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Abstract—The urban transportation network is crucial for
societal development, but it is prone to failures like congestion
caused by accidents or disasters. In particular, often network-
wide failure is the result of a series of cascading failures
originating from a small set of individual links. To prevent such
failures, it is essential to identify these critical links and take early
action. However, most existing approaches in the literature for
evaluating the importance of each link rely on manually designed
metrics (e.g., the Network Robustness Index). These methods
are time-consuming and not suitable for large-scale urban net-
works. Additionally, these metrics fail to accurately capture the
dynamic traffic interactions influenced by vehicle movement. In
this paper, we present a novel method for identifying critical
links by learning effective traffic interaction representation (the
spatio-temporal dependencies) among roads. By representing the
network as an un-directed graph and abstracting the road links
as the nodes, we introduce a temporal graph attention model to
capture spatial and temporal dependence between nodes. This
model combines a graph attention network and a long short-
term memory neural network and produces an attention matrix,
which represents traffic interactions among links. Furthermore,
we propose a traffic influence propagation model to evaluate
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the influence of each link for the entire road network based on
the traffic interaction representation. We rank the importance
of links based on their influence and then identify the critical
links. A real-world case study in the city of Hangzhou, China is
conducted to test our method and we use the network efficiency
ratio to quantify its performance. The results suggest that our
method can effectively identify the critical links at different
periods.

Index Terms—Critical links, graph neural networks, LSTM,
network propagation dynamics, urban transportation network

I. INTRODUCTION

The urban transportation network has a pivotal role in main-
taining social and economic development, which facilitates the
daily movement of people and goods [1]. With the rapidly
growing demand for mobility, the transportation network has
suffered from colossal pressure and has become highly con-
gested in many cities [2]. As a complex and dynamic system,
the transportation network is extremely vulnerable to failures
caused by anomalous perturbations, such as traffic accidents,
natural disasters, etc [1]. In particular, a small number of
individual links may cause a wide-ranging network collapse
if they are interrupted, and this phenomenon is also called
’cascading failure’ [3], [4]. This indicates that when a few crit-
ical links fail, the whole transportation network’s performance
will significantly degrade. At the same time, it is impossible to
constantly monitor all of the road network’s segments because
of limited resources and data [5], [6]. Therefore, accurately
identifying the critical road links in the transportation net-
work is of great importance and practical relevance to traffic
management and control, which can maintain and improve
transportation efficiency [7].

Many studies have attempted to identify critical links in
the transportation network. Most of them rely on manually
designed metrics to evaluate the importance of each road link.
For example, the Network Robustness Index [8] has been
proposed to assess the importance of each link in a transporta-
tion network, based on the change in total travel time when
removing certain road links from the network. Combinations
of metrics, such as link traffic flow and path betweenness can
also be used to identify the critical road links [9]. While these
studies made some important contributions, there are some
limitations that should be noted:

1) Most of these methods rely on metrics, such as total travel
time, betweenness centrality (which measures the number of
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times a node appears on the shortest path between any two
other nodes in a network, and can be used to identify important
nodes that act as bridges in the network), etc. These methods
can accurately identify the links that have a large impact.
However, to calculate variations, a disruption on each link
needs to be simulated at a time and a new traffic assignment
needs to be carried out, which can be a very time-consuming
and impractical process for large transportation networks [10],
[11]. In addition, these methods usually require full Origin-
Destination (OD) data for the traffic assignment, which may
be difficult to obtain in reality.

2) Some of the methods use manually defined local metrics,
which are derived from the field of complex network analysis,
to identify the critical links. However, these methods are not
generalizable or transferable [2] because the road network
layout may vary considerably from city to city.

3) The traffic impact among neighbouring links is a complex
process and existing methods cannot accurately quantify it,
regardless of the multi-index evaluation system (different
traffic assignment models may also lead to biased critical link
identification results).

In recent years, many studies have revealed that the phe-
nomenon of cascading failures exists in transportation net-
work [3], [12], [13]. Failures in transportation networks can
spread as a result of the traffic impact between road links, as
caused by the movement of vehicles [14]. This impact includes
spatial and temporal dependencies [15], and we use the term
“traffic interaction” to describe it as in previous work [14].
Therefore, an effective representation of traffic interactions
is key to identifying the critical links in the transportation
network. In transportation, many studies utilize Graph Neural
Networks (GNNs) to capture interactions between traffic units
and predict traffic states. For example, Zhao et al. [16] propose
a Temporal Graph Convolution Network (T-GCN) combin-
ing the Graph Convolution Network (GCN) and the Gated
Recurrent Unit (GRU) model for predicting traffic speed,
and showing that T-GCN can capture the spatial-temporal
dependencies in transportation network very well.

In this paper, we propose a novel method for identifying
critical links based on learning effective traffic interaction by
employing GNNs to model the spatial-temporal dependencies
between links. First of all, we transform the transportation
network into an undirected weighted graph. In this process, the
links are abstracted as the nodes in the graph. Then, we apply
a Temporal Graph Attention (T-GAT) model to learn the traffic
interaction representation between nodes, which is a combina-
tion of the Graph Attention (GAT) network [17] and the Long
Short-Term Memory neural (LSTM) network [18]. We use
the attention matrix to represent traffic interactions between
neighbouring nodes, which is trained in the temporal graph
attention model. Furthermore, we propose a traffic influence
propagation model, which can evaluate the influence of each
node on the entire network based on the traffic interaction.
We rank the importance of nodes in order of their influence.
As nodes in the graph correspond to links in the real-world,
we can ultimately identify critical links in the transportation
network. Our main contribution can be summarized as follows:

• We apply T-GAT to learn the traffic interaction repre-

sentation, which integrates GAT and LSTM. The GAT is
used to capture the spatial dependencies and the LSTM is
used to capture the temporal dependencies between links.

• We design a traffic influence propagation model to calcu-
late the influence of links on the entire network based on
traffic interaction representation, which utilizes complex
network propagation dynamics.

• We utilize the parameters of the T-GAT model to repre-
sent the interactions between traffic nodes and verify the
validity and accuracy of our proposed method through an
experiment, thereby enhancing the interpretability of the
GNN model and expanding its applications in the field
of transportation. Additionally, our method is superior in
terms of computation complexity and is suitable for the
large-scale road network.

Our paper is organized as follows. Section II reviews related
work. Section III presents our method. The experimental
setups are introduced in Section IV and Section V shows the
experimental results. We conclude this paper in Section VI.

II. RELATED WORK

In this section, we review the related works on critical link
identification and graph deep learning in transportation.

A. Identification of critical links

Identifying critical links in transportation networks is a
classical problem in traffic and a large number of studies have
attempted to tackle it.

In the earlier research, the importance of links is assumed
to be positively related to the degree of congestion. The
Volume-to-Capacity (V/C) ratio [19] is proposed to identify
the critical links, which can indicate road congestion. Scott
et al. [8] propose the Network Robustness Index (NRI) to
rank the importance of road links, which is calculated by
the change in total travel time for all the travellers after
removing each road link iteratively, with the link with the
maximum NRI value being considered the most critical in each
iteration. Sullivan et al. [20] build on the NRI and propose
an improved indicator, the Network Trip Robustness (NTR),
which is calculated by summing the NRI values across all
links and dividing that sum by the total trip demand; this
makes the indicator suitable for road networks of different
sizes. Oliveira et al. [21] determine critical links based on
each of the two attributes of vulnerability and congestion,
and point out that using a congestion indicator only may
lead to a biased result. Zhou et al. [7] argue that existing
methods mostly mix up the concept of the criticality of links
with vulnerability, and propose a critical links identification
method based on two aspects: vulnerability and potential. Li el
al. [9] propose a traffic flow betweenness index to identify the
critical links, considering path betweenness, traffic flow and
OD demand. Gokalp et al. [22] develop a bidirectional search
heuristic with customized pruning and branching strategies
to determine the priority for road restoration during post-
disaster reconstruction. Hamedmoghadam et al. [23] propose
a percolation-based network analysis framework underpinned
by flow heterogeneity to identify bottleneck links. This study



3

also demonstrates that alleviating congestion on critical links
can effectively improve the overall performance of the trans-
portation network.

Most methods in this research area can be divided into
two categories: 1) link importance ranking based on network-
disruption analysis, which mostly relies on system-level met-
rics; and 2) link importance ranking based on local metrics,
such as traffic flow, degree, and V/C ratio.

The work in the first category generally includes three
steps: i) reduce link capacity in the transportation system;
ii) execute traffic assignment model to reassign traffic flow
on each link; and iii) measure the decline rate of the system
performance. Although these methods can accurately identify
critical links for relatively small transportation networks, they
are difficult to implement on a large scale due to time and
computational constraints. The work in the second category
identifies the critical links that rely on some manually defined
local metrics, such as degree centrality, traffic flow and so on,
which are simpler and intuitive. However, these methods are
non-universal because of heterogeneous topological features
and traffic distributions in different regions.

In recent years, some scholars have introduced the idea of
machine learning into the field. For example, Liu et al. [14]
propose an approach called Road2Vec to quantify the implicit
traffic interaction among roads based on large-scale taxi trajec-
tory data employing the Word2Vec model. Saffari et al. [24]
apply Principal Component Analysis (PCA) to identify the
main traffic features and regard the links which are associated
with these features as critical. Dai el al. [25] utilize graph
representation learning models to learn the representation of
links and use classifier models to identify the critical ones.
However, there is still limited research on deep learning-
based critical road link identification. Moreover, these existing
studies often do not effectively explore the spatio-temporal
dependencies in the traffic data. For example, [24] mainly
focuses on the individual features of road links and [25] mainly
focuses on the spatial structure of the road network.

In this paper, we attempt to use a deep learning approach
to learn the traffic interaction representation to identify the
critical links.

B. Graph Neural Networks in transportation

GNNs attempt to generalize neural networks to apply in
arbitrarily structured graphs [26], and have been successfully
applied in many fields.

In the transportation field, a great deal of research on the
application of GNNs has focused on the problem of traffic state
prediction. Cui et al. [26] propose a deep learning framework
named Traffic Graph Convolutional Long Short-Term Memory
neural network (TGC-LSTM) to forecast traffic speed, and
finds that, on the basis of visualization results, the road
segments with higher graph convolution weights appear to play
a more important role in the transportation network. Zhang et
al. [27] propose a GAT convolution network to capture the
intrinsically spatio-temporal dependencies between roadways,
combining the GAT and temporal convolution operation. The
graph attention heatmap reveals that the attention weights

are related to road structural features and some sophisticated
roads have higher spatial attention weights. Zhang et al. [28]
propose a graph convolution sequence-to-sequence model to
predict multi-step speed on traffic networks by combining the
Seq2Seq model and graph convolution network; their results
indicate that graph convolution weight values are positively
correlated with the congestion on the links. Huo et al. [29]
design a hierarchical traffic flow forecasting network based on
the newly designed long-term temporal transformer network
and the spatio-temporal graph convolution networks, which
can capture the short-term and long-term temporal relations
on traffic data. Xu et al. [30] propose a deep learning
framework called Dynamic Traffic Correlation-based Spatio-
Temporal Graph Convolutional network to predict the urban
traffic, which utilizes GCN and LSTM to capture the spatial
and temporal dependencies based on the dynamic adjacency
matrix. Bao et al. [31] propose a traffic prediction model
called Spatial-Temporal Complex Graph Convolution Network
(ST-CGCN). This model constructs and integrates the dis-
tance matrix, the data correlation matrix and the comfort
measurement matrix, improving the joint modelling ability of
spatio-temporal features and external factors. Guo et al. [32]
propose a graph convolution neural network with an attention
mechanism, which can achieve excellent performance in traffic
prediction problems by learning the interaction of different
road links in the spatial and temporal dimensions. Wu el
al. [33] propose a encoding-forecasting structure combining
with GAT and LSTM to predict traffic flow. Fang el al. [34]
propose a L-GAT (LSTM-Graph Attention Network) frame-
work to forecast traffic speed in urban road networks. GAT is
employed to capture spatial dependency relationships between
nodes and exhibit excellent performance in these works.

So far, a number of studies have used GNNs and Recurrent
Neural Networks (RNNs) to solve traffic prediction problems.
Taken together, these studies support the notion that GNNs
can effectively capture the potential traffic interaction between
units (road links or intersections) in the transportation network,
and that there is a relationship between model weights and
traffic interactions [35], [36], [37], [38].

Based on the previous studies, we adopt GNNs as the basic
framework for our proposed temporal graph attention model
to learn the traffic interaction representation.

III. METHODOLOGY

A. Notations

1) Road Network G: We use an undirected graph G =
(V,E,W ) to represent the topological structure of the road
network, where V = {v1, v2, · · · , vn} is a set of nodes, E is
a set of edges, W is a set of edge weights and n is the number
of the nodes. In this paper, we treat each road link as a node
in the graph.

2) Feature Matrix Xt: We use the feature matrix Xt =
{x1

t , x
2
t , · · · , xn

t } to represent the node feature in graph G,
where xi

t denotes the feature on vi at time t. In this paper, the
node feature is the vehicle’s average speed on each road link.
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3) The k-hop neighborhood Nbhk
i : Nbhk

i represents the
k-hop neighborhood for node vi (i.e. the set of nodes within
distance k of node vi) in graph G, as defined in equation 1:

Nbhk
i = {vj ∈ V |d(vi, vj) ⩽ k + 1} (1)

where d(vi, vj) denotes the number of nodes on the shortest
path from node vi to vj .

4) Attention Coefficient Matrix Mn×n: This matrix Mn×n

is trained by our temporal graph attention model. The value
mij ∈ M represents the attention coefficient that indicates the
traffic interaction between vi and vj in graph G.

B. Construction of Road Network

Fig. 1. Formation of the road network G.

In this section, we construct an undirected weighted graph
G(V,E,W ) based on the geographic road network. The
process is shown in Fig 1. We abstract the road links as the
nodes in G, so we get the node-set V . For every two nodes vi
and vj ∈ V , if vi and vj are connected , there will be an edge
(eij) between vi and vj . To model the distinct interactions
brought by bidirectional traffic flow on the road, we utilize
two distinct edges to represent the traffic interactions. Then,
we get the edge set E. Due to the fact that the impact of traffic
congestion will influence both upstream and downstream of
the traffic network [39], G is set to be an undirected graph,
as in previous studies [26], [16].

For the edge eij , the weight wij is defined as:

wij = (lengthi + lengthj)/2, (2)

where lengthi and lengthj denote the length of links i and
j, respectively.

C. Overall Architecture

Fig. 2 illustrates the overall structure of our proposed
method. Once the road network G is obtained, we utilize
it along with the traffic feature data as inputs to train the
temporal graph attention model, aiming to extract the spatio-
temporal dependencies. The learned attention coefficient ma-
trix serves as the representation of traffic interaction and is fed
to the traffic influence propagation model. By calculating the
influence of each road link, we ultimately obtain the results
for identifying critical links. In the subsequent sections, we
provide a detailed introduction of the temporal graph attention
and traffic influence propagation models.

Traffic Feature Data

Road Network 𝐺

Temporal Graph Attention Model

Extract the temporal 

and spatial dependencies

Attention Coefficient Matrix 

m11 ⋯ m1𝑛⋮ ⋱ ⋮m𝑛1 ⋯ m𝑛𝑛

Traffic Influence Propagation Model

Obtain the traffic interaction 

representation

Critical road links identification results

Calculate the impact of each 

road link

Inputs

Models

Outputs

Fig. 2. The overall architecture of our proposed method.

D. T-GAT Model

In this section, we apply a temporal graph attention model
to effectively learn the spatial-temporary dependence among
links in the transportation network. The framework of the T-
GAT model is shown in Fig 3. The inputs of this model are
the road network and the node feature matrix. Then, we use
GAT and LSTM to learn the spatial and temporal dependencies
of the nodes. The outputs are the subsequent one-step feature
Xt+1 and the attention coefficient matrix Mn×n .

…

Graph Attention Network

LSTM LSTM LSTM…

𝑋𝑡+1, 𝑀n×𝑛

(𝑋𝑡−𝑛; 𝐺) (𝑋𝑡−1; 𝐺) (𝑋𝑡; 𝐺)
Inputs: (𝑋𝑡−𝑛, …𝑋𝑡−1, 𝑋𝑡; 𝐺)

Spatial Features

Temporal Features

Outputs: 𝑋𝑡+1, 𝑀𝑛×𝑛

+

Fig. 3. The overall process of temporal graph attention model

In the next sections, we introduce the graph attention
network and the LSTM in detail.

1) graph attention network: We use GAT [17] to learn
the spatial dependencies among road links. GAT is a classic
model in graph neural networks, known for its simplicity
and effectiveness. Compared to Convolution Neural Networks
(CNNs) and frequency-domain-based GCNs [40], GAT excels
at handling graphs with varying structures by dynamically
adjusting attention weights for each node during informa-
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tion aggregation rather than relying on a fixed convolutional
computation. Meanwhile, GAT’s attention mechanism can
naturally scale to large graphs without the need for complex
approximations or sampling techniques required by some GCN
variants for scalability. Furthermore, GAT can assign distinct
attention weights to nodes within the same neighborhood,
offering a more intuitive understanding of node interactions
compared to other models. Hence, we adopt GAT as our spatial
dependency extraction model. GAT consists of graph attention
layers, which aggregate the features of neighbouring nodes to
the central node by attention mechanisms. Fig 4 shows how
GAT uses the attention mechanism to calculate the attention
coefficient between nodes. The inputs are node features (xi

t,
xj
t ) and the output is the attention coefficient mij .

𝑊 ∈ ℝ𝐹′×𝐹 …𝜒𝑡𝑖

…𝜒𝑡𝑗 𝛼:ℝ2𝐹′ → ℝ softmax(𝑥) a𝑚𝑖𝑗

Inputs: 𝑥𝑡𝑖 , 𝑥𝑡𝑗

𝑖
𝑗

Output: 𝑚𝑖𝑗
Fig. 4. The process of calculating the attention coefficient between nodes

Firstly, as shown in equation 3, a shared transformation with
a learnable weighting matrix W ∈ RF ′×F is applied to each
node to obtain sufficient representation power.

χi
t = Wxi

t, (3)

where xi
t ∈ RF denotes the feature of node vi(vi ∈ V )

when time t; F and F ′ denote the dimensions of the input
output features, respectively; and χi

t ∈ RF ′
denotes the high-

dimensional feature after linear transformation.
Then, GAT calculates the attention coefficient by a shared

attention mechanism as shown in equation 4:

eij = LeakyRelu(α[χi
t∥χ

j
t ]), (4)

LeakyRelu(x) =

 x, if x ≥ 0

x/0.2, if x < 0
, (5)

where eij denotes the attention coefficient between node vi
and vj (vi, vj ∈ V ); χi

t and χj
t denote the features defined by

equation 3; (·∥·) denotes the splicing operator; and α denotes
a trainable single-layer feed forward neural network.

In order to incorporate the structural information of the
graph and reduce the computational complexity, we only
calculate the attention coefficients of nodes with other nodes
in the 1st order neighbourhood. We normalize the coefficients
as per equation 6:

mij = softmax(eij) =
exp(eij)∑

q∈Nbh1
i
exp(eiq)

, (6)

where mij ∈ Mn×n denote the normalized attention coeffi-
cients between node vj and node vi; eij denotes the attention
coefficient defined by equation 4; and Nbh1

k denotes the set
of nodes in the 1st order neighborhood of node vi.

After obtaining the attention coefficient matrix Mn×n, GAT
calculates the linear combination of node features as the output
feature, as shown in equation 7:

xi′

t = φ(
∑

vj∈Nbh1
i

mijχ
j
t ), (7)

where xi′

t ∈ RF ′
denotes the output feature of node vi and φ

is the activation function(e.g. Relu(x)).
2) LSTM: LSTM is a type of recurrent neural network.

Compared to Standard RNNs, LSTM can mitigate the problem
of gradient disappearance or explosion based on the design
of the gating units, while wildly successful in practice [41].
Compared to ’Transformer’ model, LSTM requires less data
and fewer computational resources and has been found to
be superior in capturing the temporal dependencies in traffic
data [26] [42] [43]. Therefore, we utilize LSTM to model the
temporal dependencies between nodes.

We use X ′
t = {x1′

t , x2′

t , · · · , xn′

t } to represent the node
features transformed by the graph attention network, and the
LSTM model is applied to learn the temporal dependencies
between road links. Firstly, LSTM defines the forget gate ft
for time step t as follows:

ft = σ(Wf · [X ′
t∥ht−1] + bf ), (8)

where (·∥·) is the splicing operator; · is the matirx multipli-
cation operator; Wf is the trainable weight matrix; bf is the
bias vector; and σ is the gate activation function. Then, LSTM
uses the input gate it and the state update unit Ct to update
the information ht+1:

it = σ(Wi · [X ′
t∥ht−1] + bi), (9)

Ct = tanh(WC · [X ′
t∥ht−1] + bC), (10)

ht = ft × ht−1 + it × Ct, (11)

Lastly, LSTM generates the final output features through the
output gate ot and the updated information as follows:

ot = σ(Wo · [X ′
t∥ht−1] + bo), (12)

X̂t = ot × tanh(ht), (13)

where X̂t is the output feature of the LSTM model.
3) Loss Function: In the training process, we learn the

spatio-temporal dependencies among road links by minimiz-
ing the error between the real-world traffic features and the
predicted value. Thus, the loss function of our temporal graph
attention model is defined as equation 14:

loss = MSE(Xt+1, X̂t), (14)

where MSE denotes Mean Squared Error; and Xt+1 and X̂t

denote the true and predicted values, respectively.
Finally, we use the attention matrix Mn×n obtained from

the temporal graph attention model as the traffic interactions
representation between adjacent road links. It is worth noting
that the impact of upstream on downstream and the impact
of downstream on upstream are distinct. Our model also can
learn and capture these asymmetric influences. For example,
we used m12 to represent the interaction from v2 to v1 and
used m21 to represent the interaction from v1 to v2. m12 is
not equal to m21.
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E. Traffic Influence Propagation Model

In this section, we propose a traffic influence propagation
model that extends the traffic interaction between adjacent
road links to the whole transportation network. This model can
calculate the influence of nodes on higher-order neighbours.
The propagation of traffic impacts is very complex and will
have simultaneous impacts upstream and downstream [44].
Taking traffic congestion as an example, generally, in the
upstream section of the congestion point the capacity decreases
and the traffic density keeps increasing; in the downstream
section, the traffic density decreases due to the absence of
vehicles entering. In past research, Li et al. [3] pointed out that
the phenomenon of distance-dependent cascading failure exists
in road networks and the correlation of nodes obeys power law
distribution. Similarly, in the complex network propagation
dynamics there is an exponentially negative power-law rela-
tionship between the propagation of nodes and the distance
between nodes (propagation is a metric that describes the
influence of a node on neighbouring nodes in a network).
Based on that, we define the propagation capacity of the
transportation nodes as equation 15:

C(ij) ∼ e−βrij , (15)

where C(ij) denotes the propagation between nodes vi and
vj ; β is a hyper-parameter that relates to the distribution of
nodes in the network; and rij denotes the distance between
vi and vj , which is the weight between the nodes and can be
calculated by equation 2.

Since the influence of the links propagates based on the
relative link locations and direction of travel, we design the
propagation formula to calculate the impact of node vi on node
vj :

pij = C(ij)
∑

pathk∈Pathij

∏
s1s2∈pathk

ms2s1 , (16)

where pij denotes the impact of node vi on node vj ; Pathij

denotes the set of all simple paths (the nodes on the path are
all different) from node vi to vj , with pathk being one of
the paths in this set; s1s2 denotes all pairs of neighbouring
nodes on pathk; and ms2s1 denotes the traffic interactions
representation outputted by the temporal graph.

Therefore, we can calculate the impact of node vi on the
whole road network:

Ii =
∑
vj∈V

pij (17)

Considering that the impact between road links will decay
with increasing distance, in order to reduce the computational
complexity, we only compute the influence within the k-th
order neighbourhood of node i:

Ii =
∑

vj∈Nbhk
i

Pij (18)

where Nbhk
i denotes the k-hop neighborhood for vi; pij

denotes the impact of node vi on node vj .
The greater the influence I of the road link, the more critical

it is in the road network.

IV. EXPERIMENTS SETUP

In this section, we evaluate the performance of our proposed
method. To achieve it, we apply it to a real urban road network
and compare it with some alternative methods of identifying
critical links.

A. Experimental Datasets

In this paper, we use two real-world datasets of the city
of Hangzhou, China to conduct our experiments, which are
provided by a Chinese online mapping and navigation service
called ’AMAP’, which is similar to Google Maps in the
U.S.. These datasets provide the road information and five-
minute average vehicle speed data of road sections in the
Xiaoshan District, Hangzhou, collected on Monday, July 11,
2017. Table I and Table II illustrate the specifics of the road
network dataset and the average vehicle speed dataset, respec-
tively. The geographical coverage of the dataset is shown in
Fig 5 (the purple lines of this figure). For the first dataset,
we can construct the road network G following the method
introduced in Section III-B (excluding the isolated road links).
The resulting graph G comprises 397 nodes and 1024 edges.
For the second dataset, the feature matrix is obtained, whereby
missing or outlier values are completed using the average value
from the previous and subsequent time intervals Xt.

TABLE I
ROAD NETWORK DATASET

Road ID Road Name St Road Ed Road Length(m)

10001 Jiangsi Road Chenghe Street Renmin Road 184.41

10007 Jiangsi Road Wenhua Road Xiaoshao Road 383.24

10022 Mingxing Road Jianshe 2nd Road Qidi Road 296.22

B. Baseline Methods

We consider the following methods that are often used for
critical link identification for comparison.

• Betweenness Centrality: Betweenness centrality is a
common metric to determine the importance of a node
in a graph [45]. The betweenness centrality of node i is
defined in equation 19:

BCi =
∑

j,k∈N

njk(i)

njk
, (19)

TABLE II
AVERAGE VEHICLE SPEED DATASET

Time Road ID Road Name Speed(km/h)

0:00 10005 Wenhua Road 38.8

0:05 10005 - 36.2

0:10 10005 - 39.6

0:15 10005 - 39.6

0:20 10005 - 33.8
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: Road network used in our experiments

: XiaoShan Distinct

: Road network in XiaoShan District

Data©OpenStreetMap

Fig. 5. The geographical area of the dataset.

where njk denotes the number of shortest paths between
nodes j and k; and njk(i) denotes the number of shortest
paths between nodes j and k that pass through node i.

• Congestion Rate: We consider the time when the average
speed of the road is below 35km/h as the congestion time
and calculate the all-day congestion rate of the road. We
rank the road by congestion rate.

• VoteRank: VoteRank [46] is a vote-based method for
ranking the importance of nodes. In VoteRank, the main
idea is to choose a set of spreaders one by one according
to the voting scores of nodes obtained from their neigh-
bours. The node getting the most votes in each turn is
regarded as the most influential node in that turn and
will be elected as one of top-r influential spreaders.

• PCA method: This method is proposed in [24], and uses
Principal Component Analysis (PCA) to identify the main
traffic features from the traffic dataset. The links that are
associated with these features are regarded as critical.

• Road2vec method: Road2Vec [14] utilizes the Word2Vec
model to obtain the vector representation of road links.
The traffic interaction is calculated by the cosine similar-
ity of the road vectors. However, due to the limitations of
the experimental data, we substitute the Word2Vec with
Node2Vec [47], which is an extension of the Word2Vec
model specifically designed for graph-based applications.

• HTC method: The Heterogeneous Traffic Correlations
(HTC) method proposed in [48] measures the traffic
correlation between two road segments with Pearson’s
correlation coefficient and uses p-value tests to assess the
validity of these correlations.

C. Evaluation Metric
As in previous studies [49] [2], we use network efficiency

to measure the transmission efficiency of the road network.
The definition of network efficiency is:

E(G) =
1

n(n− 1)

∑
i ̸=j∈V

1

costij
, (20)

where costij is the actual average travel cost from node i to
node j; and n is the total number of nodes in the network.
Each node represents a real-world roadway.

We use different methods to obtain different results for
ranking the importance of road links. The decline rates of
E(G) can directly demonstrate the accuracy of the results
when we delete the nodes in the graph in turn. We define the
decline rates of E(G) after removing node i as equation 21:

Effi =
E(G)′

E(G)
, (21)

where E(G)′ is the network efficiency after removing node i
and E(G) is the initial network efficiency.

We iteratively remove nodes from the graph and compute
Eff metric. A higher Eff value indicates that the node
has a greater impact on the road network, enabling us to
obtain the ranking of node importance as the ground truth. We
compare the differences between the ranking results obtained
from various methods and the ground truth using the following
three metrics.

• Spearman’s Correlation Coefficient: Spearman’s Cor-
relation Coefficient (SCC) measures the extent to which
two ranking sequences are arranged in a similar order,
with values ranging from -1 to 1. A value closer to
1 indicates a higher degree of similarity between the
rankings. The definition of SCC is:

SCC = 1−
6
∑n

i=1 di
2

n(n2 − 1)
, (22)

where di denotes the difference in the ordering of node
vi and n denotes the number of nodes.

• Kendall’s Rank Correlation Coefficient: Kendall’s
Rank Correlation Coefficient (KRCC) is used to measure
the correlation between two ranking sequences. It takes
into account not only the monotonicity but also the
concordance of different arrangements between the two
sequences. KRCC ranges from -1 to 1 with a value closer
to 1 indicating a higher degree of similarity between the
rankings. The definition of KRCC is:

KRCC =
(ζ −ϖ)

(ζ +ϖ)
, (23)

where ζ and ϖ denote the number of matched pairs
(the node pairs have the same order in the two sorted
sequences) and of unmatched pairs in the two ranking
sequences, respectively.

• Manhattan Distance: Manhattan Distance (MD) is the
sum of the absolute differences between the correspond-
ing values at each position in two ranking sequences. It is
used to measure the distance between two sequences, with
a smaller MD value indicating a higher level of similarity.
The definition of MD is:

MD =

n∑
i=1

|di| =
n∑

i=1

|xi − yi|, (24)

where di denotes the difference in the ordering of node
vi; and xi and yi denote the ranking of node vi in the
two sequences, respectively.
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D. Model Settings

1) Temporal Graph Attention Model: For the GAT model,
we use two graph attention layers to capture the spatial
dependencies. We manually adjust and set the attention head to
8, the channel (output feature) to 8, and the activation function
to elu(x) in the first layer. We set the attention head to 1 and
the activation function to Relu(x) in the second layer. For the
LSTM model, we set the time step to 3. The learning rate is set
as 0.005 and we choose adam [50] as the algorithm optimizer.
We set the batch size to 5 and the training epoch to 500 and
the number of early stops to 10.

2) Traffic Influence Propagation Model: We use the exact
formulation as shown in equation 25 to replace the equation 15

C(ij) = e−βrij (25)

and the hyperparameters of the traffic influence propagation
model include the node distribution β, and the neighbourhood
order k, defined in equation 18. In the experiment, we set
β = 1 and set k = {1, 2, 3} to analyze the effects of different
parameters.

V. EXPERIMENTAL RESULTS

In this section, we report the results of the identification of
the critical links and perform a comparative analysis against
baseline methods. Keras and Spektral [51] are used to code
our model. Keras is an API designed for deep learning based
on Python and Spektral is a Python library for graph deep
learning, based on the Keras API and TensorFlow 2. We also
perform a complexity analysis of our method.

A. Results of Identified Critical Links

We select different time periods of the traffic feature data
as the prediction target.

Tables III, IV and V show the results of the critical
link identification (Top 15) at 18:00 and Tables VI, VII and
VIII show the results at 24:00. It should be noted that in
the tables some road links have the same name (e.g., Shixin
Road), but they have different road IDs, because they represent
different sections of the same road. For these two periods,
the MSE at the completion of model training was 5.331 and
6.739, respectively. The latest traffic prediction model may
outperform ours in terms of prediction accuracy. However,
Our model is still able to deliver good enough predictive
accuracy, and its main advantage lies in its simplicity, making
it much more straightforward to identify the model parameters
corresponding to the interactions between nodes.

By comparing critical rankings with different parameters
k, we can find that these can be quite different, which
indicates that the neighbourhood parameter can affect the
results significantly. Theoretically, the larger this parameter,
the wider the range of the road network that the road link will
affect. We also find there are some road links that are equally
important under different parameters, such as road 10258 in
table III and table V. Fig 6 and Fig 7 show the locations
of the top 4 road segments on the map in table V. With the
help of online maps, we can analyze the land-use situation
around critical road links. Critical links share several common

characteristics. Taking road 10267 as an example, it belongs
to a central road in the Xiaoshan District called ”Shixin
Road,” and it is connected to another important road, ”Xiaoran
South Road.” This road segment is equipped with two traffic
signals, and its surroundings are characterized by significant
infrastructure, such as large hospitals, hotels, residential areas,
and shopping centres. Due to its complex traffic conditions
and high traffic volume, any capacity decrease caused by
congestion, accidents, or other factors could have a severe
impact on the overall traffic network. Such critical links are
characterized by their proximity to a multitude of facilities,
as well as high pedestrian and traffic flows. Moreover, these
road links often adjoin a considerable number of other roads,
rendering them more susceptible to exerting a significant
impact on the overall road network.

Fig. 6. Location of Critical Links in the Road Network

Fig. 7. Visualization of Critical Links

With a comparison of critical ranking between different time
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periods, it can be seen that the same road link has different
impacts on the road network at different times. For example,
road 10251 is the most critical link when k = 1 at 18:00,
but it is the 8th most important link at 24:00. The real-
world data shows that this road link is congested at 18:00,
but uncongested at 24:00. This phenomenon suggests that our
method can effectively capture the spatio-temporal variability
of traffic features.

B. Performance Comparison

Table IX shows the performance comparison of critical
links results between our method and other baseline methods
at different time periods. We have marked the methods that
perform best under different scenarios with an asterisk (*).
’Top15 nodes’ and ’All nodes’ refer to the evaluation of the
identification performance of the top 15 critical links and that
of all links, respectively. As shown in Table IX, when k = 1,
our method performs similarly to most benchmark methods.
However, as we increase the value of k, the performance
of our method improves accordingly. When k = 3, our
method significantly outperforms the baseline methods in
almost all metrics (due to the presence of distance decay,
increasing the value of k beyond k = 3 has little impact
on the critical links identification results). The experimental
results validate the effectiveness of our proposed method. ’Our
method ablation’ represents the critical links identification
model with the LSTM module removed while keeping the
rest of the parameters unchanged. It is evident that the iden-
tification performance is significantly inferior to the complete
model. This observation demonstrates that the inclusion of the
LSTM module contributes to the model’s ability to learn the
dependencies within the traffic data effectively.

Compared to topology-based baseline methods (Between-
ness Centrality, VoteRank and Road2Vec), our approach can
capture dynamic features between traffic nodes, enabling the
identification of critical road links during different time peri-
ods. Compared to traffic feature-based methods (Congestion
Rate, PCA and HTC), our approach addresses the limitation
of not considering the traffic network’s underlying structure.
The position of the nodes within the network also plays a
significant role in their influence.

Fig. 8 shows the cumulative distribution of the network
efficiency decline ratio at k = 3. As can be seen, in both time
periods the curve remains above the diagonal line, indicating
that links with higher rankings have a greater impact on the
efficiency of the road network.

To illustrate the results more intuitively, we present the links
in groups of 25 according to their rankings. Fig. 9 and Fig. 10
show the variation of the network efficiency decline ratio when
removing links in groups at 18:00 and 24:00, respectively. As
shown in the figures, the network efficiency ratio curves follow
a similar decreasing trend under different values of k, which
indicates that our method can rank the links with high impact
on the road network at the top. If we only need to know
which the critical links are and not their importance, we can
set k = 1, which can significantly reduce the computational
complexity.
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k = 3
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TABLE III
RESULTS OF CRITICAL LINKS WHEN K=1 AT 18:00.

Road ID Road name Influence length(m) St Road Ed Road

k=1

10251 Shixin Road 1.63 153.15 Tiyu Road Renmin Road

10258 Shixin Road 1.629 204.6 Renmin Road Tiyu Road

10668 Xiaoran East Road 1.622 47.76 Renmin Road Xiaoran East Road

10666 Xiaoran East Road 1.618 109.82 Wenhua Road Renmin Road

10665 Xiaoran East Road 1.617 41.76 Tiyu Road Renmin Road

10234 Xihe Road 1.616 212.71 Tiyu Road Renmin Road

10250 Shixin Road 1.615 204.6 Tiyu Road Renmin Road

10267 Shixin Road 1.613 115.16 Xiaoran South Road West Gate of the People’s Hospital

11280 Xiaoran East Road 1.607 206.04 Xiaoshao Road Jinjia Qiao

10001 Jiangsi Road 1.599 184.41 Chenghe Street Renmin Road

10232 Xihe Road 1.595 211.63 Chenghe Street Tiyu Road

10527 Tonghui Road 1.594 109.08 Bus East Station Gongxiu Road

10562 Renmin Road 1.593 195.48 Baichilou Road Jiangsi Road

10675 Yucai Road 1.592 40.91 Renmin Road Wenhua Road

10004 Jiangsi Road 1.591 45.03 Wenhua Road Chenghe Street

TABLE IV
RESULTS OF CRITICAL LINKS WHEN K=2 AT 18:00.

Road ID Road name Influence length(m) St Road Ed Road

k=2

10258 Shixin Road 1.912828 204.56 Renmin Road Tiyu Road

10267 Shixin Road 1.881679 115.16 Xiaoran South Road West Gate of the People’s Hospital

10004 Jiangsi Road 1.867957 45.03 Wenhua Road Chenghe Street

10001 Jiangsi Road 1.866491 184.41 Chenghe Street Renmin Road

10251 Shixin Road 1.857974 153.15 Tiyu Road Chenghe Street

10666 Xiaoran East Road 1.857244 109.82 Renmin Road Xiaoran South Road

10234 Xihe Road 1.853 212.71 Tiyu Road Renmin Road

10665 Xiaoran East Road 1.85099 41.76 Wenhua Road Renmin Road

10252 Tiyu Road 1.843896 460.37 Shixin Road Xihe Road

10244 Shixin Road 1.834372 153.15 Chenghe Street Tiyu Road

10232 Xihe Road 1.830406 211.63 Chenghe Street Tiyu Road

10255 Xihe Road 1.829569 212.71 Renmin Road Tiyu Road

10250 Shixin Road 1.818033 204.6 Tiyu Road Renmin Road

10668 Xiaoran East Road 1.817909 41.76 Renmin Road Wenhua Road

10233 Tiyu Road 1.814371 460.37 Xihe Road Shixin Road

C. A Case Study Based on a Large-scale Dataset

We also conduct a case study with a large-scale dataset.
This dataset includes the average road speed data on Friday,
December 20, 2019, on over 50,000 roads in the Xiaoshan
District, Hangzhou, China. Table X shows the top 10 road
links that have the greatest impact on the road network.

With the help of online maps, we find that some of the
roads in table X are traffic arteries, which play an important
role in the network, such as QingLiu South Road and Qunyu
Line. Additionally, some of the roads with dense surrounding
infrastructure are prone to congestion, such as Shixin Road
and Tonghui Road. Our method is able to identify the critical
roads in the network on the large-scale dataset.

D. Computational Complexity Analysis

In this section, we analyze the computation complexity of
our algorithm. Our method consists of two modules and the
computational complexity is determined by the module with
the highest complexity of the two. For the first experimental
dataset, all experiments are conducted on a single NVIDIA
3060 GPU with 16GB Ram and the average program run time
is about 15 minutes with different parameters.

1) Temporal Graph Attention Model: This model consists
of a GAT model and an LSTM model. For the GAT model,
the computational complexity of the graph attention layer is
O(|V | ×F ×F ′) +O(|E| ×F ′), where |V | is the number of
nodes in the graph, F and F ′ are the dimensions of the input
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TABLE V
RESULTS OF CRITICAL LINKS WHEN K=3 AT 18:00.

Road ID Road name Influence length(m) St Road Ed Road

k=3

10267 Shixin Road 2.022365 115.16 Xiaoran South Road West Gate of the People’s Hospital

10258 Shixin Road 1.985112 204.56 Renmin Road Tiyu Road

10001 Jiangsi Road 1.969537 184.41 Chenghe Street Renmin Road

10251 Shixin Road 1.963567 153.15 Tiyu Road Chenghe Street

10665 Xiaoran East Road 1.953198 41.76 Wenhua Road Renmin Road

10666 Xiaoran East Road 1.951184 109.82 Renmin Road Xiaoran South Road

10198 Jiangsi Road 1.944905 184.41 Chenghe Street Renmin Road

10234 Xihe Road 1.939758 211.63 Chenghe Street Tiyu Road

10233 Tiyu Road 1.937655 460.37 Xihe Road Shixin Road

10244 Shixin Road 1.936493 153.15 Chenghe Street Tiyu Road

10232 Xihe Road 1.928332 211.63 Chenghe Street Tiyu Road

10255 Xihe Road 1.928116 212.71 Renmin Road Tiyu Road

10250 Shixin Road 1.907883 204.6 Tiyu Road Renmin Road

10253 Renmin Road 1.89474 443.09 Xihe Road Shixin Road

10252 Tiyu Road 1.894676 460.37 Shixin Road Xihe Road

TABLE VI
RESULTS OF CRITICAL LINKS WHEN K=1 AT 24:00.

Road ID Road name Influence length(m) St Road Ed Road

k=1

10011 Yucai Road 1.649437 181.74 Beiganshan South Road Yudong Road

10666 Xiaoran East Road 1.637625 109.82 Renmin Road Xiaoran South Road

10233 Tiyu Road 1.6315 460.37 Xihe Road Shixin Road

10665 Xiaoran East Road 1.631349 41.76 Wenhua Road Renmin Road

10258 Shixin Road 1.63036 204.6 Wenhua Road Tiyu Road

10267 Shixin Road 1.628533 115.16 Xiaoran South Road West Gate of the People’s Hospital

10675 Yucai Road 1.626796 40.91 Renmin Road Wenhua Road

10251 Shixin Road 1.625993 153.15 Tiyu Road Chenghe Street

11283 Shixin Road 1.62199 460.37 Xihe Road Shixin Road

10004 Jiangsi Road 1.621451 45.03 Wenhua Road Chenghe Street

11280 Xiaoran East Road 1.621168 206.04 Xiaoshao Road Jinjia Qiao

10255 Xihe Road 1.619253 212.71 Renmin Road Tiyu Road

10234 Xihe Road 1.615633 212.71 Tiyu Road Renmin Road

10673 Yucai Road 1.613447 40.91 Wenhua Road Renmin Road

11161 Tonghui Road 1.609025 174.2 Shangcheng West Road Zhanqian Road

and output feature, respectively, and |E| is the number of edges
in the graph. Because we use two graph attention layers in our
model and the attention head and the input feature are both
set to 8 in the first layer, the complexity of the GAT model
is (Olayer1 + Olayer2) = O((8 × (8|V | + 8|E|)) + 64|V | +
|E|). For the LSTM model, the computational complexity is
determined by the number of parameters in the network [52].
In our case, the LSTM complexity is O(|V |2). In summary,
the computational complexity of the temporal graph attention
model is O(|V |2 + 128|V |+ 65|E|).

2) Traffic influence propagation model: In this model, the
complexity lies mainly in finding the paths of the nodes to
the surrounding nodes. We do not consider loops that we
can obtain the paths from the adjacency matrix of the graph.

Supposing that the average degree of the nodes in the graph
is d, the complexity of the traffic influence propagation model
is O((d× |V |)k), where k denotes the neighbourhood order.

In summary, the computational complexity of the whole
model is O((d× |V |)k + |V |2 + 128|V |+ 65|E|). As can be
seen in Fig 9 and Fig 10, when k = 1, our approach already
distinguishes well between critical links and normal links. Ad-
ditionally, we also can use the GRU [53] model to replace the
LSTM model, which can reduce the computation complexity.
Compared with existing methods for critical links identifica-
tion based on traffic assignment (assuming the simplest form,
i.e. all-or-nothing [54] and using the global travel time as
the evaluation metric [8]), the computational complexity for
the importance of a link is O(|V |(|V |+ |E|log|E|)|E| [55].
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TABLE VII
RESULTS OF CRITICAL LINKS WHEN K=2 AT 24:00.

Road ID Road name Influence length(m) St Road Ed Road

k=2

11283 Shixin Road 1.934272 115.1575 West Gate of the People’s Hospital Xiaoran South Road

10267 Shixin Road 1.924428 115.1575 Xiaoran South Road West Gate of the People’s Hospital

10004 Jiangsi Road 1.906783 45.03426 Wenhua Road Chenghe Street

10666 Xiaoran East Road 1.906063 109.8198 Renmin Road Xiaoran South Road

10665 Xiaoran East Road 1.89625 41.75527 Wenhua Road Renmin Road

10258 Shixin Road 1.896035 204.5957 Renmin Road Tiyu Road

10251 Shixin Road 1.863965 153.1451 Tiyu Road Chenghe Street

10232 Xihe Road 1.860526 211.6322 Chenghe Street Tiyu Road

11161 Tonghui Road 1.857738 174.1998 Shangcheng West Road Zhanqian Road

10011 Yucai Road 1.857468 181.7377 Beiganshan South Road Yudong Road

10234 Xihe Road 1.854803 212.7081 Tiyu Road Renmin Road

10255 Xihe Road 1.853764 212.7081 Renmin Road Tiyu Road

10233 Tiyu Road 1.844009 460.3711 Xihe Road Shixin Road

11280 Xiaoran East Road 1.842102 206.0378 Xiaoshao Road Jinjia Qiao

10559 Renmin Road 1.83226 630.3295 Huilan Road Yucai Road

TABLE VIII
RESULTS OF CRITICAL LINKS WHEN K=3 AT 24:00.

Road ID Road name Influence length(m) St Road Ed Road

k=3

10267 Shixin Road 2.044846 115.1575 Xiaoran South Road West Gate of the People’s Hospital

10258 Shixin Road 2.032875 204.5957 West Gate of the People’s Hospital Xiaoran South Road

10666 Xiaoran East Road 1.999239 109.8198 Renmin Road Xiaoran South Road

10004 Jiangsi Road 1.998949 45.03426 Wenhua Road Chenghe Street

10251 Shixin Road 1.996855 153.1451 Tiyu Road Chenghe Street

10665 Xiaoran East Road 1.995081 41.75527 Wenhua Road Renmin Road

10559 Renmin Road 1.967993 630.3295 Huilan Road Yucai Road

10011 Yucai Road 1.955475 181.7377 Beiganshan South Road Yudong Road

10255 Xihe Road 1.948567 212.7081 Renmin Road Tiyu Road

10234 Xihe Road 1.941989 212.7081 Tiyu Road Renmin Road

10233 Tiyu Road 1.938182 460.3711 Xihe Road Shixin Road

11161 Tonghui Road 1.936363 174.1998 Shangcheng West Road Zhanqian Road

10257 Renmin Road 1.929267 443.0885 Shixin Road Xihe Road

10232 Xihe Road 1.927284 211.6322 Chenghe Street Tiyu Road

11280 Xiaoran East Road 1.921785 206.0378 Xiaoshao Road Jinjia Qiao

Since all the links need to be traversed, the total computational
complexity is O(|V |3|E| + |V |2|E|2log|E|)), and therefore,
our method is superior in terms of computational complexity
and is more suitable for large-scale urban road networks.

VI. CONCLUSION AND FUTURE WORK

In this paper, we propose a novel method to identify
critical links in transportation networks, which improves upon
previous approaches. Our method consists of a temporal graph
attention model and a traffic influence propagation model.
Specifically, the temporal graph attention model is used to
learn the traffic interaction representation, which is combined
with the GAT and LSTM network. The traffic influence
propagation model, then, is used to calculate the influence

of each road link. We tested our method using real data from
Hangzhou, China, and the results validate our method. We
discovered that certain road links have varying importance
at different times. However, some roads, like Shixin Road
and Xiaoran East Road, consistently play a significant role
due to high traffic and complex conditions. This information
can guide authorities in implementing targeted traffic control
measures to prevent congestion. We also conduct experiments
using a large-scale dataset and give the results of the ranking of
the critical links. However, our study also has some limitations.
For example, due to the lack of traffic origin-destination data,
we have not been able to select the critical links identification
model based on the traffic assignment model as the comparison
model. In the traffic influence propagation model, we have also
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TABLE IX
PERFORMANCE COMPARISON OF DIFFERENT METHODS

Model
t=18:00;Top15 nodes t=18:00; All nodes t=24:00;Top15 nodes t=24:00; All nodes

SCC KRCC MD SCC KRCC MD SCC KRCC MD SCC KRCC MD

Our method(k=1) 0.325 0.238 1421 0.606 0.436 30034 0.110 0.085 984 0.593 0.429 30768

Our method(k=2) 0.379 0.257 1500 0.644 0.459 25061* 0.264 0.142 1031 0.663 0.476 30644

Our method(k=3) 0.45* 0.354* 1005* 0.682* 0.486* 28684 0.406* 0.372* 783* 0.698* 0.523* 26982*

Betweenness Centrality 0.368 0.257 2435 0.278 0.187 42328 -0.010 0.009 2647 0.268 0.184 42698

Congestion Rate 0.029 0.010 1953 0.527 0.375 34818 0.107 0.180 923 0.540 0.383 34046

VoteRank -0.830 -0.692 3981 0.061 0.040 27516 -0.292 -0.200 1003 0.073 0.049 28401

PCA method 0.186 0.124 3196 -0.082 -0.067 55126 -0.070 -0.104 3411 -0.109 -0.079 55870

Road2vec method(k=1) -0.596 -0.467 1279 0.573 0.384 33448 -0.103 -0.085 934 0.581 0.390 32660

Road2vec method(k=2) -0.104 -0.029 1383 0.609 0.420 32306 0.064 0.047 1179 0.631 0.438 30802

Road2vec method(k=3) 0.164 0.124 1638 0.627 0.434 31262 0.142 0.123 1373 0.655 0.455 29844

HTC method(k=1) -0.075 -0.067 1534 0.432 0.293 38122 -0.053 -0.028 1139 0.452 0.306 37874

HTC method(k=2) 0.139 0.086 1785 0.512 0.355 35240 0.060 0.047 1184 0.535 0.369 34648

HTC method(k=3) 0.118 0.067 1858 0.540 0.375 33590 0.089 0.104 1260 0.569 0.399 32464

Our method ablation(k=3) 0.157 0.143 2209 0.406 0.278 38152 0.035 0.028 1591 0.474 0.324 35946

TABLE X
RESULTS OF CRITICAL LINKS BASED ON THE LARGE-SCALE DATASET

Ranking Road

1 QingLiu South Road

2 Qunyu Line

3 Xinru Road

4 Xinyi Road

5 Shixin Road

6 Wenming Road

7 Tonghui Road

8 Dongling South Road

9 Xinhe East Road

10 Dongrui Second Road

simplified the process of propagation. These limitations can be
further addressed in future studies.

In terms of future avenues for research, these could include
optimizing traffic management based on critical road links and
optimizing road network design to make the transportation
system more robust.
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[17] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Liò, and
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