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Abstract 15 
In the contemporary era, novel manufacturing technologies like additive manufacturing (AM) 16 
have revolutionized the different engineering sectors including biomedical, aerospace, 17 
electronics, etc. Four-dimensional (4D) printing aka AM of smart materials is gaining popularity 18 
among the scientific community, which has the excellent ability to make soft structures such 19 
as soft robots, actuators, and grippers. These soft structures are developed by applying 20 
various stimuli such as pH, temperature, magnetic field, and many combinations onto soft 21 
materials. Stimuli in 3D printing permit various shape-morphing behaviors such as bending, 22 
twisting, folding, swelling, rolling, shrinking, origami, or locomotion. A wide variety of soft 23 
magnetic structures can be fabricated through the incorporation of soft or hard magnetic 24 
particles into soft materials resulting in magneto-active soft materials (MASMs). With this 25 
integration, magneto-thermal coupling actuation allows diverse magneto-deformations, 26 
facilitating the development of personalized devices that are capable of enhanced 27 
deformation. In this review, guidelines are provided on the 3D printing for MASMs such as 28 
magneto-active polymers (MAPs), magneto-active composites, and magneto-active hydrogels 29 
(MAHs) on the booming development of various smart and flexible devices such as soft robots, 30 
wearable electronics, and biomimetic devices. Moreover, 3D-printed soft robotics have an 31 
outstanding capacity to adapt to complicated situations for many advanced actuating 32 
applications. Finally, some current challenges and emerging areas in this exciting technology 33 
have been proposed. Lastly, it is anticipated that technological advancements in developing 34 
smart and intelligent magneto-active structures will have a significant impact on the design of 35 
real-world applications. 36 
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Highlights 38 
1. Magneto-active soft materials (MASMs) are novel smart materials for multifunctional 39 

robotics applications. 40 
2. Highlighting the contemporary trends of 3D-printed MASM-based soft robotics. 41 
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1 Introduction  143 
Under constant evolution, the ambition to drive and pursue modern technologies has 144 
significantly improved today’s living standards. This has happened because of scientific 145 
progress, leading towards transformation in many areas including materials, their synthesis 146 
techniques, and properties characterization, thus, opening a new paradigm for many novel 147 
applications [1]. Three-dimensional (3D) printing or additive manufacturing (AM) is regarded 148 
as a novel and emerging manufacturing technique for many materials and it is now being 149 
imposed in scale-up on an industrial scale [2]–[6]. 3D printing is also drawing attention from 150 
researchers due to its ability to produce complex parts with higher accuracy, adaptability and 151 
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availability all over the world [7]–[10]. Various 3D printing techniques such as ink-based, light-152 
based and laser-based are introduced [11]–[13] and performed significantly for various 153 
materials such as polymers [14], elastomers [15], metals [16], and polymer composites [17]. 154 
Ink availability,  balancing printing quality including layer thickness, and layer height are some 155 
of the important design criteria in 3D printing [18]–[20]. From a sustainability perspective, 3D 156 
printing has so much to offer, for instance, various natural biomaterials [21]–[23] can be used 157 
as a potential ink source for exciting applications without creating any waste [24]–[26]. 158 
Moreover, 3D printing of composite materials has improved mechanical properties than 159 
traditional composites [27]–[29]. This technology has provided the opportunity for multi-160 
material printing which includes two or more different materials as well as solid material into a 161 
medium, creating a suspension for desired ink for any geometry [30]–[32]. Many complex 162 
structures such as helical coils, origami, and kirigami-inspired structures, and functionalized 163 
micro-architectures can be printed with extreme accuracy [33]–[38]. 164 
3D printing has opened up many interesting avenues for real or practical applications as well 165 
as continuously thriving for new platforms for incorporating many emerging materials including 166 
nanomaterials for achieving wide goals for a broader community perspective [39]–[42]. 167 
Recently, during the coronavirus disease 2019 (COVID-19) pandemic, 3D printing also played 168 
its part by fabricating personal protective equipment [43]–[45]. Other biomedical applications 169 
of 3D printing include patient-specific models that can be used to train medical staff and 170 
improve patient consent and understanding, wearable devices such as orthotics and 171 
prosthetics [46]–[48], tissue engineering [49]–[52], drug delivery systems [53]–[55] as well as 172 
gadgets to make life easier [56]–[58]. 173 
The use of 3D printing is growing in almost every field including analytical chemistry [59], 174 
microfluidic devices [60], and detection of analytes for medical diagnosis [61], electrochemical 175 
sensors [62], and system health monitoring [63], [64]. However, the cost, limited print 176 
materials, the need for post-processing of devices [65], and the need for higher resolution still 177 
limit the broader application of this technology. One of the significant drawbacks is that printed 178 
functions remain static after 3D printing which limits its applications in some of the novel areas 179 
where many printed functions, such as self-healing ability, elastic conductivity, and shape-180 
morphing mechanism in many devices (e.g., wearable electronics, soft robots, and flexible 181 
biosensors) performances are required [66]–[69]. Among all these 3D-printed drawbacks, the 182 
shape-morphing behaviors of printed materials have paramount importance in advanced 183 
engineering applications [70]–[72]. Lately, an improved form of AM relatively inspired by 184 
shape-morphing behaviors in nature, the four-dimensional (4D) printing technique has been 185 
introduced [73]–[75]. 4D printing can also be defined as using smart materials for adopting 186 
external stimuli in the 3D printing research division [76]–[80]. Researchers have developed a 187 
4D printing technique for gaining more accurate control of the shapes of printed parts such as 188 
shrinking, swelling, folding, bending, rolling, origami, twisting, or locomotion under various 189 
stimuli [81]–[86].  190 
Recently soft actuators and robotics have been studied extensively [87]. Soft robotics have 191 
some unique capabilities in comparison to traditional robots such as constantly changing 192 
stiffness and shape morphing ability for performing specific tasks such as grasping and lifting 193 
toxic or hazardous objects under extreme environmental conditions [88]–[91]. In fact, shape 194 
compliance of soft actuators provides a viable avenue to address many unsolved problems of 195 
today [92]–[96]. The fabrication of soft robotics through the conventional synthesis route is 196 
tedious and time-consuming, and more importantly, its shape-morphing behavior is not 197 
satisfactory. To date, various synthesis routes have been used for fabricating soft robotics, 198 
including solvent casting [97], lithography [98], roll-to-roll technology [99], laser heating [100], 199 
spraying with spin technique [101], magnetized modules assembly with dynamic covalent 200 
bonds [102], electron beam lithography of nanomagnets [103] and bonding agent [104], [105]. 201 
Among them adding magnetic particles (MPs) to 3D-printed smart material is a promising and 202 
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innovative way to achieve highly functionalized soft actuators [106]–[108]. To date, various 203 
magnetic materials such as electrical steel (FeSi), iron oxide (Fe3O4) and carbonyl iron 204 
particles (CIP) have been added to many shape memory materials. In the presence of 205 
magnetic field strength, the 3D-printed magnetic actuated soft robotics exhibited unique 206 
phenomena for changing their shape, structures as well and properties which are beneficial to 207 
many applications [109]. This unique 3D-printed magnetic actuation attribute with desirable 208 
performances is an ideal choice for practical application in the healthcare sector [110] like 209 
targeted drug delivery and tissue engineering [111]–[114]. Moreover, magnetically actuated 210 
actuators with remote magnetic steering capabilities have also proven their potential in 211 
minimally invasive medical procedures [115]–[118]. Figure 1 summarizes the key features 212 
found today in soft robotics and their exciting role in many diverse applications. 213 

 
Figure 1. Overview of recent soft robotics from various perspectives  

1.1 Scope of Review  214 

Considerable progress has been made in the design of high-performance soft actuators. 215 
Herein we have provided some guidelines based on the latest research studies on how to use 216 
the power of 3D printing of smart materials in making high-performance novel devices such 217 
as smart grippers, wearable electronics, stretchable ionotropic devices, and many intelligent 218 
devices from AM techniques, and smart materials point of views. The broad aim of this review 219 
is to i) stipulate an exhaustive overview of 3D printing of magneto-active polymers, ii) identify 220 
key smart materials employed for magnetic actuation and their key mechanisms for exciting 221 
applications, iii) propose a series of guidelines for tackling future challenges and highlighting 222 
existing scientific and technological gaps in the field, and iv) discuss potential opportunities for 223 
fabricating high-performance soft robotics towards practical applications. Figure 2 shows the 224 
publication trends of 3D printing of smart materials under magnetic stimulus across the 225 
different years and significantly publication trends proving that there is a need for a systematic 226 
review to summarize the novel studies. Furthermore, we develop this review by highlighting 227 
the key aspects of various published studies related to this emerging field and adapting a 228 
systematic approach for balancing between the 3D printing technology and the performance 229 
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of printed devices. Table 1 provides a brief comparison between a current review and recently 230 
published reviews on similar topics.  231 

 
Figure 2. 3D Printing of magnetic actuated materials publication trends across the different years 
((Figure drawn based on the information from Scopus database using “3D printing”, and “magnetic 
responsiveness” as keywords) 

Table 1. Brief comparison between current review and recent reviews on similar topics 232 

Major Discussion/aspect 

Previous reviews 
Present 
review 

Bastola and 
Hossain [119] 

Lucarini et 
al. [120] 

Khalid et al. 
[121] 

Hedge et 
al. [122] 

Yasa et al. 
[123] 

 

Discussion on 3D printing - ✔ ✔ - - ✔ 

Discussion on Soft robotics - ✔ ✔ ✔ ✔ ✔ 

3D printing under magnetic 
stimulus (only) for soft robotic 
applications 

- - - - - ✔ 

Dispersion/synthesis of MPs 
in soft materials 

- - - - - ✔ 

Magneto characterizations ✔ ✔ - - - ✔ 

Sensing capabilities in soft 
robotics 

- - - ✔ - - 

1.2 Smart materials for 3D printing 233 

Smart materials can perceive and respond under normal conditions related to their 234 
surrounding environment; however, these materials are unable to improve or optimize their 235 
response when sudden change has happened in their surrounding environment [124]. 236 
Whereas intelligent materials can adapt to those changes, and can respond well accordingly 237 
and purposefully, for improving and optimizing their response [125]. Smart and intelligent 238 
materials are under constant evolution for their applications in various artificial actuators. The 239 
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motions of these actuators are inspired by nature such as life-like motions for bioinspired 240 
robotics [126]–[128]. Moreover, these materials can offer functionalities beyond traditional 241 
ones particularly for developing unique actuators due to their ability to adapt easily and deform 242 
according to the environment. Smart materials also include self-healing materials, self-243 
transforming materials, their auxetic behavior, softening and hardening behaviors under 244 
compression and tension, action-at-a-distance phenomena and respond overtime to assemble 245 
into new compositions via bending, spreading, twisting, shrinking, and folding [129]–[131]. 246 
These dynamic functions of smart materials are teamed with the 3D-printed complex 247 
geometries of parts for soft robotics, advanced actuators, biomimetic devices, and self-248 
deployable structures applications [132]–[134].  249 
Shape-memory materials are the type of smart materials which trigger their response under 250 
the environmental stimulus, without relying on the application of an external force [135]–[138]. 251 
Different shape memory polymers (SMPs), liquid crystal elastomers (LCEs), hydrogels, and 252 
shape memory polymer composites (SMPCs) are effectively used for the fabrication of flexible 253 
devices through 4D printing [139]–[141]. It is worth mentioning that among all the SMP, SMPC, 254 
and the role of multifunctional hydrogels are highly effective in the development of novel smart 255 
structures [142]–[144]. Various two-dimensional (2D) materials such as graphene, and carbon 256 
nanotubes (CNTs) can further improve the shape memory effect (SME) of these smart 257 
materials [145]. 258 

2 3D Printing  259 
In this section, the manufacturing techniques used for smart materials are reviewed according 260 
to their popularity, and working principles with pros and cons. Furthermore, 4D printing 261 
technology is correlated with 3D printing [146] [147], [148]. Thus, new possibilities in 4D 262 
printing will be created due to the development of 3D printing techniques [149]–[151]. 263 
Typically, 3D printing is considered a bottom-up manufacturing approach, and materials are 264 
deposited and patterned in a drop-on-demand manner [152]–[154]. This allows rapid design 265 
and manufacturing of many smart actuators-based various devices [155]–[157].  266 

3D printing techniques are characterized by contact-based and contactless methods. Fused 267 
deposition modelling (FDM), material jetting (MJ), and direct ink writing (DIW) come under 268 
contact-based methods [158], whereas the photopolymerization process, powder bed fusion 269 
(PBF), and direct energy deposition, are common contactless technologies for 3D printing 270 
[159]–[161]. Of all these techniques, stereolithographic (SLA) and FDM are the most employed 271 
processes. FDM includes high-temperature nozzles for feeding the filament, and later 272 
depositing layer-by-layer sheets of a melted layer with high fabrication speed [162]. FDM also 273 
has significant advantages such as versatility and affordability for all types of structures (small 274 
to large) and less expensive 3D printing techniques [163]–[166]. Moreover, a wide variety of 275 
inks in DIW can be deposited onto arbitrary substrates with random or even complex 276 
geometries. Thus, sometimes it is interpreted as a powerful technique for fabricating advanced 277 
and sophisticated electronic equipment with high resolution [167]–[169]. However, the 278 
possibility of needle clogging during the low speed and high shear forces are some major 279 
drawbacks of FDM [170]. Fused filament fabrication (FFF) is also considered as simplest and 280 
most widely used 3D printing technology for a large variety of thermoplastic materials at low 281 
cost for multi-material 3D printing for various applications [171]. Another popular 3D printing 282 
commonly employed is SLA. It has customizability and the ability to print complex geometries 283 
through the step method of photo polymerization, scanning the liquid UV-curable matter with 284 
a laser [172]–[175]. This permits high print resolution and excellent speed that may be greater 285 
than FDM. Furthermore, SLA is extremely suitable for the fabrication of customized soft 286 
robotics for wearable applications [176]–[178]. Figure 3 illustrates the working principles of 287 
various AM technologies, which are used to print MASMs. Moreover, increasing 288 
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miniaturization and higher demand for microfabrication scale has diverted the attention of 289 
researchers towards micro and nano-printing techniques [179] such as two-photon 290 
polymerization (2PP) also referred to as direct laser writing (DLW) [180]. In this technique, a 291 
photo-reactive resin is exposed to high-energy femtosecond laser beams and provides 292 
excellent spatial resolutions in the range of 100 nm [181]–[183]. Table 2 highlights the key 293 
aspects of current AM technologies. Table 3 summarizes the key benefits achieved by soft 294 
robotics using AM technologies.  295 

 
Figure 3. Schematics of various 3D printing techniques; (a) fused filament fabrication of PLA-based 
magneto-active composites (adapted with permission from ref. [184], copyright 2019, Elsevier Ltd.); (b) DLP 
(adapted with permission from ref. [185], copyright 2019, WILEY‐VCH Verlag); (c) Design of ferromagnetic 
domains in soft materials to develop magnetic composites using DIW (adapted with permission from [186], 
copyright 2018, Springer Nature). (d) TPP used to develop MASMs (adapted with permission from [187], 
copyright 2018, WILEY‐VCH), (e) Masked type SLA technique used for the fabrication MAP structure 
(adapted from [188] under the terms of the Creative Commons Attribution license 4.0) 

Table 2. Comparison of various 3D Printing methods, principles, materials, and cost. 296 

AM 
processes 

Printing 
principle 

Typical 
polymer 
materials 

Layer 
height 

materials 

Resolution 
(µm) 

Support 
structure 

Printing cost Ref. 

DIW 
Plastic in melt 
form is extruded 

Thermoplastics, 
hydrogel, liquid 
polymer, and 

0.050–
0.400 

100-600 
Dependent on 
geometry, 
materials and 

($300) low cost for 
home use and high 

[189] 

(a) 
(b) 

(c) (d) 

(e) 
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FDM 

through a 
nozzle 

colloidal 
suspension 100-150 

dissolvable 
supports can 
be used 

for professional use 
($2000–$8000) [190]–

[192] 

VP 

Laser light or a 
projected image 
is used for 
curing liquid 
resin 

Photocurable 
resin (acrylate-
based resin or 
epoxy is used) 

0.010–
0.200 

10-50 

Dependent on 
model 
geometry and 
printer type 

$2500+ for desktop 
models. 
$20,000-$200,000 
for commercial 
printers 

[193]–
[195] 

2PP 
Laser light is 
used for curing 
liquid resin 

Photocurable 
resins 

- 0.1-5 
Dependent on 
3D geometry 

up to $200,000 
[196]–
[198] 

PBF 
Sintering is 
done through 
heat-induced 

PA, PCL 
powder and 
polystyrene 

~0.100 - No $15,000-$30,000 
[199]–
[201] 

MJ 
Material jetting 
is done with UV 
solidification 

Photocurable 
resin 

~0.100 Up to 16 No $100k-$250k 
[202]–
[204] 

BJ 
Drop-on-
demand BJ 

Acrylate-based 
powder (metal 
and sand) + 
bonding agents 

~0.100  No 
Typically, 
$200,000+ 

[205]–
[207] 

SL 
Adhesive (layer 
by layer) 

Bonding agents 
+ polymer 
composites 

~0.100 
0.05-1 
(diverse 
finish) 

No $30,000+ 
[208]–
[210] 

 297 

Table 3. Some highlights/prominent works for soft robotic using 3D printing technology 298 

AM technique Material(s) 
Layer creation 

technique 
Size 

Soft robotics 
type 

Highlights Ref. 

SLA 
Glucose/CNT/P
DMS 

3D printed PDMS 
substrate with CNT 
layer 

15 × 15 
× 5 mm3 

Soft wearable 
sensor like 
volcano sponge 

The facile 3D-printed soft 
sensor successfully captures 
speech signals, pulse signals, 
tactile signals from a 
mechanical gripper, and 
gesture signals, for potential 
applications in medical 
diagnosis and soft robotics. 

[211] 

Inkjet Printing Tangoblack 
Multi-material layer 
by layer printing 

14 × 9 × 
7 cm3 

Bellows 
actuators, gear 
pumps, soft 
grippers and a 
hexapod Robo 

The proposed 3D printing 
allows robotic components to 
be automatically built, with no 
assembly required. 

[212] 

Connex3 
Objet350 3D 

printer 

(TangoPlus 
FLX930), 
(TangoBlackPlu
s FLX980) and 
(VeroClear 
RGD810) 

Multi material layer 
UV-curable 

- 
Soft gripper with 
embedded 
sensors 

The proposed 3D-printed soft 
gripper with embedded 
sensors has resistive sensing 
capabilities directly into a 
pneumatic gripper. 

[213] 

FDM TPU Multi material layer 
40× 12× 
0.55 
mm3 

Smart soft 
grippers 

The proposed multi-material 
printing has enormous scope 
in the automation industry for 
fabricating on-demand smart 
universal gripper with variable 
stiffness and integrated 
sensors. 

[214] 

DLP 
Soft conductive 
resin 

- - Soft actuators 
DLP-based printed 
untethered soft actuators 

[215] 
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embedded with multiple 
sensing capabilities are highly 
promising for intelligent soft 
robotics applications. 

FDM TPU - 
23724.8
2 mm3 

Omni-purpose 
soft gripper 

The proposed 3D-printed soft 
gripper has a maximum 
payload to weight ratio of 
7.06, a grip force of 31.31 N, 
and a tip blocked force of 3.72 
N and can grasp at least 20 
different objects. 

[216] 

FDM TPU 
Layer-by-layer 
printing 

- 

Origami-based 
soft 
encapsulating 
gripper 

The direct 3D printing of soft 
materials on fabric is highly 
promising for soft actuators 
with grasping performance 
are highly delicate and ultra-
gentle objects. 

[217] 

2PP 

Propylene 
glycol methyl 
ether acetate 
(PGMEA) 

Multi-material laser 
curable printing 

4.9 × 
10−4 
mm3 

Micro-
hydraulics soft 
actuator 

The proposed micro printed 
actuator could transmit forces 
with relatively large 
magnitudes (millinewtons) in 
3D space for broader 
applications in micro-robotics 
and medical. 

[218] 

DLP TPU 
Layer-by-layer 
UV-curable 

4.5×12 
×6 cm3 

Frog-shaped 
soft robot 

DLP-based 3D printed soft 
actuators (2.2 g) could exert 
up to 0.5 Newtons of force 
that are integrated into a 
bioinspired untethered soft 
robot. 

[219] 

SDM PU - 116 cm3 
Soft, atraumatic 
and deployable 
surgical grasper 

The proposed SDM fingers 
were used to design a 
multijointed grasper that 
relies on geometric trapping 
to manipulate tissue, which 
was a highly conformable 
means of manipulation 

[220] 

FFF 
NinjaFlex 
(NinjaTek) 

- 

49.7 × 
47.7 × 
12.5 
mm3 

Monolithic soft 
gripper with 
adjustable 
stiffness 

Finite element simulation and 
experimental results showed 
that the proposed monolithic 
3D-printed soft gripper is fully 
compliant, low cost and 
requires an actuation 
pressure below -100 kPa. 

[221] 

DLP 
Polyurethane 
acrylate 

Multi-material UV-
curable printing 

500 
×300 μm 

Dielectric 
elastomer 
actuators for 
vibrotactile 
device 

The non-prestretch DLP-
printed cylindrical actuator 
demonstrated a remarkable 
blocked force of 270 mN and 
maintained 45% actuation 
performance at a frequency of 
100 Hz. 

[222] 

SLA 

2-hydroxyethyl 
acrylate, 
ethylene glycol 
diacrylate, and 
phenyl 
bis(2,4,6-
trimethylbenzoy
l) phosphine 
oxide 

Multi-material UV-
curable printing 

500 × 
500 × 
500 μm3 

Multifunctional 
structured 
microgel as 
building blocks 
for mesoscopic 
self-assembly 

The 3D-printed mesoscopic 
microgels were assembled 
and disassembled using 
respective reduction and 
oxidation reagents for soft 
robotic applications. 

[223] 
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FDM PVC sheets - - 
Soft prosthetic 
finger 

The reported results showed 
that the stiffness of the 3D-
printed soft finger was 
increased by 40 % by linearly 
driving the stiffness 
augmenting unit. 

[224] 

Inkjet Printing 
Urethane and 
epoxy 

Multi-material UV-
curable printing 

80 × 5 × 
5 mm3 

Tri-legged soft 
robot with 
spider mimicry 

The developed tri-pedal soft 
bot demonstrated its power 
efficiency and controllable 
locomotion at three input 
signal frequencies (1, 2, and 5 
Hz). 

[225] 

FDM Nafion Layer by layer 
5 mm × 
10 mm × 
0.5 mm 

Macro-scale 
soft robotic 
systems 

The proposed 3D printing of 
ionic polymer-metal 
composites exhibited unique 
actuation and sensing 
properties for creating 
electroactive polymer 
structures for application in 
soft robotics. 

[226] 

Polyjet-based 3D 
printing 

- 
Multi-material 
printing 

30 μm 
(layer 
height) 

Unified soft 
robotic systems 
comprising a 
fully integrated 
fluidic circuit 

The fully integrated soft 
robotic entities consisting of 
soft actuators, fluidic circuitry, 
and body features offer a 
novel way to catalyze new 
classes of soft robots. 

[227] 

 299 

2.1 4D Printing 300 

Considerable progress in 3D printing technology was achieved by MIT researchers in 2013 by 301 
introducing a shape-morphing capability into 3D-printed objects termed 4D printing [228]. It 302 
was made possible by the rapid expansion of smart materials, commercial 3D printers, and 303 
stimulant environments such as light, temperature, pH, humidity,  magnetic and electric fields 304 
[229]. 4D printing enables a higher degree of freedom and flexibility in terms of printable 305 
geometry [230]–[232]. Moreover, 4D printing integrates the product’s blueprint into a flexible, 306 
and intelligent material [233]–[235]. The term “4D” refers to alive structures obtained from 307 
traditional 3D-printed structures and means the printed structure can change at least one of 308 
its key features such as design, color, property, or functionality over a period under a stimulant 309 
environment [236]. This opens a new paradigm for new application arenas for their multi-310 
functional behavior including SME, complex rapid deformation requirements [237], 311 
reconfigurable structure, actuation, and sensing under stimulant environments for a broad 312 
variety of applications such as soft robotics [238], shape-memory structures [239], advanced 313 
actuators [240]–[242], tissue engineering [243], targeted drug delivery [244], [245], cell-laden 314 
structures [246], self-deployable structures for aerospace applications [247]–[249], and many 315 
more [250]–[253]. Figure 4 shows the 4D printing market forecast across all the continents in 316 
the upcoming years.  317 
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Figure 4. 4D printing markets across all continents (Figure drawn based on the information is collected 

from online available source available at [254])  

Smart or stimuli-responsive materials have contributed towards 4D printing by integrating 318 
existing 3D printing techniques [255]–[257]. The smart materials in 4D printing are classified 319 
into many sub types such as thermosets and thermoplastic polymers [258], [259], various 320 
biomaterials [260], [261]. Polylactic acid (PLA) [262], [263], polyvinyl alcohol (PVA) [264], 321 
polycaprolactone (PCL) [265], polyurethane (PU) [266], and hydrogels [267] are mainly 322 
considered smart materials for fabricating highly responsive soft actuators at both the macro 323 
as well as micro levels [268]. 4D printing further harnesses the fabrication of soft actuators, 324 
controllable structures, soft robotics, and many functional devices [269]–[271].  325 
4D printing brings exciting functionalities to smart sensors including environment self-326 
adaptation, self-sensing, and self-healing [272]–[275]. Recently, Ren et al. [276] introduced a 327 
highly versatile smart tactile sensor through 4D printing using nanocarbon black/PLA 328 
composites and shape-memory PU. These sensors demonstrated unique adjustable 329 
measuring range and sensitivity by changing the electrode height and spacing produced by 330 
the SMP deformation under heat treatment. The shape-changing tactile sensor is regarded as 331 
an ideal match for producing self-adjustment and self-adaptation for human-robot cooperation 332 
in sensing. To date, various emerging materials such as LCE and different hydrogels are used 333 
in 4D printing [277]–[282]. Figure 5 depicts the emerging applications of 4D printing for 334 
sensors and actuator applications. For example, many hydrogels such as 335 
polydimethylsiloxane (PDMS) swelled anisotropically under multiple stimuli in an assembly of 336 
bistable elements [283], [284]. However, these bistable elements need to be exposed to a 337 
mechanical load for their second stable state. Sometimes, mechanical intervention is also 338 
imperative for switching the second stable state of these materials to activate the snap-through 339 
capacity [285]–[287]. High-performance printing inks are a key factor for temperature-sensitive 340 
materials, which produce a response aligned with outer temperature change [288]–[290]. For 341 
developing highly flexible electronic devices, temperature-dependent materials are commonly 342 
utilized, which generate resistance changes under the temperature change either regular 343 
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positive or negative responses, for example, the conductivity of typical electronic 344 
semiconductors, conductors, and ionic conductors [291], [292].  345 

 
Figure 5. Recently 4D printing technology was used for various advanced sensors and robotics 
applications. The figure is drawn based on the various figures collected from (1) Smart grippers by Keneth 
et al. [293] (Copyright  2023 Elsevier B.V.) (2) Intelligent devices by Lie et al. [294] (Copyright 2022 
American Chemical Society), (3) Flexible magnetoelectric devices by Wu et al. [295] (under the terms of 
the Creative Commons Attribution license 4.0), (4) Complex Kirigami inspired structures by Li et al. [296] 
(Copyright 2023 American Chemical Society), and (5) Wearable electronics by He et al. [297] (Copyright 
2022 American Chemical Society).  

3 Magneto-active soft Materials for 3D Printing 346 
Magneto-active materials are prominent smart and intelligent materials that can change their 347 
mechanical properties like damping, elastic, and shape in the presence of an external 348 
magnetic field [298]–[301]. These materials consist of two major constituents: magnetic fillers 349 
and non-magnetic matrix. Based on the host polymer matrices, magneto-active materials are 350 
further classified into magneto-active solids and magneto-active fluids [302]. These functional 351 
materials offer large deformation, tunable mechanical properties, fast response, and non-352 
contact response [303]–[305]. Shape-morphing soft magnetic materials are types of smart 353 
materials extensively applied for broad applications in soft robotics, sensors, actuators, and 354 
other biomedical devices for achieving complicated shape programming [306], as illustrated 355 
in Figure 6. These soft magnetic materials in which soft polymer matrix contain MPs that 356 
permit rapid shape transformation reversibly and remotely [307]–[309]. This section illustrates 357 
the different MASMs, which are used to develop soft robots. 358 
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Figure 6. Shape-morphing soft magnetic materials containing MPs into the polymer matrix (adapted 
with permission from ref. [310], copyright 2023, American Chemical Society). 

Why is magnetic actuation important? Out of all potential stimuli, magnetic triggering and 359 
actuation are particularly attractive due to fast complete non-contact interactions [311], 360 
wireless nature, and controllable actuation, miniaturization potential and safe interaction with 361 
tissues from a biomedical perspective [312]–[314]. Moreover, magneto-actuated materials 362 
show anisotropic stiffness change, even under a relatively small range of stiffness change, 363 
while their competitive electro-actuated materials usually work at higher voltage stimulation 364 
with higher energy consumption and safety risks [315]. Thus, combining all these advantages 365 
offered by magnetic actuation, MASMs through 3D printing are receiving higher attention in 366 
novel fields such as soft robotics and flexible electronics [316]. Magnetically driven miniature 367 
soft robots demonstrated fast and dexterous responses under the magnetic stimulus [317]. 368 
This magnetically induced recovery process is accomplished by inductive heating in an 369 
alternating magnetic field [318]. Fe3O4-based magnetic microparticles or magnetic 370 
nanoparticles (MNPs) are usually incorporated into soft materials to activate the magnetic 371 
response [319]. Thus, the fast, reversible actuation and remote manipulation of MASMs are 372 
promising for achieving the controlled navigation of soft robots in making the next generation 373 
of biomedical devices operating in demanding applications, such as the human body including 374 
biosensing, micro-manipulation, and targeted drug delivery [320]–[323]. Recently, these 375 
materials have been proposed for micropillar array chips for droplet manipulation applications 376 
due to their strong penetrating power [324].  377 

Mixing/dispersion of MPs: MPs containing soft material can show isotropic or anisotropic 378 
characteristics depending on which fabrication technique is adapted. The fabrication of 379 
magneto-active soft composites containing MPs undergoes a curing procedure to stiffen the 380 
soft materials [325]. For instance, if the elastomers are cured in the presence of an external 381 
magnetic field, the magnetizable particles tend to form chain-like arrangements lending an 382 
overall directional anisotropy to the material such materials demonstrated that anisotropic 383 
magnetic soft material tend to have stronger coupling with the external magnetic field [326]. It 384 
is also crucial to remove gas bubbles as much as possible to prevent cavitation issues. Usually 385 
a maximum of 40 % (volume fraction) of MPs, the percolation threshold is achieved in soft 386 
polymers [327]. Moreover, along with MPs plasticizers are usually added to enhance 387 
mechanical interactions between the dispersed phase and the soft matrix. This is worth 388 
mentioning that if an external magnetic field is applied during the curing, the resulting material 389 
will be anisotropic because MPs migrate reaching the lowest energy state and therefore more 390 
likely to be used in engineering applications. However, if no external magnetic field is applied 391 
during the curing process, the resulting material is isotropic. Recently, Garcia-Gonzalez et al. 392 
[327] showed that the PDMS-based soft polymer and the platinum catalyst-based crosslinker 393 
were put together in such a way that the matrix chains increased their crosslinking degree. 394 
Insights of this study showed that a preferred direction of the CIP particles aligned with the 395 
field was achieved demonstrating more mechanically stiffer behavior of PDMS/CIP material 396 
along a magnetic field direction. 397 
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3.1 Magneto-active polymers 398 

Magneto-active polymers (MAPs) usually contain MPs within the soft polymer matrix, which 399 
triggers the application of magnetism [328]. These polymers are synthesized by uniform or 400 
non-uniform distribution of MPs within the non-magnetic polymer matrix before the curing 401 
[329]–[331]. Additionally, these particles can be aligned in a desirable direction upon the 402 
application of a magnetic field during the solidification process. MAPs are also referred to as 403 
magneto-sensitive polymers, magneto-active elastomers, magneto-sensitive elastomers, or 404 
magneto-rheological elastomers. Based on the hysteresis loop of MPs and their coercivity, 405 
MAPs are further classified into hard MAPs and soft MAPs [332]–[334]. 406 

The MPs of soft MAPs have a low magnetic coercivity and these particles do not adequately 407 
reserve the magnetization under a null external magnetic field [335]. Some common examples 408 
of these MPs include a Si-Fe alloy and Fe-Al series of alloys. In these polymers, MPs move 409 
due to dipole-dipole interactions between particles in the presence of a magnetic field [336]. 410 
Such movements and rearrangements of MPs introduce some internal stresses that induce 411 
deformations and change the mechanical properties. Soft MAPs can only help in achieving 412 
simple and limited actuation for soft robotics applications [337]. On the other hand, the MPs 413 
of hard MAPs featuring high coercivity like neodymium–iron–boron (NdFeB) can sustain 414 
magnetism even after the removal of an external magnetic field. Consequently, upon applying 415 
a further magnetic field, these particles tend to align themselves in the field direction, 416 
introducing internal torques within these responsive polymers [338]. Therefore, hard MAPs 417 
are preferred for soft robotics applications, as the relatively stable magnetism of these 418 
polymers permits directly amendable magnetic fields to generate specific programmable 419 
responses [339]–[341]. 420 

Magneto-active composites are soft and flexible composites which are fabricated by 421 
embedding a certain ratio of hard or soft MPs into a soft elastomeric matrix such as 422 
polyurethane rubber, silicone or gels, as illustrated in Figure 7. These composites offer 423 
dynamic control of mechanical properties through the magnetic field stimulus [342]. These 424 
composites are either isotropic with random orientations of MPs cured without an external 425 
magnetic field or anisotropic with properly aligned MPs under the applied magnetic field to 426 
ensure higher magnetic attraction forces. These composites can quickly deform and transform 427 
their shapes, upon the application of varying magnetic fields for achieving bending, twisting, 428 
and expansion in a controlled and untherered way [343]. 429 

 
Figure 7. Magneto-responsive composites composed of MPs and pure silicone are used to develop 
soft bladder robots for assisting urination (adapted from ref. [344], under the terms of the Creative 
Commons Attribution license). 

3D printing of magneto-active soft composites can be useful for producing soft structures with 430 
good mechanical properties. Nowadays, magnetorheological elastomer (MREs) composites 431 
which are filled with MNPs such as CIP, and Fe3O4 exhibit tunable rheological and viscoelastic 432 
properties for meeting the demand of novel applications such as soft robotics, self-deployable 433 
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structures, actuating damping devices, vibration isolators, medical inserts, and flexible 434 
electronics [345]–[347].  435 

3.1.1 Shape morphing magneto-active composites  436 
Shape morphing magneto-active composites contain both shape memory and magneto-active 437 
properties and can be fabricated using 3D printing technology [348]–[350]. These composites 438 
demonstrate excellent shape programming behavior upon the application of an external 439 
magnetic field [351]. Magnetic filled SMPs can be both spatially and temporally activated and 440 
allow external noninvasive control of movement [352]. Figure 8 shows some prominent 441 
features of SMP enabling its smart behavior and promising feedstock of 3D printing. 442 

 
Figure 8. Prominent features of SMP enabling 3D printing of smart materials (Figure drawn with the 
help of ref. [353])  

SMP-based composites are highly tunable for controlling many shape memory properties 443 
[310]. For instance, the addition of various 2D materials such as graphene, CNTs, manganese 444 
dioxide (MnO2), iron oxide and silver nanowires etc, multifunctional features such as robust 445 
self-adhesion, feasible 3D printability, rapid self-healing ability, and electrical conductivity of 446 
composites can be improved for developing novel wearable devices [354]–[358]. Moreover, 447 
various SMPCs such as citric acid-based SMPC, polyester urethane (PEU), acrylamide, N,N’-448 
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dimethyl acrylamide (DMAA), ethylene glycol, dimethacrylate, and silicone: Ecoflex and silicon 449 
elastomer are commonly employed in combination with each other and some other materials 450 
as a potential SMPC [359], [360]. The interest in 3D printing of SMPC is steadily growing in 451 
many fields covering soft robotics biomedical devices, and flexible electronics [361]. Most of 452 
the SMPCs are based on the magnetic stimulus by embedding MNPs into the polymer 453 
matrices, usually ferrite and soft magnetic materials. The shape of SMPCs can be 454 
conveniently adjusted by applying an external magnetic field to achieve various characteristics 455 
including facile controllability, rapid response time, and reversible behavior for broad 456 
application prospects [362]. Recently, Wu et al. [363] prepared a flexible anisotropic soft-457 
magnetic composite (FASMC) through DLP-based printing using flexible long-chin acrylic 458 
resin monomer and soft CIP-based MNPs. Insights of this study showed that multiple complex 459 
structures of FASMC with strong anisotropic magnetic properties exhibited large deformation, 460 
controlled motion, anti-deflection, variable stiffness metamaterial, and array assembly, as 461 
depicted in Figure 9. These behaviors of FASMC are particularly attractive when targeting 462 
next-generation sensors and actuators with superior magnetic properties in one or more 463 
specified directions.  464 

 
Figure 9. FASMC rotating actuation (a) the compass with arrows rotates freely rested on fluid. (b) 
Chain directions of CIP inside the FASMC, (c) The 5 wt.% CIP arrow samples driven by a magnet. 
(d) The angle difference under magnetic field, (e) Three 3D printed letters ‘H’, ‘I’ and ‘T’ producing 
an array in (f), at 90o, 45o and 0o, when CIP alignment direction in 1st, 2nd and 3rd row respectively, (f) 
letter arrays randomly oriented under magnetic field, (g, h) Rotation of samples under testing 
(adapted from ref. [363], under the terms of the Creative Commons CC BY license). 

Soft magnetic composites have been orderly deposited using an advanced 4D printing 465 
technique to build deformable actuators under low-strength magnetic field [364]. Reisinger et 466 
al. [365] introduced a novel technique for controlling the temperature of dynamic bond 467 
exchanged in covalently crosslinked polymer networks. Later, light-mediated curing was used 468 
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for printing various functional objects, as presented in Figure 10(a1), through DLP-based 3D 469 
printing, with spatially controlled reshaping capabilities. Furthermore, fiber-reinforced, and 470 
highly filled magneto-active thiol–ene polymer composites were effectively used for on-471 
demand activation of dynamic transesterification with various reshaping capabilities (referring 472 
to Figure 10(a2)), which gives rise to the potential use of 3D-printed magneto-active materials 473 
in various active and soft devices. 474 
In another novel study, encoding of various shapes and forms by magneto-/electro-active 475 
SMPC structures was explored using carbon black-filled conductive PLA and iron-filled 476 
magnetic PLA through FDM [366]. The shape recovery technique was exploited under 477 
temperature and the magnetic field for a unique composite actuator was investigated. Results 478 
proved that the 4D-printed composite actuator achieved a maximum bending angle of 59° 479 
under a low external magnetic field and was fast enough to revert to its original shape when 480 
powered by a power supply, as presented in Figure 10(b1)-Figure 10(b4). This research 481 
proved that the 4D-printed composite actuator strategy has broad application prospects in the 482 
field of soft robotics by keeping in line with sustainability rules. 483 

 
Figure 10. (a1-a2) Permanent reshaping of composite structures, (a1) Magnetically assisted 
reshaping of a Fe3O4 particulate composite, (a2) Reshaping of a fiber-reinforced composite (adapted 
with permission from ref. [365], copyright 2023, Wiley‐VCH GmbH); (b1) Different shapes of a 2D U-

(a1) 

(a2) 

(b1) 

(b2) 

(b3) 

(b4) 
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shape materials, (b2) Transformation of 1D beam shape to 2D shape under 60 V power supply and 
the permanent magnet, (b3) Conversion of a 2D rectangular shape into a 3D structure (93% shape 
recovery), (b4) Programming a 2D pyramid into a 3D structure (adapted from ref. [366], under a 
Creative Commons Attribution 4.0). 

3.2 Magneto-active multifunctional composites 484 

The world is continuously exploring novel smart materials with more versatile functionalities 485 
[367]. As a result, it is a promising initiative to integrate the advantages of multi-active 486 
ingredients into a single material or structure, through monolithic [368] or layered forms [369]. 487 
Compared to conventional MAPs, magneto-active multifunctional composites can developed 488 
by integrating the advantages of LCEs and MREs [370]–[372]. For instance, LCEs exhibit high 489 
work density and large strains (up to 400%) to multiple environmental stimuli like heat, light, 490 
and electric field [373], [374]. Valiant efforts were made by researchers to combine the distinct 491 
features of LCEs and MREs for developing soft materials with enhanced and unparalleled 492 
functionalities [375]–[379]. For instance, Zhang et al. [377] developed an untethered miniature 493 
12-legged robot, via a facile fabrication process (casting and soft lithography) by integrating 494 
three distinct configurations of LCEs and MREs, as illustrated in Figure 11(a). The results 495 
revealed that this robot responded to wireless stimuli of a controlled magnetic field and 496 
surrounding temperature. Thus, complex shape morphing behaviors with anisotropic material 497 
properties can be achieved by using the multi-responsiveness of these soft composites. 498 
Similarly, Zhang et al. [378] developed a multi-responsive actuator with accurately controlled 499 
deformation through the integration of MREs and PDA-coated LCEs. This facile material-500 
structural synergetic design triggered complex and multimode programmable deformation 501 
including shrinkage/bending, bidirectional bending, twisting/bending, and rolling/bending. 502 
Additionally, this shape-morphing behavior could also be manipulated locally and sequentially, 503 
thanks to its photo-sensitive feature.  504 
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Figure 11. (a1) Schematics demonstrating the design untethered miniature 12-legged robot; (a2) Robot movement and 
self-gripping of the hot bolt (adapted from [377], under the terms of the Creative Commons CC BY license); (b1) Bilayer 
structure consists of ferromagnetic and thermochromic layers; (b2) Magnetic actuation of octopus structure at different 
water temperatures; (b3) Adaptive motion of octupus structure, when water temperature changed from 25oC to 85oC, under 
the same magnetic stimulus; (b4) Different motion and camouflage behaviors of octopus structure through thermo-magnetic 
dual responsiveness (adapted with permission from ref. [379], copyright 2022, Royal Society of Chemistry); (c1) Diverse 
assembled 3D mesostructures and their configurations under heat stimulus; (c2) Multistable 3D mesostructure under 
magnetic stimulation (adapted with permission from ref. [381], copyright 2021, American Chemical Society) 

These soft composites can also be used to develop multifunctional structures with 505 
synchronous color-changing and shape-morphing properties such as biomimetic camouflage 506 
devices. For instance, Li et al. [379] reported a versatile and facile strategy to develop 507 
reconfigurable thermochromic biomimetic structures, such as chameleon and butterfly, as 508 
illustrated in Figure 11(b). The single biomimetic structure contained a combination of LCEs, 509 
and MREs embedded with multiple color-changing dyes, which enabled the thermo-magnetic 510 
dual response of an octopus structure along with a camouflage feature. This response helped 511 
it to achieve adaptive and diverse biomimetic motions (rotating, rolling, swimming, and 512 
crawling), accompanied by a color camouflage. Thus, multifunctional magneto-active soft 513 

(a1) 

(a2) 

(b1) 

(b2) 

(b3) 

(b4) 

(c1) 

(c2) 
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composites are highly suitable to fabricate bilayer multi-stimuli actuators capable of complex 514 
and accurately controlled deformations, and these actuators can be used in versatile fields 515 
including biomedical, camouflage, and soft robotics. 516 

Nowadays, multifunctional magneto-active bilayer structures can also be manufactured by 517 
integrating programmable SMPs with non-programmable LCEs, to achieve remote and on-518 
demand actuations. These multi-actuated composites are highly suitable for remote actuation 519 
in biomedical devices and soft robotics, where deployment and automated shape 520 
programming in a delicate or closed environment are required [380]–[382]. For instance, Li et 521 
al. [381] devised a facile approach to develop a multi-responsive (magnetic + heat) shape 522 
morphing 3D mesostructures, as illustrated in Figure 11(c). The study demonstrated that 523 
these mesostructures exhibited versatile geometries and reconfigurations under heat and 524 
magnetic stimuli. 525 

3.3 Magneto-active hydrogels 526 

The development of magneto-active hydrogels (MAHs) is considered a panacea for 527 
developing more complex parts with excellent biodegradability and crack-healing properties 528 
[383]–[385]. Recently, 3D-printed hydrogels have gained significant attention due to their 529 
simple, accurate, and repeatable manufacturing. In this regard, polydopamine (PDA) hydrogel, 530 
poly(3,4 ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS) and polyacrylamide 531 
(PAAM) are widely used for achieving toughness, and biocompatibility and validating the 3D 532 
printability of such a hydrogel into customized architectures [386]–[388]. Moreover, hydrogel 533 
products with excellent multiscale architectures and improved binding affinity at the interface 534 
of other polymer chains [389]. Mostly two networks of hydrogels and polymers termed static, 535 
and dynamic are extensively used to develop smart structures. Static dealing structural 536 
integrity of materials or dynamic coping mostly with self-recovery and self-healing properties 537 
[390].  538 
Different natural and synthetic polymers or their combinations are used to develop hydrogel 539 
chains through different cross linking ways [391]–[393]. MAH was first proposed in 1996 and 540 
has been extensively researched ever since. Magnetic hydrogels with unique and distant 541 
magnetic manipulation are captivating, particularly for hydrogel-based flexible and soft 542 
actuators [394]–[396]. These hydrogels contain hydrogel chains embedded with nano-/micro-543 
scaled ferromagnetic or paramagnetic fillers that permit rapid actuation in response to an 544 
external magnetic field. These hydrogels easily entrap MPs and exhibit excellent stability and 545 
processability [397]–[400]. Magnetic response appears in MAHs due to the addition of MPs 546 
[401]. These hydrogels have distinct advantages such as wireless actuation, facile operation, 547 
complete biosafety and biodegradability, self-adaptability, intelligence, highly controllable 548 
magnetic responsiveness, fully reversible response, and compatibility with miniaturization and 549 
integration [267], [402]–[404]. Thus, 3D printing of MAHs has an enormous prospect in remote-550 
controlled and untethered soft actuators, bionics, soft robotics, flexible electronics, 551 
hyperthermia cancer therapy, deployable micro-devices, and minimally invasive surgery 552 
[405]–[409]. 553 

4 Applications 554 
MASMs with sophisticated functionalities are particularly attractive for various fields [410] 555 
including actuators [411], soft robotics [412] and responsive medical devices [413], sensors 556 
for drug delivery agents [414], artificial muscles [415] and implants [416]. This section covers 557 
the recent developments in terms of shape-morphing behavior such as self-assembly, self-558 
healing, and changes in various smart material properties which are responsible for their 559 
advanced applications in various sectors [417]. Advances in magneto-active composites have 560 
led to the development of magnetic soft machines as building blocks for small-scale robotic 561 
devices [418]. Likewise, electromagnetic actuators are particularly appealing in numerous 562 
fields, especially in the micro-size realm [419]. 563 
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4.1 Soft and intelligent robots 564 

Soft actuators in robotics have gained tremendous attention all over the world due to their 565 
unique advantages such as being capable of performing a multi tasks across different 566 
domains, high deformability, dexterity, high controllability, safety, noncontact features, and 567 
robustness for various purposes [420]–[422]. Compared with traditional rigid robots, soft 568 
robots have numerous advantages such as motorless driven mechanisms, simple structures, 569 
good flexibility, silent operation, and biocompatibility [423]–[425].  570 
Intelligent magnetic soft robots can change their structure in programmable and 571 
multifunctional modalities depending on material architectures and methods for controlling 572 
magnetization profiles [426]. Particularly, pneumatic soft actuators [427], and pneumatic 573 
origami actuators were explored due to their unique attributes for producing a large 574 
deformation of patterns with highly energy-efficient devices and safe tissue interaction [428]. 575 
However, there is a price to pay for the universal soft gripper, as its vulnerability limits its 576 
lifespan (50,000 grips), particularly when sharp objects are present (5000 grips) [429]. 577 
However, soft magnetic actuators offer versatile locomotion modes including walking, crawling 578 
swimming, rolling and jumping motions have shown great potential for emerging applications 579 
[187], [430], [431].  580 

Soft robotics are usually constructed of inherently flexible materials which improve their ability 581 
to adapt to complicated situations and cooperate interactions with humans and soft actuators 582 
[432]–[434]. Figure 12 shows the key features and their dynamic behavior of soft robotics 583 
under a stimulant environment. Traditionally, MPs are incorporated in soft robotics for 584 
introducing anisotropy in two ways First, after the fabrication of the soft robot and second while 585 
fabricating the soft robot. However, the starting material such as the magnetic composite of a 586 
soft resin and MPs remains the same for both methods. 587 

 
Figure 12. Prominent feature changes developed (on the left side) and necessary functions (on the 
right side) of 3D-printed soft robotics 

Recently, a pneumatic origami structure using liquid silicone rubber was printed through an 588 
industrial 3D printer. The proposed industrial printer directly printed the 3D folded structure 589 
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(origami-inspired structure) to maximize the design freedom for grasping various objects [435]. 590 
Urs et al. [436] studied unique two quasi-direct-drive actuators weighing 8–15 kg robots made 591 
from 3D-printed components for an overall cost of less than USD 200 each. These thermal 592 
actuated actuators were subjected to 420k strides of gait data which nearly doubles the 593 
thermally driven torque and is useful in high-speed legged robots while matching the 594 
performance of traditional metallic actuators. These 3D-printed designs are regarded as highly 595 
customizable and reproducible soft actuators [437], for potential applications in robot legs. 596 
Recently, Wan et al. [438] studied three kinds of pneumatic soft actuators for fabricating an 597 
out-pipe crawling soft robot. Results revealed that the pipe robot realized omnidirectional 598 
turning and could adapt to diverse shapes and sizes of pipes with a movement speed of 2.85 599 
mm/s. Moreover, the small in size, low in mass and has a higher degree of freedom the soft 600 
robotic arm achieved omnidirectional bending and a specific range of grasping work, for 601 
potential applications in underwater pipe soft robots. Li et al. [439] studied multilayer DLP-602 
based printing for patterning MNPs including micro-structure through 2PP using gelatin 603 
methacryloyl (GelMA)-based hydrogel with neodymium-iron-boron (NdFeB) or iron particles in 604 
the ultraviolet (UV)-curable PDMS-based polymer matrix. Results showed that magnetic 605 
torque actuation produced various shape changes such as gripping, swimming, rolling, and 606 
walking, as depicted in Figure 13(a1)-Figure 13(a3) are induced by programming 607 
heterogeneous magnetization within discrete multilayer robot segments. Moreover, the 608 
opening angle of a capsule-like robot under magnetic actuation, as depicted in Figure 13(a4)-609 
Figure 13(a5) was useful for drug delivery. Thus, the proposed facile approach is feasible for 610 
the creation of versatile 3D multi-material actuators for broader applications.  611 

MASMs are reconsidered as fast, untethered, and reversible shape reconfiguration attractive 612 
for novel soft robotics [440]. For instance, Qi et al. [441] investigated a heat-assisted magnetic 613 
reprogramming approach for developing 3D-printed magneto-active soft matter using CIP as 614 
a soft-magnetic reinforcing filler with the elastic matrix silicone rubber. The magnetic 615 
reprogramming approach relied on heating PCL-based thermoplastic matrix above its melting 616 
point and applying magnetic fields during cooling for reorienting soft MP chains for achieving 617 
multiple deformation modes with unique shape-morphing features, as presented in Figure 618 
13(b1)-Figure 13(b2). Moreover, the proposed approach was successfully employed for 619 
multiscale and reprogrammable soft machines such as adaptive grasping of a soft gripper with 620 
the tunable actuation response, as presented in Figure 13(b3). Lastly, the unique sensing 621 
performance of triboelectric skin (due to the use of CNT as a conductive filler) was also 622 
demonstrated by using electrical signals to identify the deformation and contact behaviors. 623 
Thus, the magnetic reprogramming approach provides a new concept for designing new active 624 
materials for broader applications in soft robotics.  625 

In another novel study by Simińska-Stanny et al. [442] soft actuators were fabricated using 626 
printable magnetic hydrogel ink through multi material DIW. Results showed that magnetic 627 
hydrogels had good mechanical stability, unique magnetic responsiveness, highly porous as 628 
well as noncytotoxic towards fibroblasts. Moreover, 3D-printed magnetic actuators 629 
demonstrated excellent actuation behavior, as depicted in Figure 13(c1)- Figure 13(c2) by 630 
magnetically induced jumping rolling and bending. The proposed 4D printing of magnetically 631 
responsive hydrogel strategy would provide an efficient way to fully capitalize on the role of 632 
biocompatible materials for developing a wide range of soft actuators. 633 
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Figure 13. (a1) Images of the 3D-printed robots under magnetic actuation (actuation field highlighted with red arrow) 
with encoded magnetization profiles (magnetization direction highlighted with the yellow arrow at each segment), 
(a2) Helical robots with various helix angles, (a3) Motion of the robot with the oscillatory frequency of 2Hz  under 
actuation field, (a4) Navigation of capsule-like robot in a maze map for cargo manipulation including gripping, 
transporting, and releasing, (a5) Navigation of helical robot in a vascular model (adapted from ref. [439], under the 
terms of the Creative Commons Attribution License,); (b1-b2) Reprogramming and magnetically actuated shape 
morphing  behavior of 3D printed various characters (b1) “O”, (b2) “H” under magnetic field 400 and 300 mT, 
respectively, (b3) Snatching function of four leaves-based soft gripper under 300 mT (adapted with permission from 
ref. [441], copyright 2022, Elsevier Ltd.); (c1) Various jumping behavior of magnetic hydrogel under a magnetic field, 
(c2) Difference of jumping heights for various 3D-printed cubes (adapted from ref. [442], under the Creative 
Commons CC-BY-NC-ND license). 

Soft robotics always suffer permanent damage from irregular external stimuli and repetitive 634 
motions during their long service life [443], thus the self-healing ability of smart material is 635 
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highly desirable for overcoming these issues [444]. Cazin et al. [445] explored the magnetic 636 
response with thermo-activated healability using Fe3O4 nanoparticles in a dynamic 637 
photopolymer network (thiol-acrylate resins containing magneto-active fillers) through DLP-638 
based 3D printing. Results demonstrated that the healing performance of 3D-printed 639 
structures was observed due to the recovery of magnetic and mechanical properties under 640 
temperature-triggered mending. As a proof of concept, the 3D-printed magneto-responsive 641 
structures were thermally healed, reshaped, and activated under magnetic field stimulus, as 642 
presented in Figure 14(a).  643 

MASMs embedded with hard MPs are regarded as robust materials for achieving fast-644 
transforming actuation [400], [446], [447]. For instance, Qi et al. [448] proposed a unique 645 
technique for fast and reversible shape-programming of magnetoactive soft materials with 646 
stable shape transformation properties. The high-performance deformation of soft material 647 
was achieved using a flexible matrix and soft-magnetic 3D printing filament. These 3D-printed 648 
soft materials are used for numerous biomimetic structures such as inchworms, manta ray, 649 
and soft grippers with multiple capabilities including walking, swimming, and snatching, as 650 
illustrated in Figure 14(b). This work enabled potential applications such as medical care, soft 651 
robotics, and bionics applications. 652 
Lantean et al. [449] investigated complex macroscopic gear-based devices through DLP using 653 
MAPs containing Fe3O4. Insights of this study revealed magneto-responsive hammer-shape 654 
actuators, as presented in Figure 14(c) with different stiffnesses demonstrating various 655 
motions including rotation and bending. Thus, magneto-responsive gears made from MASMs 656 
have advantages in broader applications including linear actuators, gear-trains, and micro 657 
grippers. Rossegger et al. [450] explored magnetic-driven actuators through DLP-based using 658 
magneto-responsive thiol-click photopolymers containing Fe3O4. The thiol crosslinker further 659 
imparts softness and flexibility to magnetic actuators. Moreover, as proof of concept, various 660 
3D prints such as strips and flowers, as depicted in Figure 14(d) showed magnetically driven 661 
movement for their promising role in soft robotics and other fields. 662 
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Figure 14. (a) Activation of DLP 3D-printed-based objects with resin-2 containing 4 wt% of Fe3O4 
nanoparticles (adapted from ref. [445], under the Creative Commons Attribution license); (b) Various 
shape-programmable behaviors magnetic actuated soft materials, such as Inchworm-like soft robot 
walking motion of the on serration plate, swimming of the manta ray-like soft robot under water, and 
grabbing and releasing of the soft gripper with a weight of the cylindrical object is 15.3 g (adapted 
with permission from ref. [448], copyright 2020, Elsevier Ltd.); (c) Shape morphing behavior of a 
magneto-responsive soft hammer such as bending for two opposite directions of the applied 
magnetic field adapted from ref. [449], under the terms of the Creative Commons CC BY license); 
(d) Shape memory behavior of 3D-printed structures under magnetic field (1.24 T) with AlNiCo 
magnets stripe and flower (adapted with permission from ref. [450], copyright 2022, Wiley‐VCH 
GmbH). 

3D-printed magnetic actuated soft robotics offers an unprecedented geometric configuration 663 
with more degree of freedom due to the programmable magnetization profile [377], [451]. For 664 
instance, Bayaniahangar et al. [452] fabricated 3D-printed soft magnetic helical coil actuators 665 
using PDMS embedded with iron oxide particles. The developed complex helical coil 666 
structures were supported with Pluronic f-127 hydrogel and had 30 % iron oxide particles. This 667 
allowed linear magnetic actuation with 360 % device’s linear actuation and 80° bending 668 
actuator in helical coils. Insights of this study also revealed that the 3D-printed helical coils 669 
under magnetic field stimulus demonstrated untethered soft robot locomotion as presented in 670 
Figure 15(a1)- Figure 15(a2) on 45- and 90-degree inclines. Pavone et al. [453] printed 671 
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support-free actuators to exploit the Lorentz Force: permanent magnets and Gallium for 672 
effective movement of the actuator. The insights of this study revealed that 3D-printed actuator 673 
has a wide range in numerous fields such as limb prosthesis wearable devices, and human 674 
motion. Moreover, at a maximum current of 6.10 various actuator movement (displacement of 675 
20 mm and acceleration of 1.10 m/s2) was observed as presented in Figure 15(b).  676 
Soft actuators are made of flexible or compliant materials and give large deformation and high 677 
stability for many applications [454], [455]. Recently, Cao et al. [456] developed ultra-flexible 678 
magnetic actuators through a facile FDM-based 3D printing technique using thermoplastic 679 
rubber (TPR) pellets/CIPs. Also, the 3D-printed magnetic actuator exhibited highly 680 
functionalized manipulations and controllable deformation of the sucker and pump actuator for 681 
sticking objects and pumping liquid as presented in Figure 15(c). Thus, multifunctional, and 682 
ultra-flexible magnetic actuator offers a promising strategy for fabricating highly complex and 683 
controlled deformable structures for soft robotics applications. 684 
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Figure 15. (a1-a2) Images of untethered locomotion of helical coil on a 45° incline (a1) upward, 
downward, and (a2) on the 90° vertical wall, front view and side view (adapted with permission from 
ref. [452], copyright 2020, Elsevier B.V.); (b) Translation movement of the actuator with and without 
current supply: initial position, and final position with current supply (adapted from ref. [453], Under 
a Creative Commons license); (c) Images of sequential grasping and releasing the glass slide with 
sucker actuator (adapted from ref. [456], under the terms of the Creative Commons CC BY license). 

4.2 Untethered microrobots 685 

Microrobots are robots whose dimension reaches in micron-sized realm for performing 686 
necessary tasks at a micron scale including sensing, object manipulation, and improved 687 
navigation under external stimuli or environmental sources [186], [457]–[459]. The science of 688 
robotics is accelerating towards the conception of microrobots with new functionalities, 689 
especially under magnetic properties to control the motion of microrobots [460]. In this regard, 690 
3D printing techniques are captivating for making perfect microrobots ensuring their 691 
satisfactory performance.  Among them, 2PP is regarded as the best technology for producing 692 
microbots due to its highest resolution at the nanometric scale, and the creation of 693 
monolithically 3D complex structures using diverse materials including inorganic and organic, 694 
passive, and active [461], [462]. Untethered microrobots due to their small size and mobility 695 
have enormous prospects for localized diagnosis, in minimally invasive surgery, targeted 696 
delivery of agents, tracking, imaging, and sensing, micromanipulation, cell delivery, and 697 
biopsies [463]. Among them, magnetic actuation exerts magnetic force and torque on 698 
magnetic materials in microrobots to actuate and control them, which has the advantages of 699 
fuel-free, simple direction, speed control, and harmless penetration through living tissues 700 
[464]. Microrobots are now considered the pioneer in the development of advanced healthcare 701 
systems in personalized medicine [465]. For instance, Jang and Park [466] developed an 702 
untethered milli-gripper fabricated from 3D-printed biodegradable chitosan hydrogel ink 703 
coated with citric acid superparamagnetic iron oxide nanoparticles (SPIONs). Results showed 704 
that a 3D-printed gripper was promising for gripping and releasing cargo under an applied 705 
electromagnetic field, as presented in Figure 16(a1)- Figure 16(a2). Moreover, the untethered 706 
milli-gripper demonstrated a precise position control due to the high magnetization of the citric 707 
acid-coated SPIONs. Thus, the proposed work proved that the biomimetic untethered milli-708 
gripper also be employed as a minimally invasive small soft robot in vivo for numerous 709 
biomedical applications including targeted drug delivery. Pétrot et al. [467] fabricated remotely 710 
actuatable NdFeB-based MNPs. Reported results demonstrated that magnetically deformable 711 
3D culture substrate actuated under a magnetic field and bends back and forth along its 712 
longest axis, as presented in Figure 16(b). Also, these structures had soft, curved, and 713 
dynamic properties of tissues in vivo for potential applications in micro-actuator field.  714 
Soft robotics driven from AM of naturally available materials have proved to be more effective 715 
in achieving complex structures in a more deterministic manner [468]. For instance, Zhang et 716 
al. [469] exploited wirelessly actuated programmable microfluidic cilia using naturally available 717 
materials FePt Janus microparticles/silk fibroin (SF) hydrogels. Insights of this study showed 718 
that high tunable actuation performance of proposed material for various arrangements 719 
(antiplectic, symplectic, and diaplectic metachrony) and 2D arrangements (circular and 720 
triangular) was achieved, as presented in Figure 16(c), under less than 10 mT external 721 
magnetic field. Such robust integration of the multi-material including FePt and SF rendered 722 
cilia system allows researchers to use them for future applications in biomedical and health 723 
care devices.  724 
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Figure 16. (a1-a2) Untethered milli-gripper used for cargo delivery test: (a1) Schematic diagram illustrating 
the untethered milli-gripper on cargo stimulated by a magnetic field and releasing of the cargo induced by 
an electric field,  and schematic diagram showing the electrode system used in the cargo delivery test, (a2) 
Explanation of sphere-shaped cargo during delivery text (adapted with permission from ref. [466], copyright 
2023, Elsevier B.V.); (b) Magnetic actuation of the skeleton experimental and simulation results (adapted 
from ref. [467], under the terms of the Creative Commons CC BY license); (c) the deflection of the flag-
shaped structure during the magnetic (blue arrows) and elastic (green arrows) strokes and the induced 
instantaneous flow (white lines in the modeling results. Photo credit: Shuaizhong Zhang and Rongjing 
Zhang, Max Planck Institute for Intelligent Systems (adapted from ref. [469], under a Creative Commons 
Attribution License 4.0 (CC BY). 

Miniature robots can be deployable on the water surface for achieving high controllability for 725 
various applications. Richter et al. [470] proposed novel microscale magnetic soft actuators. 726 
Insights of this study showed that ultrathin (80 µm) and lightweight (100 gm−2) magneto-727 
responsive actuators could lift, tilt, pull, or grasp near each other under electromagnetic near-728 
field, as presented in Figure 17(a) at low energy consumption (0.5 W). It was envisioned that 729 
such soft micro magneto active robot would serve as a pioneer for next-generation soft robots 730 
in various prevailing applications in both biomedical and engineering sectors. 731 
Ansari et al. [471] printed anisotropic soft structures using magnetic ink containing a UV-732 
curable resin and MNPs using an extrusion bioprinter. A custom electromagnetic coil system 733 
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was used during extrusion for orienting the magnetic moment of the particles in the ink. Results 734 
exhibited that with 1:1 particle-to-resin ratio in the magnetic ink under a 20 mT field for 735 
orientation for printed structure demonstrated a preferential magnetization index up to 0.99. It 736 
was shown experimentally that soft structures have tremendous promise in shape morphing 737 
capabilities for an object using a folding cube robot through loading, carrying, and dropping, 738 
as presented in Figure 17(b1)- Figure 17(b2). Lin et al. [472] studied a novel magnetic-driven 739 
folded diaphragm inspired by the locomotion of earthworms having various radial 740 
magnetization properties for controlling the contraction and stretching between body 741 
segments. Experimental results showed that the developed folded diaphragm exhibited 742 
distinctive features for producing different shapes including untethered soft robotic systems 743 
as soft drivers (actuators) for their practical applications such as soft biomimetic robots and 744 
diaphragm pumps under a magnetic field, as illustrated in Figure 17(c1)- Figure 17(c2). This 745 
approach unravels many opportunities to fabricate multifunctional robots including the 746 
swimming robot inspired by squid and bio-earthworm crawling robot.  747 
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Figure 17. (a) A flexible tip functionalized for payload (20 mg) grasping and release using near-field 
magnetic soft machines (adapted from ref. [470], under the terms of the Creative Commons CC BY 
license); (b1) Schematic diagrams of the printed sheet with six various magnetization directions on 
the six faces of the cube, and the printed sheet with said magnetizations placed alongside a cubic 
object of 0.5 g (b2) Load carrying ability,  the cube folding rolling over the object to pick it up under a 
magnetic field,  the cube carrying the object to the desired location where and  dropping of object 
under unfolding at the target location before rolling back to a desired point (adapted from ref. [471], 
under the Creative Commons CC-BY-NC license); (c1) Image of cavity water filling water of bionic 
squid swimming robot (40 mT), and image of water jet of bionic squid swimming robot (–40 mT), (c2) 
Sucking and schematic diagram showing swimming robot driven bt the harmonic magnetic field 
(adapted from ref. [472], under a Creative Commons Attribution 4.0 International License). 

4.3 Biomimetic devices 748 

Biomimetic is a type of human-made actuation material or device that can initiate motions 749 
under force [473]. Different bioinspired designs of scale shapes and arrangements result in 750 
various types of anisotropic friction, providing a means of switching the robot's locomotion for 751 
desired conditions [474]. Moreover, due to the huge demand for recreating human skin with 752 
the functions of the epidermis and dermis for interactions with the physical world [475], soft 753 
actuators have attracted considerable interest in the biomimetic field for many biomedical 754 
applications [476]. Magnetic robots actuated wirelessly and rapidly under an external magnetic 755 
field for non-invasively access and navigation in difficult-to-reach areas inside the human 756 
body. This is because of deformation 3D-printed smart structures which have unique 757 
implemented actions such as gripping and lifting as well as self-healing ability [477]. Using this 758 
facile strategy, other smart biomaterials could be designed which is in great demand and used 759 
for a variety of applications, such as bionic grippers [478], open-channel microfluidic chip for 760 
controllable liquid transport [479], tissue engineering [480], and drug delivery [481]. These soft 761 
robots can be precisely actuated at target sites for intelligent cargo release under a magnetic 762 
field [482] and applications related to neurological disorders such as motor and sensory 763 
deficits [483]. Thanks to their intelligent responsiveness, researchers have rationally designed 764 
magnetic actuated soft robots that can encapsulate therapeutic agents for biomedical 765 
applications [484]. Now, 3D-printed biomimetic-based devices especially those made from 766 
biodegradable materials have captivating adaptivity, complex designability and stimuli 767 
responsiveness [485] and have brought significant advancements for various biomedical 768 
applications [486], as highlighted in Figure 18.  769 
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Figure 18. Biomedical soft robots from a materials perspective comparing levels of biomimicry and 
biocompatibility (adapted with permission from ref. [487], copyright 2018, Springer Nature). 

Biomimetic devices are usually flexible, reconfigurable, compliant, and adaptable to switch 770 
between various states (flexible to stiff) for demanding applications such as targeted drug 771 
delivery [488]. For instance, Choi et al. [489] proposed the idea of a soft carrier using through 772 
fabricating the lid, border, and hemisphere using a thermo-responsive poly(N-773 
isopropylacrylamide) (PNIPAM)/polyethylene glycol (PEG) hydrogel and SPIONs using 3D 774 
printing. Results showed that the hemisphere allowed the successful storage and transport of 775 
cargo (soft carrier) under dual stimuli such as near-infrared (NIR) light and magnetic field with 776 
different shapes and numbers of cargo, as presented in Figure 19(a1)- Figure 19(a2). 777 
Cao et al. [490] studied biomimetic magnetic actuators through an FDM-based 3D printing 778 
technique using TPR particles and CIP. Insights of the study showed that various shape 779 
transformations of magnetic actuators such as the predation behavior of octopus tentacles, 780 
the flower blooming behavior of the plant and the flying behavior of the butterfly, as presented 781 
in Figure 19(b1)-Figure 19(b2). It was anticipated that the 3D-printed MASMs could open new 782 
avenues for the fabrication of a diverse range of soft robotics with multiple functions.  783 
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Figure 19. (a1) Various images of basic locomotion,  passing obstacles,  flipping the smart soft carrier 
flips by 180° using a magnet without relying on an external wall such that the downward-facing lid 
faces upward, (a2) Cargo delivery test of the smart soft carrier,  cargo loading,  schematic of 
manipulation, and cargo releasing (adapted with permission from ref. [489], copyright 2023, Royal 
Society of Chemistry); (b1-b2) Magnetic field-induced deformation and finite element simulation of 
various biomimetic magnetic actuator: (b1) tentacle and butterfly, (b2) flower (adapted with permission 
from ref. [490], copyright 2021, American Chemical Society). 

The integration of functionalities offered by smart materials with free structures under potential 784 
stimulus renders an enriched design platform for producing artificial human organs such as a 785 
bioengineered robotic heart with beating–transporting functions [491], and many more for 786 
bionic fields. One such study explored by Gao et al. [492] through a novel composite printing 787 
powder for the preparation of asymmetric magnetic actuators using TPR and NdFeB. The 788 
experimental results demonstrated that the folding deformation amount of multi-dimensional 789 
asymmetric magnetic actuators was five times that of bending deformation. Furthermore, 790 
these actuators produced rich deformation shapes such as butterfly wing bionics and trapper, 791 
as depicted in Figure 20 making them ideal for soft robotics and bionics fields.  792 
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Figure 20. Demonstration of a trapper. (a) 3D printed model structure. (b) Direction of magnetized 
for the trapper. (c-d) The trapper is in a deformed state. (e-i) The trapper grasping process (adapted 
with permission from ref. [492], copyright 2023, Elsevier Ltd.). 

Wang et al. [493] printed a millimeter-scale magnetic soft robot (referring to Figure 21a-Figure 793 
21b) using NdFeB/PDMS, multiwalled carbon nanotubes (MWCNTs)/PDMS and reduced 794 
graphene oxide (rGO)/PDMS integrated with temperature, tactile and electrochemical sensing 795 
functions. Furthermore, the shape morphing behavior (Figure 21c) of the robot showed 796 
remarkable sensing performance such as linearity of 3.383 kΩ/°C, and electrochemical stimuli 797 
with a low detection limit of 0.036 mM for NaOH solutions. Thus, the proposed study 798 
anticipated the performance of such a robust soft robot for next-generation targeted drug 799 
delivery, as presented in Figure 21d- Figure 21e.  800 
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Figure 21. Magnetic soft robot multi-dimensional deformations and actuation mechanism. (a) The 
folded robot was magnetized under a magnetic field having a unidirectional pulse Bm and implanted 
into its body with the magnetic profile. (b) Illustration of magnetization and actuation mechanism. The 
robot performed multi-dimensional deformations driven by an external actuation field using origami-
based reconfigurable magnetization: (c) cylinder, (d) right angle, (e) Halbach array (adapted with 
permission from ref. [493], copyright 2022, Elsevier B.V.). 

Intelligent tactile sensing is critical for soft robotics so that they can interact safely with 801 
unstructured environments and produce desired motions [494] under many shapes such as 802 
bionic flowers, and bionic worm robots [495]. Wang et al. [496] used a highly viscous magnetic 803 
composite ink for designing various bionic soft robots. Various actuator prototypes with various 804 
magnetization orientations and profiles have been fabricated such as bionic soft robots and 805 
magnetically powered electrical switches to successfully perform different operations including 806 
dragonflies and inchworms as presented in Figure 22(a1)- Figure 22(a3). Thus, the proposed 807 
study confirmed that the magnetic responsive materials with programmable patterning fulfil 808 
the future of soft robotics in functional and practical applications.  809 
Wang et al. [497] explored an insect-scale magnetoelastic robot using PDMS embedded with 810 
NdFeB-based MPs having improved controllability designed. The robot produced a 811 
controllable jumping motion by tuning magnetic and elastic strain energy. Results showed that 812 
on-demand actuation was applied for precisely controlling the pose and motion of the robot 813 
during the flight phase for effectively performing numerous tasks with integrated functional 814 
modules, as depicted in Figure 22(b1)- Figure 22(b4). 815 

Yao et al. [498] studied the diversification of actuation modes of magnetic-active actuators 816 
using blending matrix of PCL and thermoplastic polyurethane (TPU) and soft CIP-based MNPs 817 
as fillers through 3D printing. The results showed that 3D-printed magneto-active structures 818 
have excellent shape fixation, shape recovery rates, exceptional flexibility, and 819 
magnetorheological effects, as presented in Figure 22(c). The shape-morphing  behavior was 820 
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an excellent match with the simulation results and has an ideal role in numerous fields such 821 
as intelligent flexible robotics and biomedicine. 822 

 
Figure 22. (a1) Inchworm bionic soft robot schematic diagram, a plate-shape magnetic actuator 
magnetization domains of the bionic inchworm robot, and the bionic inchworm robot (prototype) drive 
by the magnetic actuation, (a2) The bionic inchworm robot three-step motion stages with 
corresponding experimental results, (a3) Schematic and actual results of the bionic dragonfly robot 
under 0–140 mT magnetic fields (adapted with permission from ref. [496], copyright 2021, Elsevier 
Ltd.); (b1-b3) A robot with a soft gripper picks, transports, and places a tiny object in water, (b2) A 
robot with a needle overhead performs adaptive locomotion and targeted puncturing, (b4) In-flight 
maneuver of the jumping robot under magnetic stimulus (adapted from ref. [497], under the terms of 
the Creative Commons CC BY license); (c) The snatching and grabbing function of a flexible were 
activated by a permanent magnet and the release behavior of the flexible claws occurred in the 
absence of magnetic field and at 65 °C (adapted with permission from ref. [498], copyright 2023, IOP 
Publishing Ltd). 

Magneto-active metamaterials or field-responsive novel origami structures whose shapes or 823 
properties modulated under a magnetic field hold great promise for many applications [499]. 824 
For instance, Moonesi et al. [500] reported novel 3D-printed origami-inspired scaffolds using 825 
Fe3O4 and cellulose acetate (CA). Results demonstrated the cells' favourable surface 826 
morphology, superparamagnetic behavior, wettability, and appropriate compressive stiffness 827 
for cell proliferation, prominently decreased degradation, and acceptably low iron ion release 828 
of the printed scaffolds. Moreover, an optimized foldability with varying scaffold architecture 829 
was observed under magnetic field stimulus due to the presence of Fe3O4 magnetic particles 830 
which further allowed the scaffold folding, as presented in Figure 23(a). Guan et al. [501] 831 
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developed a magnetically assisted DIW using alumina micro-platelets and fumed silica for 832 
printing various structures. The printed structures had the ability to be turned into ceramics 833 
with anisotropic properties, including their magnetic response, high electrical conductivity, and 834 
self-shaping ability, as depicted in Figure 23(b1)-Figure 23(b2). This work showed that 835 
multilaterals with their magnetic response can be employed for multifunctional devices with 836 
tailored and improved properties. 837 

Luo et al. [502] prepared various magnetic-controlled liquid block structures with the ability to 838 
program and reconfigure precisely under an external magnetic field. Liquid biomaterial inks 839 
were prepared by gelatin methacryloyl (GelMA)/alginate (ALG) and carboxyl modified Fe3O4 840 
MPs. Results showed that various liquid blocks including H-type and the spinal column-like 841 
scaffolds demonstrated biomimetic morphologies and various functions, as presented in 842 
Figure 23(c1)-Figure 23(c3). Thus, considering the outstanding biomimetic functions from 843 
natural materials the mentioned liquid blocks above together with the essence of the 844 
magnetically controllable show great application potential for tissue engineering.  845 

Zhao et al. [503] prepared personalized 3D printing of a bio-designed tracheal scaffold using 846 
shape memory PLA/Fe3O4 composites filament under the magnetic stimulus. Results showed 847 
that a 3D-printed tracheal scaffold with glass sponge microstructure exhibited higher strength, 848 
and shape fixation for its unique ability to adapt the complex environmental conditions in the 849 
soft tissue of patients. Moreover, 3D-printed scaffolds changed to a temporarily deformed 850 
configuration and deployed back into a conformed shape under magnetic field stimulus, as 851 
presented in Figure 23(d1)- Figure 23(d2). 852 
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Figure 23. (a) Scaffold printing and foldability: on a Petri dish via solvent casting DIW and folding as a time lapse 
are shown with a Fe3O4-MNPs with 7 mm long hinge and 15-Fe3O4-MNPs base layers (adapted with permission 
from ref. [500], copyright 2023, Wiley‐VCH GmbH); (b1) Photos of 3D printed samples as printed and after sintering, 
(b2) Complex 3D structures obtained after self-shaping during the sintering process (adapted with permission from 
ref. [501], copyright 2022, Elsevier B.V.); (c1-c2) Fabrication of “H”-shaped liquid blocks through all-liquid molding, 
magnetizing and patterning, c3) Bone-like and cartilaginous liquid blocks were suspended in the oil, and manipulated 
by external magnetic field to assemble into a spinal column-shaped structure (adapted from ref. [502], under the 
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terms of the Creative Commons CC BY license); (d1-d2) Function verification of bioinspired tracheal scaffold in vitro 
actuated under magnetic field (adapted with permission from ref. [503], copyright 2019, Elsevier Ltd.). 

Shao et al. [504] reported a facile technique for magnetically-driven triple-finger micro-gripper 853 
through 3D printing with robust micro-manipulation in both water as well air. Also, the 3D-854 
printed gripper was attached to a robotic arm to exhibit its ability to manipulate micro-objects 855 
both air and water, as depicted in Figure 24. This work proved that when the magnetic field is 856 
removed the low remanent magnetization permits the actuator to recover to its original status 857 
by elastic energy while improving magnetic response under the magnetic field. Consequently, 858 
the developed 3D printing micro-gripper has broad biomedical application prospects such as 859 
the operation of live cells and soft tissues.  860 

 
Figure 24. Manipulating and transporting tin microsphere in various mediums such as in air, in DI 
water and lastly for salt powders (adapted with permission from ref. [504], copyright 2021, Elsevier 
B.V.). 

4.4 Advanced sensors and flexible electronics 861 

In addition to performing many intelligent functions, stimuli-responsive smart sensors can 862 
perform many tasks such as self-validating, self-testing, self-identifying and self-adapting as 863 
part of their task or responsibility [505]. As opposed to conventional sensors, smart sensors 864 
can manage their functions by being stimulated by external factors (external environment) in 865 
which they are located and thus manage a variety of conditions. These features of smart 866 
sensors are particularly attractive for achieving self-adaptation, advanced learning, and signal 867 
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processing architecture, within a single integrated circuit. Smart sensors are crucial for 868 
designing stretchable electronics such as wearable monitoring systems, skin electronics, 869 
invasive electrophysiological recordings, and prosthetics [506]. 870 

Flexible electronics-based devices are an emerging area and have extreme importance in 871 
both engineering and biomedical sectors [507], [508]. Not limited to this, smart grippers, 872 
flexible sensors, intelligent devices stretchable ionotropic devices and many more which have 873 
not discovered yet are often required similar processing mechanisms for their operation [509], 874 
[510]. There are various difficulties in these devices' fabrication through traditional 3D printing 875 
techniques such as in unbalancing printability, shape fidelity, static nature, ionic conductivity, 876 
stretchability, and other functionalities [511]–[513]. Such devices from 3D printing of smart 877 
materials (4D printing) can greatly benefit from the remarkable patterning capability, complex 878 
design, and shape-changing behaviors. More importantly, many smart materials in 3D printing 879 
such as LCE demonstrate excellent recoverable shape-morphing organisms which are best 880 
suited for applications such as grippers, valves, sensors, soft robotics, etc. [514]. Recently, 881 
Han et al. [515] investigated novel magnetic microfibers, using NdFeB and PLA through 882 
filament extrusion-based printing. The printed ferromagnetic microfibers were magnetized to 883 
achieve various deformations of microfibers under magnetic fields. Moreover, the thickness, 884 
mixing ratio, and length of the magnetized microfibers provided unique and customized 885 
deformation of the microfiber for numerous applications in smart sensors and actuators.  886 
Zhang et al. [516] developed a fully flexible soft robot through a light-cured 3D printing 887 
technique using a tentacle-integrated liquid metal spiral wire with Nd2Fe14B magnetic 888 
powders/Ecoflex (liquid silicone) composites. The various fabrication parameters were 889 
optimized for achieving good energy transmission efficiency between the two tentacles of soft 890 
robots. Moreover, printed soft robots demonstrated unique motion under an external magnetic 891 
field as depicted in Figure 25(a). Also using electromagnetic induction these soft robots can 892 
transmit electric signals to the oscilloscope.  893 

Another novel study by Dezaki et al. [517] explored 4D-printed MRE composite actuators using 894 
silicone resins loaded with strontium ferrite-based MNPs and a thin conductive carbon black 895 
PLA. The developed composite actuator with programmable magnetic patterns showed 896 
excellent shape memory behavior such as electroactive under Joule heating and magnetic 897 
fields. Moreover, the printed actuator (1.47g) can lift weights to 200 g. As such, the developed 898 
printing process provided highly remotely controlled shape-memory features of 3D-printed 899 
composite actuators. Also, Sundaram et al. [518] fabricated complex actuators (>106 design 900 
dimensions) through multi-material drop-on-demand 3D printing using both soft and rigid 901 
polymers with MNPs. Results showed that developed multi-material 3D printing with optimized 902 
topology allowed complex actuators to use them in liquid interfaces as highlighted in Figure 903 
25(b). Table 4 summarizes the state-of-the-art 4D printing technologies which are recently 904 
been studied for various smart sensors and actuator-based applications. Likewise, Huang et 905 
al. [519] used an interesting approach for fabricating Fe3O4 driven fiber-Tip multimaterial 906 
microcantilever-based magnetic field sensor using an advanced femtosecond laser-induced 907 
2PP technique. Insights of this study showed proposed sensor exhibited a minuscule size and 908 
a high magnetic sensitivity of 119 pm mT–1 in the range of 0–90 mT. Moreover, these sensors 909 
showed the false-color scanning electron microscopy (SEM) images of the polymeric magnetic 910 
microcantilever from the top view and the side view as presented in Figure 25(c1)-Figure 911 
25(c2). Thus, this new facile approach can be employed for different stimulus-responsive 912 
microsensors and micro-actuators on the fiber tip. Saiz et al. [520] showed that magneto-913 
responsive PCL/Fe3O4 inks containing up to 10 wt% Fe3O4  can be employed for high level 914 
microstructures with fiber diameters of 9.2 ± 0.6 µm using novel melt electrowriting-based 3D 915 
printing technique.  Reported results demonstrated that printed samples exhibited tunable 916 
magnetic responses under various MNP concentrations and multi-material designs, as 917 
presented in Figure 25(d). This methodology can bridge the wide-open gap for designing 918 
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various complex structures at the microscale level using different active fillers combined for 919 
many mysterious applications. 920 

 
Figure 25. (a) Schematic and real-time crawling motion of the soft robot at various moments in a cycle 
(adapted with permission from ref. [516], copyright 2023, Wiley‐VCH GmbH); (b) Magnetic actuator arrays 
capable of deforming under applied field use in liquid interfaces, some panels return to their flat position 
easily when the water is disturbed. With and without an applied magnetic field, experimental results of 
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(b) 

 

 

(c1) 

(c2) 

(d) 



42 
 

actuation at the silicone oil-water interface and an array of 16 identical actuators with serrated edges are 
presented (adapted from ref. [518], under the terms of the Creative Commons Attribution license); (c1-c2) 
Magnetic microcantilever morphological characterization including false-color SEM images of the magnetic 
cube (orange)-modified fiber-tip microcantilever (blue) in different views (adapted from [519] copyright 
2023 American Chemical Society); (d) ) Different response with distance and wt% (on the left side) and  
constant rotation of the 5 wt% Fe3O4 toward a preferential orientation facing the magnet from the side 
with higher mass accumulation (on the right side) (adapted from [520] under the terms of the Creative 
Commons Attribution license 4.0) 

Table 4. Summary of some recent works from 2020 to now on 3D printing of MASMs for soft robotics 921 
and novel actuators-related applications  922 

Year AM  MASMs Stimulus Actuator motion(s) Targeted application Ref. 

2023 SLA NdFeB/PEGDA Magnetic field Bending Soft Robotics [521] 

2023 
Multi-

material 
extrusion 

Conductive PLA/TPU Magnetic field Bending and jumping Soft frog-shaped robot [522] 

2023 
3D direct 

laser 
printing 

FePt/PETA/PNIPAM-
AAc 

Magnetic and 
pH 

Swelling 
Microrobots for on-
demand cargo delivery 

[523] 

2023 
Extrusion-

based 
printing 

PDMS/BaTiO3/Fe2O3 Magnetic field Bending 
Flexible electronic 
devices 

[524] 

2023 FDM 
Shape memory PU 
foam composite 

Magnetic field Bending 
Soft actuators for 
grasping the objects 

[525] 

2023 FFF Cu-PLA 
Magnetic field 
+ temperature 
+ electric field 

Grasping objects 
(bending, twisting, and 
folding) 

Flexible gripper [526] 

2023 SLA 
FLGPCL04 
polymer/Fe3O4 

Electric and 
magnetic field 

Stretching Micropumps [527] 

2023 FFF PLA/PDMS/NdFeB Magnetic field Bending 
Superhydrophobic 
surfaces for droplet 
control 

[528] 

2023 DIW 
NdFeB/PDMS/MWCN
T/rGO 

Magnetic field 
Curling, bending, 
folding, and twisting 

Targeted drug delivery [493] 

2023 FFF PEU/PLA/MWCNTs Electric current Bending Soft robotics [529] 

2023 SLA 
Water, acrylamide and 
PEGDA 

Magnetic Swelling 

Soft robotics for 
minimally invasive 
interventional 
microsurgery 

[530] 

2023 SLA/DLP NdFeB/PDMS Magnetic field Twisting and bending 

Diagnosis and 
treatment of occlusions 
in various circulatory 
systems. 

[531] 

2023 DLP PEGDA Magnetic field - Swimming microrobot [532] 

2023 FDM Iron particles/PLA Magnetic field Gripping and bending Smart grippers [533] 

2023 FDM PLA/TPU/Fe3O4 Magnetic field Folding and gripping Smart actuators [534] 

2023 Extrusion Iron particles/PEGDA Magnetic field Folding and bending 
Actuators and soft 
robotics 

[530] 

2023 Extrusion PVA/NdFeB Magnetic field 
Flipping of bilayers 
(curving of structures ) 

Tunable mechanical 
metamaterials 

[535] 
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2023 
Extrusion-

based 
printing 

Epoxy (EPON 8111) 
resin and curing agent 
(EPIKURE 3271) 

Magnetic field Bending 
Medical devices such 
as oxygen masks 

[536] 

2022 DIW Carbon/Fe/PDMS Magnetic field Rolling and bending 
Soft robots for 
underwater 
applications 

[537] 

2022 LAM Silicone: Ecoflex Magnetic field 
Complex shape 
morphing structures 

Soft robotics [538] 

2022 DIW PLMC/ PTMC/Fe3O4 
Magnetic field 
and heat 

Bending Soft robots [539] 

2022 FDM PEEK/Fe3O4 Magnetic field Folding and bending 
Electrical motors for 
space-compliant 

[540] 

2022 DIW TPU/PCL/Fe3O4 
Heat and 
magnetic field 

Bending and grasping Flexible robotics [541] 

2022 SLA PCL/Fe3O4 
Electromagneti
c field 

Deflection of 
membrane 

Micro-actuators [542] 

2022 DIW CIP/ natural rubber Magnetic field Gripping and bending Soft robotics [543] 

2022 DIW ALG/MC/PAA/Fe3O4 Magnetic field 
Rolling, jumping, and 
bending. 

Soft robotics [442] 

2021 FDM PHB/PCL/CNFs/Fe3O4 Magnetic field Bending Smart actuators [544] 

2021 FDM PLA/Fe3O4 Magnetic field 
Expansion and 
stretching 

Treatment of left atrial 
appendage occlude 

[545] 

2020 DLP Ferrofluid/PDMS Magnetic field Bending Soft gripper [546] 

2020 2PP 
GelMA/CoFe2O4/ 
BiFeO3 

Magnetic field - 
Micro-swimmers for 
differentiation of 
neuron-Like cells 

[547]
- 

2020 SLS PA-12/γ-Fe2O3 Magnetic field Grasping and bending Smart grippers [548] 

2019 DIW NdFeB/PDMS Magnetic field Gripping and bending 
Soft robots for medical 
applications 

[549] 

2018 DIW Iron particles/PDMS 
External 
magnetic field 

Bending Bionic robots [550] 

5 Contemporary challenges and prospects 923 
When the shape of a 3D-printed structure is designed to morph over time, it’s referred to as 924 
4D printing. These geometry shifts can be induced in any number of ways, with some of the 925 
most common being electrical stimulation, heat, and moisture [551]–[553]. Mostly DIW and 926 
DLP-based 4D printing methods are currently available and studied. However, novel 3D 927 
printing techniques such as 2PP and micro-printing may provide a breakthrough in multi-928 
responsive tactics for complex shapes and efficient control over their shape-morphing 929 
behaviors [554]–[556]. In a bid to emulate the movement mechanism of the printed structures, 930 
the researchers employed computational design techniques that used selectively printing 931 
‘bend lines’ into the geometry of the multilayer structures [557]–[560]. Material choice was also 932 
crucial in 3D printing as the actuation of the smart material would only be possible with a 933 
material responsive to any stimuli. Many 3D-printed objects are pre-programmed to morph 934 
using intelligently placed layers and folds, which can contract and expand to give the desired 935 
effect [561]–[563]. 936 

Most of the studies discuss only single material-based printing techniques while multi-937 
materials have huge potential in actuators for soft robotics, kirigami/origami and complex 938 
structures, and controlled sequential folding [564], [565]. Furthermore, 3D printing at the micro-939 
scale has excellent potential to demonstrate various shape-morphing behaviors for the 940 
possibility of releasing and trapping micro-objects. Various micro-shapes such as smart box-941 
like 3D microstructures, and microspheres can be useful for high-tech applications such as 942 
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on-demand drug delivery [566]–[568]. Also, soft devices are promising candidates in extreme 943 
environments where human interaction is not possible. To date, their mechanical properties 944 
are not up to the mark and thus 3D-printed soft robotics have limited use [569], [570]. The 945 
time-dependent thermomechanical properties of soft actuators are also a promising field. 946 
Furthermore, the soft actuators support heavy loads only at low temperatures but the load-947 
carrying capability at high temperatures is quite limited [571]–[573].  948 

Despite their high control precision and robustness, soft magnetic structures make it difficult 949 
to design uniform magnetization profiles. Thus, magneto-deformation modes and types are 950 
significantly limited. Moreover, it remains challenging to realize complex and diverse magneto-951 
deformations, particularly in hard magnetic materials. Furthermore, the diffusion of particles 952 
within the polymer matrix is controlled by external fields applied during printing. Thus, it is very 953 
crucial to control particle concentrations spatially and to displace particle accumulations freely 954 
during the crosslinking process. Consequently, MPs susceptible to magnetic fields are shifted 955 
into previously free regions, offering more degrees of freedom in printed structure [574]. 956 

FDM although widely available for producing smart structures has its limitations in nozzle 957 
caliber and printer precision particularly for fabricating micro-scale parts [575]. Existing 958 
magnetic miniature soft robots are usually fabricated from SLA or 2PP for aching high-shape 959 
transformations and locomotive behaviors. However, in the case of DLP various effects such 960 
as isotropic magnetization of soft actuators are observed which prevents selective actuation 961 
of one portion of the robot, articulated actuation, limits the number of possible degrees of 962 
freedom, and shape profiles. Generally, magnetic actuation portfolios are achieved by 963 
rationally imputing “logic switch” sequences. However, their performance can be further 964 
improved by considering stepwise magnetic controllability, self-healing, multi-responsiveness, 965 
and remolding ability [576]. 966 
Soft materials such as polymers are prone to structural damage under external factors that 967 
affect cracking, embrittlement, external loading, and eventual functional degradation. This 968 
lowers their overall lifespan. This can be avoided through recovering functional performance 969 
such as “self-healing” after incurring (minor) structural damage. One way to achieve this is 970 
“self-heal ability” using polymer chemistries involving reversible primary and/or secondary 971 
bond networks or embedded monomer reservoirs that use bio-inspired features [577]. 972 
Focused research is needed on sustainable soft actuators for achieving high performance and 973 
mitigating environmental issues in terms of their waste at their end life [578].  974 
There is a huge need for high-end simulation and control platforms to strengthen the real-time 975 
application of adaptive 4D-printed systems in various environmental interactions, which is still 976 
in demand. Development of sensor-less adaptive 4D printers can be developed in future using 977 
reversible multi-stable compliant mechanisms. Moreover, rising artificial intelligence and 978 
machine learning techniques can also play a pivotal role in improving the functionality of smart 979 
devices by optimising the 3D printing theoretical design parameters for the efficient designing 980 
of application-specific devices [579]. 981 
With the need to manipulate smaller objects in confined spaces, robotic grippers are 982 
increasingly becoming miniaturized. With increasingly smaller grippers, it faces challenges in 983 
microfabricating, assembling, and actuating them. Although flexible actuators provide 984 
excellent performance, some of them require external wires to connect to a power source or 985 
require higher ambient temperatures, limiting their application [580]. Actuators for modern-day 986 
robots are evolving for improved power efficiency, topology, and size, optimizing for weight 987 
and other performance metrics [581]. 3D printing has revolutionized many industries [582], but 988 
its integration with sensors and robotics is still at an embryonic stage. It needs emerging 989 
printing techniques for proper embedding sensors and actuators into 3D printed objects.  990 
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Recently, the emergence of 2D materials allows us to achieve high mechanical properties of 991 
3D complex structures by mixing 3D printing and 2D materials such as graphene 992 
montmorillonites, carbon nanotubes, cellulose nanocrystals, carbon nanofibers, and so on, 993 
thereby forming shape memory polymeric nanoarchitectures [583] generally through DIW 994 
[584]. These novel 2D materials even at low concentrations such as 0.1 wt.% graphene 995 
nanoplatelets improved significantly shape recovery behavior [585]. 996 

A great deal of progress has already been made with stimulus-responsive magnetic actuators. 997 
For further improvements in their functions and to broaden their practical applications, there 998 
is still much to be done, as summarized in Figure 26. First, the 4D stage of soft actuators is 999 
not mature enough to realize practical applications. However, overcoming the main bottleneck 1000 
including the fabrication of large parts and, mainly, the regulated transformations and 1001 
movement of actuator parts under external stimuli can pave the foundation for more practical 1002 
applications [586]. Second, it is still a challenge to produce more complex deformations for 1003 
precisely controlling their local stimuli response, particularly material handling. It is expected 1004 
that mag-bots used in remote, confined spaces with more complex designs for various 1005 
purposes such as material handling [587]. Third, besides macroscopic deformation, changes 1006 
in their other macroscopic properties such as color change could also be useful for opening 1007 
many avenues [588]. Fourth, commercialization of the printed actuators involves the synthesis 1008 
of novel SMP characterized by various types of response and advanced printing skills, all of 1009 
which are a major part of 4D printing [589]–[591]. Due to the lack of soft materials, their 1010 
commercial introduction is still at an early stage. Thus, significant attention needs to be paid 1011 
to the variety of 3D printers and the availability of smart materials for 4D printing perspective.  1012 

 
Figure 26. Future roadmap for advanced sensors and soft robotics application in 4D printing self-
healing  

From laboratory evaluation to clinical application, safety aspects and regulatory pathways 1013 
should be considered. Due to the complexity of the human body, future research should 1014 
increasingly focus on the clinical use of microrobots as well as nanorobots [592] for alleviating 1015 
various challenges related to them such as detoxification, biocompatibility [593], biological 1016 
barriers, biosensing, biodegradation propensity and functioning in complex biological fluids 1017 
[594]–[596]. Biomedical applications often require magnetic soft robots to navigate in 1018 
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unstructured aquatic-terrestrial environments [597], [598]. Furthermore, for precise positioning 1019 
and efficient operation, the miniature magnetic robot needs to be enhanced both in terms of 1020 
controllability and agility. Recently, a 4D printed  shape-programmable soft robot with near-1021 
infrared light and magnetic stimulation was effectively employed for remote manipulation of 1022 
placing drugs, particularly in the application of hazardous chemical operations [599].  For 1023 
future research, we anticipate that several challenges related to the following areas need to 1024 
be addressed, as summarized in Figure 27. This will improve the functionality as well as the 1025 
performance of today’s state-of-the-art soft robotics (referring to Figure 28) for many unknown 1026 
applications.  1027 

 
Figure 27. Future roadmap for advanced sensors and soft robotics application in 4D printing self-healing 
[600], payload capacity of soft robot arms [601], rapid modeling and control [602], [603], and degradable 
soft robot [604], [605]. 
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Soft Robotic Hand Biogel, like sugar and jelly 3D-printed robots 

  

 
Origami – Artificial Muscles Dragonfly 

  
Cheetahs Tree 

  
Figure 28. Emerging soft robotics in various shapes including soft robotic hand (adapted from [606] (Pic 
credit Elvis et al. ), Biogel, like sugar and jelly 3D printed robots (Credits: A. Heiden et. at the Johannes 
Kepler University), Origami inspired Artificial Muscles and Origami Gripper, Dragonfly (Pic Credit: DraBot 
of Duke University), Cheetahs (Pic credit: North Carolina State University), Tree (Pic Credit: Plantoid IIT 
Italian Institute of Technology) (Various figures are adapted from [607]). 



48 
 

6 Summary  1044 
Interestingly, we can learn a lot about shape morphing behavior of smart materials by drawing 1045 
inspiration from nature. In this review, we have highlighted various 3D printing methods; new 1046 
MASMs, and fabrications of various functional structures including sensors, and soft actuators, 1047 
for broad applications in flexible electronics and biomedical. Particularly, this review study 1048 
focuses on the justification of 3D printing of smart materials under magnetic stimulus for 1049 
developing the state-of-the-art in soft robotics and providing recent breakthroughs in the 1050 
proposed field. The 3D printing technology is replacing many traditional manufacturing 1051 
techniques in the development of unthinkable, complex shapes and multifunction advanced 1052 
sensors and actuator applications. It has been observed that the potential of 3D printing in the 1053 
development of soft robotics has been significantly expanded due to emerging materials such 1054 
as LCEs, polymers and their composites, and hydrogels for producing advanced intelligent 1055 
devices. Furthermore, explications of the shape morphing mechanisms such as bending, 1056 
twisting, and folding are easily achievable under the magnetic stimulus, which permits the 1057 
printed actuators to gain control of their various soft robotics functions. Lastly, we provided 1058 
some of the current 3D printing challenges such as low mechanical properties, response under 1059 
multi-programming and stimuli that need to be addressed in future studies. Finally, we provide 1060 
future perspectives, for the designing of the next generation of 3D-printed biodegradable and 1061 
sustainable soft robots with much higher payload capacity. Thus, there is significant 1062 
improvement required in the arena of 3D printing of MASMs, with more focused research 1063 
towards its practical applications. 1064 
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