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Automation can transform productivity in research activities that use liquid handling, such as 

organic synthesis, but it has made less impact in materials laboratories, which require sample 

preparation steps and a range of solid-state characterization techniques. For example, powder 

X-ray diffraction (PXRD) is a key method in materials and pharmaceutical chemistry, but its 

end-to-end automation is challenging because it involves solid powder handling and sample 

processing. Here we present a fully autonomous solid-state workflow for PXRD experiments 

that can match or even surpass manual data quality, encompassing crystal growth, sample 

preparation, and automated data capture. The workflow involves 12 steps performed by a 

team of three multipurpose robots, illustrating the power of flexible, modular automation to 

integrate complex, multitask laboratories.
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Robots can carry out a range of repetitive and iterative laboratory tasks, particularly those involving 

liquid handling (1), such as for organic synthesis (2–5), but many experiments remain hard to automate. 

One example is powder X-ray diffraction (PXRD), which is a central tool for characterizing the 

structure of ordered solids (6), including functional materials (7,8) and pharmaceutical polymorphs (9). 

PXRD can be easier to implement than methods that require growing and harvesting a single 

diffractable crystal (10), and it provides important information about structure and purity (11–13). 

PXRD is used for the rapid identification of crystal forms and for detecting the existence of polymorphs 

(14–16); this is valuable in both materials research (7,8,17,18) and in pharmaceutical chemistry (19,20). 

Indeed, pharmaceutically active molecules must undergo exhaustive and expensive screening 

experiments to fully understand their crystal form landscapes before they can be approved for clinical 

trials (21–23). 

Previously, high-throughput crystallization screens have used robots and other automated 

platforms (16,17,24–26) to accelerate the discovery of materials such as pharmaceuticals (21–26), 

porous organic cages (27) and photovoltaics (28), but these workflows tend to be only partially 

automated. For closed-loop autonomous workflows, we must automate and connect all stages in the 

PXRD experiment. This starts with crystal growth and is followed by sample preparation, often by 

mechanical grinding to reduce the crystal size to allow better orientational averaging. The resulting 

powders are then transferred into a sample holder, such as a multi-well plate, followed by loading the 

PXRD instrument and data collection. At present, this sample preparation and transfer is typically done 

by hand, even for ‘high throughput’, automated workflows (17), and this is laborious. Likewise, there 

is a plethora of other materials workflows where similar solid-handling operations are required, such as 

preparing samples for conductivity analysis or for microscopy.

Here, we present a fully autonomous, modular robotic workflow that prepares crystalline materials and 

then collects their powder diffraction data. This modular approach integrates three separate robotic 

platforms—a liquid handling platform for the crystallization stage (Chemspeed FLEX LIQUIDOSE, 

Figure 1, step 1 & Supporting Information, Figures S1 & S2), a mobile manipulator for sample transport 

and equipment manipulation (KUKA KMR iiwa; Fig. 1, steps 1, 2, 8 & 9–12), and a dual-arm robot for 

sample preparation (ABB YuMi; Fig. 1, steps 3–7). The workflow uses a standard powder X-ray 

diffractometer, which is used by the mobile manipulator in an anthropomorphic way without any 

substantial modification. These heterogenous robotic and automation platforms work together 

synchronously to achieve the multiple steps in the workflow (Figure 1), orchestrated by our system 

architecture, ARChemist (Supporting Information, Figure S3) (29). We exemplify this approach with 

two different organic compounds and show that PXRD data collected by the autonomous robotic 

workflow are of comparable quality, or in some cases better, to data collected for samples prepared by 
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hand. Hence, these data are suitable for identifying compounds and distinguishing between their 

polymorphs. We also demonstrate matching crystalline powders against sets of putative polymorphs 

generated by crystal structure prediction (CSP) methods, which is a key step in integrating predictive 

computational methods into closed-loop materials discovery.

Description of the modular robotic workflow

The workflow comprises three robots and 12 steps, as outlined in Figure 1 and the videos in the 

Supporting Information (Videos 1 & 2). First, crystals are grown using a Chemspeed platform 

(Supporting Information, Figure S1,2), whereby the material of interest is dispensed in a variety of 

solvents or solvent mixtures and these solvents are allowed to evaporate, thus growing crystals (Step 0, 

not shown). Quite often this leads to large crystals that adhere strongly to the sides of the sample vials 

(Supporting Information, Figure S4) and these must therefore be reduced in size and removed from the 

vial prior to diffraction, as described below. In Step 1 (Fig. 1), a rack of eight crystal samples is collected 

from the Chemspeed platform using a mobile KUKA robot (30); the Chemspeed platform was modified 

with an automated vertical sash door to facilitate this. Each of the eight vials is then capped with a 

sample lid sealed with an adhesive Kapton polymer film that will ultimately receive the ground 

crystalline powder (Supporting Information, Figures S4,5). In Step 2, the mobile KUKA manipulator 

delivers the rack of eight samples to the preparation station, which involves a dual-arm ABB YuMi 

robot. In Step 3, the dual-arm YuMi robot transfers the eight samples to grinding station 1, where they 

are reduced in size using mechanical attrition by magnetic stirring with preloaded Teflon stir bars. 
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Fig. 1. Multi-robot workflow for autonomous crystal growth, sample preparation and powder X-
ray diffraction. It comprises 12 steps and integrates three separate robots, orchestrated by our 
autonomous robotic chemist system architecture, ARChemist. 

In Step 4, the YuMi robot inverts the eight samples and transfers them to grinding station 2, where they 

are agitated using a shaker plate to reduce the particle size further and to transfer the sample onto the 

adhesive Kapton polymer film in the cap of each vial. In Step 5, the YuMi robot inverts the samples 

again and transfers them to the X-ray diffraction plate; at this point, the sample is adhered to the Kapton 

film in the vial cap (Supporting Information, Figure S4) and any excess sample and the Teflon stir bar 

falls back into the vial. In Step 6, the YuMi robot unscrews each vial cap, inverts it, and places it back 

into the PXRD plate (Step 7, Supporting Information, Figure S6), which is then collected by the KUKA 

KMR iiwa robot (Step 8) and transported to the diffractometer (Step 9). In Step 10, the KUKA robot 

opens the sliding doors of the diffractometer, loads the plate into the instrument (Step 11), and then 

closes the doors and X-ray data is collected for the eight samples (Step 12). The sample rack can then 

be retrieved from the PXRD instrument by the KUKA robot and another rack of eight samples processed 

and analysed, as required. A full loop of sample preparation, transport, and data collection takes around 

nine hours for a rack of eight samples with the data acquisition settings used here, although this time 

depends on the scan parameters; here, 1 hour for sample processing plus eight 1-hour PXRD scans. We 

estimate that the timescale for the equivalent human operations (i.e., sample preparation, plate loading 

and PXRD sample loading) is approximately the same, at least for one rack of samples. However, the 
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potential for 24/7 continuous operation (30) means that the long-term sample throughput could be 

significantly faster while maintaining higher consistency between experiments by using these robots. 

For example, processing 3 racks per day, 7 days a week would give a throughput of 168 samples per 

week, whereas a realistic human researcher throughput might be 1 rack per day, 5 days per week; that 

is, 40 samples. Also, automation frees researchers from relatively mundane tasks to focus on more 

intellectual activity, such as data analysis and interpretation. 

A

B

C
Photocatalysis workflow

A

B

C

5 m

Fig. 2. Heterogenous modular integration of laboratories using multiple robots. Image from the 
KUKA Sunrise software showing the robot-generated map of the lab with numbered nodes and edges 
that correspond to taught paths and way points. For the experiments described here, the key modules 
are the Chemspeed liquid handling platform (A), the YuMi dual-arm sample preparation station (B) and 
the powder X-ray diffractometer (C). The location of the KUKA KMR iiwa robot is shown by the green 
rectangle, in this case approaching the X-ray diffractometer, C. The location of our photocatalysis 
workflow (not discussed here) is shaded in yellow (30).

The overall workflow is detailed by the videos in the Supporting Information (Videos 1 & 2) and 

associated process flow diagrams (Figures S7 & S8). As shown in Figure 2, this autonomous PXRD 

workflow is part of a larger laboratory that contains several other workflows—for example, our 

autonomous photocatalysis workflow (30) is in the same area as the X-ray diffractometer (labelled C 

in Figure 2). 

The layout of the workflow is, to some extent, arbitrary: for example, the location of the X-ray 

diffractometer is fixed by proximity to its cooling water supply, and there was insufficient space to 

locate the Chemspeed FLEX LIQUIDOSE robot (A, Figure 2) or the ABB YuMi preparation station 

(B) adjacent to the diffractometer. This does not matter under a modular paradigm that uses mobile 

manipulators to integrate stations because the transport time between the stations is a small fraction of 

Page 5 of 15 Chemical Science



6

the overall workflow cycle time compared to the slow steps, which in this case are solvent evaporation 

for crystallization and PXRD data acquisition. The approach is therefore inherently scalable: for 

example, one can envisage coupling two workflows together, whereby the most crystalline materials 

are selected for testing as photocatalysts (30) and those powders transferred automatically into that 

workflow, which is housed in the same laboratory (yellow shaded area in Figure 2). Also, because we 

use collaborative robots, or ‘cobots’, the laboratory space can be shared with human researchers, and 

we do this daily.
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Fig. 3. Comparison of powder X-ray diffraction patterns for samples prepared by robots and by 
humans. (A) Data collected using the autonomous robotic workflow (crystallization, grinding, and 
sample mounting) for the alpha polymorph of benzimidazole and (B) data collected by conventional 
manual methods including grinding using a pestle and mortar. (C) Final observed (red circles), 
calculated (black line) and difference (blue) profiles from Le Bail refinement of the PXRD data from 
the robot-prepared benzimidazole sample. Tick marks indicate reflection positions.

Automated data collection for benzimidazole

Benzimidazole is an organic heterocyclic compound that typically exists as its alpha polymorph in the 

form of solid white crystals. Benzimidazole derivatives are used in pharmaceuticals such as antacids, 

antiparasitic drugs and opioids (31–33). A stock solution of benzimidazole in methanol (0.1 g/mL) was 

used for the automated experiment. The input station in the Chemspeed FLEX LIQUIDOSE platform 

was loaded with a rack of eight sample vials (20 mL vial volume) preloaded with magnetic Teflon stir 

bars and capped with Kapton film vial lids, as described above. The stock solutions were dispensed into 

the eight sample vials and left to evaporate inside the Chemspeed platform. Once the solid samples 
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were dry, the vials were capped by the Chemspeed platform. Like many organic compounds, 

benzimidazole often crystallizes as large, blocky crystals that are hard to recover and unsuitable for 

PXRD analysis without further preparation, as shown in the Supporting Information (Fig. S4). 

Next, the mobile KUKA manipulator collects the samples from the Chemspeed platform and delivers 

them to the preparation station for processing, as described above, followed by automated PXRD 

analysis. To compare our autonomous method with the traditional manual approach, 2 mL of the stock 

solution was also dispensed into a sample vial and left to evaporate, whereafter the solid was recovered 

and ground by hand using a mortar and pestle. This sample was mounted, also by hand, in a 96-well 

aluminium plate prior to data collection. Data collected under the same scan conditions for robot-

prepared and human-prepared benzimidazole crystals are compared in Figure 3A,B. 

The broad peak at around 2 = 6° in the robot-collected data results from the adhesive Kapton tape on 

which the robot-prepared samples are loaded. Apart from this artefact, the two datasets are comparable 

in terms of peak width, peak positions, and relative peak intensities. The PXRD pattern generated by 

the autonomous robotic workflow shows good signal to noise and is of sufficient quality to extract 

structural information (Figure 3C). The unit cell parameters that were determined (a = 13.6000(5) Å; b 

= 6.8564(2) Å; c = 6.9905(2)  Å) confirmed the formation of the alpha polymorph by comparison to 

reference structures in the CSD database (Supporting Information, Table S1). The analysis showed that 

the sample prepared by the automated process had better homogeneity in terms of crystallite size, 

resulting in more consistent peak profiles that could be better modelled. This enabled more precise 

lattice parameters with smaller standard uncertainties to be determined than from the conventional, 

manually prepared sample (Supporting Information, Table S1).

Automated data collection for polymorphic ROY

The archetypal example of a polymorphic organic molecule is 5-methyl-2- [(2-nitrophenyl) amino]-3-

thiophenecarbonitrile, commonly referred to as ROY (34–38). It is an intermediate in the synthesis of 

the antipsychotic drug olanzapine and it is named ROY because of its red, orange, and yellow 

polymorphs. There have been many crystallization studies conducted for ROY, and various polymorphs 

have been observed, which often occur concomitantly with each other as mixtures. Here, samples of 

ROY were prepared from solid 5-methyl-2-[(2-nitrophenyl) amino]-3-thiophenecarbonitrile by 

dissolving it in acetone with the addition of different percentage volumes of water as an antisolvent 

(Supporting Information, Table S2). In this case, the sample solutions were prepared manually because 

of the slow evaporation time for water, which would require the Chemspeed robot to be idle over long 

periods of time, although this step could have been automated as for benzimidazole, above. After a dry, 

solid product had formed, the samples were loaded into the input station for the workflow for processing 

and PXRD analysis, as before (Figure 4). This experiment produced two different polymorphs of ROY, 
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and the data obtained by the robot was of sufficient quality to identify them, even when appearing as a 

mixture (e.g., sample 4 in Figure C,D). As for benzimidazole, unit cell parameters extracted from the 

PXRD data for sample 1 confirmed the effective homogenization of the powder and its phase purity 

(Supporting Information, Figure S14, Table S3); again, the robot-prepared data was superior to the 

manually produced samples, resulting in improved fit statistics and uncertainties. The data quality 

across the batch of eight samples can be seen in Figure 4D. 

N
or

m
al

iz
ed

in
te

ns
ity

(a
rb

itr
ar

y
un

its
)

QAXMEH01

Robot

Robot

QAXMEH01

QAXMEH

A

B

C

D Robot (x 8)

5

2 (degrees)

10 15 20 25 30 35 40 5

2 (degrees)

10 15 20 25 30 35 40

1

2

3

4

5

6

7

8

1

2

3

4

5

6

7

8

Fig. 4. PXRD patterns collected autonomously for ROY polymorphs. (A) Comparison of the 
diffraction pattern for ROY processed using the robotic workflow (sample 1 in Fig. 4C,D), as compared 
with the simulated PXRD pattern for the published monoclinic yellow (Y) polymorph (CSD reference 
code QAXMEH); (B) PXRD patterns for ROY processed using the autonomous robotic workflow 
(sample 4 in Fig. 4C,D), as compared with the simulated patterns for two published forms: the 
monoclinic Y polymorph (QAXMEH) and the monoclinic orange needle (ON) polymorph 
(QAXMEH01), suggesting that a phase mixture is formed under these conditions; (C) Photograph of 
ROY processed using the robotic workflow at various concentrations and solvent ratios, see 
Supplementary Information, Table S1, for crystallization conditions); (D) Diffraction patterns for the 
ROY samples shown in Fig. 4C.
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Polymorph matching against crystal structure prediction datasets

Crystal structure prediction (CSP) is valuable for anticipating polymorphism of active pharmaceutical 

ingredients (39) and in guiding the discovery of molecular crystals with targeted properties (40). 

We therefore assessed the possibility of comparing the powder X-ray diffraction patterns generated by 

the automated robotic workflow against structure sets of putative crystal structures generated by CSP. 

From sample 1 for benzimidazole and ROY, we found that comparison of the experimental data against 

the low energy CSP structures using the variable-cell experimental powder difference (VC-xPWDF) 

method (41) identifies the predicted crystal structure as the observed polymorph; that is, alpha 

benzimidazole (Figure 5A) has the most similar simulated powder X-ray diffraction pattern. Likewise, 

sample 1 of ROY can be identified as matching the predicted low-energy Y polymorph most closely 

(Figure 5B). This demonstrates the possibility of identifying newly discovered crystal structures in an 

automated manner by comparison against pre-computed libraries of predicted crystal structures, which 

would create an important feedback mechanism between computational screening of materials and 

automated crystallization in the laboratory.

Fig. 5. Matching robotic PXRD data with computationally predicted crystal structures. Energy-
density distribution of low-energy crystal structure prediction (CSP) structures of (A) benzimidazole 
and (B) ROY. Each point corresponds to a distinct predicted crystal structure; points are colored by 
dissimilarity of their simulated powder X-ray diffraction patterns compared to the pattern collected 
from the robot workflow. For ROY, we show results using pattern 1 from Figure 4. The CSP structures 
corresponding to the alpha polymorph of benzimidazole and the Y polymorph of ROY are indicated 
with diamonds; in both cases, these correspond to the lowest dissimilarity (greatest similarity) to the 
experimental data.

Page 9 of 15 Chemical Science



10

Outlook

This work illustrates the potential of modular and flexible robots (42) to accelerate PXRD experiments, 

thus integrating a key materials characterization method into a ‘self-driving laboratory’ (43). While the 

videos presented here show a single cycle (one rack of eight samples), it should be possible in the future 

to operate this workflow 24/7 over extended periods in a closed-loop way, as demonstrated in our earlier 

implementation of mobile robots for photocatalyst optimization (30). Likewise, we will need to 

introduce a suitable database and data standards; this should be relatively straightforward for PXRD 

data, where there are existing standards, but may be more challenging for other solid-state 

measurements. Some method improvements will be necessary for fully autonomous matching with 

predicted crystal structures, which are sensitive to sample preparation and polymorphic purity. For 

example, for the three ROY samples that we identified by eye as pure polymorph Y, PXRD matching 

was able to identify the correct CSP structure. However, the matching algorithm identifies incorrect 

structures when presented with PXRD of samples of a polymorphic mixture, such as sample 4 in Figure 

4D. Even then, however, the CSP structure corresponding to polymorph Y was identified among the 

best matches to the experimental PXRD (9th out of 264 CSP structures), albeit not as the best match. 

Likewise, some samples of benzimidazole that we tested had different relative peak intensities their 

PXRD pattern, probably because of a non-uniform distribution of crystallite orientations, which led to 

less reliable matching to the CSP structure that corresponds to alpha benzimidazole (Supplementary 

Information, Table S4). These challenges should be addressable via improvements to the sample 

preparation methods and the PXRD matching algorithms.

The introduction of sample processing and the use of three separate robots rather than one makes this 

solid-state workflow significantly more complex than our earlier photocatalysis study (30), which 

comprised a single, easily automated measurement (gas chromatography) and no sample processing. 

Indeed, this workflow ranks among the most complex autonomous systems reported for chemistry to 

date (2–5,42–45), and its modular nature offers unique scope for expansion and diversification. An 

automated platform of comparable complexity is AMANDA (44), which is being developed for 

photovoltaics research; another impressive example is the AutoBASS platform that can assemble up to 

64 CR2023 battery cells (45). However, both of those platforms involve large, custom-built integrated 

robotic systems. By contrast, our workflow uses commercially available, ‘off the shelf’ robots and other 

common laboratory hardware with little or no modification. 

While this manuscript was under review, another study was published describing an autonomous 

laboratory for the accelerated synthesis of materials, focusing on inorganic oxides and phosphates (46). 

This study also presented a complex, multistep solid-state workflow that encompassed PXRD analysis, 

in this case using synthesis recipes that were trained on natural-language models.
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Our modular robotic integration approach is adaptable and scalable. By using a mobile manipulator to 

integrate the various stations, the workflow can be arranged in almost any configuration, and it is easily 

extended by adding other stations, subject only to available laboratory space (Figure 2). As such, we 

see the general concept of integrating stationary and mobile robots using a core software architecture 

(29) as a powerful strategy for automating a range of research activities beyond diffraction experiments. 

This will also allow us to guide autonomous closed-loop robotic experiments using computational 

predictions and artificial intelligence (47). To give just one example, it should be possible to use this 

autonomous PXRD workflow to identify crystallization conditions that produce polymorphs that are 

predicted to have certain desirable functional properties (40), and then to automatically take those 

materials forward for property testing.
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