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Abstract: Acute hypoxic respiratory failure (AHRF) is a prominent feature of severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2) critical illness. The severity of gas exchange impairment
correlates with worse prognosis, and AHRF requiring mechanical ventilation is associated with
substantial mortality. Persistent impaired gas exchange leading to hypoxemia often warrants the
prolonged administration of a high fraction of inspired oxygen (FiO2). In SARS-CoV-2 AHRF, sys-
temic vasculopathy with lung microthrombosis and microangiopathy further exacerbates poor gas
exchange due to alveolar inflammation and oedema. Capillary congestion with microthrombo-
sis is a common autopsy finding in the lungs of patients who die with coronavirus disease 2019
(COVID-19)-associated acute respiratory distress syndrome. The need for a high FiO2 to normalise
arterial hypoxemia and tissue hypoxia can result in alveolar hyperoxia. This in turn can lead to local
alveolar oxidative stress with associated inflammation, alveolar epithelial cell apoptosis, surfactant
dysfunction, pulmonary vascular abnormalities, resorption atelectasis, and impairment of innate
immunity predisposing to secondary bacterial infections. While oxygen is a life-saving treatment,
alveolar hyperoxia may exacerbate pre-existing lung injury. In this review, we provide a summary of
oxygen toxicity mechanisms, evaluating the consequences of alveolar hyperoxia in COVID-19 and
propose established and potential exploratory treatment pathways to minimise alveolar hyperoxia.
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1. COVID-19

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a novel member
of the enveloped ribonucleic acid (RNA) beta coronavirus family, is the infectious agent
causing the coronavirus disease 2019 (COVID-19) pandemic that has resulted in significant
health, social, and economic burdens worldwide [1]. Severe COVID-19 disease is asso-
ciated with male gender predominance, older age, metabolic syndrome, and obesity [2].
Moreover, some patients develop a multi-system disease process involving major organs
with acute myocardial injury, acute kidney injury, haematological abnormalities, and in-
tracerebral complications with prothrombotic tendencies [3]. A minority of hospitalised
patients with severe COVID-19 pneumonia develop acute hypoxaemic respiratory failure
(AHRF) necessitating intensive care admission and the initiation of mechanical ventilation
to support adequate arterial oxygenation [4]. As the management of these critically ill
patients continues to evolve, the pathophysiology of severe COVID-19 lung injury remains
an intriguing phenomenon [5]. Although COVID-19 is defined as a single disease entity
with a single causative agent, diverse clinical phenotypes may warrant individualised treat-
ment approaches. These phenotypes are likely to reflect the complex host–virus interaction
associated with SARS-CoV-2 infection, particularly the degree of host immunothrombotic
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response during and after the viral illness [6]. There is often a lag of 7–12 days between
infection and the development of AHRF with SARS-CoV-2 infection, and antiviral strategies
at this stage appear to offer no survival advantage [7,8]. Some patients go on to develop
sustained hypoxaemic respiratory failure with prolonged hospitalisations.

2. COVID-19, Oxygen Therapy, and Alveolar Hyperoxia

Oxygen therapy is the mainstay for treatment of SARS-CoV-2-induced hypoxemia
with the goal of maintaining arterial blood oxygen content and avoiding tissue hypoxemia.
Respiratory support in deteriorating patients can be augmented with high-flow nasal
oxygen (HFNO), continuous positive airway pressure (CPAP), or non-invasive positive
pressure ventilation (NIV), and in severe cases, intubation and mechanical ventilation may
be required [9]. COVID-19 patients who are mechanically ventilated may be profoundly hy-
poxemic and require prolonged periods of a high fraction of inspired oxygen (FiO2) [10,11].
Pulmonary toxicity caused by alveolar hyperoxia is a well-established phenomenon in both
healthy and injured lungs [12]. However, it is unclear if alveolar hyperoxia due to oxygen
therapy accelerates the initial insult from SARS-CoV-2 infection and, consequently, may
be a driving factor in SARS-CoV-2-induced acute lung injury [13]. Moreover, adjunctive
therapies to minimise alveolar hyperoxia or the beneficial effects of anti-inflammatory
agents in mitigating the effect of hyperoxic lung injury have not been evaluated so far in
this context.

In the United Kingdom (UK), approximately 50% of COVID-19 patients who were
admitted to an intensive care unit (ICU) had severe hypoxic respiratory failure with a
partial pressure of oxygen in arterial blood to fraction of inspired oxygen (PaO2/FiO2) ratio
of <13.3 kPa (<100 mmHg), and in an Italian ICU case series, 22% of patients required an
FiO2 of 0.85 on admission [10,11]. Conventional intensive care therapy for patients with
this degree of lung injury includes mechanical ventilation with supraphysiological FiO2 to
maintain relative normoxaemia. However, there is a strong association among endothe-
liopathy, coagulopathy, and immunothrombosis within the pulmonary microvasculature in
COVID-19 patients with acute respiratory failure [14]. Consequently, the sustained hypox-
aemia endured by some patients is likely due to a combination of increased shunt fraction
from oxygen diffusion impairment from alveolar capillary occlusion and alveolar epithelial
damage as a result of direct viral infection. The delivery of a high FiO2 in this scenario
may lead to alveolar hyperoxia with little improvement in gas exchange or oxygen delivery
to the distant tissues. Direct supraphysiological oxygen exposure can lead to alveolar
oxygen toxicity causing alveolar endothelial and epithelial cell damage, including alveolar
type-II (AT-II) cells [12]. Moreover, the consequent decrease in the alveolar partial pressure
of nitrogen leads to reabsorption atelectasis, further exacerbating systemic hypoxemia
(Figure 1) [15].

Med. Sci. 2023, 11, x FOR PEER REVIEW  2  of  20 
 

 

SARS-CoV-2 infection, particularly the degree of host immunothrombotic response during 

and after the viral  illness [6]. There  is often a  lag of 7–12 days between  infection and the 

development of AHRF with SARS-CoV-2  infection, and antiviral  strategies at  this  stage 

appear  to  offer  no  survival  advantage  [7,8].  Some  patients  go  on  to develop  sustained 

hypoxaemic respiratory failure with prolonged hospitalisations. 

2. COVID-19, Oxygen Therapy, and Alveolar Hyperoxia 

Oxygen therapy is the mainstay for treatment of SARS-CoV-2-induced hypoxemia with 

the  goal  of maintaining  arterial  blood  oxygen  content  and  avoiding  tissue  hypoxemia. 

Respiratory support in deteriorating patients can be augmented with high-flow nasal oxygen 

(HFNO),  continuous  positive  airway  pressure  (CPAP),  or  non-invasive  positive  pressure 

ventilation (NIV), and in severe cases, intubation and mechanical ventilation may be required 

[9]. COVID-19 patients who are mechanically ventilated may be profoundly hypoxemic and 

require prolonged periods of a high  fraction of  inspired oxygen  (FiO2)  [10,11]. Pulmonary 

toxicity caused by alveolar hyperoxia is a well-established phenomenon in both healthy and 

injured  lungs  [12]. However,  it  is  unclear  if  alveolar  hyperoxia  due  to  oxygen  therapy 

accelerates the initial insult from SARS-CoV-2 infection and, consequently, may be a driving 

factor  in  SARS-CoV-2-induced  acute  lung  injury  [13]. Moreover,  adjunctive  therapies  to 

minimise alveolar hyperoxia or the beneficial effects of anti-inflammatory agents in mitigating 

the effect of hyperoxic lung injury have not been evaluated so far in this context. 

In the United Kingdom (UK), approximately 50% of COVID-19 patients who were 

admitted  to an  intensive care unit  (ICU) had  severe hypoxic  respiratory  failure with a 

partial pressure of oxygen in arterial blood to fraction of inspired oxygen (PaO2/FiO2) ratio 

of <13.3 kPa (<100 mmHg), and in an Italian ICU case series, 22% of patients required an 

FiO2 of 0.85 on admission [10,11]. Conventional intensive care therapy for patients with 

this degree of lung injury includes mechanical ventilation with supraphysiological FiO2 

to  maintain  relative  normoxaemia.  However,  there  is  a  strong  association  among 

endotheliopathy,  coagulopathy,  and  immunothrombosis  within  the  pulmonary 

microvasculature in COVID-19 patients with acute respiratory failure [14]. Consequently, 

the sustained hypoxaemia endured by some patients  is  likely due  to a combination of 

increased  shunt  fraction  from  oxygen  diffusion  impairment  from  alveolar  capillary 

occlusion and alveolar epithelial damage as a result of direct viral infection. The delivery 

of a high FiO2 in this scenario may lead to alveolar hyperoxia with little improvement in 

gas exchange or oxygen delivery to the distant tissues. Direct supraphysiological oxygen 

exposure can lead to alveolar oxygen toxicity causing alveolar endothelial and epithelial 

cell  damage,  including  alveolar  type-II  (AT-II)  cells  [12].  Moreover,  the  consequent 

decrease  in  the  alveolar  partial  pressure  of  nitrogen  leads  to  reabsorption  atelectasis, 

further exacerbating systemic hypoxemia (Figure 1) [15]. 

 

Figure  1.  The  SARS-CoV-2  infection  exacerbated  by  alveolar  hyperoxia  leading  to worsening 

systemic hypoxemia. 

Figure 1. The SARS-CoV-2 infection exacerbated by alveolar hyperoxia leading to worsening sys-
temic hypoxemia.
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The main feature of hyperoxia demonstrated in in vivo models and isolated cell cul-
tures of non-COVID-related hyperoxia is cell death, which may involve apoptosis or necro-
sis [16,17]. However, differentiating the proportional causality of hyperoxic lung injury
versus lung damage from the initial insult, in this case, SARS-CoV-2 viral pneumonia, is of-
ten difficult. Post-mortem studies of patients who died with severe COVID-19 pneumonia
have shown diffuse alveolar damage with endothelial injury, capillary congestion, immune
cell recruitment, and varying degrees of interstitial pneumonia and eventual fibrosis [18].
These features are common to both COVID-19 acute respiratory distress syndrome (ARDS)
and hyperoxic acute lung injury [19]. There is also evidence of AT-II cellular disruption
attributed to enhanced cellular exhaustion, apoptosis, and hypertrophy [12]. Although
difficult to clinically differentiate oxygen toxicity from other causes such as the initial insult
or barotrauma, these findings are probably due to a combination of direct cellular damage
caused by SARS-CoV-2 infection acting on the angiotensin converting enzyme 2 (ACE2)
receptors on the AT-II cell surface, iatrogenic alveolar hyperoxia, or a combination of both
processes [20].

Hyperoxic acute lung injury may partly explain the progression of some patients
from relatively compliant to a non-compliant lung typically seen with COVID-19 ARDS. A
similar phenomenon is also commonly seen in preterm infants with neonatal bronchopul-
monary dysplasia (BPD), known to be exacerbated by oxygen toxicity, which may be
mitigated by the administration of corticosteroids to the prenatal mother and the delivery
of an exogenous surfactant to the infant once born [21]. Despite the common use of oxygen
to treat hospitalised COVID-19 patients, optimal targets for arterial oxygenation or oxygen
saturation are not yet defined and remain a contentious issue. Current recommended
oxygen delivery targets for COVID-19 are not based on randomised trial data and are, in
part, derived from other disease cohorts which may not be transferable [22]. The balance
between likely competing harms of alveolar hyperoxia and systematic hypoxaemia with
organ hypoxia and dysfunction is important but difficult to quantify. Nevertheless, in
a survey of intensive care physicians from the UK, the majority adopted a permissive
hypoxaemic target, with an arterial oxygenation of 7.1–9.0 kPa (53–67 mmHg), similar to
those for patients with ARDS due to causes other than COVID-19 [23]. The controversy
persists with regard to the optimal systemic oxygenation targets for mechanically ventilated
intensive care patients [24,25]. On-going clinical trials comparing different systemic oxygen
targets (conservative vs. standard) in ventilated patients are currently underway and may
provide some insight into the best approach in critically ill patients but still may not be
applicable to COVID-19 patients with extreme hypoxemia [26–28]. However, a post hoc
subgroup analysis of COVID-19 patients from the HOT-ICU study suggests that targeting
a lower PaO2 of 8kPa may be beneficial in COVID-19 ICU patients [29].

The progressive changes in the COVID-19 lung may be in part due to alveolar cell
oxygen toxicity as a result of alveolar hyperoxia. Consequently, the standard manage-
ment paradigm for COVID-19 patients with ARDS and AHRF needs urgent revaluation.
Rather than arterial oxygenation targets such as arterial oxygen saturation (SaO2) or partial
pressure of arterial oxygen (PaO2), oxygen delivery to the tissues may prove to be more
informative. Here, we explore these elements, including the mechanisms of hyperoxic
alveolar injury and several established and theoretical interventions that may mitigate
these harms.

3. Consequence of Alveolar Hyperoxia and Systemic Hyperoxaemia

The consequences of hyperoxic organ toxicity have been evaluated in many animal
studies since the 19th century. These studies present the organ-specific deleterious effects
of hyperoxia in different animal models and experimental conditions with variations in the
FiO2, barometric pressure, and duration of exposure. Although there were variations in
tolerance, pulmonary toxicity was consistently reported with characteristic pathological
changes [30]. The studies investigating the effect of alveolar hyperoxia on human lungs
are primarily conducted on healthy humans, with non-injured lungs. As a result, the exact
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dose and duration of oxygen exposure for human pulmonary toxicity and lethality are
largely unknown, especially in injured lung conditions such as viral pneumonia.

3.1. Ubiquitous Use of Oxygen May Be a Problem—Pre COVID-19 Studies

The duration of tolerance and the lethal dose of oxygen have been evaluated by several
small and large animal studies of hyperoxia over the past two centuries [30,31]. There
were considerable variations in the tolerance of pulmonary toxicity at various oxygen
tensions and survival ability between animal species; mostly, high dose and prolonged
exposure of an FiO2 between 0.90 and 1.0 are associated with acute respiratory failure and
death [30]. The toxicity appears to be proportionate to the FiO2 [31]. When challenged
with an FiO2 of 0.85–1.0, animal models of lower primates (rhesus monkeys, baboons,
sooty mangabeys, and squirrel monkeys) fared better and survived longer, averaging
around 8 days (range 3–17 days), than other small animals (rats, mice, guinea pigs, and
birds) [30,32]. Moreover, susceptibility and the magnitude of pulmonary oxygen toxicity
are variable even between individuals from the same species, suggesting an individual
genetic predisposition [33]. Animal models also suggest that there is age-related differences
in response to hyperoxia, where neonatal lung is more resistant to hyperoxia-induced
lung injury compared with adult lungs, implying that the progressive development of
innate immunity may contribute to hyperoxia-induced lung injury [34]. Pathologically,
hyperoxic lung injury is characterised by diffuse alveolar epithelial and endothelial damage
with exudative pulmonary oedema and capillary leakage very similar to the characteristic
features of ARDS [35,36].

Although human hyperoxic challenge studies for prolonged periods are no longer
ethically feasible, historical work demonstrated normobaric exposure to an FiO2 of 1.0 for
14 h led to substernal distress and pleuritic chest pain [37]. In a later study, a longer duration
of exposure (30–74 h) resulted in the development of cough and progressive dyspnoea
with an associated decline in vital capacity and diffusing capacity for carbon monoxide
(DLCO) [38]. Abnormalities in tracheal mucociliary movement are evident after 3 h of
exposure to an FiO2 of 0.90–0.95 [39]. Moreover, an FiO2 of more than 0.95 for 17 h leads to
significant alveolar capillary leak with increased mediators of fibroblast recruitment and
proliferation in healthy adults [40]. These limited numbers or normobaric hyperoxic human
studies combined with translation from large primate and small animal studies support
the potential for pulmonary toxicity and lethality in a normal uninjured lung, which in
general, is associated with hyperoxia of an FiO2 > 0.70 beyond an exposure duration of
24 h [30,32]. However, more importantly, infected injured lungs may respond differently
to hyperoxic challenges than a normal lung. Indeed, hyperoxia in legionella pneumonia
increased lethality with accelerated apoptosis in rodent models [41]. The implications of
combined insults of viral pneumonia and hyperoxia in the development and progression
of acute lung injury is largely unknown.

Several oxygen intervention studies of mechanically ventilated or intensive care and
critically ill patients investigating various oxygen targets of hyperoxaemia have been
published to date. A systematic review of oxygen therapy of >16,000 hospitalised adult
patients with acute illness (IOTA) concluded that liberal peripheral oxygen saturation
(SpO2) targets beyond 94–96% are associated with increased in-hospital morality [42].
Despite this evidence, recent randomised controlled trials of patients with AHRF (HOT-
ICU) and ARDS (LOCO2) suggest no clinical benefits from conservative arterial oxygen
(PaO2) targets between 50 and 70 mmHg [43,44]. Further, larger studies are currently
underway nationally, UK-ROX, and internationally, MEGA-ROX, indicating that this is an
important research question with ongoing controversy [26–28]. Although these trials aim
to accept a degree of permissive hypoxemia, they do not address the negative impact of
alveolar hyperoxia in patients with severe hypoxemic respiratory failure requiring high
fractional inspired oxygen.



Med. Sci. 2023, 11, 70 5 of 20

3.2. Oxygen Toxicity Mechanisms

The cellular pathways leading to hyperoxia-mediated lung injury are complex and
beyond the scope of this review. Briefly, lungs are vulnerable to oxidative damage, which
is exacerbated during inflammatory conditions. Hyperoxia disrupts the normal physi-
ological homeostatic balance and increases oxidative stress by inducing highly reactive
mitochondrial oxidative stress mediators such as superoxide (O2

−), hydrogen peroxide
(H2O2), hydroxyl radicals (OH−), and peroxynitrite anions (ONOO−). Unopposed reactive
oxygen species (ROS) lead to compromised cellular function with a predisposition of ox-
idative damage to deoxyribonucleic acid (DNA) material, lipids, and proteins [45]. Viral
infections are also associated with increased oxidative stress [46]. Furthermore, imbalances
in antioxidant mechanisms including the enzymes superoxide dismutase (SOD), catalase,
and glutathione peroxidase and small defence molecules such as glutathione, ascorbic
acid, and vitamin E, may result in the presence of increased oxidative stress mediators
leading to further direct mitochondrial and cellular damage [47,48]. A deficiency in native
plasma antioxidants is a common feature in COVID-19 infection and COVID-19 critical
illness [49–51]. In healthy physiological states, the balance of oxidant and antioxidant is
highly regulated and alterations in this equilibrium can lead to a proinflammatory state
with a subsequent influx of inflammatory cells, the activation of cytokine cascades, and
increased vascular permeability [52]. Alveolar hyperoxia with reduced native antioxi-
dants in severe SARS-CoV-2 infection is likely to contribute to an overwhelming redox
imbalance (Figure 2).
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Molecular pathways leading to hyperoxic acute lung injury involves the activation
of a multitude of signal transduction pathways of cellular homeostasis. In healthy phys-
iological states, there is a balanced regulation of cell growth and cell death by several
regulatory mechanisms of apoptosis and necrosis. Exposure to hyperoxia and the subse-
quent generation of ROS by nicotinamide adenine dinucleotide phosphate oxidase (NOX)
1 phosphorylation leads to changes in protein kinases, transcription factors and cellular
apoptotic/necrotic pathways. Mitogen-activated protein kinase (MAPK) signalling cas-
cades involving extracellular signal-regulated kinases (ERK1/2), c-Jun N-terminal kinase
(JNK), and p38 kinase are all implicated in hyperoxic acute lung injury [53]. The role of
these stress-activated protein kinases in both the upregulation and downregulation of
hyperoxia-induced cell death has been studied extensively in various animal models of
cellular hyperoxia [19]. Moreover, the hyperoxic exposure of lung stimulates molecules
involved in the regulation of cell death, Fas and the Fas ligand with downstream activation
of Caspase-8, and pro-apoptotic proteins (Bax, Bid, Bim, and Bak). A subsequent increase
in protein kinase C delta type (PKC-δ) leads to the release of mitochondrial cytochrome
C, and further cleavage of caspase-3 and 9 results in apoptotic and necrotic cell death [54].
Other transcription factors such as nuclear factor kappa B (NFκB), activator protein-1
(AP-1), signal transducer and activator of transcription (STAT), nuclear factor-erythroid
2-related factor 2 (Nrf2) and Toll-like receptor 4 (TLR4) play intricate counterbalanced roles
in hyperoxic acute lung injury. The protective role of Nrf2 in antioxidant defence during
hyperoxia is well established, and genetic polymorphisms in the Nrf2 gene may increase
the epigenetic susceptibility to developing hyperoxic acute lung injury [55,56].

3.3. Alveolar Hyperoxia Induced Surfactant Damage

Pulmonary surfactant is a mixture of lipids and proteins at the air–liquid interface that
minimises surface tension forces and prevents alveolar collapse. A surfactant is synthesised
and metabolised by AT-II cells. Surfactant composition varies between animal species,
but in humans, 70–80% of phospholipids are phosphatidylcholine (PC), with dipalmitoyl
phosphatidylcholine (DPPC) being the major PC with the functional ability to reduce
surface tension [57]. Surfactant deficiency is a commonly recognised feature in patients with
ARDS, with variations in synthesis, metabolism, and functional inhibition from alveolar
inflammatory milieu [58]. In vitro studies suggests that the surface activity of surfactant
is impaired when directly exposed to oxidation [59]. A pulmonary surfactant exposed to
oxygen free radicals can lead to the direct inactivation of phospholipids and proteins [60].
Moreover, in vivo animal studies showed that prolonged exposure to hyperoxia results in
increased levels of oxidative stress with associated alterations in surfactant metabolism and
turnover with reductions in lung antioxidant levels [61–63].

An intact surfactant system is fundamentally required for alveolar stability. SARS-
CoV-2 pneumonia presents a double-edged sword, causing impairment to the surfactant
system by AT-II cell death in combination with oxidative damage from alveolar hyper-
oxia [64]. Changes in AT-II cell proliferation and apoptosis are a common pathological
feature of SARS-CoV-2 pneumonia. Alveolar epithelial cellular invasion by SARS-CoV-2
via ACE2 surface receptors causes increased AT-II cell apoptosis and can theoretically
impair surfactant synthesis, secretion, metabolism, and recycling of functional pulmonary
surfactant. However, the impact of SARS-CoV-2 infection on the surfactant system has
yet to be explored. Alveolar hyperoxia may also compromise surfactant metabolism and
the functional ability of surfactant to reduce surface tension resulting in poor lung compli-
ance and worsening hypoxemia [65–67]. A reduction in overall surfactant pool size and
functional ability to reduce surface tension is compromised during ARDS, and the same
principle may apply during COVID-19 pneumonia [68].

Exogenous surfactant therapy has proved ineffective in adult patients with ARDS. A
meta-analysis of exogenous surfactant replacement in ARDS patients demonstrated no
survival benefit but some improvement in oxygenation within the first 24 h, which was not
sustained [69]. This implies that the beneficial effect of a surfactant is possibly short-lived
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and a longer duration of therapy until recovery may need to be considered [70]. Moreover,
a supplemented exogenous surfactant will likely face the same fate as an endogenous
surfactant, with increased oxidative damage leading to a poor functional ability to maintain
a low surface tension. An in vitro study of bovine surfactant suggested that surfactant
performance is severely compromised when exposed to high concentrations of oxygen [68].
However, the effect of high FiO2 on surfactant composition, metabolism and functional
surface tension-reducing ability in vivo, particularly in human injured models, has not
been studied. Animal models of surfactant supplementation following hyperoxic exposure
show an attenuation of alveolar oxygen toxicity, lung injury, and alveolar capillary perme-
ability [71,72]. Surfactant also has antioxidant properties, and administration reduces the
oxidative stress in animal models of hyperoxia [73–75]. From these limited available studies,
it is tempting to speculate that an exogenous surfactant may be used as an antioxidant
to minimise oxygen toxicity or in combination with other antioxidants to improve the
surface-active properties of both endogenous and supplemented exogenous surfactants.

3.4. Alveolar Hyperoxia and the Expression of ACE2 Receptors

It has been postulated that the low incidence of COVID-19 among high-altitude inhab-
itants is possibly due to the downregulation of ACE2 expression during chronic hypoxia
leading to fewer available receptors for viral entry [76]. However, the interaction between
ACE2 expression and the risk of COVID-19 infection, progression into critical illness, and
recovery is likely to be complex. Moreover, there are contradicting hypotheses as both
hypoxia and hyperoxia seem to modify ACE2 expression in alveolar epithelia [77]. As
detailed in an earlier section, the maintenance of normal ACE2 expression is crucially
important for host immune response, and elevated levels of ANGII are associated with
increased SARS-CoV-2 viral load and the severity of lung injury [78]. While increased
ACE2 expression may increase the risk of viral infection, reduced ACE2 receptor availabil-
ity can result in increased levels of ANGII and pulmonary fibrosis [79,80]. Infection with
SARS-CoV-2 depletes host ACE2 and may contribute to the detrimental effects seen in the
respiratory system. ACE2 protects against fibrosis, and in ACE2 knockout animal models,
there is eventual development of severe lung disease and fibrosis [81,82]. An adult mice
model of hyperoxia was associated with decreased lung ACE2 expression and increased
ANGII/ANG (1-7) ratio, and co-treatment with ACE2 agonists mitigated the oxidative
stress [83]. Likewise, hyperoxia downregulates ACE2 in human foetal fibroblasts, which
may explain the development of BPD in neonatal lung disease [84]. However, the degree
and duration of hyperoxia required to induce in vivo ACE2 modifications in humans is
not known. All these findings suggest that a combination of SARS-CoV-2 infection and
hyperoxia are likely to contribute to an overwhelming downregulation of ACE2 expression
and increasing ANGII levels, leading to a potentially lethal lung disease with eventual
fibrosis. However, the multiplatform REMAP-CAP trial in critically ill patients recently con-
cluded that neither ACE inhibition nor direct angiotensin receptor block improve clinical
outcomes [85].

3.5. Alveolar Hyperoxia Induced Pulmonary Vascular Changes

ACE2 receptors are also expressed by pulmonary vascular endothelial cells. Alveolar
capillary endothelial invasion and subsequent vascular damage with changes in cellular
morphology and apoptosis are suggestive of endothelial inflammation as a prominent aeti-
ology for pulmonary organ dysfunction precipitating respiratory failure and death [14,86].
The morphological changes in hyperoxic acute lung injury are also associated with pul-
monary vascular changes, with damage to the pulmonary capillary bed and capillary leak
resulting in pulmonary oedema. Although alveolar hypoxia increases pulmonary vaso-
constriction and pulmonary vascular resistance (PVR), and conversely, hyperoxia leads to
pulmonary vasodilation and a reduction in PVR, prolonged periods of hyperoxia may lead
to a blunted vasodilatory response to nitric oxide (NO). Moreover, prolonged hyperoxia
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may also cause oxidative stress, which impairs the vasodilatory effects of endogenous and
inhaled nitric oxide (iNO), potentially altering the potential for vascular reactivity.

3.6. Hyperoxia Induced Immune Dysfunction and Secondary Bacterial Infections

In critically ill patients, hyperoxaemia is independently associated with ventilator-
associated pneumonia [87]. Secondary bacterial and ventilator-associated pneumonia is
relatively common in patients who are ventilated for COVID-19 pneumonia [88]. The com-
monly identified organisms are klebsiella pneumonia, pseudomonas, and staph aureus
species [89]. Animal models of in vitro cultured macrophages when exposed to hyperoxia
demonstrate compromised macrophage-driven innate immune functions [90,91]. Further-
more, hyperoxaemia is associated with an increased susceptibility to Gram-negative bac-
terial infection with increased mortality [92]. Moreover, the lung and gut microbiomes
are greatly alerted in animal models of alveolar hyperoxia and in critically ill patients
receiving high concentrations of oxygen therapy, predisposing to secondary bacterial in-
fections [93,94]. The hyperoxia-induced impairment in the innate immunity may in part
explain the increased incidence of nosocomial infections seen in mechanically ventilated
COVID-19 patients.

4. SARS-CoV-2 Pathogenesis Suggest Significant Endotheliopathy, Coagulopathy,
and Microangiopathy

ACE2 is expressed in all human organs and is the primary target for SARS-CoV-2
viral entry. In physiological states, ACE2 plays a crucial role in the homeostasis of the
renin–angiotensin–aldosterone system and is involved in the conversion of angiotensin II
(ANGII) to angiotensin (1-7) (ANG (1-7)). The opposing functional effects of ANGII and
ANG (1-7) are normally tightly balanced and the accumulation of ANGII can cause intense
vasoconstriction and reduced perfusion, leading to profound ventilation/perfusion mis-
match and resultant hypoxia [95]. Moreover, in addition to its vasoactive properties, ANGII
can induce plasminogen activator inhibitor 1 and 2, leading to prothrombotic tendencies,
and the endovascular thrombosis is not limited to large vessels [96]. Indeed, in experimen-
tal animal models, ANGII induced microvascular thrombosis relating to abnormalities in
the coagulation cascade involving both thrombin and platelet aggregation [97].

ANGII is also a potent stimulator of nicotinamide adenine dinucleotide phosphate
(NADPH) oxidase, activating the generation of reactive oxygen and nitrogen species [98].
The opposing effects of ANG (1-7) acting on the mitochondrial assembly (Mas) receptor
has several protective functions, including vasodilatation, as well as anti-inflammatory,
antioxidant, and anti-thrombotic properties [99]. Binding of the SARS-CoV-2 spike protein
S1 subunit to ACE2 receptors leads to cleavage of the receptor itself by a disintegrin and
metallopeptidase 17 (ADAM17), also known as tumour necrosis factor alpha converting
enzyme (TACE), at the cell surface, followed by intracellular cleavage by transmembrane
protease, serine 2 (TMPRSS2) [100]. The eventual shedding and downregulation of ACE2
receptors leads to decreased endogenous ACE2 activity, which is pro-inflammatory with a
state of increased oxidative stress (Figure 3 and Table 1) [101]. Alveolar compliance may be
relatively preserved during this vascular phase with minimal contributions from alveolar
flooding and epithelial or basement membrane disruption. Clinically, oxygen therapy is
administered to mitigate hypoxemia during this stage, with consequent alveolar hyper-
oxia. Dual energy computed tomography (CT) studies of patients with early COVID-19
pneumonia have demonstrated significant perfusion abnormalities, often with relatively
preserved lung parenchyma [102].

Moreover, the aberrant activation of the coagulation pathways supports the hypoth-
esis of a vascular/endothelial process for severe COVID-19 pathogenesis [103]. Raised
D-dimer levels are independently associated with increased mortality and hospital com-
plications, and thrombocytopenia, which is often mild if present, is also associated with
disease severity and poor clinical outcomes [104–106]. Markers of endothelial injury such
as von Willebrand’s factor (VWF) and its cleaving protein, a disintegrin and metallopro-
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teinase with thrombospondin type 1 motif, member 13 (ADAMTS13), also known as von
Willebrand factor-cleaving protease (VWFCP), are also implicated in COVID-19 disease
severity [107]. ADAMTS13 deficiency coupled with an increment in VWF multimers sug-
gests profound endothelial dysfunction with acquired thrombotic microangiopathy [108].
Likewise, autopsy studies of patients having died from severe COVID-19 respiratory fail-
ure demonstrate an occlusion of alveolar capillaries with microangiopathy, microthrombi,
and abnormal endothelial morphology, incriminating a strong link between SARS-CoV-2
infection, coagulation, and endothelial dysfunction [14,109,110]. Such complex coagulo-
pathic processes need rapid clinical evaluation as standard anticoagulation or antiplatelet
treatments are likely to be ineffective [111,112]. The evaluation of novel therapies such as
recombinant ADAMTS13 replacement or nanobody molecules that inhibit the binding of
VWF to platelet glycoprotein-1b receptors may be of value [113,114].
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Table 1. The opposing effects of angiotensin II and angiotensin (1-7).

Angiotensin II Angiotensin 1-7

Vasoconstrictor Vasodilator
Potent stimulator of NADPH oxidase Suppress the NADPH oxidase activity

Increase reactive oxygen and nitrogen species Reduce reactive oxygen and nitrogen species
Increase oxidative stress Reduce oxidative stress

Proinflammation Anti-inflammation
Profibrotic Anti-fibrotic

5. How to Minimise Alveolar Hyperoxia?

The dose and duration of oxygen therapy appears to be crucially important for the
development of hyperoxic acute lung injury. This is particularly relevant in COVID-19 due
to the prolonged periods of severe hypoxia in patients with COVID and current practices
of supporting patients with severe hypoxia. Healthy human studies indicate a high FiO2
at 101.3 kPa (1 standard atmosphere (atm)) could be harmful [32,115,116]. Individual
responses to hyperoxia vary, as demonstrated in animal models, which suggests a genetic
predisposition of hyperoxic tolerance. Our proposal provides three potential solutions to
minimise acute hyperoxic lung injury. First, ventilation and rescue strategies should be
optimised to minimise prolonged hyperoxic exposure. Second, a more focused approach
should be used to improve alveolar microangiopathy and immunothrombosis to facilitate
adequate gas exchange. Third, although still an investigational approach, antioxidants
should be evaluated as part of clinical trials to mitigate the effect of hyperoxia on the
alveolar environment in patients requiring a high FiO2.
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5.1. Permissive Hypoxaemia

Observational studies of critically ill patients indicate that the approach to oxygen
therapy has been tolerating systemic hyperoxia in order to avoid hypoxemia [117,118].
Guidelines for the prescription of oxygen have recognised this, and now support targeting
‘normal’ or ‘near-normal’ oxygen saturations [22]. While specific oxygen delivery targets
may be recommended in the resuscitation of acutely injured patients, hyperoxia does
not seem to improve outcomes in critical illness and may even cause harm [24,119,120].
Targeting normoxia in critically ill patients without exposure to alveolar hyperoxia may
not be practically achievable [121]. Oxygen therapy’s benefit-to-harm ratio is likely de-
termined by the dose and duration, and so, strategies to reduce both are currently being
investigated. Permissive hypoxaemia is a novel lung-protective strategy where lower that
normal levels of arterial oxygenation are deliberately targeted, or tolerated, in an effort
to minimise alveolar hyperoxia [122]. This is justified by the fact that humans have a
variety of adaptive mechanisms that support hypoxia tolerance, perhaps demonstrated
best at altitude [121,123]. However, more recent clinical trials of critically ill patients failed
to confer any survival benefits with lower conservative oxygen targets [43,44,124]. Fur-
ther larger studies are underway to establish safe lower limit for peripheral oxygenation
targets [26–28].

Permissive hypoxaemia may also have some negative effects. Both cellular and organ
adaptations to hypoxia play important roles in facilitating survival during critical illness,
and intentionally tolerating hypoxia could result in further injury [125]. Hypoxia may
also worsen or indeed cause pulmonary hypertension [126]. Another consideration is the
avoidance of tissue ischaemia by improving oxygen delivery (DO2) and consumption (VO2).
Goal-directed therapy through the dynamic assessment of oxygen indices and the optimi-
sation of haemoglobin may be helpful when implementing permissive hypoxemia [122].
In patients who have had sufficient time to adapt to sustained hypoxaemia, permissive
hypoxaemia may be a viable approach to reducing alveolar and systemic hyperoxia [121].
The harm of hypoxia should be weighed against the reduction in hyperoxic injury on
an individual patient basis. As no specific threshold defines a safe level of permissive
hypoxaemia, this remains an important unanswered research priority [24,25,127]. Never-
theless, permissive hypoxaemia was a common practice adopted widely in the UK during
the COVID-19 pandemic and a post hoc analysis of a HOT-ICU study suggested better
outcome with lower systemic oxygen targets in COVID-19 patients [23,29].

5.2. Adjunctive Measures to Optimise Oxygenation
5.2.1. Mechanical Ventilation

Although life-threatening refractory hypoxaemia is not frequently encountered in
the generic ICU population, the COVID-19 pandemic resulted in frequent exposure to
such patients and ventilator care bundles should incorporate strategies to minimise acute
hyperoxic lung injury. The additional aim of a ventilator care bundle should incorporate
measures to minimise the FiO2 to less than 0.70, but with an overall objective of achieving
the lowest concentration with the minimum duration where possible. The open lung
strategy with low tidal volume, high positive end-expiratory pressure (PEEP), with per-
missive hypercapnia targeting a plateau pressure of ≤30 cmH2O and driving pressure of
≤15 cmH2O is often used in ARDS, which may be transferable to COVID-19 patients [128].
Non-conventional ventilation modes such as airway pressure release ventilation (APRV),
which is a time-triggered, pressure-targeted mode of ventilation, are associated with a
reduced duration of mechanical ventilation, ICU length of stay, hospital mortality, and
improvement in oxygenation in patients with ARDS [129]. Compared with standard ARDS
management, there was an increased use of APRV during the COVID-19 pandemic in
the UK [23]. Further trials are needed to draw conclusions of the benefits of APRV in
COVID-19-related AHRF.
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5.2.2. Pulmonary Vasodilators

The use of pulmonary vasodilators in the forms of iNO or prostaglandin analogues
may help to reduce shunting due to hypoxic vasoconstriction and may improve ventilation-
perfusion matching. Despite ongoing controversy, pulmonary vasodilators are often used
as part of the rescue strategy in patients with ARDS and COVID-19 AHRF [11,23,130–135].
In a survey of intensive care physicians across the UK, iNO and prostaglandin analogues
as pulmonary vasodilators were used for treating COVID-19 patients by around 20% and
45% of responders, respectively [23]. However, the use of inhaled pulmonary vasodilators
can be limited due to the lack of availability of delivery devices. Inhaled prostaglandins are
straightforward to deliver and have been shown to improve oxygenation in patients with
ARDS [132]. Moreover, inhaled pulmonary vasodilators may have additional antiviral,
anti-inflammatory, and antiplatelet aggregation properties, with a potential to minimise
disease burden [136–138]. Although guidelines do not support the routine use of inhaled
pulmonary vasodilators in ARDS, multiple observational studies are published in this area,
suggesting improvement in oxygenation, and multiple randomised controlled trials are
planned or ongoing in COVID-19 patients.

5.2.3. Prone Positioning

Prone positioning in ARDS patients has strong evidence for improving mortality [139].
A systematic review of observational cohort studies of both spontaneously breathing
and mechanically ventilated COVID-19 patients demonstrated a significant improvement
in oxygenation following prone positioning [140]. Although there are no randomised
controlled trials to date in ventilated COVID-19 patients, the Proning Severe ARDS pa-
tients (PROCEVA) multicentre trial demonstrated a significant mortality benefit with
16 h of proning in ARDS patients with an FiO2 > 0.6 and a PaO2/FiO2 ratio of 20 kPa
(<150 mmHg) [141]. Until further evidence emerges from randomised controlled trials,
the same principles should apply for all mechanically ventilated COVID-19 patients with
AHRF. Attempts should be made to self-prone as much as possible in all awake sponta-
neously breathing patients, and a minimum of 16 h of proning should be considered in all
mechanically ventilated patients requiring a high FiO2 in efforts to minimise hyperoxic
lung injury [141,142].

5.2.4. Extracorporeal Membrane Oxygenation

The role of extracorporeal membrane oxygenation (ECMO) in refractory hypoxaemia
due to ARDS and influenza A virus subtype H1N1-related ARDS is well established [143,144].
In the UK, ECMO services are commissioned by the National Health Service (NHS) Eng-
land and provided by only a few established tertiary centres. It is a useful tool and often
regarded as a last resort for refractory hypoxaemia in patients with reversible lung dis-
ease. The early use of ECMO has the potential to minimise not only barotrauma but also
hyperoxia-induced acute lung injury. There are specific guidelines and referral pathways
which are aimed to facilitate early referrals to avoid irreversible lung damage. The survival
rates of ECMO-treated COVID-19 patients are like that of non-COVID ARDS, and where
available, early referral is recommended for those with potentially reversible severe res-
piratory failure following an unsuccessful trial of lung-protective ventilation and prone
positioning [145]. Equally, the provision of ECMO across individual centres will depend
on the accessibility of this specialist service and the ability to expand the service capacity
during pandemic situations.

5.3. Improving the Burden of Microangiopathy and Microthrombosis—Potential Targets

Current evidence does not support the use of augmented or therapeutic anticoagula-
tion in the context of severe COVID-19 critical illness. Although the microvascular changes
are likely due to a combination of in situ thrombosis and thromboembolic phenomena, data
from randomised controlled trials suggest that the intermediate dosing of anticoagulation
(e.g., enoxaparin 1 mg/kg once daily) in the intensive care unit setting and therapeu-
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tic anticoagulation with rivaroxaban or enoxaparin in non-critically unwell hospitalised
patients in comparison with standard thromboprophylaxis does not improve clinical out-
comes [146,147]. From the existing clinical trials, the National Institute for Health and Care
Excellence (NICE) UK provided guidance and a conditional recommendation for the use
of therapeutic anticoagulation in young, hospitalised patients on low-flow oxygen and
without an increased bleeding risk [148]. Several antiplatelet therapies including aspirin
and clopidogrel are currently being evaluated in clinical trials. However, the coagulation
cascade targets are likely to be more complex [112]. The ADAMTS13-VWF-platelet axis
needs further exploration and is not modified by standard anticoagulation or antiplatelet
therapy. The augmentation of circulating ADAMTS13 by therapeutic supplementation or
the reduction of large VWF multimers may reduce the alveolar microangiopathic process,
which has not yet been explored [113]. Moreover, the recent use of nanobody technology to
treat thrombotic thrombocytopenic purpura (TTP) may be of value, which binds to the A1
domain of the VWF, blocking its interaction with the platelet glycoprotein-Ib-IX-V receptor
and therefore preventing platelet aggregation [149].

5.4. Improving Oxidative Stress and Inflammation—Exploratory Targets

In some critically ill patients, despite all appropriate ventilation and rescue strategies,
the use of oxygen beyond an FiO2 of >0.70 is inevitable. So far, there are no effective
pharmacotherapies available that moderates acute severe hyperoxic lung injury in humans.
Although epigenetic susceptibility to acute hyperoxic lung injury cannot be modified,
conceptually, the use of antioxidants in this scenario could potentially mitigate predictable
oxidative lung damage. Potential therapeutic targets may modify the molecular pathways
of hyperoxia-induced lung injury or augment antioxidant balance/capacity. However, cur-
rently, there are no specific treatments available that moderate or prevent hyperoxic lung
injury. Non-COVID 19 mice models of vitamin E deficiency have been shown to exacerbate
hyperoxic lung injury, and both vitamin E and C have protective effects on hyperoxia-
induced cell death in human airway epithelial cells [150,151]. Moreover, vitamin E and C
may have a protective role against the hyperoxia-induced denudation of cilia from airway
epithelial cells [152]. N-acetyl cysteine is a precursor of glutathione and an antioxidant that
has been used both in nebulised and intravenous forms to mitigate hyperoxic cytopathic
effects in animal models [153,154]. Pulmonary surfactant components have antioxidant
activity, and exogenous surfactant supplementation can attenuate hyperoxic lung injury
in adult mice [72,73,155]. Transgenic mice models also suggest that the over expression of
surfactant protein D (SP-D) has a protective role against hyperoxic lung injury via the upreg-
ulation of Nrf2 expression [156]. Although this list is not exhaustive, additional measures to
augment global alveolar antioxidant status in those with intractable hypoxaemia requiring
an FiO2 of >0.70 may improve the local alveolar milieu and to minimise ongoing oxidative
lung damage. Experimental novel therapeutic modalities manipulating cellular signalling
pathways and apoptotic transcription factors (NOX inhibition, ERK 1/2 phosphorylation,
JNK and p38 MAPK inhibition, caspase 3/9 inhibition, and NFκβ inhibition) with the
augmentation of defence mechanisms through improving survival genes such as Nrf2
and AP-1 are important future research targets. Inflammasomes are cytosolic receptors
and sensors that are involved in innate immune response, and their activation has been
implicated in the pathogenesis of both hyperoxic lung injury and SARS-CoV-2 disease
severity. Specifically targeting inflammasome activation may ameliorate lung injury and is
subject to multiple clinical trial in COVID-19 patients [157,158].

6. Steroids for COVID-19 Patients Requiring Oxygen Therapy

There is established evidence that corticosteroids are beneficial for patients with
COVID-19 lung disease requiring oxygen [159]. However, the main question remains: what
is the pathophysiological basis for the clinical efficacy demonstrated by dexamethasone in
COVID-19 patients requiring oxygen? The established paradigm suggests that dexametha-
sone acts as a potent anti-inflammatory agent to mitigate alveolar inflammation during
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the COVID-19 “cytokine storm”. However, neither the RECOVERY nor the REMAP-CAP
studies performed any phenotypic evaluation to pre-characterise patients with classical fea-
tures of the “cytokine storm” observed in some hospitalised COVID-19 patients [160–162].
Additionally, it is unclear how clinical signs of any cytokine storm correlate to the degree
of alveolar damage and oxygen requirement. It is also uncertain if the progression into
AHRF and the need for mechanical ventilation is directly attributable to the degree of
inflammatory response or the “cytokine storm” seen in COVID-19 patients. Nevertheless,
the cytokine response in COVID-19 patients is rather modest in comparison with other
inflammatory conditions such as cytokine release syndrome (CRS) seen during chimeric
antigen receptor (CAR) T-cell therapy, sepsis, and non-COVID-19-related ARDS [163].
Consequently, the beneficial effect of corticosteroids is perhaps mediated by other possi-
ble mechanisms that have not yet been explored. Moreover, the clinical efficacy is only
demonstrated in patients requiring oxygen. Although the use of inhaled corticosteroids is
associated with the downregulation of ACE2 receptors and may reduce the susceptibility
to SARS-CoV-2 infection, the impact of dexamethasone on ACE-2/ANGII/ANG (1-7)/Mas
levels and receptor mass in not known. Corticosteroids may have a direct effect on co-
agulation pathways including reductions in VWF and fibrinogen levels, which have not
been evaluated in COVID-19 patients [164,165]. Alternative hypotheses for the beneficial
effects of corticosteroids in patients requiring oxygen may include (1) a direct mitigating
effect on oxidative stress, (2) the modulation of ACE2/ANGII/ANG (1-7)/Mas receptors,
(3) an increase in surfactant synthesis or the stimulating differentiation of AT-II cells, and
(4) an impact on the modulation of immunothrombosis. No clinical trials so far have
evaluated the effect of steroids on specific haematological/prothrombotic variables on
thrombotic tendencies.

7. Conclusions

The excessive use of oxygen to mitigate systemic hypoxia in patients with severe
COVID-19 pneumonia may be associated with worsening lung injury and progression into
the development of severe ARDS. Alveolar hyperoxia can lead to epithelial cell apoptosis,
alterations in surfactant metabolism, increased oxidative stress from ROS, the downregula-
tion of ACE2 receptors leading to a proinflammatory state from accumulation of ANGII,
and lung and gut dysbiosis predisposing to secondary bacterial infections. Preventative
strategies to minimise hyperoxic lung damage with the lowest possible FiO2, the use of
CPAP, and maintaining adequate oxygen delivery by cardiovascular resuscitative measures
may be of value from outset. Targeted therapies to moderate microangiopathy in combina-
tion with pulmonary vasodilators at this stage may be of value than a high FiO2, and these
interventions are currently being evaluated in ongoing clinical trials. However, in situ mi-
crothrombosis may be problematic to lyse due to the inability of the anticoagulant to reach
the vasoconstricted thrombosed site. iNO is often used as a rescue pulmonary vasodilator
during AHRF and ARDS. A trial of pulmonary vasodilators as a preventative strategy may
help to improve shunt fraction and to minimise oxygen-induced lung damage. Prolonged
courses of prone positioning in responders may minimise the requirement for a high FiO2.
There are several promising therapeutic targets in animal models of hyperoxic acute lung
injury, including statins, surfactant therapy, antioxidant therapies, and omeprazole which
warrants further evaluation.
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