analytics and visualization. In AAAL

Saito, K., Kimura, M., Ohara, K., and Motoda, H. (2012). Efficient discovery of
influential nodes for SIS models in social networks. Knowledge and Information
Systems, 30(3):613-635.

Schawe, H., Fontaine, S., and Hernandez, L. (2021). When network bridges foster
consensus. Bounded confidence models in networked societies. Physical Review
Research, 3(2):023208.



156 REFERENCES

Schelling, T. C. (1971). Dynamic models of segregation. Journal of mathematical
sociology, 1(2):143-186.

Schweighofer, S., Garcia, D., and Schweitzer, F. (2020a). An agent-based model of
multi-dimensional opinion dynamics and opinion alignment. Chaos: An
Interdisciplinary Journal of Nonlinear Science, 30(9):093139.

Schweighofer, S., Schweitzer, F., and Garcia, D. (2020b). A Weighted Balance Model of
Opinion Hyperpolarization. Journal of Artificial Societies and Social Simulation, 23(3).

Sen, P. (2011). Phase transitions in a two-parameter model of opinion dynamics with
random kinetic exchanges. Physical Review E, 83:016108.

Sikder, O., Smith, R. E., Vivo, P,, and Livan, G. (2020). A minimalistic model of bias,
polarization and misinformation in social networks. Scientific Reports, 10(1):1-11.

Sirbu, A., Loreto, V., Servedio, V. D. P, and Tria, F. (2013a). Cohesion, consensus and
extreme information in opinion dynamics. Advances in Complex Systems,
16(06):1350035.

Sirbu, A., Loreto, V., Servedio, V. D. P, and Tria, F. (2013b). Opinion Dynamics with
Disagreement and Modulated Information. Journal of Statistical Physics,
151(1-2):218-237.

Sirbu, A., Loreto, V., Servedio, V. D. P, and Tria, F. (2017). Opinion Dynamics: Models,
Extensions and External Effects, pages 363—401. Springer International Publishing,
Cham.

Slawski, M. and Hein, M. (2015). Estimation of positive definite M-matrices and
structure learning for attractive Gaussian Markov random fields. Linear Algebra and
its Applications, 473:145-179.

Smith, J. M. (1976). Evolution and the theory of games: In situations characterized by
conflict of interest, the best strategy to adopt depends on what others are doing.
American Scientist, 64(1):41-45.

Sobkowicz, P. (2015). Extremism without extremists: Deffuant model with emotions.
Frontiers in Physics, 3(MAR):1-12.

Sobkowicz, P. (2016). Quantitative Agent Based Model of Opinion Dynamics: Polish
Elections of 2015. PLOS ONE, 11(5):e0155098.

Somer, M. and McCoy, J. (2018). Déja vu? Polarization and Endangered Democracies
in the 21st Century. American Behavioral Scientist, 62(1):3-15.

Steels, L. (1995). A Self-Organizing Spatial Vocabulary. Artificial Life, 2(3):319-332.



REFERENCES 157

Stewart, A. J., Mosleh, M., Diakonova, M., Arechar, A. A., Rand, D. G., and Plotkin,
J. B. (2019). Information gerrymandering and undemocratic decisions. Nature,
573(7772):117-121.

Svolik, M. W. (2019). Polarization versus democracy. Journal of Democracy, 30(3):20-32.

Tamarit, I., Cuesta, ]. A., Dunbar, R. I. M., and Sanchez, A. (2018). Cognitive resource
allocation determines the organization of personal networks. Proceedings of the
National Academy of Sciences, 115(33):8316-8321.

Tavits, M. (2008). Policy Positions, Issue Importance, and Party Competition in New

Democracies. Comparative Political Studies, 41(1):48-72.

Taylor, M. (1968). Towards a Mathematical Theory of Influence and Attitude Change.
Human Relations, 21(2):121-139.

Tessone, C. J. and Toral, R. (2009). Diversity-induced resonance in a model for opinion
formation. The European Physical Journal B, 71(4):549-555.

Tichy, N. M., Tushman, M. L., and Fombrun, C. (1979). Social Network Analysis For
Organizations. Academy of Management Review, 4(4):507-519.

Toscani, G. (2006). Kinetic models of opinion formation. Communications in
Mathematical Sciences, 4(3):481-496.

Tran-Thanh, L., Chapman, A., Rogers, A., and Jennings, N. (2021). Knapsack based
optimal policies for budget-limited multi-armed bandits. Proceedings of the AAAI
Conference on Artificial Intelligence, 26(1):1134-1140.

Tsai, J., Nguyen, T. H., and Tambe, M. (2012). Security games for controlling
contagion. In Proceedings of the Twenty-Sixth AAAI Conference on Artificial Intelligence
Security, pages 1464-1470.

Valentini, G., Ferrante, E., Hamann, H., and Dorigo, M. (2016). Collective decision
with 100 Kilobots: speed versus accuracy in binary discrimination problems.
Autonomous Agents and Multi-Agent Systems, 30(3):553-580.

Vassio, L., Fagnani, F,, Frasca, P., and Ozdaglar, A. (2014). Message Passing
Optimization of Harmonic Influence Centrality. IEEE Transactions on Control of
Network Systems, 1(1):109-120.

Vaz Martins, T., Pineda, M., and Toral, R. (2010). Mass media and repulsive
interactions in continuous-opinion dynamics. EPL (Europhysics Letters), 91(4):48003.

Velasquez-Rojas, F. and Vazquez, F. (2017). Interacting opinion and disease dynamics
in multiplex networks: Discontinuous phase transition and nonmonotonic
consensus times. Physical Review E, 95(5):052315.



158 REFERENCES

Vendeville, A., Guedj, B., and Zhou, S. (2021). Forecasting elections results via the
voter model with stubborn nodes. Applied Network Science, 6(1):1.

Vendeville, A., Guedj, B., and Zhou, S. (2022). Towards control of opinion diversity
by introducing zealots into a polarised social group. In Benito, R. M., Cherifi, C.,
Cherifi, H., Moro, E., Rocha, L. M., and Sales-Pardo, M., editors, Complex Networks &
Their Applications X, pages 341-352, Cham. Springer International Publishing.

Vinokur, A. and Burstein, E. (1974). Effects of partially shared persuasive arguments
on group-induced shifts: A group-problem-solving approach. Journal of Personality
and Social Psychology, 29(3):305-315.

Wang, Z., Bauch, C. T., Bhattacharyya, S., D’Onofrio, A., Manfredi, P., Perc, M., Perra,
N., Salathé, M., and Zhao, D. (2016). Statistical physics of vaccination. Physics
Reports, 664:1-113.

Watts, D. J. and Strogatz, S. H. (1998). Collective dynamics of ‘small-world” networks.
Nature, 393(6684):440-442.

Weisbuch, G., Deffuant, G., Amblard, F.,, and Nadal, J.-P. (2003). Interacting agents and
continuous opinions dynamics. In Cowan, R. and Jonard, N., editors, Heterogenous
Agents, Interactions and Economic Performance, pages 225-242, Berlin, Heidelberg.
Springer Berlin Heidelberg.

Wilder, B., Ou, H. C,, de la Haye, K., and Tambe, M. (2018a). Optimizing network
structure for preventative health. In Proceedings of the 17th International Conference on
Autonomous Agents and MultiAgent Systems, AAMAS 18, pages 841-849.
International Foundation for Autonomous Agents and Multiagent Systems.

Wilder, B., Suen, S.-C., and Tambe, M. (2018b). Preventing infectious disease in
dynamic populations under uncertainty. In Proceedings of the Thirty-Second AAAI
Conference on Artificial Intelligence, (AAAI-18), the 30th innovative Applications of
Artificial Intelligence (IAAI-18), and the 8th AAAI Symposium on Educational Advances
in Artificial Intelligence (EAAI-18), New Orleans, Louisiana, USA, February 2-7, 2018.

Wilder, B. and Vorobeychik, Y. (2018). Controlling elections through social influence.
In Proceedings of the 17th International Conference on Autonomous Agents and
MultiAgent Systems, AAMAS 18, pages 265-273, Richland, SC. International
Foundation for Autonomous Agents and Multiagent Systems.

Wilford, A. M. (2017). Polarization, number of parties, and voter turnout: Explaining
turnout in 26 OECD countries. Social Science Quarterly, 98(5):1391-1405.

Wongkaew, S., Caponigro, M., and Borzi, A. (2015). On the control through leadership
of the Hegselmann—Krause opinion formation model. Mathematical Models and
Methods in Applied Sciences, 25(03):565-585.



REFERENCES 159

Xie, X., Li, J., Sheng, Y., Wang, W., and Yang, W. (2021). Competitive influence
maximization considering inactive nodes and community homophily.
Knowledge-Based Systems, 233:107497.

Yadav, A., Wilder, B., Rice, E., Petering, R., Craddock, ]., Yoshioka-Maxwell, A.,
Hemler, M., Onasch-Vera, L., Tambe, M., and Woo, D. (2017). Influence
maximization in the field: The arduous journey from emerging to deployed
application. In Proceedings of the International Joint Conference on Autonomous Agents
and Multiagent Systems, AAMAS.

Yi, Y. and Patterson, S. (2020). Disagreement and polarization in two-party social
networks. IFAC-PapersOnLine, 53(2):2568-2575.

Yildiz, E., Ozdaglar, A., Acemoglu, D., Saberi, A., and Scaglione, A. (2013). Binary
Opinion Dynamics with Stubborn Agents. ACM Transactions on Economics and
Computation, 1(4):1-30.

Zhang, H., Vorobeychik, Y., Letchford, J., and Lakkaraju, K. (2016). Data-driven
agent-based modeling, with application to rooftop solar adoption. Autonomous
Agents and Multi-Agent Systems, 30(6):1023-1049.

Ikizler, H. (2019). Contagion of network products in small-world networks. Journal of
Economic Interaction and Coordination, 14(4):789-809.



	Contents
	List of Figures
	List of Tables
	Declaration of Authorship
	Acknowledgements
	1 Introduction
	1.1 Research challenges
	1.2 Research contribution
	1.3 Thesis structure

	2 Background theory and literature review
	2.1 Network models of social influence
	2.1.1 Complete graph
	2.1.2 Bipartite graph
	2.1.3 Spatial networks
	2.1.4 Erdős–Rényi random graphs
	2.1.5 Small–world networks
	2.1.6 Scale–free networks

	2.2 Modelling opinion formation processes within a society
	2.2.1 Models considering opinions as discrete variables
	2.2.2 Models considering opinions as continuous variables

	2.3 External influence of opinions dynamics
	2.3.1 Untargeted external influence (or coarsely targeted)
	2.3.2 Finely targeted external influence

	2.4 Agent–Based Modelling
	2.5 Optimisation methods
	2.5.1 Discrete optimisation
	2.5.2 Continuous optimisation

	2.6 Summary

	3 Continuous Influence Maximisation for the Voter Dynamics
	3.1 Introduction
	3.2 Formalisation of the continuous IM problem
	3.3 Methods and experimental settings
	3.3.1 Gradient ascent algorithm for continuous IM in the voter model
	3.3.2 Heterogeneous mean–field approximation
	3.3.3 Experimental settings

	3.4 Initial exploration of the structure of optimal allocations in the continuous IM
	3.5 First–order optimal responses: Shadowing (or avoidance)
	3.6 Second–order optimal responses: Shielding (or anti–shielding)
	3.7 Hub preferences and dependence on node degree
	3.8 Comparison of heuristics and optimal strategies in the continuous and discrete regimes
	3.9 Optimal strategies when both controllers are active
	3.10 Discussion

	4 Bias and Influence Maximization
	4.1 Introduction
	4.2 Model
	4.3 Methods and experimental settings
	4.4 Complete graph: the roles of the allocation budget and the level of bias on optimal allocations
	4.5 Bipartite graph: the role of node degree on optimal allocations
	4.6 Barabasi–Albert networks: the role of degree heterogeneity
	4.7 General model: Including a passive opponent and agents biased towards either opinion
	4.8 Discussion

	5 The effects of party competition on consensus formation
	5.1 Introduction
	5.2 A Model for party competition and consensus–formation processes
	5.2.1 Opinion dynamics model
	5.2.2 Model of party competition

	5.3 Methods and experimental settings
	5.4 Effects of party competition on consensus formation
	5.5 The mechanisms behind the fostering–polarisation or fostering–consensus effects of party competition
	5.6 Party configurations that promote consensus or polarisation
	5.7 Extending to other numbers of parties
	5.8 Including social network structure
	5.9 Discussion

	6 Summary and conclusions
	6.1 Critical evaluation and future work

	Appendix A Appendix to Chapter 3
	Appendix A.1 Testing the HMF approximation
	Appendix A.2 Testing the GA algorithm for IM
	Appendix A.3 Details of the network employed
	Appendix A.4 Numerical experiments of shielding in various network topologies
	Appendix A.5 Analytical inspection of shielding
	Appendix A.5.1 Neighbour Mean–Field Approximation for K-Regular Graphs
	Appendix A.5.2 Analytical Results on Shielding and comparison to Numerical Results

	Appendix A.6 Dependence of optimal influence allocations in the continuous regime on node degree
	Appendix A.7 Shadowing, shielding and hub preferences in the discrete regime
	Appendix A.8 Extension to other network topologies
	Appendix A.9 Proof of concavity
	Appendix A.10 Iterations to optimal IM of the proposed heuristics

	Appendix B Appendix to Chapter 4
	Appendix B.1 Phase diagram of optimal targetting for an active controller who is in budget superiority against a passive controller with varying targetting strategies

	Appendix C Appendix to Chapter 5
	Appendix C.1 Role of system size on consensus–forming process under party competition
	Appendix C.2 Phase diagrams of transitions from consensus to polarisation to fragmentation for different number K of parties

	References

