Classical and Quantum
Gravity

>, PURPOSE-LED

“>f¥ PUBLISHING"

PAPER « OPEN ACCESS

Ultraviolet finite resummation of perturbative
quantum gravity

To cite this article: Tim R Morris 2024 Class. Quantum Grav. 41 205006

View the article online for updates and enhancements.

You may also like

- Motion of a ball attached to a mass via a

hole in a horizontal table
Rod Cross

- Multiple Periods in the Dwarf Nova GZ

Cancri
Albert Bruch

- Corrigendum: Design of GaAs microcavity

on SiN wavequide for efficient single-
photon generation by resonant excitation
(2024 Mater. Quantum. Technol.

4 026201)

Natthajuks Pholsen, Yasutomo Ota and
Satoshi lwamoto

This content was downloaded from IP address 152.78.1.71 on 15/11/2024 at 14:28


https://doi.org/10.1088/1361-6382/ad76f6
/article/10.1088/1361-6552/ad79d2
/article/10.1088/1361-6552/ad79d2
/article/10.3847/2515-5172/ad91ac
/article/10.3847/2515-5172/ad91ac
/article/10.1088/2633-4356/ad74c5
/article/10.1088/2633-4356/ad74c5
/article/10.1088/2633-4356/ad74c5
/article/10.1088/2633-4356/ad74c5
/article/10.1088/2633-4356/ad74c5
/article/10.1088/2633-4356/ad74c5

OPEN ACCESS

I0OP Publishing

Classical and Quantum Gravity

Class. Quantum Grav. 41 (2024) 205006 (30pp) https://doi.org/10.1088/1361-6382/ad 7616

Ultraviolet finite resummation of
perturbative quantum gravity

Tim R Morris

STAG Research Centre, Department of Physics and Astronomy, University of
Southampton, Highfield, Southampton SO17 1BJ, United Kingdom

E-mail: T.R.Morris@soton.ac.uk

Received 22 April 2024; revised 4 August 2024

Accepted for publication 3 September 2024 @
Published 17 September 2024

CrossMark
Abstract

If the metric is chosen to depend exponentially on the conformal factor, and if
one works in a gauge where the conformal factor has the wrong sign propag-
ator, perturbative quantum gravity corrections can be partially resummed into
a series of terms each of which is ultraviolet finite. These new terms however
are not perturbative in some small parameter, and are not individually BRST
invariant, or background diffeomorphism invariant. With appropriate paramet-
risation, the finiteness property holds true also for a full phenomenologically
relevant theory of quantum gravity coupled to (beyond the standard model)
matter fields, provided massive tadpole corrections are set to zero by a trivial
renormalisation.

Keywords: resummation, perturbation theory, quantum gravity

1. Introduction

As is well known, quantum gravity suffers from the problem that it is not perturbatively renor-
malisable. Kinematic accidents allow pure gravity at one loop to be free of divergences [1]
(after a reparametrisation of the metric g,,,, off shell), but with generic matter or at two loops,

no such mirac

le occurs [1-4]. However, in order to make sense of the Feynman integrals, one
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works in Euclidean signature. Then, since the Einstein—Hilbert action'

SEH:fZ/ddx\/gR/nz, (1.1)

is unbounded from below, the Euclidean signature partition function

Z = /Dgw eS| (1.2)

is not even naively convergent [5]. If this embarrassment is to make any sense in an exact
theory (as opposed to treating quantum gravity merely as an effective theory), it must be that
this so-called ‘conformal factor instability’ can somehow be reinterpreted. We will show that
for particular parametrisations of the conformal factor and in a wide class of gauges, it indeed
can be: it can be seen as supplying a UV (ultraviolet) regularisation, rendering the theory
finite in any dimension d > 2. These properties extend to the full phenomenologically relevant
action, thus including cosmological constant term and matter fields, provided that gauge fields
are parametrised appropriately and massive tadpole corrections are set to zero by a trivial
renormalisation (for example by normal ordering).

Let us emphasise that, apart from these simple provisos, we do not inject any new ingredi-
ents into the theory. The result just follows from performing partial resummations of the per-
turbation series in x. However the resulting terms are non-perturbative in x, leaving no obvi-
ous expansion parameter. A related problem is that these terms fail individually to be invari-
ant under Becchi, Rouet, Stora and Tyupkin (BRST) transformations for diffeomorphisms, or
under background diffeomorphisms. We show that one can choose gauges in such a way that
the gauge parameter itself controls the size of these terms, but not such that higher orders terms
are successively smaller or such that one can recover diffeomorphism invariance term by term.

It is in fact an old speculation that quantum gravity should somehow provide a regularisa-
tion of the UV divergences one finds in quantum field theory [6, 7], for example through the
production of black holes [8]. It has also been argued that the spinfoam realisation of Loop
Quantum Gravity approach is naturally UV finite [9, 10]. We do not see any substantive con-
nection between these ideas and the results reported here. Since the formulation described
here has no UV divergences, the renormalization group will play no role. Thus there is also no
obvious connection to the asymptotic safety approach [11, 12]. We leave to the conclusions
(section 8), a discussion of earlier attempts [13—15] with closer connections to the ideas in this
paper.

Comments on some approaches [16—18] that are actually excluded in this framework are
given at the end of section 2. In that section we set out the two key properties that we need,
namely that all interaction terms are weighted by a positive exponential of the conformal factor,
and that the latter propagates with the wrong sign. We show how this can be achieved for pure
gravity, and for gravity coupled to matter fields, in all dimensions d >?2. We note that fun-
damental higher derivative gravitational terms, such as the Starobinsky term [18], are how-
ever excluded. Then in section 3 we demonstrate how the perturbation series in x can be
resummed into UV finite terms, I';,, up to the trivial renormalisations mentioned earlier. In
section 3.1 we comment on how the latter ameliorate the so-called fine-tuning problem, while
in section 3.2 we add some side remarks on why analytic continuation [5] does not alter the

I'We set k2 = 327 G. Then k = 2 /M, where M is the reduced Planck mass. Our conventions are Ruv = R‘L(w, and
Vi, Vu* =R Ao

pur o
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result, on an alternative point-splitting regularisation, and on more general parametrisations of
the ¢ dependence. In section 4 we provide the proof of the compact formulae for the I',,, which
we used in the previous section. In section 5 we demonstrate that with appropriate paramet-
risations, BRST invariance, more precisely the Zinn—Justin equations, can also be formulated
as a UV finite expansion over the I',,. Then in section 6 we consider quantisation around curved
space. We show that it is straightforward to do so whilst preserving the UV finiteness of the
corresponding I',. However at this stage we encounter a problem: we show that background
diffeomorphism invariance is not recovered by any finite resummation of the I',,. It is clear
that the Zinn—Justin identities will similarly be violated at any finite order. As we discuss
in section 8, this problem is potentially profound particularly because we no longer have an
obvious parameter to control the expansion. By choosing the most general gauge at the bilinear
level, we show in section 7 that a particular gauge parameter & controls the strength of the UV
regularisation such that £ — 0 (co) corresponds to making the regularisation infinitely weak
(strong). However we see in detail that neither limit allows us to recover a controlled expan-
sion. Finally in section 8§ we summarise and draw our conclusions, in particular we point to
the existence of simpler UV finite models whose study might allow further progress.

2. Two key properties
To linear order in x, the metric g,,,,, expanded around flat space, is given by
Suv = O+ Hp + 0 (K2) (2.1
where this defines the fluctuation field, H,,,,. We split out its trace, writing:
Huy =huw+3%90,,,  where ¢ =1%6""H,,, and 6" h,, =0. (2.2)
Non-perturbatively in «x, we parametrise the metric as
g =€ lg,,. (2.3)

where g,,,, is some fixed function of only the traceless part, 4, and to be consistent with
above must satisfy

8uv = 0w+ Khyy + O (K7) (2.4)

but we leave it otherwise arbitrary. We note however that this allows for parametrisations of
the metric which are non-singular for all real values of ¢ and h,,,, such as the exponential
parametrisation considered in [14], see also e.g. [19-21]. Substituting parametrisation (2.3)
into the Einstein—Hilbert action (1.1), gives

— 1. d-1)(d-2).,,
SEH:—Z/d"x\/ge (d Z)Wd{,.@RjL(c)lg)gu aﬂwaygp}. (2.5)

Two key properties that we need are that the interaction terms are all weighted by a positive
exponential of (o, which we see is true here for all d > 2, and that ¢ propagates with the wrong
sign.
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This latter property is natural given that ¢ has the wrong sign kinetic term in (2.5), but in
fact whether it propagates with the wrong sign is a gauge dependent statement”. For example
for gauge fixing, we can add to the action

1
/ dix {35“”F#FV _ KE”QFH} 7 (2.6)
where

1 1 2
F, = ;50& <8agﬁu - Zauga/3> = 5aﬁaahl3u - (d - 1) Oup +0(r)

B 2k 1, . 1, . 2 . 1 .
_ saBelre/d (Haaggu — ﬂﬁﬂgag + Eaagogg# - dﬁﬂgogaﬁ) , 2.7
is DeDonder gauge (plus interactions when written in terms of the fluctuation fields) and « is
a gauge parameter. The second term in (2.6) is the ghost action, where

08uv = 260, 8o + KC* gy = kel (28(#0‘1@'1,)@ + 2gcaaa¢gw + c“@agw,)
2.8)

is the BRST transformation of the metric, which is just its Lie derivative along xc*. Here, c*
and ¢ are the ghost and antighost respectively. The combined action (2.5) and (2.6) has the
usual BRST invariance, the remaining BRST transformations being

Oct = kc¥0,ct, oct = adtF, . 2.9

(As usual Q is nilpotent but only on shell, because Q*c* = a 6*¥ QF,, vanishes only after using
the ¢ equations of motion. We could have also introduced an auxiliary field b* for full off-shell
nilpotency, following e.g. [22].)

At first sight the parametrisation (2.3) is dangerously ambiguous, introducing a new gauge
transformation where a change d¢ can be compensated by a change 6/,,,,. This would remain
unfixed by (2.7), so one would have to seek to eliminate it by imposing for example that g,
has unit determinant. Actually the restriction (2.4) eliminates such a gauge transformation to
any order in x. To see this note that, from expanding (2.3), a small shift 6o would have to be
compensated by a small change 64, such that:

2
0= 08,0, + 8l +[0 () (Sh 01 89 ,, (2.10)

Then the lowest order of « at which %1 06, is non-vanishing, must be cancelled by a part of
the same order in d4,,,,. But this is impossible because d4,,, is traceless. A related point is that
the gauge fixing we have done is sufficient to allow the kinetic terms to be inverted and give
the propagators.

2 Indeed, recall that in Minkowski signature ¢ can be locally eliminated by a gauge choice. The propagating asymp-
totic physical states are the usual ones, namely the transverse traceless + and X polarisations.
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In momentum space the propagators for 4,,,, and ¢ take the form (see e.g. [23]):

1 d-1\1
(p(p) p(-p)) = (a—“> =k 2.11)
2 Our  Pubv\ 1
s ) (=) = (o ) s () = (1= 2) (P - D) L 1)
Ou(adpyy (4 PuSvyepPp , 1 (4 8100
(s () oy () = 2252 (2 g) Dol L (B ) Sl
+g (1 _ 2) 5aﬁl7ul7u tpocpﬁ(slw ) (2.13)
d « p

Thus to ensure we have the key property that ¢ has a wrong-sign propagator, we just need to
choose o outside the range 0 < o < (d —2)/(d — 1). Note that for all dimensions d > 3 this
includes the popular Feynman—DeDonder gauge, o = 2, where h,,,, and ¢ decouple and the
propagators simplify significantly. In fact in this case their kinetic terms are simply

1 d—2
3 (Buhap)’ — — (0.0)° . (2.14)

In d =4 dimensions both these kinetic terms are canonically normalised; this is why we defined
 with the factor of a half in (2.2).

Notice that the gauge fixing term interactions and ghost interactions in (2.6), are also
weighted by positive exponentials of ¢, thanks to its appearance in (2.7) and (2.8). So far
we have only considered the quantisation of the Einstein—Hilbert action, but now let us show
that we can ensure that all interactions in a full phenomenologically relevant theory of quantum
gravity, are weighted by a positive exponential of . First note that we can add a cosmological
constant term since

JE=c"/2 (2.15)

is weighted by a positive exponential of . Thanks to the /g factor, scalar field mass and
interaction terms will have the same exponential, whilst their kinetic terms pick up the same
exponential as in (2.5) due to the presence of g"” in the contraction over derivatives of the scalar
field. The mass term for fermions, carries the (2.15) exponential, as does a Yukawa interaction
with scalars. The kinetic term for fermions is also weighted by a positive exponential:

K

VEU( Tyt ) = e DN gist (9 55 (0= 1)) 0+ G
(2.16)

To see this, note that the spin connection in V,, does not carry an overall exponential. This
follows because each term in the spin connection contains as many instances of the vielbein
e, = ere/d €}, as its inverse e} = e "¥/d¢k For a similar reason the Levi-Civita connection
also does not carry an overall exponential. However as written, the v matrix contains the inverse
veilbein: v# = y“e/. Substituting these explicit formulae and those for the connection, then
gives the right hand side of (2.16).
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Vector fields A,, are apparently a problem, not in terms of interactions with scalars or fer-
mions, but because this requires adding for their kinetic terms

1 1 5 - SO sV
G VEE P F oy = /g TG g Fo 2.17)

where F,,,, is the corresponding field strength. In this case the positive ¢ exponential would be
missing in the phenomenologically relevant case of d =4 dimensions. However we can easily
repair this by writing A* as the fundamental field, so that in the field strength we now have
A, = g, A”. Then the kinetic term in (2.17) is weighted by e"¥, whilst the cubic and quartic
A interactions (in the non-Abelian case) have even more positive exponentials. Note also that
this change of variables only improves the situation for interactions with scalars or fermions.
Another fix is to define A, to transform as a density of weight w > (d — 4)/d, then what would
appear in the action is g"/?A - This covers all the fields needed for the Standard Model and
its extensions’.
At first sight, higher derivative terms are excluded in d =4 dimensions, for example

V2 (8" 0,us0,s)" (2.18)

where n > 2 and s is a scalar field, since they will end up with the weighting e"(?~2)%/4_That
could be regarded as a welcome outcome since higher derivative terms are often problematic
anyhow, for reasons of stability and unitarity. However we can also fix these up with a positive
exponential of ¢ by defining s to be a density with a suitably positive weight.

In d =4 dimensions, purely gravitational higher derivative terms are however genuinely
excluded. In particular \/§R2 would end up with weighting e*(¢=*¥/4_This is the so-called
Starobinsky term, a physically acceptable modification of Einstein’s gravity [18] which
describes inflation and provides one of the best matches to the Planck data [24]. Although
we need to exclude the Starobinsky term, inflation can still be described through the equival-
ent scalar potential in the Einstein frame, or indeed through any preferred choice of inflaton
potential, since these all have the same weighting as the cosmological constant term (2.15).

Note that changing integration variable in the pure gravity sector has no effect on the con-
clusions above. For example one might try to quantise with g*” or a densitised version for
example gh” = , /gg"”, parametrising these with an appropriate ¢ exponential multiplied by a
purely £,,,, dependent part. However the coefficient in the ¢ exponential is fixed by normalisa-
tion of its kinetic term, e.g. as in (2.14), and thus re-expressing the metric g,,,, in terms of these
new variables just leads us back to our parametrisation (2.3) again. On the other hand, some
alternative approaches to quantum gravity are evidently excluded in this scheme, including
unimodular gravity [16, 17], the latter because it does not have a conformal factor.

3. Partial resummation into UV finite terms

The partial resummation of perturbation theory into a series of UV finite terms, I',,, is achieved
as follows. We split off from the action all the kinetic terms (the terms bilinear in the fields)
which will give us the propagators, but crucially we do not expand the exponentials in (. For
example for the Einstein—Hilbert term (2.5), this will give us the following interaction vertex

3 However one also has to gauge fix such gauge field symmetries, and one may wonder if that introduces any diffi-
culties. It does not, as we show in appendix.
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1. (d=1)(d-2
0\ /gertd-e/d { SR+ ()()é“"au@avw}

d2
1 2 d—1)(d—2
-3 (Bhap)” + (8" hy ) + Sd-2) P02, W + 2(21# (0,0)* . 3.1)

If desired, this vertex can be broken into smaller pieces, provided that in each piece the expo-
nential is not expanded and its corresponding bilinear terms are subtracted.

We then perform perturbation theory on these vertices, again without expanding the expo-
nentials, and resum all the quantum corrections involving only ¢ propagators. We will see that
the resulting terms, I',;, are all UV finite, and furthermore this finiteness property is preserved
to all orders in perturbation theory for the remaining quantum corrections, in pure quantum
gravity being those involving h,, or the ghosts which we treat perturbatively in x. In this
section and for the most part of the paper, these remaining quantum corrections will be taken
also to include those containing the mixed propagators, (¢h,,, ). However in section 7, we
consider a limit where one is led to resum also these corrections.

If (beyond) the standard model matter fields are included, they are treated similarly.
However for these one has a natural way to split the action into smaller pieces since matter-
matter interactions are proportional to their own couplings which can be treated perturbatively.
Again, we do so without expanding the ¢ exponentials however.

We proceed rigorously as follows. We split off from the classical action all the kinetic terms
%qﬁA A;B] ¢®, treating the remaining interaction part of the classical action S;[¢] as a single unit.
Here we are using compact DeWitt notation, so Einstein summation over the capital indices
indicates both summation over Lorentz indices and integration over spacetime. The field ¢
stands for all the fields we have to integrate over, both fermionic and bosonic. We treat S; as a
single unit by introducing an overall vertex counting parameter e, setting S;[¢] — €S;[¢]. We
then expand perturbatively in €, acknowledging at the end of the process that actually e = 1.
For the Legendre effective action

I[®] = 104A, 08 + T [@] (3.2)

(®* are the corresponding so-called classical fields), the resulting series takes the form
I[®] = Ze"r,, . (3.3)
n=1

In section 4, we derive expressions for the I',,, using functional analysis. Since section 4 stands
on its own, it can if preferred be read now. Here we just quote the results, since the combinat-
orics involved are readily understood. We will see that the nth order correction can be written
in terms of n copies of I'y multiplied together, viz. I'{, and a differential operator P;; that acts
on individual copies in this power:

ap O 0

Pi= A" om oy
L J

Here the first differential acts only the ith copy, whilst the second differential acts on the
Jjth copy.
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O

o Yo + + + o

Figure 1. The classical interaction vertex is represented by the black dot and has any
number of external legs (which are not drawn). Added to this is all its 1PI quantum
corrections i.e. the sum over all tadpole corrections.

3.1. First order

To first order, viz. I';, we keep only one copy of S;. For the Legendre effective action the sum
over all 1PI (one-particle irreducible) quantum corrections thus takes the form of a tadpole
expansion as illustrated in figure 1. Using (3.4), it can be written compactly as (see section4.1):

Iy =ePn/2s, (@], 3.5)

The next step is to perform the sum over the (o quantum corrections. For a gauge invariant
regulator such as dimensional regularisation, this is trivial since massless tadpole integrals are
set to zero. For pure quantum gravity, the remaining quantum corrections are again massless
tadpole integrals, involving h,,,, and the ghosts, and thus they also vanish. Thus in fact in
this case the operator ¢”''/2 has no effect and I'; = S;. Other regulators require care in order
to recover gauge invariance, but for example one can get the same answer in a much older
framework by normal ordering the S; vertices since then the vacuum expectation value of the
vertex automatically vanishes.

On the other hand, if massive matter fields are included, their tadpoles do not vanish and
furthermore they are UV divergent. This is the one type of correction where no UV regular-
isation is supplied dynamically by the conformal factor. However such tadpole corrections
are trivial in that they are local and just result in (divergent) redefinitions of the higher mass-
dimension couplings in the theory. For example for a massive scalar field ¢, the ¢-tadpole
correction involving the quartic interaction \/§A¢4 leads to a divergent correction to its mass
term §,/gm*@? in the form, m? oc Am?. These divergent corrections to higher mass-dimension
couplings, can be removed either by a trivial renormalisation or, as above, by normal ordering.
In practice then, we can ignore them.

In the light of the phenomenological ‘fine-tuning’ problems of the Higgs’ mass and cosmo-
logical constant, it is intruiging that their massive tadpole corrections, which form by far the
largest contribution, must be trivially removed in this way for consistency of this theory. We
note however that it is still the case that the Higgs’ mass and cosmological constant parameters
in the action S would differ by finite corrections from the corresponding measurable quantit-
ies. Furthermore, these corrections can be expected to be large since, as we see explicitly in
section 7, they involve quantum corrections cut off in the UV by the Planck mass. In any case,
the real questions to answer are dynamical ones, for the cosmological constant for example
relating its IR value at two different times—namely during inflation and now, and answering
such questions would require a more complete theory.

8
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- - + .-

Figure 2. The second-order part, I';, of the Legendre effective action, is given by an
expansion over melonic Feynman diagrams, where the open circles are copies of I'; as
given in figure 1. Again, these copies have any number of external legs which are not
drawn.

3.2. Second order

The second order correction has the expansion illustrated in figure 2. It is given by
1
I, [®] = -3 (eP2 —1—-Pp)TT. (3.6)

It is proven in section 4.2, but the combinatorics in this result can be readily understood. In
particular the factor of % comes from expanding the exponential of S; to second order. Then
propagators are distributed in all possible ways. This turns the instances of S; into instances
of the tadpole expansion (3.5), i.e. I'}, and these two instances are connected by propagators,
giving the melonic expansion illustrated in figure 2. The —1 — P}, correction in the above
simply serves to remove the 1PR (one-particle reducible) and disconnected diagrams.

Since the —1 and —Pj, correction terms are disconnected and tree-level respectively, they
clearly do not contribute UV divergences. Meanwhile, I'| takes the form

I = Z/ddxe"ﬁ““"ﬁa (p,0¢) , (3.7

plus explicit bilinear terms. However the latter contribute only to the first diagram in figure 2
and, for pure quantum gravity, collapse it to a massless tadpole integral which again vanishes in
dimensional regularisation. For the massive matter fields, the result is a UV divergent tadpole
integral which again we can discard by a trivial renormalisation. Thus to show that the non-
trivial part is UV finite, we need concentrate only on the terms in (3.7) and on the exponential
of Py, in (3.6).

In (3.7) the sum runs over the different 3, > 0. In an abuse of notation, ¢ € ®* now stands
for its classical field counterpart. We are suppressing the dependence of the Lagrangian dens-
ities L, on all the other fields. For simplicity we have written that the £, depend at most on
single derivatives d,¢. This can be arranged but is not essential. The generalisation to higher
derivatives is straightforward.

The next step is to sum up all the purely ¢ quantum corrections in (3.6). For this it is helpful
to work in position space. The canonical massless scalar propagator is

dip e’ ' (d/2) 1

Al = / Qn) P 2n(d-2) 2 (3.8)

We are working in a gauge such that the o propagator is —£2A (x), for some & which is real and
non-vanishing®. Inspired by standard tricks with the functional integral, we can rewrite (3.7)

# For example, from (2.11) it is given by £ = \/(d — 1)/(d — 2) — 1/a, while in Feynman gauge this becomes £ =

Vdj2(d-2).
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in a more convenient way:

0 0
I = dx L, [ 2 02 ekBatie® . 30
1 Xa:/ ! (aJx’ 8Jx>e o (3.9)
Here J, carries x dependence but these are genuinely partial derivatives so that
0
ar =l 3.10
0l (3.10)

Now, substituting (3.9) into (3.6), the sum over purely ¢ corrections is straightforward to eval-
uate:

0 0 0 7
_ 7’12
I [®=— /ddxlddxz o <a]x1,88]X])£a2(ajx2,881x2>

ap,00

x exp{[’iﬁal +Jx1] L)0<xl> + [Hﬁaz +JJC2] ¥ ()Cz)
= € [Ba, + 0] A (1 —30) (58 + L} G.11)

where 1317 is the operator (3.4) with the purely ¢ piece (A = B = ¢) removed. The important
observation is that all corrections end up weighted by the exponential

exp { —&* K" Ba, Bar A (X1 —12) } (3.12)

which results from resumming all the pure ¢ quantum corrections. We still have some J dif-
ferentials to perform in the above before setting J =0, which will bring down A(x; — x;)
factors, and any number of further propagator factors appear for the other field combinations as
encoded in Py, and which we treat perturbatively. In position space UV divergences arise from
the fact that as x; — x,, the propagator A (x; — x,) diverges as a power, viz. as 1/|x; — x,|472.
Larger powers appear on applying the spacetime derivatives in L£,,. But, thanks to the over-
all minus sign in the exponential in (3.12), the resummed pure ¢ quantum corrections supply
an exponential damping which is strong enough to overcome any power-law divergence in
the multiplying factors. Thus we see that all these quantum corrections actually vanish expo-
nentially fast as x; — x,. We have therefore established that the wrong sign propagator for ¢
combined with the positive exponentials of ¢ in every interaction, provide a non-perturbative
dynamical mechanism that regulates all remaining quantum corrections in I'.

As a concrete example we take the Einstein—Hilbert vertex (3.1) and compute the remain-
ing J differentials in (3.11) to explicitly the complete resummation over purely ¢ quantum
corrections:

I, —2¢P» /ddxddy /3 (x)\/2 (y) erPle@)te0)] o =€ 5% A

{FRWRO)+ 25RO 02 [00) - €814] 3, [0 ) — €A
+0°g" (x) 877 (v) ), [¢ (v) — €BrA] 5 [1p(x) — € BrA]

x O, [ (y) — fzﬂm]é‘g[w(y) £ BrA]

+4E20°8M (x) 7 (y) DLOLAD, [0 (x) — EBRA] O [0 (v) — £ BrA]

+26%0%8" (x) 8 (y) OROLA %%A} : (3.13)

14
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where A = A(x—y), 8 = (d — 2)/d, and for brevity we have also introduced 0 = (d — 1)(d —
2)/d*. 1t is tedious but straightforward to confirm that the same answer is arrived at by com-
puting explicitly the Feynman diagrams in figure 2 and then summing over them. We see again
that, despite the products of (differentials of) propagators, as appear inside the braces above,
all contributions are UV finite, thanks to the presence of e =€ #'%"A,

Treating perturbatively the remaining quantum corrections involving other fields, for (3.13)
those that involve h,,,,, will result in new terms with further factors of (differentials of) propag-
ators, but does not alter the regularising exponential. Therefore all these (in fact infinitely
many) further corrections are also UV finite.

For matter fields we would want to split these contributions up perturbatively according to
the power of their couplings (namely powers 0, 1, or 2, since we only have two copies of S;),
but since this does not harm the ¢ exponentials, these pieces are evidently also UV finite.

Before considering third order, we make some further comments. In order to solve the
problem of the lack of convergence of the functional integral (1.2), the authors of [5] advocate
analytically continuing ¢ — iy, so that the ¢ functional integral is performed for imaginary
amplitudes. One can choose to do so here since the change variables does not affect this dynam-
ical UV regularisation. In this case the (¢ propagator is positive, but the coefficient in the ¢
exponentials is now imaginary, i.e. we have 3+ i. Thus again we find that the quantum
corrections are regulated by the factor (3.12), the crucial minus sign in the exponential now
arising from (i8)?.

For pure gravity, we deduced that the sum over tadpoles at first order, (3.5), is I'; =S,
because all the tadpoles vanish in dimensional regularisation. However from the above ana-
lysis, in particular (3.12), we see that the dynamical regularisation results in a prefactor of

1 2
the form e =25 FF°20) 14 5 point splitting regularisation this prefactor would force I'; and all

higher order corrections to vanish, leaving us with just the bilinear terms in (3.2), i.e. a free the-
ory. This result is incompatible with the BRST invariance (2.8) and (2.9), but point-splitting is
not a gauge invariant regularisation. We can compensate by making an infinite renormalisation
to cancel this prefactor, which would then take us back to the dimensional regularisation result
I'; = §;. On the other hand higher orders, for example (3.13), are not affected by point-splitting
since the result is already finite.

We parametrised the metric (2.3), using an exponential of (o, which in turn results in vertices
having an exponential of ¢ as a factor. The exponential is unique in that vertices continue to
have this property no matter how many times they are differentiated in the process of forming
the corrections, I',. It is possible to use other parametrisations for ¢ and resum all the propag-
ator corrections, e.g. the tadpoles and melonic contributions, see e.g. [25, 26]. However the
functional form of the ¢ dependence will then change depending on the order, I',;, and the
results can be singular in IR or UV limits [25, 26].

3.3. Third order

Now we consider the correction that is third order in €. It is given by
1 1
T3=; (P2 —1—Pp) (™ —1—Pu) T} + 3 (ePe—1) (™ —1) (e™ —1)I7,
(3.14)

and illustrated diagrammatically in figure 3. Again this formula is derived in section 4
(section 4.3) but the combinatorics can be readily appreciated using the usual Feynman dia-
gram systematics.

1



Class. Quantum Grav. 41 (2024) 205006 T R Morris

Figure 3. The third-order part, I'3, joins three copies of I'; together using melonic
expansions. In the linear topology, each melonic expansion starts with two propagat-
ors as in figure 2, thus excluding 1PR and disconnected diagrams. In the triangle topo-
logy, the melonic expansions start with a single propagator, and in this way include the
remaining 1PI diagrams whilst also excluding diagrams that are 1PR or disconnected or
of the linear topology.

Figure 4. Retaining the explicit bilinear terms in just one copy of I'; of the triangle
topology, as represented here by the dot, results in a non-vanishing contribution which
however is UV regulated by the remaining melonic expansion.

In order to prove that the third order correction is UV finite once we sum over purely ¢
quantum corrections, we can again ignore the explicit disconnected and 1PR pieces in (3.14).
To see this note that in the first contribution viz. the linear topology, if we retain just the —1 in
one bracket, it disconnects, leaving just the melonic expansion of I'; as in figure 2 that we have
already shown is UV finite. Likewise if we retain just say the —Pj, term in the first bracket,
it becomes 1PR with its loops regularised as in I';. Turning now to the second contribution
in (3.14), i.e. the triangle topology in figure 3, if we retain just a —1 from one of these brackets,
the triangle disconnects into something that has the same UV properties as the linear topology.

Now, potential UV divergences arise in I'; from the limit where any two x-integrands in the
three I'}, are brought close to each other, or when all three meet at a single point. However,
writing the copies of I'; in the form (3.9), it is clear that the second order result (3.11) gen-
eralises in the sense that each melonic expansion over purely ¢ corrections, provides the UV
regulating term

exp{—&%Ba, B, K2 A (xi — X)) } (3.15)

which ensures that all the quantum corrections are UV finite in these limits, in the same way
as before.

As for the explicit bilinear terms in I'j, they play no role in the linear topology of figure 3
for much the same reason as before. They do not contribute in the inner I'; since it needs at
least four legs, whilst if we retain just the bilinear terms in an outer I'|, it collapses to a tadpole
that either vanishes or is removed by a trivial renormalisation. Likewise if we retain only the
bilinear terms in two of the I'; copies in the triangle topology of figure 3, it collapses to a
tadpole that we treat in the same way. However if we retain the bilinear term in just one of the
I'; copies we see that the result is non-vanishing, as illustrated in figure 4. But now the only

12
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- ~ .

Figure 5. We treat perturbatively the further quantum corrections, i.e. those that involve
h,. and/or ghosts. Those corrections involving propagators attaching the outer copies
of I'; in the linear topology, as in the first figure, appear at first sight not to be UV regu-
larised by a melonic expansion. However the combinatorics are such that these quantum
corrections are regularised by the corresponding diagram in the triangle topology, as in
the second figure.

UV divergences in this contribution can come from the integrands in the remaining pair of I';
coming close to each other, and this limit is still regulated by its melonic sum factor (3.15).

Finally, we consider the remaining quantum corrections that we treat perturbatively, which
involve h,,,, the ghosts and matter fields. These involve attaching propagators between any
pair of the I'; copies in figure 3. If these propagators attach a pair that are already attached by
a melonic expansion, then the resulting contribution will be UV finite thanks to the regulating
factor (3.15). At first sight that leaves some unprotected quantum corrections, namely where we
attach propagators from the left-most I'; to the right-most I'; in the linear topology. However
it is straightforward to see that the combinatorics are such that these are regularised by the
corresponding diagram in the triangle topology, as illustrated in figure 5

3.4. General case

It is clear that we now have the broad general pattern. Let us sketch how it would work in I'4.
Firstly, some thought makes clear that its diagrammatic expansion must take the form given
figure 6. Then it is evident that the purely ¢ melonic expansions will provide UV regulating
factors (3.15) sufficient to ensure that no UV divergences can be produced by bringing any
set of I'; integrands close to each other. As before, the correction terms that correspond to
disconnected or 1PR pieces in a more complicated topology will effectively reduce the cor-
responding diagram to simpler topologies earlier in our list, whose UV finiteness we will have
already established. As a simple example, which is a little different to the previous cases,
consider the linear topology in figure 6 where for the middle factor we keep only the —1 cor-
rection. This will break the diagram into two copies of the I, melonic expansion which we
have already confirmed are UV finite.

Now consider the contributions from explicit bilinear terms in the copies of I';. If we retain
bilinear terms such that they are connected to only a single copy of I'|, the result is a tadpole
again. For example this is true for the bilinear terms in an outer I'; of the linear topology, or
if we retain only the bilinear terms in three of the I'; copies in the square topology (the first
diagram in the second line). The bilinear terms make no contribution if I'; is connected to more
than two other copies, for example the middle vertex in the last diagram, since these need more
than two legs.
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Figure 6. The fourth-order part, I's, joins four copies of I'| together using melonic
expansions, in such a way as to avoid overcounting and exclude 1PR and disconnec-
ted diagrams.

Thus the only non-trivial contributions come from retaining the bilinear terms in a I'; copy
that is connected to two other I'; copies. This is true for example for either of the top I'; cop-
ies in the third diagram of the first line of figure 6. However these then reduce to UV finite
contributions in a similar way to that in figure 4. As a second example consider retaining only
the bilinear term in just one of the I'; copies in the square topology. At first sight this looks
problematic, in a similar way to the first diagram in figure 5, because now the correction is
attached to two I'| copies in such a way that it is not directly regularised by a melonic expan-
sion. However the combinatorics must be such that this contribution combines with the con-
tributions from keeping only the bilinear terms in one of the two possible I'; copies in the next
topology (the middle diagram in the second line of figure 6). Thus the latter’s diagonal mel-
onic expansion provides the needed UV regularisation from its purely ¢ quantum corrections
in this case.

Similar arguments to before, establish that the remaining quantum corrections, those
involving the other fields and propagators passing between any pair of I'j, are all UV reg-
ularised. This regularisation is either immediate because those copies of I'; are attached by a
melonic expansion, or follows from the correction to a corresponding topology later in the list
in figure 6.

4. Compact formulae for the reorganised perturbation series
In this section we prove the expressions for the I',, that we used in section 3 to demonstrate that
perturbative quantum gravity can be partially resummed into a series of UV finite terms. As in

section 3, we use compact DeWitt notation. For the fermionic fields it is helpful to introduce
both left (0;) and right (0,) derivatives. We write the partition function as

Z[J] :eW[J] — /quA exp <—;¢AAA_B]¢B —6Sl[¢] +JA¢A> ) (41)
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Now consider perturbing the propagators A% — A48 1 §AAB This induces the following
change to the generator of connected diagrams:

1ow_ . _,ow 1_ _, #W
W=—=—0A — — = . 4.2
200, "M oy 208 1,00, 4.2)
From the Legendre transform relation, W[J] = —T'[®] + J,®*, where the ®* are the so-called
classical fields, we then get by standard manipulations,
! - @]
OT1[0] = 3 Str (64 A [1 + AT } : 4.3)

where we have introduced a functional supertrace Str M = (—)* M4, , and the Hessian is given
by

@ _ O O
e = 50 5gn '

4.4)

Equation (4.3) takes a closely similar form to the Legendre flow equation used in exact renor-
malization group investigations [27-29], see also [30-34]. In fact we are following the notation
in [26, 35-37] from which we also will lift the closed form expressions for I'; and I';. But we
emphasise that here no renormalization group is being used, nor are we introducing any novel
interactions. We use equation (4.3) merely as an effective way to handle the combinatorics
involved in the reorganisation of the standard perturbation series for 1PI (one-particle irredu-
cible) diagrams.

4.1. First order

To lowest order in € we thus get,
1 (2) 1 AB
6Ty = 5 Str (sar?) = S OAPOp0uT 4.5)

where now we introduce the short-hand 94 = 9/ O®A. This is in effect a first order differential
equation which is solved by an exponential of %AAB Op0y4 acting on a functional that has no
propagators. The latter clearly has to be the classical interaction and thus:

1
Iy = 22" %0g, (0] = P/28, D] . (4.6)

This is the sum over tadpole diagrams that we used already in section 3 and illustrated in
figure 1. In the second equality we introduce the compact notation,

P =A%90,. 4.7)

In this form, equation (4.6) is the one given in slightly different notation in equation (3.5).

15
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4.2. Second order

To second order in € we have to solve the inhomogeneous differential equation:
6T, — % Str (6A rf)) - —% Str (6A r§2>AF§2>) . (4.8)
This can be solved by introducing the appropriate integrating factor, equivalently by defining
I, =eP/?21, (@], (4.9)

where I, is the second-order functional stripped of most of its propagators. Substituting (4.9)
into (4.8) and rearranging gives

. 1 1
0Ty =—e P su (5AF§2)Ar§2>) = —5 0PuPre 255, (4.10)

In the second equality we use the Leibniz rule to write 94 = 9} + 93, where 9} acts only on
the first I'; and O3 acts only on the second. This means that

P =P +Pn+2Pn, (4.1D)

where we are now using the notation in equation (3.4). Substituting the tadpole solu-
tion (4.6) for the two instances of I'|, and expanding out the supertrace, then completes (4.10).
Equation (4.10) can now be solved by integration by parts, since it is analogous to finding the
function f(x) that satisfies f’(x) = —xe ™. Thus we find

o 1

I [®] = 5 (P +1)e P87+, @], (4.12)
where C; is second order in S; but has no propagators. However if we set the propagators to
zero in the first term and also in (4.9), the result for I', must be 1PI. That tells us that in fact

C, = f%S 2. Now, premultiplying by eP/2 to convert the above into I',, and expanding P as
in (4.11) again, gives our final result:

1
I [®] = -5 (e —1—-Pp)T7, (4.13)

i.e. the melonic expansion formula (3.6) that we already used in section 3 and which was
illustrated in figure 2.

4.3. Third order

This method generalises to any order, although the algebra of course gets progressively more
complicated. To illustrate, we sketch the steps for I';. From (4.3) we have that

1
oTs = 3 Str (sar® —sarPary —sarPar? +sarParPar?) . @14
Using (3.4) this can be rewritten as

1 1
5F3 — EéPFS = —0PnPnpl I+ E(S’Pg] P12Pa3 F13 . 4.15)

16



Class. Quantum Grav. 41 (2024) 205006 T R Morris

Substituting (3.6) and symmetrising gives:

1 1
ol's — 55'PF3 =— {(57712 +6P13) (P2 + Pi3) (6P23 —1-— 7723) + 6Ps; 7)127323} 1—\13.

2
(4.16)

Now premultiplying by e="/2 to form f3, analogous to (4.9), and on the right hand side
using (4.6) again and Liebnitz, P = Z? j=1 Pij» puts the equation in a form where again it
can be integrated by parts, starting this time with the factor in front of the exponential that is
a cubic in P;. After symmetrisation this cubic term can be put in the form

1
5 (6P12+ 0Pa3 + 6Ps1) Py Paze” T2 PP 4.17)
which can be combined with the exponential so that integrating by parts leaves only a quadratic
factor. Continuing in this way leads to the final answer, where again the integration ‘constant’
was determined by ensuring that the result is 1PI:

1 1 1 1
I'; = {66P12+P23+P3] — P’ — 567’12 + 57)137)23 + P2+ 3}F13 . (4.18)

After some manipulation this can be put in the more intuitive form of equation (3.14), as
illustrated diagrammatically in figure 3.

5. BRST invariance and the Zinn—Justin identity

The BRST invariance for the quantum fields was already defined in equations (2.8) and (2.9),
with those for ¢ and h,,,, defined implicitly through the action of Q on the total metric g, .
Substituting the latter’s parametrisation (2.3), into (2.8), and contracting with gi” gives the
BRST transformation of ¢ in explicit form:

Qp = 0uct + Krc“Oap, 5.1

and thus from the parametrisation (2.3) we also obtain that for g, :
~ s K. (e (e ~
Q8w = 260(uC"81ya — 23gw,6ac + kc®0a8pv - (5.2)

This defines implicitly the BRST transformation of #,,,. It of course has to remain impli-
citly defined until we fully specify the parametrisation of g,, (parametrised in (2.4) to first
order), but we note that it is already clear from this equation that Qh,,,, is not protected by a ¢
exponential.

That is fine since it is only interactions, not the BRST transformations themselves, that need
to be protected by ¢ exponentials, but to test for BRST invariance on the Legendre effective
action, T, we need the action of BRST on the classical fields ®* and these are determined by
the Zinn—Justin identity. To derive this identity, we need to add to the action the source terms

- /ddx {¢" Qp + I Qhy, +c;, Qct + ¢, 0ct } (5.3)

where @1 = ¢*, A", Cfn and ¢, are sources for the BRST transformations acting on the
corresponding quantum fields. At this point we encounter a problem because the ¢* and h**”

17



Class. Quantum Grav. 41 (2024) 205006 T R Morris

terms introduce interactions that are not protected by positive exponentials of ¢, and thus these
terms get quantum corrections that are not UV finite’.

This problem can be solved by choosing a safer if slightly more involved form for the BRST
transformation, taking it instead to be the Lie derivative along xe~¥c#. Since this amounts to
replacing c# with e"?c#, it is clear from equations (5.1) and (5.2) that the ¢* and A**” terms
are then protected. Making this substitution on (2.9) and using the substituted form of (5.1)
we get a fully protected c¢* term, since:

Oct = ke ("0, c" — 0, — keV O pct) . (5.4)

The ¢* term is even better protected. In fact in this case we could use the standard gauge fix-
ing functional F,, = 6“°9,hg, — (3 — 1) d,.¢, i.e. without the protective interactions in (2.7),
since from (2.6) the gauge fixing term then no longer has interactions, while the ghost action
and the ¢* term now receive their protection from the positive exponential of ( appearing in
the Q¢ and Qh,,,, transformations.

Now it is straightforward to derive the Zinn—Justin identity following the standard steps
(here for the on-shell BRST version). Applying the BRST charge to the action plus source
terms we get, by invariance of the measure,

Ja 0 +akd"q,c;, | Z1J,97] =0, (5.5)
0%

where 7j,, is the source term for ¢* (its explicit appearance arising from the fact that Q*c* is
proportional to the ¢ equation of motion and thus can be absorbed by a shift of ¢ integration
variable), and thus

or or or

Y _ pvok Yo
957 9 akd 0“8@‘ 0 (5.6)

(where C is the classical antighost field).

The Zinn—Justin identity can now be expanded as an infinite series in ¢, i.e. over the I',
terms, each of which are UV finite and which now include (UV finite) interactions with the
®* source fields. Unfortunately, as we will see in the next sections, we then encounter a more
profound difficulty in that no finite set of the resulting I, will satisfy the Zinn—Justin identity
by themselves.

6. UV finiteness on a curved background

So far we have expanded around flat background. Now let us show that these properties can

be extended to curved backgrounds and the background field method. It is straightforward to

extend section 2 so that the two key properties are preserved. However as we will see, in order

to realise both background diffeomorphism invariance and UV finiteness, we will need to sum

over most if not all of the corrections contained in the I',, of the € expansion (3.3).
Expanding the metric about a background metric g,,, we now write

- 2
Suv = &uv + KH, + 0 (K7) (6.1)
3 Notice from (2.9) that Qc* is protected by a ¢ exponential. Although Qc* is not, it can be shown that the short
distance divergences it can cause are actually harmless (i.e. integrable).
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splitting out the trace of the fluctuation field, by writing
Hy =hu+298,,  where ¢ =1g"H,, and g"h,, =0. (6.2)
Furthermore for perturbative purposes we define the background fluctuation field via
8uv =0 + KH, + 0 (K?) . 6.3)

Non-perturbatively in «, we still parametrise the metric with an exponential of ¢ and g,,,, for
the rest, as in (2.3), but now g,,,, is a function of both #,,,, and g,,,,, and to be consistent with
above must satisfy

8uv = 8w + Kl + 0 (K?) . (6.4)

Since the parametrisation of the metric takes the same form, the Einstein—Hilbert action
still takes the same form, i.e. as in (2.5). However we need to replace the gauge fixing and
ghost terms by ones that are manifestly background diffeomorphism invariant so, in minimal-
coupling fashion, we write

/ d'x\/3 { %E“”FMFV - iE“QFM} , 6.5)
and

F# = %go‘ﬁ (Vaggﬂ — ;Vﬂga[;) = gaﬁvahg# — (Z — 1) V#QO + O(H)
=g (1T~ 5V 3 Valon — 3Vules ) ©6)
The BRST transformations for g,, and ¢* remain as before because they are formed from
Lie derivatives. As is well known, they are equal to the versions where the partial derivat-
ives are replaced by (background) covariant derivatives (thus making the formulae manifestly
background diffeomorphism invariant). Only the ¢ BRST transformation changes, namely to
Qct = ag"'F,.

Working on a curved background has introduced new interactions, which however are also
all protected by positive exponentials of . Therefore, we have automatically also the finiteness
property we established in sections 3 and 4. It is also clear that we can further protect the
BRST transformations as we did in section 5 in order to formulate the Zinn—Justin identity in
the presence of a background metric.

As we remarked in section 2 when considering the flat space version, we can introduce an
auxiliary field b* to get full off-shell BRST invariance if preferred. However, following [22]
this would at first sight appear to present a problem now, because the bilinear b term we need,
namely /gg,.,,b"b”, has interactions with the background metric which are not protected by
a positive exponential of (. However this is not the case. The b field only appears in internal
lines of 1PI diagrams and thus, as shown in [22], the net result of such quantum corrections
is the same as one gets from integrating out the b field. But doing that, takes us back to the
on-shell formulation considered here which we have just shown is fully protected.

Although we can thus again perform a partial resummation of the perturbation theory into
the analogous series of UV finite terms, I',, we encounter a problem in that these do not
individually respect background diffeomorphism invariance. We can establish this directly
by demonstrating that the I',, do not satisfy the appropriate Ward identities. At the end of this
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(a) (b) () (d)

Figure 7. When covariantised, the one-loop tadpole diagram (a) from the tadpole expan-
sion of figure 1, contains the self-energy diagram (b). In (b), the external legs are expli-
citly drawn and represent the background fluctuation field H,,,,, the bottom interaction
coming from the classical action vertex and the top from the covariantised propagator.
This self-energy diagram is in fact contained in diagram (c) which is the first correction
from the melonic expansion of I'; in figure 2. However this in turn is covariantised and
thus contains diagrams such as those labelled (d).

section and in section 7 we will consider the consequences from this point of view. However
another way to illuminate the problem is instead to explain why the obvious manifestly back-
ground diffeomorphism invariant generalisation will fail, namely the generalisation where we
work non-perturbatively in the background by using covariant propagators formed from the
inverse of the covariant d’ Alembertian [J = V#V , and its appropriate generalisations for vec-
tor and tensor fields.

If we covariantise in this way, the Pj; in equation (3.4) will then be invariant under (back-
ground) diffeomorphisms and thus it is straightforward to generalise the partial resummations
we had previously in such a way that they are now background covariant. However these
resummations are not the ones we want, because this generalisation fails to be UV finite.
Firstly, the terms bilinear in the quantum fields that we need to subtract to form the ver-
tices, such as those in (3.1) for the Einstein—Hilbert action, are now covariantised, and thus
contain interactions with the background metric. Therefore these terms can no longer be dis-
carded in the way we did at certain intermediate steps in section 3 and furthermore since these
covariantisations of bilinear terms are not protected by a ¢ exponential, they lead to unregu-
larised UV divergences. Unregularised UV divergences also appear in the resummations, for
example this happens already at the first order, i.e. in the summation over tadpoles, viz. figure 1
and equation (3.5). Since the propagators are continuously interacting with the background,
the corrections in figure 1 are no longer tadpole integrals that can be set to zero, but contain
important corrections which explore the interaction of the quantum fields with the background
metric. For example the one-loop correction in figure 1, now contains the self-energy diagram,
as illustrated in the first two diagrams of figure 7.

Clearly the reason the partial resummations are now failing is because we have included the
interactions with the background, which of course were those in the original classical action,
but without also incorporating the melonic expansions over the ¢ corrections which lead to UV
regularisation. Thus we are forced instead to keep the subtracted bilinear terms truly bilinear,
leaving all interactions with the background inside vertices that are protected by a ¢ expo-
nential (such as the first term in (3.1)). Continuing with our tadpoles example, we note that
the background self-energy diagram is then in fact contained in diagram (c) of figure 7. This
is the first diagram in the second order correction I';, i.e. the melonic expansion of figure 2.
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To incorporate the UV regularisation we then need to add the remaining diagrams of figure 2,
i.e. we need to add the full I'; correction.

Now, for I', to be fully covariant to second order in H wv» We need to add to its copies of I'y
the terms that covariantise their tadpole corrections, e.g. the diagrammatic contributions (a)
of figure 7. For example we need to incorporate the upper correction of (d) in figure 7. This
correction is supplied by the linear topology of I's, as in figure 3, and it is UV regularised by
including the full melonic expansions for that topology.

We also need covariantisations corresponding to the lower diagram of figure 7(d), where
a background interaction covariantises one of the propagators in the one-loop melonic con-
tribution. This diagram is supplied by the triangle topology of I';, as in figure 3, and once
again, in order to incorporate the UV regularisation we need to include the full set of melonic
corrections for this topology.

Proceeding in this way, we see that we end up having to sum over many, if not all, of
the UV finite correction terms we previously derived. For example from I'y, we need the lin-
ear topology of figure 6, as is clear from a similar argument that led to requiring the linear
topology of I';. The next I'y topology in figure 6 is also needed, because it is involved in reg-
ularising the covariantised tadpole corrections of the middle vertex in the linear topology of
I's, as in figure 3. The third I'4 topology in figure 6 can be seen to be needed to regularise the
covariantised propagators in the linear topology of I';, and the fifth I'4 topology is needed to
regularise the covariantised propagators in the triangle topology of I'5.

To summarise, an appropriate gauge fixing can be found such that perturbative quantum
gravity about a curved background metric, can also be partially resummed into a series of UV
finite correction terms, I',,. However the I',, are not individually background diffeomorphism
invariant. In order to recover background diffeomorphism invariance, it is clear that we would
have to sum over many, if not all, of the (parts of) T,,.

In other words the Ward identities expressing background diffeomorphism invariance are
broken at any finite order in the € expansion. Although we have not explicitly addressed BRST
invariance, i.e. the Zinn—Justin identity, it leads to analogous but more involved Ward identities,
and these clearly will also be violated at any finite order. Technically, in both cases, the Ward
identities relate a space-time differential 0,, contracted into higher-point vertices, to lower-
point vertices. Working strictly order by order in x, these relations are exactly satisfied. Here
however they are broken term by term by our partial resummation. Specifically, the breaking
arises because d,, also acts on the UV regulating exponential (3.15). Thus violations of the
Ward identities result from factors of the form

c €2 Bay Bag 20, (x; — x;) xp { =& Ba, Ba, K7 A (x; —x7) } - (6.7)

(where we have included the errant exponential and the rest of the term is represented by the
ellipses). Now the problem is that regions of integration where the UV regularisation term is
needed, correspond to places where A(x; —x;) is large. The exponential effectively cuts off
these integrals over x; when

& Bay Bay KA (x; — x7) ~ O (1), (6.8)

and thus we see that violations of the Ward identity are always of the same size as the terms
themselves.
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7. Limiting cases

Clearly this problem is also related to the fact that we no longer have a small parameter to
control the expansion. One might hope that one could use the spacetime dimension d in the
passage to some limit (e.g. d — oo [38—40]) to recover a suitable small parameter, but unfor-
tunately this does not appear to help.

At first sight we do have a parameter to control the I';,, namely the gauge parameter £
that weights the UV regulating exponential exp { — £234, 80,2 A(x; — x;) }, ¢f (3.15). (€ also
appears in some multiplying factors, see e.g. the example contribution (3.13).) Indeed by send-
ing « — (d —2)/(d — 1) from above, we can make ¢ arbitrarily small whilst leaving finite the
other propagators and the vertices (see (2.12) and (2.13) and footnote 4). By choosing F,, such
that at the linearised level it is the most general gauge:

1_, — —
F,= ;g A (avagb’u +ﬁvuga6) , (7.1)

where now the gauge fixing and ghost terms are®:

1
/ d’x { g"F,F, — KC”QFH} , (7.2)

we can make ¢ arbitrarily small and still be left with a general set of gauges in order to test
gauge parameter independence. Indeed, since in this case we find [41]:

B __2(51—1)052—(51—2)__572
(p() p(-p)) = T (7.3)

(i (9) (-0) = ) s (-p)) = =, 0L (Do D) L

(s () o () = 2% 12 (1 1) PP
. (d—2)(1-20%) = 2(Bd+[d—1]@)® 6,005
2d2 (d—2) (a+ ) P’
L AdB(atB) +2(d=1)a? = (d=2) baspuPy +PaPsdu
2d(d—2) (o + B)> P
| (@+20) (2[d=3]a’ —45a’ — [d — 2 Ba+ 26]) pupupaps
2(d—2)a?(a+p)° Pe

)

(7.5)

0 s @28 p'pv\ 1
(c"(p)c (p)><5 T 2a+p) P )1,2’

(7.6)

we have

1 d—1 1
At (7.7)

f:2|a+ﬁ| d—2" 2’

6 We return to the previous gauge (2.6) and (2.7) by setting 3 = f%a and then redefining o + /2.
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and ¢ is made arbitrarily small by sending

d—2

from above, whilst leaving 3 as a free gauge parameter and leaving the other propagators finite
(provided only that 8 # —a).

We can also take the limit in which £ becomes arbitrary large, provided we also allow
(huw ) and (c*¢”) to become large, whilst nevertheless leaving the (%,,, 11, 3) propagator finite.
Setting

o= d—2 1+ d2e2 N (dz—’)/)d254
\V2d-1) 2(d—-1)(d—2)  8(d—1)*d-2)°)"’
S de? d(2d* —[d+1]v)*
= Z(d—l) <1+2(d—1)(d—2) 16(d—1)2(d_2)2 ) ) (7.9)

where 1 is a finite free gauge parameter, and £ < 1, yields £2 = 1/¢2 4+ O(¢?), together with:

<s0(p)<p(—p)>=—<€12+0(82))p12:—Ez, (7.10)

p
(hw () ¢ (=p)) = (¢ (P) Ay (—P))

1 2d% + ) 5 AR
=== - — 10 LA o A 7.11

(52 8d—1)(d—2) ()~ 2 ) (7.11)

Ou(ad8)y | 2d Pudu)aP y—2d*(d—2) 6,0
h hes (— — m(a¥B) (1) (aB) Nz
(hyw () hap (=) P i — +2d2(d_1)(d_2) -
2d(d—2) = SapPuPv +PaPsw
2d(d—1)(d—2) I’
v —2d(3d —4) p.pupars
2d—1)(d—2) pS

v orr (2(d-2) gl p'p
(c*(p)c (p)>p2+<d521+4d+0(52)> i (7.13)

of (7.12)

+0(e?),

Obviously, taking the limit of small or large & will control the size of the I',, through the
weighting of the regulating exponential (3.15), however we know beforehand that neither
limit can recast the expansion over I', as a genuine perturbative expansion. We know this
for example, precisely because their size is then gauge parameter dependent, but properly
formulated the result for any physical quantity must be independent of the choice of gauge.
Nevertheless it is instructive to see how the I',, behave in these limits.

To be more explicit consider computing for pure gravity, the H,,,, two-point vertex. The first
contribution to this will use I',, but also build on it by attaching perturbatively other propagat-
ors involving £, and the ghosts. There are also higher order contributions from the € expan-
sion, for example at third order one gets contributions from the triangle topology, cf figure 3,
and from the linear topology with an H vertex at each end (but not the other alternatives, such
as having an H vertex in the middle, since if an outer vertex has no external field it forms a
massless tadpole correction to the inner vertex, which vanishes in dimensional regularisation).
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One contribution from I'; arises from using two copies of the Einstein—Hilbert vertex (3.1),
i.e. from building on the term (3.13). We also have contributions built on the gauge fixing and
ghost terms (6.5), but the former is already sufficient to see the general pattern. We extract
the background two-point vertex by taking the functional derivative with respect to H,, (x)
and H,z(y) and then setting all fields to zero. This will remove the x and y integrals in (3.1),
but on transferring to momentum space we will be left with an integral over x — y, including a
factor of e (*=Y) The spacetime differentials in (3.13) either get directly converted to p* by
acting on this exponential, or differentiate a propagator thus increasing the power of 1/|x — y|?,
and/or leave us with vectors (x — y)* in the numerator which we can trade for 9/0p,,.

In this way, relabelling the integration variable, we can reduce all the I', two-point space-
time integrals to terms of the form

1 .
Ik:/d4x7k67£252,§2A(x)+1pvx’ (7.14)
X

for some non-negative integer power k. Here we have specialised to the most interesting case
of d =4 dimensions’. By (3.8) the 1/x?* power is then, up to a numerical factor, just a product
of k scalar propagators. Thus, without the UV regulating exponential, the I; are the simplest
melonic scalar (k— 1)-loop self-energy diagrams (formed from two (k+ 1)-point vertices,
compare figure 2). Thanks to the regulating exponential they are all UV finite, and thanks to
the Fourier factor they are all IR finite provided p # 0. By dimensions these I, are multiplied
by a term oc x"p®t" =2k where m is a non-negative integer and the power of p is schematic for
some tensor structure of this dimension.

Considering now /5, we note that it is a function only of £Skp. It has a log singularity in
the small £ limit, with a coefficient which can be determined by evaluating {0¢ I, in the limit
p — 0. Thus we find that

7.‘.2
= ——In(Eprp) + -, (7.15)

where the ellipses stand for corrections that are either finite or vanish as £5xp — 0. This can
be compared to the integral without the UV regulating exponential, which is divergent, but has
the same Inp dependence, viz. —”72 In(p/p), as follows from e.g. dimensional regularisation.
Thus, as expected, we see that for small £ the integral goes back to that of standard perturbation
theory, except that it is effectively cut off in the UV by

1M
§pr 268

M being the reduced Planck mass. This is the pattern one sees in the other integrals Ij.
From (7.14), their leading singularity in small ¢ limit can be found by differentiating or integ-
rating (7.15) with respect to £23%2, i.e. with respect to the regulating scale.

The problem is that with 1/£k playing the role of the cutoff, orders of perturbation the-
ory in k, and regularised-divergences, get mixed up with each other, and we have no way
of disentangling them. In particular, higher orders in perturbation theory can contribute the
same amount by supplying higher powers of s from the Feynman rules but also higher powers

(7.16)

7 After some manipulation the I can in this case be evaluated in closed form in terms of Meijer-G functions, which
would thus enable further development for example analytical continuation back to Minkowski signature.
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of 1/k from the regularised UV divergences. Meanwhile differentiated ¢ propagators sup-
ply extra factors of &, as appear for example in (3.13), so that powers of £ do not allow the
corrections to be organised either. One also confirms in this way that the individual I, can-
not be gauge invariant. For example, the term in (3.13) with four differentiated propagators
(that appears in the third line), contributes amongst other things a contribution of the form
~ k0 3*¢8 I whose leading behaviour in the small ¢ limit goes as 1/x2, providing the graviton
with a Planck sized ‘mass’ term. This would be cancelled by higher orders in € if there exists
an appropriate resummation of the I', that recovers gauge invariance, but we do not know how
to do this.

In the other limit, in which ¢ is taken large, (h,,,,¢) is also large as we have already noted,
cf equation (7.11). However it is not a problem to sum over these types of correction as well.
The handful of instances of J,,¢ yield some factors of differentiated propagators, analogous
to those in (3.13), whilst exp 34, (x;) combined with the term

L 5
/ddx,-d xjm<hw (xi) SD(XJ‘»W € Py (7.17)

which appears inside the exponential e” as part of the I, expansion, results in a shift operator
for h,,,, that maps

By (xi) — hyuw (xi) + “5% <hlw (xi) (xj)> ) (7.18)

in the ith copy of I';. Using (7.11), this is

1 2d% 4+
P (xi) = Py (i) + KBy <52 T8d—n@-2 " 0 (52)> A (i —25), (7.19)
where®
d’p er* [(§ PuP 174 XX
A (x) = Qe _ Pubv) _ 2 (0w 4w ) A (4 7.20
o (3) /(27r)dp2<d pz) 2<d xz) ) (720

Applying these shifts gives the final form of the resummed (k,,,, ) corrections.

One might worry that these shifts dominate in such a way as to destroy the regulating expo-
nential (3.15). This depends on how we parametrise g, however if we use the exponential
parametrisation [19-21], which is a natural non-singular choice, then for all d in the range
5/2 < d < 5 it does not destroy the regularisation. This includes the important case of d =4
dimensions.

To see this first note that in exponential parametrisation we write g,,,, = (€""),,,,, where we
are using the matrix exponential, the normalisation being fixed by (2.4). Then the exponential
of A that appears as a result of the shift (7.19) takes the form

. 1 2d?
exp {/izﬁiﬂai (62 — W)—Ej_z) +0 (62)> A (x; —xj)} , (7.21)

where the 3; are determined by the overall power m; of g,,,, that appears in the corresponding
interaction. Now recall, cf (7.10), that £2 = 1/ + O(?) and thus the term in round brack-
ets above is less than £2. For the given range of d, and by inspection, in all cases 3; < ;.

8 The coefficient of f% can be found by applying 9,, to both sides and comparing the result to 9, A(x) using (3.8).
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and thus this exponential never overwhelms the regularising exponential (3.15). Indeed, since
8. has unit determinant, one sees for example that in the Einstein—Hilbert action (2.5) the
overall power of g, is m = —1, whereas for the gauge fixing and ghost actions in (7.2) it is
m = 42 and m = +1 respectively. Now, from (7.20), A,,,, is a sum of transverse and longitud-
inal projectors 4, — “43* and 5%, respectively, with corresponding eigenvalues —A /2d and
(d—1)A/2d. Thus the corresponding 3 = —m/2d and (d — 1)m/2d. These should be com-
pared to the corresponding /3, which in these examples are (d —2)/d, 4/d and 2/d, for the
Einstein—Hilbert action, gauge fixing and ghost actions respectively. One then readily veri-
fies that in these cases, 5; < f3,, provided 5/2 < d < 5. The cosmological constant and matter
action cases are similarly verified.

To this can we now add the other quantum corrections involving pure h,,,, propagators, the
ghosts, and matter fields. Since there are interactions to all orders in xh,,,,, and there are $d(d +
1) hy,, versus just one ¢, and given that the graviton has a right-sign propagator, one might have
thought that summing also over the pure 4,,,, corrections before performing the integrals, must
result in contributions that destroy the regularising properties of the ¢ propagator exponential
(corrected as discussed above). In fact this limit shows that such an argument is too naive: in
this limit the (., ha3) propagator (7.12) remains finite, whilst the ¢ propagator corrections
diverge.

The size of the corrections can be studied by making the substitution

Xj eT Ty (7.22)

for the x; integration variable. This eliminates ¢ from the regularising exponentials, renders
finite any propagator factors involving ghosts or ¢, and forces all the (h,,h.3) and matter
field propagator corrections to vanish in the limit € — 0. Furthermore the effect of the sub-
stitution (7.22) in the Fourier exponential e”*, is to take the large external momentum limit,
which further suppresses the corrections. Unfortunately the substitution (7.22) also supplies

a divergent factor of ¢ from the change of integration measure [ d%x;, and thus the T, get
multiplied by a factor of ¢~ @=2". This means that increasing n results in divergently larger

corrections, and thus again we do not have a controlled expansion.

8. Summary and conclusions

We have seen that the perturbation series in x can be resummed into terms, I',,, each of which is
UV finite (provided that fields are parametrised appropriately, and massive tadpole corrections
are set to zero). These resummations into the I, involve an infinite rearrangement of the
perturbation series in k, since here we first expand over vertices in S; which keep intact the
exponential dependence on ¢, and then sum over the ¢ corrections, before summing over
corrections from other fields.

Such infinite rearrangements of a series can alter its value, unless that series is absolutely
convergent. But the perturbation series in x is undoubtedly not even conditionally convergent,
if only because the resulting Feynman diagrams suffer from the usual factorial growth®. Had
the I',, obeyed all the required properties of such a quantum field theory, we could try to take the
view that they define what we mean by quantum gravity. But the fact that no finite resummation
of the I, is diffeomorphism invariant, either under background diffeomorphisms or its BRST

9 For a discussion of such factorial growth, and Borel resummation efc see e.g. [42].
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realisation, obstructs any such attempt, as does the related problem: the apparent lack of any
appropriate small parameter which would allow the I',, to be ordered into successively smaller
terms.

As already mentioned in the Introduction, section 1, the idea that gravity should somehow
provide its own UV regularisation is not new. In fact [14] suggested an approach to gravity
regularisation of quantum electrodynamics which is in some ways close to this paper. They use
an exponential parametrisation of the metric. As a model approximation, they retain only the
conformal factor ¢ part of the metric. Working in Feynman—DeDonder gauge, they note that
summation over all the ¢ propagator corrections then results in an exponential regularisation
factor for the simplest quantum corrections, the same exponential regularisation as derived
here, viz. equation (3.15)'°. That gravity might be regularised by resummation was also sug-
gested in [13], although there the approach advocated was resummation of ladder diagrams in
the Bethe-Salpeter equations. A different key idea used here was central to [15], namely that
the conformal factor should be integrated out first. There, it was then argued that conformal
invariance would imply that the result has to be UV finite.

We hope that future work finds a way to build on the findings we have reported, to achieve
a fully acceptable finite quantum field theory. Perhaps one can make further progress by first
studying simpler models. For example the scalar field theory defined by the action

S:/ddx{—;(auga)z—kudew}, (8.1)

or equivalently with a right sign kinetic term and e interaction (see also the end of
section 3.2), can be quantised by these methods. Thus we see that it is UV finite in d >2
dimensions, and furthermore in this case the orders I',, have a genuine expansion parameter,
namely the mass parameter p (although it can be changed by shifting ¢ by a constant). It
can be viewed as a kind of generalisation of Liouville field theory [44] to d > 2 dimensions,
albeit with the wrong sign kinetic term. Note that such a theory however is non-unitary, unlike
quantum gravity.

In summary, we have established that quantum gravity can be resummed into a series of
UV finite terms I',,, but the apparent lack of diffeomorphism invariance in these I',,, or useful
control parameter, is a serious stumbling block. Nevertheless this result seems significant.
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Appendix. Gauge fixing Yang—Mills fields

In section 2 we showed that all interactions in a full phenomenologically relevant theory of
quantum gravity can satisfy the key property that they are weighted by a positive exponential
of . However we left to this appendix the task to show that this is true also of Yang-Mills
gauge fixing terms and corresponding ghost action.

The result of gauge fixing is to add to the Yang—Mills action (2.17), the gauge fixing and
ghost terms, which take the form

2/gtr (xf*/2 —naf) , (A.1)

where x is the gauge parameter, the gauge field A, = A7, and ghosts n = 7“t“ are contracted
into the generators #* of the Lie group (with conventional orthonormalisation trtt? = §% /2),
f is a suitable gauge fixing functional, typically f = g"*V ,A,, and q is the Yang-Mills BRST
charge:

qA, =V, m—iglA,,n], qn=—ign®,  qn=xf, (A2)

with g being the Yang—Mills coupling.

Unlike the Yang—Mills action (2.17), the gauge fixing and ghost terms in (A.1) are already
weighted by a positive exponential of ¢ in the phenomenologically relevant case of d =4
dimensions (and in general d as e*(=2)¢/4 and e"(¢=1)#/d respectively). The repairs to A, put
forward in section 2 only make this better.

Writing A# as the fundamental field removes the inverse metric from the gauge fixing func-
tional, which now becomes f = V ,A#, and thus leaves us just with the same weight as a cos-
mological constant term, c¢f (2.15), and making this substitution in (A.2) simply has the net
effect of raising the indices in the first equation: gA* = V#n — i g[A* 7).

The other choice of repair replaces A,, everywhere it appears with g %A,, and thus also
only improves (A.1), whilst altering the BRST transform to

qA, =g "*V,m—iglAu.m) . (A3)

Since the metric plays no role in the Yang—Mills BRST symmetry, and commutes with the
covariant derivative V,, it should be clear that such changes of field variable do not break
the Yang—Mills BRST symmetry and in particular the (on-shell) nilpotency of ¢, but it is also
straightforward to confirm this from the above equations.

(In the latter case we can return gA,, to its standard form by replacing the ghost field 7 with
¢"/?n and thus declaring it to be also a density of weight w. This only increases the positivity
of the ( exponentials still further in the ghost action. Although this change to 77 may thus seem
motivated, it does not eliminate g"/? from the BRST algebra since it now appears in g1).)
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