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Abstract

Vector-like quarks have been predicted in various new physics scenarios beyond the Standard
Model (SM). In a simplified modelling of a (B,Y’) doublet including a vector-like quark Y, with
charge —%e, there are only two free parameters: the Y coupling ky and mass my. In the
five flavor scheme, we investigate the single production of the Y state decaying into Wb at the
Large Hadron Collider (LHC) Run-IIT and High-Luminosity LHC (HL-LHC) operating at /s
= 14 TeV, the possible High-Energy LHC (HE-LHC) with /s = 27 TeV as well as the Future
Circular Collider in hadron-hadron mode (FCC-hh) with /s = 100 TeV. Through detailed
signal-to-background analyses and detector simulations, we assess the exclusion capabilities of
the Y state at the different colliders. We find that this can be improved significantly with
increasing collision energy, especially at the HE-LHC and FCC-hh, both demonstrating an
obvious advantage with respect to the HL-LHC case in the case of high my. Assuming a 10%
systematic uncertainty on the background event rate, the exclusion capabilities are summarized
as follows: (1) the LHC Run-III can exclude the correlated regions of ky € [0.044,0.5] and my €
[1000 GeV, 3099 GeV] with integrated luminosity L = 300 fb~!; (2) the HL-LHC can exclude the
correlated regions of ky € [0.027,0.5] and my € [1000 GeV, 3653 GeV] with L = 3 ab™!; (3) the
HE-LHC can exclude the correlated regions of ky € [0.030, 0.5] and my € [1000 GeV, 4936 GeV]
with L = 3 ab™!; (4) the FCC-hh can exclude the correlated regions of ky € [0.051,0.5] and
my € [1000 GeV, 6610 GeV] with L = 3 ab!.
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I. INTRODUCTION

In 2012, the ATLAS and CMS experiments at the Large Hadron Collider (LHC) made
a significant discovery by confirming the existence of the Higgs boson, thereby provid-
ing further validation for the Standard Model (SM) [1, 2]. However, the SM has certain
limits in addressing several prominent issues, such as neutrino masses, gauge hierarchy,
dark matter and dark energy. In various new physics scenarios like little Higgs models
[3-6], extra dimensions [7], composite Higgs models [8-13] and other extended models
[14-16], Vector-Like Quarks (VLQs) are predicted to play a role in resolving the gauge
hierarchy problem by mitigating the quadratic divergences of the Higgs field. Such VLQs
are fermions with spin % and possess the unique characteristic of undergoing both left-
and right-handed component transformations under the Electro-Weak (EW) symmetry
group of the SM [17]. Unlike chiral quarks, VLQs do not acquire masses through Yukawa
couplings to the Higgs field and therefore have the potential to counterbalance loop cor-
rections to the Higgs boson mass stemming from the top quark of the SM. Furthermore,
VLQs can generate characteristic signatures at colliders and have been widely studied
(see, for example, [18-20, 20-53]).

A VLQ model typically introduces four new states: T, B, X and Y, their electric
charges being +§, —%, +§ and —%, respectively. In such kind of model, VLQs can
be categorized into three types: singlets (T'), (B), doublets (X,T), (T, B), (B,Y) and
triplets (X, T, B), (T, B,Y’). Notably, the Y quark cannot exist as a singlet. Further, it is
expected to decay with a 100% Branching Ratio (BR) into a b quark and W boson when
Y is lighter than the other VLQs, whether in a doublet or triplet.

In this study, we will focus on the observability of single Y production at the Large
Hadron Collider (LHC) Run-III, the High-Luminosity LHC (HL-LHC) [54, 55], the High-
Energy LHC (HE-LHC) [56] and the Future Circular Collider operating in hadron-hadron
mode (FCC-hh) [57], specifically, within the (B,Y") doublet realisation.

The ATLAS Collaboration conducted a search for a VLQ Y at 13 TeV with an inte-
grated luminosity of 36.1 fb~! [58]. They found that the upper limits on the mixing angle
are as small as [sinfz| = 0.17 for a Y quark with a mass of 800 GeV in the (B,Y’) doublet
model, and |sinf| = 0.16 for a Y quark with a mass of 800 GeV in the (T, B,Y) triplet
model. The CMS Collaboration also conducted a search for Y states in the Wb channel



at 13 TeV using 2.3 fb™! of data [59]. They searched for final states involving one electron
or muon, at least one b-tagged jet with large transverse momentum, at least one jet in
the forward region of the detector plus (sizeable) missing transverse momentum. Their
findings indicate that the observed (expected) lower mass limits are 1.40 (1.0) TeV for a
VLQ Y with a coupling value of 0.5 and a BR(Y — W~b) = 1. The ATLAS Collabora-
tion recently presented a search for the pair-production of VLQ 7" in the lepton-+jets final
state using 140 fb=! at 13 TeV [60]. They pointed out that the most stringent limits are
set for the scenario BR(T — W'b)= 1, for which T masses below 1700 GeV (1570 GeV)
are observed (expected) to be excluded at 95% Confidence Level (CL). And the limits
can also apply to a VLQ Y with BR(Y — W~b)= 1. All such limits stem from VLQ pair
production, induced by Quantum Chromo-Dynamics (QCD).

Furthermore, there are comparable exclusion limits on the mixing parameter sinfpr
from EW Precision Observables (EWPOs), for example within the (B,Y’) doublet model,
Ref. [17] found that the upper limits on sin 0 are approximately 0.21 and 0.15 at my =
1000 GeV and 2000 GeV respectively at 95% CL from the oblique parameters S and
T. Ref. [61] highlighted that, considering the W boson mass measurement by the CDF
collaboration [62], the 20 bounds on sinfg from the oblique parameters S,7 and U
are approximately [0.15,0.23] and [0.09,0.13] at my = 1000 GeV and 3000 GeV in a
conservative average scenario, respectively. They also pointed out that the constraints
from the Zbb coupling are weaker than those from the EWPOs for about my > 1600 GeV.

The single production of a VLQ is instead model dependent, as the couplings involved
are EW ones, yet they may make a significant contribution to the total VLQ production
cross section, compared to the pair production, due to less phase space suppression, in
the region of high VL(Q masses. In this work, we will in particular focus on the process
pp — Y (= W™b)bj — I~iybbj (with [~ standing for electron or muon and j standing for
first two-generation quark jets), combined with its charged conjugated process pp — Y'bj.
We expect that the forthcoming results will provide complementary information to the
one provided by VLQ pair production in the quest to detect a doublet Y quark at the
aforementioned future colliders.

The paper is structured as follows. In Section II, we introduce the simplified VLQ

model used in our simulations. In Section III, we analyze the properties of the signal



process and SM backgrounds. Subsequently, we conduct simulations and calculate the Y
state exclusion and discovery capabilities at the HL-LHC, HE-LHC and FCC-hh. Finally,
in Section IV, we provide a summary. (We also have an Appendix where we map the Y

state of our simplified model onto the (B,Y") doublet representation.)

II. DOUBLET Y VLQ IN A SIMPLIFIED MODEL

As mentioned, in a generic VL(Q model, one can include four types of states called T,

. . 2 1 .5 4 :
B, X and Y, with electric charges +3, —3, +3 and —3, respectively. Under the SM gauge
group, SU(3)c x SU(2), x U(1)y, there are seven possible representations of VLQs as

shown in Table I.

T B (T,B) (B,Y) (X,T) (T,B,Y) (X,T,B)
SUB)c| 33 3 3 3 3 3
SU@2), | 11 2 2 2 3 3
vy [3-4 8 8§ 4 3

TABLE I: Representations of VLQs and their quantum numbers under the SM gauge group.

These representations allow for couplings between VLQs and SM gauge bosons and

quarks. The kinetic and mass terms of the VLQs are described as [61],
L=) F(ip— Mp)F (1)
F

where F' = {U,D,Q1,Q5,Q7, 71, Tz}, Dy = 8, + igiYrB, + ig2S'W,) + ig,TAG},
M(A =1,2,---,8) and /(I = 1,2,3), related to the Gell-Mann and Pauli matrices

via T4 = %)\A and ST = %7‘1 , respectively. In our simplified model, we use an effective

Lagrangian framework for the interactions of a VLQ Y with the SM quarks through W

L/R

boson exchange, including as Y free parameters x5"/" (couplings) and my (mass) [63]:

Lo dtm [ S 9 g VG He b oy VY, 2
{Y F?/V\/§[L/R uw L/R] Y (2)

where d, / r(1 =1,2,3) represent the three types of quarks in the SM while L and R stand
for the left-handed and right-handed chiralities, respectively. We assume that the Y only



couples to the third generation quarks of the SM, that is, Y decays 100% into Wb and
therefore (; = (5 = 0,(3 = 1. Considering that the Y mass is much greater than any
SM quark mass (m,), that is, my > m,, the kinematic function can be approximated as

I'% =1 [63], so that the above Lagrangian can be simplified as

3,L/R
K — _
L= {g \};5 [YL/RW;:’YMbL/R} -+ HC} + myYY, (3)

where g is the EW coupling constant. Comparing the Lagrangian for the (B,Y’) doublet

L/R and

and (T, B,Y) triplet, we observe that the relationship between the coupling KJ?{/’
mixing angle 6%/% is sin §%/F = 2" for the doublet and sin 0%/F = /22" for the
triplet, with details to be found in Appendix A. Taking into account the relationship
tan 0L = L tan A% and tanff = o tan 0% as well as the condition mp > m;, we can
assume /-@?{/’L = 0 for the doublet and Ii?;/’R = 0 for the triplet. (In the subsequent content,
we will use Ky to denote R?}R for the sake of simplicity.) The decay width of the VLQ Y

can be expressed as [64],

ok (i — (2ot + ) "
16 sin? Oy méms. ’

Y — Wq) =

where apy = i—:, ¢’ is the Electro-Magnetic (EM) coupling constant and 6y, the EW mix-
ing angle. In this paper, we solely focus on the Narrow Width Approximation (NWA),
which we use for the purpose of simplifying scattering amplitude calculations. However, it
is worth noting that several studies [31, 40, 65, 66] have highlighted the limitations of the
NWA in scenarios involving new physics with VLQs. Specifically, it becomes imperative
to consider a finite width when this becomes larger than apy ~ 1%, given the substan-
tial interference effects emerging between VLQ production and decay channels, coupled
with their interactions with the corresponding irreducible backgrounds. To address the
limitations of our approach then, we will also present the ratio I'y /my in our subsequent
results and we emphasise since now that, crucially, for the region where I'y /my > 1%,
our sensitivities may be under- or over-estimated, as such interferences could be positive
or negative, respectively. Also, before starting with our numerical analysis, we remind
the reader that one can apply the results of our forthcoming simulations to a specific
VLQ representation, such as, e.g., (B,Y) or (T, B,Y), by utilizing the aforementioned

relationships.



FIG. 1: Representative Feynman diagram of single Y (in red) production followed by its sub-
sequent decay Y — W~ (— ["1)b. Here, ¢ in the initial state represents one of the first
two-generation quarks and bottom quark, j in the final state represents one of the first two-
generation jets, b in the intermediate (final) state represents a b-quark (jet) while [~ represents
either an electron or muon. Notice that, since we use the five flavor scheme, the g — bb splitting

in the diagram is actually accounted for through the PDF evolution.

In Figure 1, we show a representative Feynman diagram of the signal production
pp — Ybj and decay chain Y — W~ (— [~;)b. We expect the W boson and the high-
momentum b-jet to exhibit a back-to-back alignment in the transverse plane, originating
from the decay of the massive Y quark. The topology also encompasses an outgoing light
quark, often resulting in a forward jet within the detector. Furthermore, the second b-jet
arising from the splitting of a gluon into a pair of b-quarks can be observed in either the
forward or central region. According to these features of signal events, the primary SM
backgrounds include pp — tbj, pp — WW b, pp — Zbj, pp — W*bj, and their charge
conjugated processes. Among them, pp — tbj and pp — WHW b are irreducible back-
grounds, while the others are reducible backgrounds. We have also assessed additional
backgrounds, such as pp — tf, and found that their contribution can be ignored based on
the selection criteria that will be discussed later.

The signal production cross section is determined not only by the mass my but also
by the coupling strength ky. The cross section is directly proportional to x3- for a fixed

my as long as the NWA is met [66]. In Figure 2, we show the tree-level cross sections for
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FIG. 2: The tree-level cross sections for single Y production as a function of the mass my
for various values of the coupling ky. The charge conjugated process has also been taken into

account.

single Y production as a function of the mass my. We can see that, as my increases, the
cross section gradually decreases due to a smaller phase space.

In Figure 3, we show the tree-level cross sections for the signal benchmarks my =
1000 GeV (labeled as Yigoo) and my = 1500 GeV (labeled as Yi500) with ky = 0.1 and
ky = 0.5 as well as the tree-level cross sections for the background processes. It is
evident that the rates for the latter are significantly larger than those for the former.
Consequently, we should design efficient selection criteria (in terms of kinematic cuts) to
reduce the number of background events while preserving the signal events. Furthermore,
the cross sections for both signal and backgrounds increase with increasing collider energy.

The Next-to-Leading Order (NLO) (or even higher order) QCD corrections for the SM
background cross sections at the LHC have been extensively explored in Refs. [67-71].
The K factors associated with the background cross sections adopted in our calculations
are summarized in Table II. (Note that, despite they change somewhat with energy, we

neglect here changes of K factors values at different colliders, like in Ref. [72].)
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FIG. 3: The tree-level cross sections as a function of the center-of-mass energy /s for the

signal benchmarks and backgrounds. Solid lines represent the signal processes and dashed lines

represent the background processes.

conjugated processes.

TABLE II: K fac

There are stringe
61, 73-83]. These o
electromagnetic curr

defined in references

S

The cross sections also include the corresponding charge

Processes Zbj Wb WTW~b thj

K factor 1.3 [68] 1.9 [69] 2.1 [69] 1.4 [70, 71]

tors representing the QCD corrections for the background processes.

nt limits from the oblique parameters S, 7' and U in EWPOs [17,
blique parameters relate to the weak isospin current J{f 53 and the
ent Jb = J§' + Ji, involving their vacuum-polarization amplitudes as

[74, 76]:

o (Zm) = B(0) ~ Vagn)}

16: {Ssv(m}) — sy (0)}, (5)
e (0 = Zn0), ©)
167 7 (Zalm) — ()} - 16_” = () - Eu(0)}, 0



where myy and my denote the mass for W and Z boson, respectively. The Z-boson cur-
rent, represented by e(J} — s3,J§) / (sin Oy cos By), involves e linked to the fine-structure
constant o through e? = 4wa. Consequently, the oblique parameters can be reformulated

using the vacuum polarizations of the SM gauge bosons as:

¥y (0) _ Eww (0)

ol = mZ mZ, (8)
o o _ Ty (mp)-¥py(0) 0% () cos20y  OXLY (p°)
sin? 20y m?2 Op* |y costwsinby I |0
ooz () OXLeY (p?) cos20y, 0¥ (p°) ©
N op* | op* |y cosbhysinby I |
0y T ) ) | o, T ) % )
4 sin® Oy mé, m%
new (.2 new (.2
+sin? Oy —327(; 2(p ) + sin 20y, —275 2(p )
p p2=0 p p2=0
- _ 9% (0) 0355 (v°) 035" (0°)

| p2—0 + cos? Oy |p2—0 + sin? Oy

0557 (1*)
il A
op?

op? op?

+ sin 2‘9W

The contributions in the doublet (B,Y) model to these oblique parameters can be ap-

proximated as follows [61]:

1 2 M?2 11 K2 3m? 2 M?
S~ — < —Ziln— + =k, U~ —X T~ ! 3 11
{ 3T T "’”Y}’ 27’ " Swsin Oy, ¥ 3m2 (11)

Here, M? = (m% —mZr3)/(1— k%) and my = my cos Oy,. For the numerical calculation,
the y? function for the oblique parameter fit should be less than 8.02 for three degrees
of freedom to compute the 20 limits, respectively. S = —0.02 + 0.1, 7' = 0.03 + 0.12,
U = 0.01£0.11; there exists a strong correlation of 92% between the S and T parameters,
while the U parameter exhibits an anti-correlation of -80% (-93%) with S (T") [84]. Specific

numerical values of the input parameters are detailed in Eq. 12.

III. SIGNAL TO BACKGROUND ANALYSIS

The signal model file is sourced from FeynRules [85] and parton-level events are gener-
ated using MadGraph5_aMC@NLO [86] with the NNPDF23LO1 [87] Parton Distribution

Function (PDFs). Dynamic factorization and renormalization scales, set as default in

9



MadEvent [88], are utilized. Subsequently, fast detector simulations are conducted using
Delphes 3.4.2 [89] with the built-in detector configurations of the LHC Run-I1I, HL-LHC,
HE-LHC [90] and FCC-hh [91]. Jets are clustered by FastJet [92] employing the anti-kt
algorithm [93] with a distance parameter of AR = 0.4. Furthermore, MadAnalysis 5
[94] is used to analyze both signal and background events. Finally, the EasyScan HEP
package [95] is utilized to connect these programs and scan the VLQ parameter space.

The numerical values of the input SM parameters are taken as follows [84]:

my = 4.18 GeV, m; = 172.69 GeV, my = 91.1876 GeV,
1

in’ Oy = 0.22 =—
sin® Oy = 0.22339,  «(myz) 197 051

as(myz) = 0.1179. (12)

Considering the general detection capabilities of detectors, the following basic cuts are

chosen:
AR(JI,y) >0.4 (ZL’,y:l,],b),

pr > 25 GeV, Imi| < 2.5,
ph > 20 GeV, In,] < 5.0,
Py > 25 GeV, || < 2.5,

where AR = /A®? 4+ An? denotes the separation in the rapidity(n)-azimuth(¢) plane.
To handle the relatively small event number of signal (s) and background (b) events,
we will use the median significance Z to estimate the expected discovery and exclusion

reaches [96, 97],

b+s+zx 1 b—s—+zx 1
Zezcl_\/Q {s—bln (2—b> —ﬁln <2—b>:| —(b+3—l‘) (1"‘%), (13)

Zise = \/2 [(s +b)In ((;i(l;)(i 55‘12;) _ 5—12111 (1 + %)} (14)

402 sb?
xz\/(8+b)2——1+52b7 (15)

where ¢ is the uncertainty that inevitably appears in the measurement of the background.

In the completely ideal case, that is =0, Eq. (13) and (14) can be simplified as follows,

zml:\/z [s—bln <1+§)} (16)
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and

Zuse =2 [0 (143) = .

A. LHC Run-IIT and HL-LHC

(17)

Firstly, we establish a trigger that emulates the LHC Run-III and HL-LHC detector

response based on the count of final state particles detected in each event. Given the

limited efficiency of the detector in identifying jets, we adopt a lenient approach towards

the number of jets. Consequently, the final trigger criteria are defined as follows: N; = 1,

NjEQ,NjSZLandszZ

Considering that the mass of Y is notably greater than that of its decay products, the

latter exhibit distinct spatial characteristics in pseudorapidity 1 and spatial separation AR

compared to backgrounds. These differences inform our selection criteria. Furthermore,

Cuts  |Yis00 (fb) Yisoo (fb)|tbj (fb) [Wbj (fb)|[WHW b (fb)| Zbj (fb)
Basic Cuts 1.99 0.97 ]13855.00| 15016.00 18967.00 |13897.00
Trigger 0.29 0.13 2227.40 | 775.10 1251.50 312.80
Cut 1 0.25 0.12 40.09 11.95 39.12 2.63
Cut 2 0.23 0.11 7.46 4.07 8.07 0.63
Cut 3 0.16 0.08 4.51 3.02 4.93 0.39
Cut 4 0.08 0.05 0.08 1.35 1.18 0.15
Cut 5 0.08 0.04 0.08 1.00 0.89 0.13
Cut 6 0.04 0.03 0.01 0.02 0.05 0.00
Cut 7 0.03 0.02 0.01 0.00 0.03 0.00

TABLE III: Cut flows of the signal with ky = 0.1 and backgrounds at the 14 TeV HL-LHC,

where the conjugate processes pp — tbj, W~bj, WHW b, Zbj have been included.

since the mass range of Y is much heavier than the particles originating from background

processes, we anticipate that the transverse momentum (referred to as pr and its mag-

nitude denoted as pr) of decay products of the Y state will be substantially larger than

those of the same particles from background processes. Besides, we will also consider

variables such as Fr, Hy and My to distinguish the signal from the background. Here,

11



Fr represents the magnitude of the sum of the transverse momenta of all visible final
state particles, M1 is analogous to J; but only considers all visible hadronic momenta

while the transverse mass Myp is defined as follows:

Mz = [Er(1) + Er(2)]* = [pr(1) + pr(2)]?
= m? + mg + Z[ET(l)ET(2) _ﬁT(l) ﬁT(z)]v

where Br(i) = /p2(i) + m? and m? = p? with p; representing a 4-vector.

In Figure 4, we present the normalized distributions of p]fl, My, M, szll Mbll1
ARj by Wy and Fr for both my = 1500 GeV and my = 1800 GeV with xy = 0.1 as
well as for the background processes. Based on these distributions, we have devised the

following selection criteria to distinguish the signal from the various backgrounds!:
o Trigger: Ny =1, N; > 2, N; <4, and N, > 2;
o Cut-1: pJ} > 300 GeV;
o Cut-2: My,;, > 500 GeV;
o Cut-3: Mj ;, > 500 GeV;
o Cut-4: MJ" > 200 GeV and M2" > 200 GeV;
o Cut-5: AR 5, < 1.0;
o Cut-6: M, > 600 GeV;

o Cut-7: Fr > 200 GeV.

By applying these cuts, we can see that the signal efficiencies for my = 1500 GeV
and my = 1800 GeV are 1.35% and 2.41%, respectively. The higher efficiency for the
latter can be attributed to the larger transverse boost of the final state originating from
an heavier Y. Meanwhile, the background processes are significantly suppressed. For

reference, we provide the cut flows in Table III.

I The subscript on the particle symbol is arranged according to the magnitude of the particle transverse

momentum: e.g., in the case of b-jets, pr1 is greater than pg?.

12



We present the exclusion capability (2. = 2) and discovery potential (Zgis. = 5) for
Y with two different integrated luminosities, 1000 fb~! and 3000 fb~!, at the HL-LHC,
as shown in the top line of Figure 7. This analysis considers both the ideal scenario
without systematic uncertainties and the case with a 10% systematic uncertainty. In
the presence of 10% systematic uncertainty, the Y can be excluded in the correlated
parameter space of ky € [0.044,0.5] and my € [1000 GeV, 3099 GeV] with an integrated
luminosity of L = 300 fb~!, which corresponds to the maximum achievable integrated
luminosity during LHC Run-IIL. If the integrated luminosity is raised to 3000 fb~!, aligning
with the maximum achievable at the HL-LHC, the excluded parameter zones extend to
ky € [0.027,0.5] and my € [1000 GeV, 3653 GeV]. Furthermore, the discovery regions are
Ky € [0.072,0.5] ([0.047, 0.5]) and my € [1000 GeV,2621 GeV] ([1000 GeV, 3047 GeV])
with L = 300 fb~" (3000 fb~1).

B. 27 TeV HE-LHC

Cuts  |Yisoo (fb) Yigoo (fb)|thj (fb) [W+bj (fb)|[WHW b (fb)| Zbj (fb)
Basic Cuts| 16.86  10.01 |41398.00| 38670.00 | 69303.00 |69658.00
Trigger | 1.78 0.10 |6224.50 | 2149.10 | 444540 | 1700.70
Cut 1 1.50 091 | 86.07 | 29.51 133.60 10.73
Cut 2 1.36 0.85 | 18.30 | 11.14 29.52 2.37
Cut 3 0.95 062 | 12.83 | 9.0 19.27 1.53
Cut 4 0.35 027 | 0.17 2.94 3.10 0.35
Cut 5 0.33 0.25 0.17 2.01 2.36 0.28
Cut 6 0.12 0.16 0.00 0.04 0.37 0.00
Cut 7 0.09 0.12 0.00 0.04 0.14 0.00

TABLE IV: Cut flows of the signal with ky = 0.1 and backgrounds at the 27 TeV HE-LHC.

This section delves into the prospective signal of Y at the future 27 TeV HE-LHC.
In Figure 5, we exhibit the normalized distributions for both signal and background

processes, forming the basis for our distinctive selection criteria:
o Trigger: Ny=1, N; > 2, N; <4, and N, > 2;

13
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e Cut-1: pjfl > 350 GeV;

o Cut-2: My, > 550 GeV;
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o Cut-5: AR, < 0.5;
o Cut-6: H; > 650 GeV;

o Cut-7: By > 200 GeV.

The kinematic variables remain consistent with those of the 14 TeV case, but the cut
threshold values for transverse momentum-based variables, such as H, > 650 GeV,
are higher than those in the 14 TeV case. This adjustment accounts for the increased
center-of-mass energy. Detailed cut flows are outlined in Table IV and the exclusion
capability and discovery potential are shown in the second row of Figure 7. The Y
quark can be excluded within the correlated parameter space of ky € [0.033,0.5] and
my € [1000 GeV,4783 GeV] with 10% systematic uncertainty for L = 1000 fb™'. If the
integrated luminosity is raised to the highest designed value 10 ab™!, the excluded parame-
ter regions can be extended to ky € [0.029,0.5] and my € [1000 GeV, 4987 GeV]. For L =
3000 fb™, the discovery regions are ky € [0.053,0.5] and my € [1000 GeV, 3885 GeV]. If
the integrated luminosity is raised to the highest designed value 10 ab™!, the discovery

parameter regions can be extended to ky € [0.051,0.5] and my € [1000 GeV, 3943 GeV].

C. 100 TeV FCC-hh

Cuts Yi500 (fb) Y1800 (fb) tl_)j (fb) Wer] (fb) WTW=b (fb) Zbj (fb)

Basic Cuts| 261.26 183.18 |237538.00(206093.00 | 573258.00 {291603.00
Trigger 13.44 8.42 33633.00 | 17209.00 40939.00 6363.90

Cut 1 6.37 4.20 209.30 112.70 605.90 18.95
Cut 2 5.63 3.89 54.16 48.43 163.30 7.58
Cut 3 3.30 2.51 3.33 23.91 03.74 3.21
Cut 4 3.14 2.43 3.33 17.72 45.12 3.21
Cut 5 1.40 1.70 0.48 1.65 6.15 0.00
Cut 6 0.81 1.16 0.24 0.21 2.87 0.00

TABLE V: Cut flows of the signal with ky = 0.1 and backgrounds at the 100 TeV FCC-hh.
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FIG. 6: Normalized distributions for the signals with my = 1500 GeV and 1800 GeV, and
backgrounds at the FCC-hh.

Here, we explore the anticipated signal of Y in the context of the future 100 TeV
FCC-hh. The figures in Figure 6 portray normalized distributions for both signal and
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background processes, laying the groundwork for our distinctive selection criteria:
o Trigger: Ny =1, N; > 2, N; <4, and N, > 2;

Cut-1: p} > 350 GeV, |n;,| < 1;

Cut-2: Mb1,ll > 550 GeV;

Cut-3: M»?" > 150 GeV and M2 > 250 GeV;

Cut-4: AR;, 5, < 0.5 GeV;

Cut-5: My > 650 GeV;

o Cut-6: 7 > 300 GeV.

Compared to previous cases, an additional variable, 7;,, is introduced here. Upon
analyzing the distributions of 7;, it is apparent that the signal tends to be more
central than the backgrounds. Thus, we require |n;,| < 1. The signal efficiencies
for my = 1500 GeV and my = 1800 GeV are 0.20% and 0.45%, respectively. No-
tably, there is a significant suppression in the background processes. Comprehensive
cut flows are provided in Table V. The exclusion capability and discovery potential
are illustrated in the final row of Figure 7. It is evident that systematic uncertainty
has a considerable impact on the results. Even with a 10% systematic uncertainty,
the parameter space region will significantly shrink. Accounting for the 10% system-
atic uncertainty, the Y quark can be excluded within the correlated parameter space of
Ry € [0.051,0.5] and my € [1000 GeV, 6610 GeV] at the highest design value of luminos-
ity, L = 30 ab™'. Additionally, the Y state can be discovered within xy € [0.088,0.5] and
my € [1000 GeV,4624 GeV] at L = 30 ab™".

IV. SUMMARY

In a simplified model, we have investigated the single production of a doublet VLQ
denoted by Y in the Wb decay channel at the the /s = 14 TeV HL-LHC, /s = 27 TeV
HE-LHC and /s = 100 TeV FCC-hh, following its production via pp — Y'bj, with the

W decaying leptonically (into electrons and muons plus their respective neutrinos). We
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FIG. 7: The exclusion capability (Zex = 2) and discovery potential (Z4ic = 5) for the Y state
at the LHC Run-III and HL-LHC, /s = 27 TeV HE-LHC and /s = 100 TeV FCC-hh. Solid
lines represent the ideal scenario without systematic uncertainty, the dotted lines represent the
scenario with a 10% systematic uncertainty. Dashed lines denote the contours of I'y /my. The
blue (grey) shaded area indicates the exclusion region of the current LHC at /s = 13 TeV with
L =36.1 fb~! (140 fb~1), as reported in Ref. [58] (Ref. [60]). Meanwhile, the yellow shaded
area denotes the allowed region for the oblique parameters S, T and U, considering the current

measurements in Ref. [84].
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Colliders L/fb~! Uncertainty Exclusion Discovery
Ky my (GeV) Ky my (GeV)
300 0 [0.043,0.5] [1000,3111] [0.069,0.5] [1000,2665]
LHC Run-III

300 10% [0.044,0.5] [1000,3099] [0.072,0.5] [1000,2621]
1000 0 [0.031,0.5] [1000,3486] [0.049,0.5] [1000,2988]
3000 0 [0.023,0.5] [1000,3820] [0.037,0.5] [1000,3267]

14 TeV HL-LHC
1000 10% [0.033,0.5] [1000,3398] [0.055,0.5] [1000,2880]
3000 10% [0.027,0.5] [1000,3653] [0.047,0.5] [1000,3047]
1000 0 [0.026,0.5] [1000,5213] [0.042,0.5] [1000,4359]
3000 0 [0.020,0.5] [1000,5811] [0.031,0.5] [1000,4863]
10000 0 [0.015,0.5] [1000,6476] [0.024,0.5] [1000,5513]

27 TeV HE-LHC
1000 10% [0.033,0.5] [1000,4783] [0.057,0.5] [1000,3783]
3000 10% [0.030,0.5] [1000,4936] [0.053,0.5] [1000,3885]
10000 10% [0.029,0.5] [1000,4987] [0.051,0.5] [1000,3943]
1000 0 [0.022,0.5] [1000,9953] [0.035,0.5] [1000,7933]
3000 0 [0.016,0.5] [1000,11259] [0.026,0.5] [1000,9000]
10000 0 [0.014,0.5] [1000,12254] [0.021,0.5] [1000,10425]
30000 0 [0.010,0.5] [1000,13771] [0.015,0.5] [1000,11649]

100 TeV FCC-hh
1000 10% [0.051,0.5] [1000,6610] [0.088,0.5] [1000,4624]
3000 10% [0.051,0.5] [1000,6610] [0.088,0.5] [1000,4624]
10000 10% [0.051,0.5] [1000,6610] [0.088,0.5] [1000,4624]
30000 10% [0.051,0.5] [1000,6610] [0.088,0.5] [1000,4624]

TABLE VI: Summary for 20 exclusion limits and 50 signal discoveries at the LHC Run-IIT and
HL-LHC, /s = 27 TeV HE-LHC and /s = 100 TeV FCC-hh.

have performed a detector level simulation for the signal and relevant SM backgrounds.
Considering a systematic uncertainty of 10% with an integrated luminosity of 3000 fb=?,
the exclusion and discovery capabilities, as displayed in Table VI, can be described as
follows: (1) The HL-LHC can exclude (discover) the correlated regions of ky € [0.027,0.5]
([0.047,0.5]) and my € [1000 GeV, 3653 GeV] ([1000 GeV, 3047 GeV]); (2) The HE-LHC
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can exclude (discover) the correlated regions of ky € [0.030,0.5] ([0.053,0.5]) and my €
[1000 GeV, 4936 GeV] ([1000 GeV, 3885 GeV]); (3) The FCC-hh can exclude (discover)
the correlated regions of ky € [0.051,0.5] ([0.088,0.5]) and my € [1000 GeV, 6610 GeV]
([1000 GeV, 4624 GeV]).

Furthermore, we highlight that the stringent constraint on the VLQ Y, derived from
the Y pair production search with BR(Y — W~™b) = 1, imposes my > 1700 GeV.
In this context, we reassess the potential of LHC Run-III to explore the VLQ Y, re-
vealing that the associated parameter regions of rky € [0.044,0.5] ([0.072,0.5]) and
my € [1000 GeV, 3099 GeV] ([1000 GeV, 2621 GeV]) can be excluded (discovered) based
on LHC Run-IIT luminosity. We foresee that our investigation will spur complementary

explorations for a potential Y quark at forthcoming pp colliders.
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A. APPENDIX: RELATIONSHIP BETWEEN EQ. (1) AND EQ. (3)

In the appendix, we provide the relationship between the (B,Y’) doublet representa-
tion and the simplified model used in the simulation. However, we do not present the
relationship between the (X, B,Y") triplet representation and the simplified model here
because it can be easily derived from the remainder of this Appendix.)

The Lagrangian for the Y coupling with the SM gauge fields and the ¥ mass term is

L=Qs(il) — Mp)Qs (A1)
where one has

By ~ _ .y Lo sl
Q5 = v 7Q5 - (307%)7E :’YMD;MD;L = 8M+Zg YFBM+§QT WH <A2)
0

and the weak isospin g and weak hypercharge ¢’ are the SU(2), and U(1)y couplings,
respectively. We use a subscript 0 to represent the interaction eigenstates. The unphysical
fields B, and W) (I = 1,2,3) can be transformed into the physical fields of the photon

A, the neutral Z boson Z,, and charged W bosons W;t via the following equations:

B, = cosOw A, —sinbw 2, Wj = sinOw A, + cos Ow Z,,,

1 )
1 _ — 2 _
WM = E(W; +WM ),Wu = E(WJ — WM) (A.3)

where 0y is the Weinberg angle, which can be expressed via sin 0y, = 5 and cos Oy = 5.
Here, M is a free mass parameter. Considering the charge of Y, the Lagrangian for the

Y coupling with the SM gauge fields is

_ 5 g W3 Wl — iW2
E — e IB _ g 122 1 © w
QsQ5V Qs 69 T Y W,} +2'W5 —Wi Qs
_1 2 1.2
_ Q 56‘4# - QCgSQ (1 + 3 Sin 9) ZN _\/iﬁI/Vlj ,LLQ
=5 P 4 g s . 9 T &5
_TQWM g@AM + 2cos 0 (1 — 3sm (9) ZN

1 = g 2 . _
= —eByA,~N"By — 1+ =sin%6 | ByZ,*B
g0 =0 2C089( +38m ) 04wy 20

4 _ 8 _
—eYy A, MY, 1— —sin?0 | Y, Z,~"*Y;
+360 v 0+2C089( 3o ) 02w %0

VoW, 7By — %Bowmf%. (A.4)

_9

V2
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In our study, (B,Y) states exclusively couple with the third-generation quarks of the SM.
Therefore, the Lagrangian for the mass term of the bottom quark mass eigenstate b and

its partner mass eigenstate B can be written as

yd - yd4i by
Lo == (5 BE) | 2V2 P2 {0 ) e, (A5)

?/43\% M?° By
where v = 246 GeV is the Vacuum Expectation Value (VEV) of the Higgs field, MY is a
bare mass term, y%; and y%; are Yukawa coupling coefficients while y¢, = 0 for doublets.

The mass matrix can be diagonalized by the two mixing matrices V¥ and V%, as follows:

bOL7R LR bhft
IR = V ’ (A6>

By BLE
where L and R stands for the left-hand and right-hand chiralities, respectively. There
exists the following relationship too: By = B§ + Bf and Yy = Yi* + Y. The 2 X 2 unitary

matrices V¥ and V# can be parameterized by the mixing angles 8% and 0%, respectively,

as
LR cos O sin &R
Vit = (A.7)
—sin §5F cos fF
. . L,R . L.
We can then determine the expressions By""™" = — sin 054 + cos 1R BLE. For Y, it is

as simple as YOL’R = YER where Y represents the mass eigenstate. This is because there
are no +4/3 particles in the SM. Therefore, we can derive the interactions between the

Y, W and b states as follows:
Lyywty = —% (Yt +Y") W, " (—sin 0"b" — sin 0"b") + H.c.
_ 9 opLbvLyy—anpl o 9 i pRYy R —AupR
= \/ﬁsmﬁ YEW b +\/§sm0 Y7W, 446" + Hec. (A.8)

Using unitary matrices, we can finally obtain

d v d v
= = my 0
VL y:;?)ﬂ Y34 /3 (VR — b (A.9)
After performing calculations involving trigonometric function identities, we can obtain?:
tan 0% = —2 tan OR (A.10)
mp

2 For the (T, B,Y) triplet, y4; = 0, we can deduce instead that tan 8% = 7 tan 6r.
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Since mp > my, we can conclude that sin % > sin % in the (B,Y) doublet. Therefore,
our study primarily concentrates on the right-handed coupling part of the interactions

involving the Y, W and b states.
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