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A B S T R A C T   

In most countries worldwide, the transport sector is responsible for a large proportion of energy consumption, the 
emissions of which have adverse effects on the environment and human health. It is therefore important to 
understand the determinants of road transport energy consumption in an attempt to minimise these adverse 
effects. This paper examines the association which road transport energy consumption, for both personal and 
freight uses, has with a number of area-level factors, covering a host of socio-economic, built environment and 
travel mode choice variables. We considered England as our case study, using local authority level data. A 
random parameters multilevel regression model was utilised in order to accommodate the hierarchical structure 
of the data, with local authorities nested within major areas of England, and to address unobserved heterogeneity 
more fully. We paid a particular attention to understand the association between levels of active travel and road 
transport energy consumption, as this is less-understood. Most notably, gross disposable household income per 
capita had a positive association with personal road transport energy consumption, and the proportion of 
walking and cycling had a negative association with both personal and freight consumption. The analysis pre-
sented here may be useful in modelling the effect that anticipated changes might have on road transport energy 
consumption, for instance, new transport developments. In particular, local authorities may consider making a 
concerted effort at promoting active travel as this was found to be highly negatively associated with road 
transport energy consumption. As well as this, an insight into the disparity in transport energy consumption 
between geographical areas is provided, which may otherwise go unobserved.   

1. Introduction 

The transport sector has the highest oil demand compared to other 
major sectors (i.e., building, industry and electricity and heat) at global 
level, accounting for nearly 43% of world oil demand (International 
Energy Agency, 2022). In broad terms, the consumption of energy by 
road transport has negative environmental consequences both globally 
in terms of planetary warming, and locally in terms of air quality. In fact, 
road transport, is a major contributor to air pollution (Colvile et al., 
2001; Bignal et al., 2007). Emissions due to the combustion of fossil fuels 
by motor vehicles, including a range of gaseous pollutants as well as 
particulate matter, have an adverse effect on the global climate and 
environment (Akimoto, 2003; Perera, 2018; Heydari et al., 2020) and 
human health (Krzyżanowski et al., 2005; Hänninen et al., 2014; Perera, 
2018; Heydari et al., 2022). 

Using the UK government’s four-fold sectorial categorisation (ser-
vices, industry, domestic and transport), and despite the drop in 

mobility caused by the 2020 COVID-19 pandemic, transport remains the 
biggest component of energy consumption according to the Department 
for Business, Energy and Industrial Strategy (BEIS) (BEIS, 2021a). 
Within the transport sector itself, road transport represented 72% of pre- 
pandemic energy consumption and, whilst some re-balancing between 
modes might be expected in future years, it seems likely that road 
transport will remain the dominant consumer of energy (BEIS, 2020). 

Annual road transport energy consumption can be estimated as the 
summation of the energy consumed by all the individual vehicles that 
use the road network in a year. For an individual vehicle, its energy 
consumption depends on the characteristics of the vehicle and load, the 
number, length and characteristics of journeys, the traffic conditions, 
how the vehicle is driven and many other factors. However, as sufficient 
quantities of representative individual data is difficult and expensive to 
obtain, researchers have sought proxy measures to account for the 
overall quantities of energy consumed. These measures are discussed in 
Section 1.1. 
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1.1. Literature review 

1.1.1. Factors affecting road transport energy consumption 
Many studies have found that economic factors affect the energy 

consumption of transport; examples include Gross National Product 
(GNP) (Murat and Ceylan, 2006), Gross Domestic Product (GDP) (Hal-
denbilen and Ceylan, 2005; Ceylan et al., 2008; Zhang et al., 2009; 
Limanond et al., 2011; Chai et al., 2016), per capita GDP (Limanond 
et al., 2011; Mraihi et al., 2013), income (Polemis, 2006; Barla et al., 
2009; Poumanyvong et al., 2012; Modarres, 2013), price of energy 
(Polemis, 2006; Barla et al., 2009; Edelenbosch et al., 2020). In a study 
of road energy consumption in China, for instance, Chai et al. (2016) 
found that historically road transportation energy consumption has been 
inextricably linked to GDP. They observed that energy consumption rose 
by 0.58% for every percentage point increase in GDP and forecast that 
this figure would be 0.33% for every point of GDP in the future, 
concluding that more needs to be done by the government to check this 
annual increase in transport energy consumption. Limanond et al. 
(2011) conducted a similar study for Thailand using log-linear regres-
sion and feed-forward neural network models with variables including 
both GDP and per capita GDP, forecasting an increase of transport en-
ergy consumption of 237–256% from 2008 to 2030. 

Other studies have noted spatial and geographic factors including 
population (Liddle, 2004; Haldenbilen and Ceylan, 2005; Murat and 
Ceylan, 2006; Ceylan et al., 2008; Barla et al., 2009; Poumanyvong 
et al., 2012; Chai et al., 2016), land use (e.g., urbanisation level, resi-
dential density, etc.) (Brownstone and Golob, 2009; Poumanyvong et al., 
2012; Mraihi et al., 2013; Chai et al., 2016; Sodri and Garniwa, 2016), 
job density, and population density (Newman and Kenworthy, 1989). In 
a systematic investigation of countries at different stages of economic 
development, Poumanyvong et al. (2012) found that urbanisation, in 
particular, has a significant influence on road energy use, but note that 
this impact varies between high-, medium- and low-income countries. 
Such economic and spatial factors are often combined with more direct 
measures of transport activity such as the annual average vehicle kilo-
metres travelled (Haldenbilen and Ceylan, 2005; Murat and Ceylan, 
2006; Ceylan et al., 2008), vehicle intensity (Mraihi et al., 2013) and 
vehicle characteristics such as fuel type and efficiency (Wohlgemuth, 
1997). Mraihi et al. (2013) used seventeen years of data from Tunisia in 
a decomposition analysis to find the key factors behind variation in road 
transport-related energy consumption, identifying vehicle intensity and 
vehicle fuel intensity to have been the largest contributors. 

In the UK, the road transport energy consumption literature often 
considered economic and social factors such as income (Goodwin et al., 
2004; Brand et al., 2012), price of fuel (Goodwin et al., 2004; Brand 
et al., 2012), population, GDP (Brand et al., 2012), household size, 
ageing population (Anable et al., 2012) and the proportion of walk and 
cycle trips (Banister et al., 1997). Brand et al. (2012), in particular, 
provided a comprehensive exploration of the relationship between 
transportation and energy demand by introducing the UK Transport 
Carbon Model (UKTCM). A range of factors are considered across those 
based on scenarios (such as economic and demographic variables) and 
those based on policy (such as vehicle taxes and driver behaviour). The 
UKTCM offers insight for policy makers as to the potential effectiveness 
of future energy consumption interventions and provides a useful point 
of reference for road energy research in the UK. For freight transport, 
previous research indicated that the nature of the goods carried affects 
its energy consumption in addition to vehicle size (Vanek and Campbell, 
1999). Although GDP has often been employed in the analysis of 
transport energy consumption, Sorrell et al. (2012) found that its link to 
freight energy consumption is gradually weakening. 

1.1.2. Modelling methodologies 
Various methods are employed in modelling transportation energy 

demand. Wohlgemuth (1997) developed the International Energy 
Agency transport model to analyse demand elasticities in the transport 

sector. Murat and Ceylan (2006) used a multi-layer feed forward neural 
network to develop a nonlinear transport energy demand model. The 
decomposition analysis approach is used in the research of Mraihi et al. 
(2013) to analyse the relationship between contributory factors and 
energy consumption. The Long-range Energy Alternative Planning 
(LEAP) models are also applied in recent studies (Shabbir and Ahmad, 
2010; Azam et al., 2016; Nieves et al., 2019; Maduekwe et al., 2020; 
Rivera-González et al., 2020). In addition, statistical modelling is widely 
used in this research area: A structural equations model is used to 
investigate the effects of residential density on fuel consumption 
(Brownstone and Golob, 2009). Vector autoregression (VAR) models 
and vector error correction (VEC) models have been developed to 
analyse the petrol and diesel demand for road transportation in Greece 
(Polemis, 2006). Chai et al. (2016) used both univariate and multivar-
iate models, including exponential smoothing method (ETS) models, 
ARIMA models and multiple regression models to analyse and forecast 
the energy consumption in China. Also, for China, Zhang et al. (2009) 
built a partial least square regression model to predict transport energy 
consumption. Liddle (2004) developed Ordinary least-squares (OLS) 
fixed effect panel models to explain how demographic change affects per 
capita personal road energy use in Organization for Economic Cooper-
ation and Development (OECD) countries. Limanond et al. (2011) per-
formed log-linear regression models to estimate the relationship 
between explanatory factors (GDP and per capita GDP) and road 
transport energy consumption in Thailand. 

Based on the UK Transport Carbon Model (UKTCM) (Brand et al., 
2012), the relationship between transportation and energy demand was 
comprehensively explored by a set of models (transport demand model, 
vehicle stock model, direct energy use and emission model and life cycle 
and environmental impact model). As indicated by previous research, 
socio-technical approaches can be used to develop transport energy 
demand models and forecast energy demand in the UK (Anable et al., 
2012; Brand et al., 2019). Decomposition analysis of energy consump-
tion (Hammond and Norman, 2012; Sorrell et al., 2012; Reuter et al., 
2017) is also a commonly used method. 

1.2. The current paper 

This research contributes to the road transport energy consumption 
literature empirically by identifying the zonal level determinants of 
personal and freight road transport energy usage through analysis of a 
comprehensive and relatively large data set. Also, it investigates 
whether important between-region differences could exist, for example, 
in the effects of these determinants on road transport energy con-
sumption. Based on previous research, we looked for a range of 
explanatory factors and explored the effect they may have on both 
personal and freight road transport energy consumption. Whilst the 
broad readily-available proxy-measures are useful in estimating trans-
port energy consumption, the diversity of measures chosen by re-
searchers and their only partial explanation points to the potential 
benefit of considering further and finer-grained proxies for a more 
complete picture. To this end, in this study, some factors that are rarely 
used in previous research, such as gross disposable household income 
(GDHI), GDHI per capita, and unemployment rate were also considered. 
The paper takes into account the geographical dimensions of road 
transport energy consumption, which is rarely considered by previous 
research. As well as this, the paper investigates the association between 
active travel and road transport energy consumption, which is less- 
understood, considering spatial dimensions of active travel. High-
lighting the spatial dimensions of road transport energy consumption, 
our research contributes empirically to the understanding of transport 
(and energy) geographies. 

Using England as our case study, in this paper, we modelled road 
transport energy consumption at a local authority level for the period 
2016 to 2018 (the most recent available data at the time of writing, 
covering a recent pre-COVID period). The local authorities are 
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Fig. 1. Maps showing the spatial distribution of relevant explanatory variables: a) Proportion of population cycling or walking, b) GDP, c) GDHI, d) Jobs density.  
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categorised based on geographic locations and divided into ten major 
areas (the main regions of England). Note that there are only nine En-
glish regions, but London has been sub-divided into inner and outer 
London. The paper contributes to the road transport energy consump-
tion literature methodologically by using a relatively complex statistical 
model. Specifically, this study adopts a random parameters multilevel 
approach, which accommodates the hierarchical structure of the data (i. 
e., local authorities nested within major areas) and addresses unob-
served heterogeneity more fully compared to traditional “single-level” 
regression, which is commonly employed in this context. For example, 
multilevel models can account for spatially and non-spatially related 
unobservables (e.g., travel behaviour and patterns) that vary from one 
major area to another, improving the model fit, capturing between-area 
differences, and providing more reliable statistical inferences (Dupont 
et al., 2013). Note that multilevel modelling is extensively used in traffic 
safety research (Jones and Jørgensen, 2003; Yannis et al., 2007; Huang 
and Abdel-Aty, 2010; Dupont et al., 2013; Heydari et al., 2018) as a 
viable approach to accommodate the effect of groupings in crash data 
sets. Multilevel modelling is employed in other areas of transport such as 
travel demand as well (see, for example, Wang et al. (2014)). However, 
its use in modelling road transport energy consumption is rare if non- 

existent. It is anticipated that insights provided by this study could 
assist modelling the energy needs of proposed land use and transport 
developments and exploring developments which would minimise or 
limit total energy needs. 

2. Case study 

Data regarding road transport energy consumption for local au-
thorities in England were used in this study. These data were provided 
by the Department for Business, Energy and Industrial Strategy (BEIS, 
2021b). The database includes information relating to personal and 
freight road transport energy consumption for 314 English local au-
thorities that are located in ten major areas as reported in the data: 
North East, North West, Yorkshire and the Humber, East Midlands, West 
Midlands, East of England, Greater London (including inner and outer 
London boroughs), South East and South West. Fig. 1 shows the spatial 
distribution of some select explanatory variables to provide some 
context to the study area. It can be noted for instance that the south of 
England and London seems to have the highest rates of walking and 
cycling as well as the highest jobs density, with the exception of outer 
London which is highly populated and has fewer jobs compared to Inner 

Table 1 
Summary statistics of the data.  

Variables1 Year Mean Std. Dev. Min Max 

Road energy consumption (personal) 2016 67,995.120 43,593.640 9078.476 359,440.600  
2017 68,191.250 43,798.820 8919.007 362,359.800  
2018 68,087.980 43,958.100 9185.923 364,162.500 

Road energy consumption (freight) 2016 35,305.790 26,561.580 2526.587 189,399.700  
2017 36,017.090 27,224.210 2493.108 187,003.600  
2018 36,314.850 27,242.410 2622.755 184,443.700 

Total jobs 2016 93,672.240 80,242.620 21,000.000 765,000.000  
2017 94,739.130 81,320.590 21,000.000 754,000.000  
2018 95,157.190 82,354.110 20,000.000 777,000.000 

Jobs density 2016 0.841 0.291 0.400 4.420  
2017 0.847 0.290 0.420 4.330  
2018 0.848 0.289 0.390 4.290 

Unemployment rate 2016 4.491 1.381 2.084 8.973  
2017 4.055 1.375 1.808 10.093  
2018 3.892 1.140 1.816 8.998 

Household by combined economic activity 2016 55,578.930 38,008.890 10,600.000 337,600.000  
2017 55,740.130 38,167.940 9600.000 336,500.000  
2018 56,125.750 38,931.210 10,800.000 342,000.000 

GDP 2016 5292.080 5581.193 866.000 63,413.000  
2017 5486.137 5808.559 868.000 66,918.000  
2018 5666.137 6081.792 883.000 70,937.000 

Total registered vehicles 2016 100.330 69.044 26.500 762.000  
2017 101.555 70.850 26.800 800.700  
2018 102.757 71.778 27.300 796.100 

Population 2016 176,098.800 118,793.600 38,949.000 1,128,077.000  
2017 177,201.500 119,621.600 39,474.000 1,137,123.000  
2018 178,345.400 120,359.100 39,697.000 1,141,374.000 

Population density 2016 1827.415 2627.142 24.572 15,618.290  
2017 1838.447 2648.939 24.636 15,816.500  
2018 1852.623 2685.818 24.683 16,095.280 

GDHI 2016 3547.769 2371.190 848.000 16,232.000  
2017 3627.274 2405.847 871.000 16,409.000  
2018 3809.114 2541.640 928.000 17,097.000 

GDHI per capita 2016 20,512.780 6171.134 12,658.000 80,470.000  
2017 20,859.930 6162.998 12,723.000 81,531.000  
2018 21,742.340 6477.172 13,021.000 85,476.000 

Employees 2016 79,787.590 71,284.000 14,874.000 700,994.000  
2017 80,812.910 72,061.900 15,079.000 694,710.000  
2018 81,123.260 73,232.000 14,776.000 716,846.000 

Employment 2016 82,423.400 72,905.880 15,727.000 723,913.000  
2017 83,473.120 73,706.500 15,917.000 716,162.000  
2018 83,782.080 74,766.890 15,718.000 736,129.000 

Proportion of population cycling or walking 2016 34.016 5.932 24.000 60.600  
2017 35.114 5.425 23.200 57.700  
2018 35.305 5.856 22.300 63.100  

1 See Table 2 for the description the variables. 

J. Zhao et al.                                                                                                                                                                                                                                     



Journal of Transport Geography 112 (2023) 103693

5

Table 2 
Description of the variables used for the period 2016–2018.  

Variable Definition Unit Source 

Road energy consumption 
(personal) 

Petrol and diesel consumption (buses, cars and motorcycles) Tonnes of oil 
equivalent 

(BEIS, 2021a) 

Road energy consumption 
(freight) Petrol and diesel consumption (heavy goods vehicles and light goods vehicles) 

Tonnes of oil 
equivalent (BEIS, 2021b) 

Total jobs 
The total number of jobs (employee jobs, self-employed, government-supported 
trainees and HM Forces) Number 

(Office for National Statistics, 
2020c) 

Jobs density Numbers of jobs per residents aged 16–64 – 
(Office for National Statistics, 
2020c) 

Unemployment rate Unemployment rate for local authorities Percent (Office for National Statistics, 
2022) 

Households by combined 
economic activity Including only households that contain at least one person aged 16 to 64 Number 

(Office for National Statistics, 
2020a) 

GDP Annual estimates of regional gross domestic product (GDP) £million 
(Office for National Statistics, 
2021b) 

Total registered vehicles Licensed vehicles at the end of the year by body type Thousand (Driver and Vehicle Licensing 
Agency, 2021) 

Population Mid-year population Persons (Office for National Statistics, 
2021a) 

Population density Mid-year population divided by the area of the local authority People per sq. km 
(Office for National Statistics, 
2021a) 

GDHI 
Amount of money available to all of the individuals in the household sector for 
spending/saving after income distribution measures £million 

(Office for National Statistics, 
2019) 

GDHI per capita Gross disposable household income per capita £ 
(Office for National Statistics, 
2019) 

Employees Number of employed residents in each local authority Number (Office for National Statistics, 
2020b) 

Employment Sum of numbers of employees and working owners Number 
(Office for National Statistics, 
2020b) 

Proportion cycling or walking Proportion of adults who do any walking/cycling for any purpose five times per week Percentage 
(Department for Transport, 
2021)  

Table 3 
Estimation results personal road transport energy consumption.  

Multiple linear regression model Mean Std. Err. 95% Conf. Interval 

ln((Jobs density) − 0.871 0.044 − 0.958 − 0.785 
ln(Unemployment rate) − 0.295 0.042 − 0.378 − 0.212 
ln(Population density) − 0.241 0.009 − 0.259 − 0.224 
ln(GDHI per capita) 0.320 0.050 0.222 0.418 
ln(Employees) 1.064 0.019 1.026 1.101 
ln(Proportion of cycling or walking) − 0.847 0.064 − 0.972 − 0.722 
Constant 0.839 0.516 − 0.174 1.853 
AIC 169.455    
Adjusted R-squared 0.787    

Multilevel random intercepts model Mean Std. Err. 95% Conf. Interval 

ln(Jobs density) − 0.890 0.046 − 0.981 − 0.800 
ln(Unemployment rate) − 0.248 0.047 − 0.339 − 0.156 
ln(Population density) − 0.231 0.010 − 0.250 − 0.212 
ln(GDHI per capita) 0.451 0.063 0.328 0.573 
ln(Employees) 1.061 0.019 1.022 1.099 
ln(Proportion of cycling or walking) − 0.789 0.067 − 0.919 − 0.658 
Constant (major area effects) − 0.772 0.713 − 2.169 0.625 
variance of major area effects 0.009 0.006 0.003 0.032 
variance of obs. Level errors 0.066 0.003 0.060 0.073 
AIC 154.006    

Multilevel random parameters model Mean Std. Err. 95% Conf. Interval 

ln(Jobs density) − 0.782 0.098 − 0.974 − 0.589 
ln(Unemployment rate) − 0.156 0.071 − 0.295 − 0.018 
ln(Population density) − 0.224 0.019 − 0.261 − 0.186 
ln(GDHI per capita) 0.575 0.067 0.444 0.706 
ln(Employees) 1.038 0.020 0.999 1.077 
ln(Proportion of cycling or walking) − 0.732 0.066 − 0.862 − 0.602 
Constant (major area effects) − 2.087 0.769 − 3.594 − 0.581 
variance ln(Jobs density) 0.067 0.039 0.021 0.212 
variance ln(Unemployment rate) 0.024 0.021 0.004 0.138 
variance ln(Population density) 0.003 0.002 0.001 0.011 
variance of major area effects 0.036 0.034 0.006 0.226 
variance of obs. Level errors 0.059 0.003 0.054 0.065 
AIC 118.358     
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London. With regard to GDP and GDHI, both Inner and Outer London 
appear to have high values as well as Yorkshire and the Humber, while 
the East of England and East Midlands have the lowest GDP and GDHI 
values. 

The selection of explanatory variables to be analysed was guided by 
previous research in this area (such as those cited in literature review), 
the experience of the researchers, and the availability of data for En-
gland at the required areal level. Due to the lack of data for some local 
authorities, our final dataset contains information relating to 299 local 
authorities located in ten major areas (regions) of England. Note that 
some local authority borders were altered in April 2015 and April 2019, 
which leads to inconsistencies when comparing annually recorded data. 
To avoid the effect this would have on our analysis, we used road 
transport energy consumption data from 2016 to 2018. When combining 

the data from different sources into one coherent dataset, we matched 
both local authority codes and the name of the local authority to ensure 
accuracy. 

Summary statistics of the data are provided in Table 1, which rep-
resents a combination of ten databases. Note that with respect to active 
travel (here, walking and cycling), we considered various data indi-
cating the proportion of population in each area who walk, cycle, walk 
or cycle for any purpose and for traveling to work. Also, these data were 
available at different frequencies; for example, walking once per week, 
three times per week, and five time per week. To be concise, in Table 1 
we only report the statistics relating to proportion of adults who do any 
walking or cycling five times per week for any purpose, which was found 
to be statistically important as we will see in the Section of results. 
Table 2 gives a description of the variables, including their definition, 
units and data sources. Also, since the study period includes three years 
of data, we created a categorical variable for year to investigate 
between-year differences. 

3. Method 

For this paper, three different statistical approaches were utilised: 
multiple log-linear regression, multilevel random intercepts model and 
multilevel random parameters model, details of each will follow. In 
modelling energy consumption most previous research used log- 
transformed data (natural log) for transport energy use/demand and 
explanatory variables (Liddle, 2004; Limanond et al., 2011; Poumany-
vong et al., 2012; Chai et al., 2016). In this paper, the natural log 
transformation is applied to response variables as well as predictors 
variables, providing more robust models; for example, in terms of the 
normality of residuals. The Akaike information criterion (AIC) and the 
Bayesian information criterion (BIC), which are commonly used in 
model selection, are used in comparing different models. 

Table 4 
Estimation results for freight road transport energy consumption.  

Multiple linear regression model Mean Std. Err. 95% Conf. Interval 

ln((Jobs density) − 0.818 0.069 − 0.953 − 0.683 
ln(Unemployment rate) − 0.147 0.059 − 0.263 − 0.030 
ln(GDP) 1.107 0.029 1.051 1.163 
ln(Population density) − 0.425 0.014 − 0.454 − 0.397 
ln(Proportion cycling or walking) − 1.181 0.096 − 1.370 − 0.992 
Constant 8.030 0.385 7.275 8.785 
AIC 1021.770    
Adjusted R-squared 0.681    

Multilevel random intercepts model Mean Std. Err. 95% Conf. Interval 

ln(Jobs density) − 0.858 0.070 − 0.996 − 0.721 
ln(Unemployment rate) − 0.211 0.064 − 0.337 − 0.085 
ln(GDP) 1.117 0.029 1.060 1.175 
ln(Population density) − 0.413 0.015 − 0.443 − 0.383 
ln(Proportion of cycling or walking) − 1.058 0.103 − 1.260 − 0.855 
Constant (major area effects) 7.506 0.430 6.664 8.348 
variance of major area effects 0.005 0.004 0.001 0.022 
variance of obs. Level errors 0.176 0.008 0.161 0.193 
AIC 1016.985    

Multilevel random parameters model Mean Std. Err. 95% Conf. Interval 

ln(Jobs density) − 0.793 0.114 − 1.016 − 0.570 
ln(Unemployment rate) − 0.200 0.066 − 0.329 − 0.070 
ln(GDP) 1.115 0.030 1.056 1.173 
ln(Population density) − 0.412 0.016 − 0.443 − 0.381 
ln(Proportion cycling or walking) − 1.038 0.106 − 1.246 − 0.829 
Constant (major area effects) 7.458 0.448 6.580 8.336 
variance ln(Jobs density) 0.065 0.050 0.014 0.293 
variance of major area effects 0.013 0.009 0.003 0.052 
variance of obs. Level errors 0.171 0.008 0.156 0.188 
AIC 1009.816     

Table 5 
Average elasticity effects for random parameters multilevel models 
for personal and freight road transport energy consumption.   

Elasticity1 

Personal road energy consumption  
Jobs density − 7.82 
Unemployment rate − 1.56 
Population density − 2.24 
GDHI per capita 5.75 
Employees 10.38 
Proportion cycling or walking − 7.32 
Freight road energy consumption  
Jobs density − 7.93 
Unemployment rate − 2.00 
GDP 11.15 
Population density − 4.12 
Proportion cycling or walking − 10.38  

1 Percentage change in the outcome variables due to a 10% in-
crease in the explanatory variables. 
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3.1. Multiple log-linear regression model 

A multiple log-linear regression model can be defined as follows. Let 
yj represent the road transport energy consumption (personal or freight) 
for local authority j. Let Xj denote the vector of explanatory variables for 
local authority j and β be the vector of coefficients associated with Xj. 
Finally, let a0 represent the constant term and εj denote the error term. 
The model can then be written as: 

ln
(
yj
)
= a0 + βln

(
Xj
)
+ εj (1)  

3.2. Multilevel random intercepts log-linear model 

As discussed, the dataset has two levels with local authorities nested 
within major areas. Therefor it is plausible to assume that there might be 
dependence between local authorities located in the same major areas. 
Multilevel regression models, also referred to as hierarchical models and 
mixed-effects models (StataCorp, 2021), can provide a better model fit 
and richer inferences than simple linear regression when analysing hi-
erarchical data. One form which a multilevel model can take is a random 
intercepts model, also known as a random coefficients model and it can 
be written as follows. Let αm denote the random intercepts for major 
areas, m, containing local authorities j. Let εjm represents a normally 
distributed error term at local authority level. 

ln
(
yjm

)
= αm + βln

(
Xjm

)
+ εjm  

αm∣μα, vα ∼ normal(μα, vα) (2)  

εjm∣vε ∼ normal (0, vε)

As shown in eq. (2), αm is assumed to be normally distributed with 
the mean μα and the variance vα. In this model, β are fixed across the 
sample while random intercepts αm vary between different major areas, 
taking into account potential between-area differences. 

3.3. Multilevel random parameters log-linear model 

While the effect of explanatory variables is fixed in the above- 
mentioned models, the random parameters (slopes) model allows the 
effects of these variables to vary from one major area to another. This 
allows us to better capture unobserved heterogeneity, which is mainly 
due to missing data. Given the above notation, let Zj be explanatory 
variables the effects of which varies between major areas, with their 
respective varying coefficients γm. 

ln
(

yjm

)
= αm + βln

(
Xjm

)
+ γmln

(
Zjm

)
+ εjm 

αm∣μα, vα ∼ normal(μα, vα) (3) 

γm∣μγ,vγ ∼ normal
(
μγ, vγ

)

εjm∣vε ∼ normal (0, vε)

Random regression parameters γm are assumed to be normally 
distributed with the mean μγ and the variance vγ. Random parameters γm 

vary from one major area to another. In this way, the effect of a variable 
can change across spatial units (here, major areas). 

4. Results and discussions 

Tables 3 and 4 show the results of the three models developed for 
personal and freight road transport energy consumption, respectively. 
Statistically significant explanatory variables are reported in these 

Fig. 2. Spatial distribution of expected personal road energy consumption (Tonnes of oil equivalent in 1000’s) in England at local authority level over the 
study period. 

J. Zhao et al.                                                                                                                                                                                                                                     



Journal of Transport Geography 112 (2023) 103693

8

tables. Prior to developing our models, we tested the strength of corre-
lation between pairs of variables to avoid using highly correlated vari-
ables in the models at the same time. The adjusted R2 values of 78.7% 
and 68.1% (based on the commonly used single-level models) for per-
sonal and freight energy consumption, respectively, indicate that most 
variability in the data is captured by the explanatory variables used in 
our models. The value of AIC is the lowest for the random parameters 
models, providing the best model fit. The categorical variable year was 
not found to be statistically important in our analyses. 

With respect to personal road transport energy consumption, GDHI 
per capita and the number of employed residents were positively asso-
ciated with personal energy consumption over the study period. How-
ever, jobs density, unemployment rate, population density and the 
proportion of adults who cycle or walk five times a week were negatively 
associated with personal energy consumption. Interestingly, we found 
that the effects of jobs density, unemployment rate and population 
density on personal energy consumption vary across different major 
areas. With respect to freight energy consumption (Table 4), GDP is 
positively associated with freight energy consumption while jobs den-
sity, unemployment rate, population density and the proportion of 
adults, who cycle or walk five times per week, are negatively associated 
with freight energy consumption. Also notably the effect of jobs density 
varies in different areas. 

4.1. Policy implications 

4.1.1. Elasticity effects 
As the random parameters multilevel models provided the best fit, 

we discuss elasticity effects based on these models only. Since the 
dependent and independent variables are all log-transformed, the co-
efficients associated with the explanatory variables in the models 
represent average elasticities. Table 5 indicates the percentage change in 
transport energy consumption based on a 10% increase in the explan-
atory variables. 

In broad terms, a 10% increase in jobs density could be expected to 
yield a 7.82% decrease in yearly personal energy consumption while this 
increase will lead to 7.93% decrease in yearly freight energy consump-
tion. Personal energy consumption and freight energy consumption 
decrease by 2.24% and 4.12%, respectively, when the population den-
sity is increased by 10%. A 10% increase in the unemployment rate will 
result in a 1.56% reduction of personal energy consumption and a 2.00% 
decrease in freight energy consumption. The findings of the effects of 
jobs density and population density on energy consumption are in 
accordance with previous research (Newman and Kenworthy, 1989). 
Jobs density is a key parameter to evaluate land use, and population 
density affects how intensively urban land is used and the prevalence of 
city activities (Newman and Kenworthy, 1989). With this in mind, we 
can speculate that the growth of jobs density, unemployment rate and 
population density affect the way in which residents travel by influ-
encing the local authorities’ land use. This, in turn, may influence urban 
density; and a city with higher urban density tends to consume lower 
transport energy per capita (Baker and Steemers, 2003; Steemers, 2003). 

A 10% increase in the proportion of adults who cycle or walk five 
times a week would decrease personal and freight energy consumption 
by 7.32% and 10.38%, respectively (note that our study does not reveal 
causality). This finding is in accordance with Banister et al. (1997). As 

Fig. 3. Spatial distribution of expected freight road energy consumption (Tonnes of oil equivalent in 1000’s) in England at local authority level over the study period.  
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discussed by Saunders et al. (2008), walking and cycling do not consume 
energy for personal or freight usage. This may go some way to 
explaining why such active transport activity has a decreasing effect on 
energy consumption. Overall, a shift from motorised trips to non- 
motorised trips; and consequently, reduced congestion (reducing fuel 
by reducing idling time), and self-collection from delivery hubs or direct 
in-person buying and collection can partly explain this finding. Note that 
studies on the association between active travel and macro-level road 
transport energy consumption are very limited and this requires further 
in depth investigations to understand the underlying reasons for a 
relatively strong association between active travel and road transport 
energy consumption. Based on this finding, local authorities may 
consider making a concerted effort to promote the uptake of active 
travel. 

The number of jobs held by employees is part of the number of total 
jobs, so it has a relationship with jobs density. In contrast to the effect of 
jobs density, when the number of jobs held by employees rises by 10%, 
the personal road transport energy consumption increases by 10.38%. 
This may be due to the geographical distribution of the employees. The 
two variables GDHI per capita and GDP are economic factors. A 10% 
increase in GDHI per capita would lead to a 5.75% increase in personal 
road transport energy consumption. Based on the study of Barla et al. 
(2009), a higher income will lead to higher petrol demand because of an 
increase in driving distance and vehicle stock. This can be used as a 
reference for analysing the effects of GDHI per capita. With respect to 
GDP, a 10% growth in GDP would result in an 11.15% increase in freight 
consumption. The finding of the impact of GDP on energy consumption 
is in line with the research of Limanond et al. (2011) and Chai et al. 
(2016). The growth of GDP has been shown to lead to the development 
of local economic activities, thereby promoting the increase of transport 
activities. This, in turn, leads to an increase in road transport energy 

consumption. 
The random parameters (coefficients) models identified variation in 

the effects of some of the explanatory variables on road transport energy 
consumption in England. Based on the results of the random parameters 
regression, we can conclude that the effects of jobs density, unemploy-
ment rate and population density on personal energy consumption vary 
across major areas. Also, the effect of jobs density on freight energy 
consumption varies from one major area to another. This is an important 
finding that indicates substantial between-region differences in England 
in terms of road transport energy consumption. This inter-regional 
variability is due to unobserved/unmeasured regional attributes that 
have an impact on road energy consumption. For instance, such vari-
ability may be caused by a number of factors including: climate, road 
conditions (including the type of road infrastructure), travel behaviour 
and the distinctions in economic developments and land use in each 
area. Further in-depth investigation would be needed to understand the 
reasons behind the varying effects of certain explanatory variables. 

While this research provides a clear picture of attribute impacts on 
local authority level personal and freight energy consumption in En-
gland, the following can be inferred from the results: (i) the most sig-
nificant variables in terms of decrease in personal road transport energy 
consumption were job density and the proportion of local authority 
population walking or cycling, whereas the number of jobs held by 
employees had the highest increasing effect; (ii) the most significant 
variable in terms of increase in freight energy consumption was GDP 
while the proportion of population walking or cycling had the highest 
decreasing effect on freight energy consumption, followed by job density 
and then population density; (iii) there are differences between the 
determinants of personal and freight energy consumption in England as 
well as in the impact of the variables that appear in both models. For 
example, we found that, interestingly, active travel has a greater impact 

Fig. 4. Spatial distribution of expected personal road energy consumption (Tonnes of oil equivalent in 1000’s) in England at major area level over the study period.  
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on freight energy consumption rather than personal energy consump-
tion; and (iv) in general, the variables that explain freight energy con-
sumption have higher elasticities. 

4.1.2. Spatial distribution of expected road transport energy consumption 
Figs. 2 and 3 display the spatial distribution of the expected personal 

and freight road transport energy consumption in England averaged 
over the study period. Note that expected (model based) values are 
statistically more reliable than observed values. A darker colour shows a 
higher energy consumption. For the local authorities with missing 
covariates, we used the observed energy consumption data. These maps 
may help decision makers in identifying hotspots (local authorities with 
highest levels of energy consumption) for which consumption reduction 
strategies should be prioritised. Considering the statistically important 
explanatory variables in our models, tailored interventions can then be 
applied to these hotspots, with the aim of reducing energy consumption; 
and consequently, emissions. As it can be inferred from Figs. 2 and 3, 
spatial patterns are more or less the same for both personal and freight 
energy consumption. That is, areas with a relatively high personal en-
ergy consumption are often high energy consumption locations with 
respect to freight transport as well. Figs. 4 and 5 show similar maps of 
expected values of personal and freight energy usage at regional level, 
respectively. These values were obtained by summing the expected 
values of the individual local authorities. With respect to personal usage, 
South East England has the highest road transport energy consumption 
followed by North West region. With respect to freight usage, South East 
has the highest freight road transport energy consumption followed by 
East England. On the other hand, Greater London, East Midlands, and 
North East England have the lowest personal and freight road transport 
energy consumption. Note that these maps are created based on absolute 

values of energy consumption in each region, having different charac-
teristics, but one may normalise these by population or other measures. 
However, we believe no perfect measure exist and therefore we repre-
sented the maps using the absolute values. 

5. Summary 

This study employs multilevel random parameters regression models 
to investigate personal and freight road transport energy consumption in 
England. The dataset used in this research includes 897 observations 
from 2016 to 2018, containing information relating to 299 local au-
thorities in England. While due to data availability at the time of writing, 
we analysed the 2016–2018 period, future research should update our 
analyses with the aim of understanding both short- and long-term im-
pacts of the recent pandemic on road transport energy consumption. As 
we use three years of data, our results are expected to be more reliable as 
our analyses are not subject to unusual annual fluctuations in energy 
consumption. The effects of several explanatory factors on energy con-
sumption are examined and discussed. Some of the variables (the pro-
portion of adults who walk or cycle, GDHI and GDHI per capita) 
included in our analyses have rarely been used in previous studies of 
road transport energy use, but here we found that these are very good 
predictors of road transport energy consumption in England. This 
research contributes to the literature by being the first, to our knowl-
edge, to analyse area-level personal and freight energy consumption 
separately, using a relatively complex econometric approach, a random 
parameters multilevel model. Our approach accounts for the hierarchi-
cal structure of the data; i.e., local authorities nested within major areas 
of England, accounting for dependence in the data and addressing un-
observed heterogeneity more fully. 

Fig. 5. Spatial distribution of expected freight road energy consumption (Tonnes of oil equivalent in 1000’s) in England at major area level over the study period.  
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We found that road transport energy consumption is lower in local 
authorities with higher levels of active travel (walking or cycling). Also, 
we found that active travel has a higher impact on freight road transport 
energy consumption compared to personal road transport energy con-
sumption. Note that our models do not reveal causality but association 
only. The reason why the effects of some variables vary across major 
areas of England is a topic for further research and subsequent explo-
ration. The paper deepens our understanding of road transport energy 
consumption in England (and perhaps in similar contexts elsewhere). 
The developed models can be used in forecasting road transport energy 
consumption of the local authorities in England. Our findings could be 
useful for decision makers in designing low carbon transport and plan-
ning policies. 
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