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ABSTRACT
The magneto-rotational instability (MRI)—which is due to an interplay between a sheared background and the magnetic field—is
commonly considered a key ingredient for developing and sustaining turbulence in the outer envelope of binary neutron star
merger remnants. To assess whether (or not) the instability is active and resolved, criteria originally derived in the accretion disk
literature—thus exploiting the symmetries of such systems—are often used. In this paper we discuss the magneto-shear instability
as a truly local phenomenon, relaxing common symmetry assumptions on the background on top of which the instability grows.
This makes the discussion well-suited for highly dynamical environments such as binary mergers. We find that—although this
is somewhat hidden in the usual derivation of the MRI dispersion relation—the instability crucially depends on the assumed
symmetries. Relaxing the symmetry assumptions on the background we find that the role of the magnetic field is significantly
diminished, as it affects the modes’ growth but does not drive it. We conclude by making contact with a suitable filtering
operation, as this is key to separating background and fluctuations in highly dynamical systems.
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1 INTRODUCTION

The magneto-rotational instability was discovered by Balbus and
Hawley in the early 1990s (Balbus & Hawley 1991; Hawley &
Balbus 1991; Balbus & Hawley 1998) (linking to earlier ideas
from, for example, Chandrasekhar (1960) and Velikhov (1959)).
Due to the fast instability growth rate, this mechanism is considered
the most promising candidate for developing/sustaining magneto-
hydrodynamic turbulence in accretion disks as well as explaining en-
hanced angular momentum transfer (Balbus & Hawley 1998; Shakura
& Sunyaev 1973). The instability is due to an interplay between a
weak magnetic field and a sheared background flow. With few ex-
ceptions (see for example Mahajan & Krishan (2008) and Shakura
et al. (2022)) and due to its “local” nature, the magneto-rotational
instability is commonly discussed in the so-called “shearing box ap-
proximation” (Goldreich & Lynden-Bell 1965; Hill 1878). That is,
the instability is established in a frame that corotates with a fiducial
point in the mid-plane of the undisturbed disk (see also Goodman
& Xu 1994). This is convenient for analytical studies as well as
numerical analysis since local simulations can reach much higher
resolutions than global ones (see, for example, Hawley et al. 1995;
Zier & Springel 2022, and references therein). Shearing box simu-
lations confirmed the predictions of the linear theory, and allowed
studies of non-linear features, such as the formation of the so-called
channel modes, eventually leading to a turbulent regime as these are
destroyed by a parasitic instability (Goodman & Xu 1994). As turbu-
lence decays, the magneto-rotational instability may be revived and
the process can start again in cycles. Most importantly, while it has
recently become possible to perform fully kinetic simulations (see,
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e.g. Hoshino 2015; Inchingolo et al. 2018), shearing box simulations
are necessary to explore the parameter space in a variety of different
setups (Sharma et al. 2006; Kempski et al. 2019; Guilet et al. 2022;
Held & Mamatsashvili 2022).

Although originally discussed in the context of accretion disks,
the magneto-rotational instability is also thought to play a role in
neutron-star mergers (Duez et al. 2006; Siegel et al. 2013; Palen-
zuela et al. 2022; Margalit et al. 2022; Hayashi et al. 2022; Kiuchi
et al. 2022), especially for sustaining a magneto-turbulent state in
the outer envelope of the remnant, where the Kelvin-Helmholtz in-
stability is less significant or, indeed, not active (Kiuchi et al. 2018).
To assess whether or not the magneto-rotational instability is active
and resolved in merger simulations, criteria discussed/established in
the context of accretion disks (Hawley et al. 2011, 2013; Shibata
2015) are often used. However, because binary neutron star merg-
ers are highly dynamical environments, framing a discussion of the
magneto-rotational instability using criteria that exploits restrictive
symmetry conditions might be misleading. Motivated by this, we
aim to explore the impact of relaxing common assumptions—well-
motivated in the accretion disks scenario, like an axisymmetric and
circular background flow, but less so for mergers—on the magneto-
shear instability.

The paper is laid out as follows: we start in section 2 by introducing
the WKB-type expansion together with the concept of fast vs. slow
background gradients, as needed to derive dispersion relations asso-
ciated with perturbations propagating on top of a non-homogeneous
background flow. In section 3 we discuss how we can, in highly dy-
namical environments such as mergers, still refer to an unspecified
background—with no symmetries stated from the outset—and con-
sider perturbations rapidly evolving on top of that. We continue in
section 4 by deriving the non-inertial induction equation, and making
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contact with the concept of a local frame. We do so as we will study
the instability from the perspective of an observer moving around
with the background flow, which cannot be expected to be inertial
on a general basis. We discuss our main findings in sections 5 and
6. These are based on the dispersion relations, which are derived
in detail in appendices C and D in order to be able to focus on the
physics in the main body of the paper. In particular, we discuss the
magneto-shear instability paying careful attention to the differences
introduced by the addition of a magnetic field. We draw our conclu-
sions, and make contact with the magneto-rotational instability (and
the associated criteria) in section 7.

2 BACKGROUND GRADIENTS AND PLANE-WAVE
EXPANSION

Let us begin by noting that the magneto-rotational instability is, in
some sense, a “global instability analyzed with local tools”. The lo-
cal nature is evident since the instability is established by means of a
dispersion relation (hence involves a plane-wave expansion and, by
assumption, a short-wavelength approximation). At the same time,
one may appreciate the “global nature” of the instability by recall-
ing the key aspects of the instability: the addition of a weak mag-
netic field turns axisymmetric modes (which would otherwise be
hydrodynamically stable) unstable. The global axisymmetry of the
background, then, plays a crucial role as the relevant hydrodynamic
stability criterion—the Rayleigh criterion (Rayleigh 1917)—applies
to axisymmetric modes only. Although the standard derivation of
the instability does not highlight this subtlety, this aspect becomes
apparent if we formulate the problem using a co-rotating local frame
(cf. the discussion in appendices A and B).

With these points in mind, let us spell out how we intend to
discuss the magneto-shear instability without referring to a given
axisymmetric and circular background. Consistent with the shearing
box idea (Goldreich & Lynden-Bell 1965; Hill 1878), the strategy is
to zoom in on a small region of fluid—small enough for the analysis
to be local but large enough to allow for a meaningful hydrodynamic
description. We then set up a local Cartesian frame co-moving with
the background flow—so that the background velocity vanishes at
the origin of the local box. As this frame moves with the flow—and
hence cannot be expected to be inertial—we need to consider the (at
this point Newtonian) ideal magneto-hydrodynamics equations in a
non-inertial frame. This step is commonly left out of the discussion,
so we first of all have to fill this gap. The non-inertial equations will
then be perturbed—retaining gradients in the background quantities
as explained below—and a local WKB-type dispersion relation will
be derived and studied. This way we can account for the effects of
a sheared background and its interplay with the magnetic field in a
general setting.

Strictly speaking, the plane-wave expansion only makes sense for
a homogeneous background—that is, the plane-wave amplitude is
assumed to vary on the same scales as the background. At the same
time, we know that a sheared background is key to the magneto-
rotational instability. Therefore, given any quantity/field 𝑎, we first
write it as a sum of background plus perturbations

𝑎 = 𝐴 + 𝛿𝐴 , (1)

and then introduce a WKB-type expansion of the form (Thorne &
Blandford 2017; Anile 1989)

𝛿𝐴 =
©«
∑︁
𝑞=0

𝜖𝑞 �̄�𝑞
ª®¬ 𝑒𝑖 𝜃/𝜖 𝛿, (2)

with book-keeping parameters 𝛿 and 𝜖 (see also Palapanidis 2018).
The former

(
𝛿
)

is introduced to measure the relative magnitude of
background vs. perturbations, while the latter (𝜖) is given by 𝜖 ≈ 𝜆/𝐿
where 𝜆 is the typical wavelength of the waves and 𝐿 is the typical
lengthscale over which the wave amplitude, polarization and wave-
length vary. Having split the perturbations into amplitude and phase,
we follow the standard convention (Misner et al. 2017) and stick
all “post-geometric optics” corrections into the amplitude �̄�𝑞 . With
this Ansatz, the background equations are obtained by collecting all
terms of order O(𝛿0, 𝜖0), while the perturbation equations are ob-
tained collecting terms of order O(𝛿1, 𝜖0). Terms of higher order in
𝜖 correspond to post-geometric optics, while those of higher order in
𝛿 represent non-linear perturbations.

Along with this WKB-type Ansatz, we need to introduce the con-
cept of fast and slowly varying quantities. Given a specific choice of
coordinates, a quantity is slow in the variable 𝑥 if 𝐴 = 𝐴(𝑋) where
𝑋 = 𝜖𝑥 while it is fast if 𝐴 = 𝐴(𝑥). Deciding which quantities are
fast or slow corresponds to specifying (in a qualitative manner) the
background configuration. As an illustration, consider the simple toy
problem

𝑎(𝜕𝑥𝑏 + 𝜕𝑥𝑐) = 0 , (3)

together with the Ansatz from eq. (2). Let us first assume that both
𝐵 and 𝐶 are fast, so that 𝜕𝑥𝐵 ≈ O(𝛿0, 𝜖0) and similarly for 𝐶. The
background equation is then

𝐴 (𝜕𝑥𝐵 + 𝜕𝑥𝐶) = 0 . (4)

If we instead assume that, say, 𝐵 is fast while 𝐶 is slow, then
𝜕𝑥𝐵 ≈ O(𝛿0, 𝜖0) while 𝜕𝑥𝐶 ≈ O(𝛿0, 𝜖) and the background equa-
tion becomes

𝐴𝜕𝑥𝐵 = 0 . (5)

Clearly, the two problems are different already at the background
level.

Let us now turn to the linear perturbations. Because we have
explicitly introduced the book-keeping parameter 𝜖 in eq. (2), we
take all amplitude terms as well as the phase to be slowly varying.
Then, to order O(𝛿, 𝜖0) we have(
𝐴 + 𝛿�̄�0𝑒

𝑖 𝜃/𝜖
)
𝜕𝑥

[
𝐵 + 𝛿�̄�0𝑒

𝑖 𝜃/𝜖 + 𝐶 + 𝛿�̄�0𝑒
𝑖 𝜃/𝜖

]
= 0 . (6)

Assuming again that the background quantity 𝐵 is fast, while 𝐶 is
slow, the perturbation equation becomes

�̄�0 (𝜕𝑥𝐵) 𝑒𝑖 𝜃/𝜖 + 𝐴

(
�̄�0𝜕𝑥𝑒

𝑖 𝜃/𝜖 + �̄�0𝜕𝑥𝑒
𝑖 𝜃/𝜖

)
= 0 . (7)

Next, Taylor expanding the phase—which is slowly varying—we get

𝜃 (𝑥)
𝜖

≈ 𝜃 (0)
𝜖

+ 𝜕𝜃

𝜕𝑋

���
𝑋=0

𝑥 + · · · = 𝜃 (0)/𝜖 + 𝑘𝑥𝑥 + O(𝜖) , (8)

where we define the wave-vector 𝑘𝑥 = 𝜕𝜃/𝜕𝑋 from the first order
term in the expansion, while the overall constant can be neglected.
Then, introducing an analogous expansion for the fast background
gradients 𝜕𝑥𝐵(𝑥) = 𝜕𝑥𝐵(0) + O(𝜖) we end up with

�̄�0 (𝜕𝑥𝐵) + 𝐴
(
𝑖𝑘𝑥 �̄�0 + 𝑖𝑘𝑥�̄�0

)
= 0 , (9)

where both 𝜕𝑥𝐵 and 𝐴 are evaluated at a point (conveniently chosen
as the origin of the coordinate system). Therefore, if all background
quantities are “slow”, we get back the dispersion relation we would
have obtained ignoring all background gradients. This is quite intu-
itive. However, the strategy also allows us to account for the impact
that “fast” background gradients have on the dispersion relation. In
short, as long as these terms are treated as constants, we may retain
them and work out a dispersion relation in the usual way.

MNRAS 000, 000–000 (2023)
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3 THE SLOWLY EVOLVING BACKGROUND

The starting point for any hydrodynamic perturbation analysis is the
choice/identification of a stationary background flow configuration,
which is then perturbed in order to establish stability (or not). Here,
we want to frame the analysis of the magneto-shear instability without
considering a specific background configuration with constraining
symmetries stated from the outset. Nonetheless, we need to clarify
how we can refer to a suitable “background” in highly dynamical
environments like binary neutron star mergers. We will first analyse
the problem analytically, and return to discuss the link to numerical
simulations in section 7. Given real numerical simulation data, this
discussion will inevitably involve some kind of filtering operation.
Anticipating that this can be done in a meaningful way, we consider
perturbations evolving rapidly with respect to the evolution time-
scale of an unspecified “background” flow.

To make this statement more precise, let us consider the inertial
ideal MHD equations and introduce reference values for each quantity
(indicated with an “𝑟” subscript) such as 𝜌 = 𝜌𝑟 �̃�. We introduce the
(dimensionless) Strouhal, Mach, Froude and magnetic interaction
numbers as

𝜀St =
𝑙𝑟

𝑡𝑟 𝑣𝑟
, 𝜀Ma =

𝑣𝑟

𝑐𝑟
, 𝜀Fr =

𝑣𝑟√
Φ𝑟

, 𝜀𝐵 =
𝐵2
𝑟

𝜇0𝜌𝑟 𝑣
2
𝑟

, (10)

where 𝑙𝑟 , 𝑡𝑟 , 𝑣𝑟 are characteristic lengthscale, timescale and velocity
(respectively) while 𝐵𝑟 , Φ𝑟 , 𝜌𝑟 are reference values for the magnetic
field, gravitational potential and density and 𝑐𝑟 is the (adiabatic)
speed of sound. This way, the non-dimensional inertial ideal MHD
equations read (now dropping the tildes for notational clarity)

𝜀St 𝜕𝑡 𝜌 = −𝜌∇𝑖𝑣
𝑖 − 𝑣𝑖∇𝑖𝜌 , (11a)

𝜀St 𝜕𝑡𝐵
𝑖 = −𝑣 𝑗∇ 𝑗𝐵

𝑖 + 𝐵 𝑗∇ 𝑗𝑣
𝑖 − 𝐵𝑖∇ 𝑗𝑣

𝑗 , (11b)

𝜀St 𝜕𝑡𝑣
𝑖 = −𝑣 𝑗∇ 𝑗𝑣

𝑖 − 1
𝜖2
Ma

1
𝜌
∇𝑖𝜌 − 1

𝜖2
Fr
∇𝑖Φ−

𝜖𝐵
1
𝜌

[
𝐵 𝑗∇ 𝑗𝐵

𝑖 − ∇𝑖

(
𝐵2

2

)]
. (11c)

From this we see that a generic flow configuration can be consid-
ered slowly evolving (in time) as long as the corresponding Strouhal
number is small. In practice, given a characteristic lengthscale 𝑙𝑟 and
velocity 𝑣𝑟 of a generic flow, we consider disturbances evolving on
timescales 𝑡𝑟 such that 𝜖St ≪ 1—over which the background can be
effectively taken as stationary. In turn, this determines the time-scales
over which we expect the following results to be reliable.

3.1 Velocity gradient decomposition

In the following we will consider the impact that gradients in the
background flow velocity have on the time evolution of perturbations.
It is then convenient to introduce the standard decomposition of the
velocity gradient into expansion, shear and vorticity. That is,

∇𝑖𝑣 𝑗 =
1
3
𝜃𝑔𝑖 𝑗 + 𝜎𝑖 𝑗 + 𝜔𝑖 𝑗 , (12)

where1

𝜃 = ∇𝑖𝑣
𝑖 , (13a)

𝜎𝑖 𝑗 = ∇(𝑖𝑣 𝑗 ) −
1
3
𝜃𝑔𝑖 𝑗 =

1
2

(
∇𝑖𝑣 𝑗 + ∇ 𝑗𝑣𝑖

)
− 1

3
𝜃𝑔𝑖 𝑗 , (13b)

𝜔𝑖 𝑗 = ∇[𝑖𝑣 𝑗 ] =
1
2

(
∇𝑖𝑣 𝑗 − ∇ 𝑗𝑣𝑖

)
. (13c)

In order to bring out the magneto-shear nature of the instability, we
will consider the impact of having a background with non-negligible
shear and vorticity separately. We will, however, not consider the
impact of a background expansion rate as exact non-linear results are
sufficient to predict this. In fact, due to the Alfvén theorem, we know
that the magnetic intensity must grow in a (ideal magneto-)fluid
undergoing compression as the field lines are squeezed together.
Similarly, the field will get weaker in an expanding fluid. In essence,
we expect—and have verified explicitly—this non-linear prediction
to emerge in the analysis as a generic “instability”. The background
magnetic field cannot grow in time as it is assumed to be slowly
evolving by construction, so the required growth must be represented
by perturbations.

Before we move on to derive the non-inertial equations, it is useful
to take a brief detour and consider a realization of a flow with only
non-negligible shear. Because we are interested in flows that are
slowly evolving we can start by assuming that 𝑣𝑖 = 𝑣𝑖 (𝜖𝑡, 𝑥, 𝑦, 𝑧)
and suppress the time dependence in the following. We then take the
velocity vector as mainly two-dimensional, specifically in the 𝑥 − 𝑦

plane of a set of local Cartesian coordinates

v = 𝑣𝑥 (𝑥, 𝑦, 𝑧)𝑥 + 𝑣𝑦 (𝑥, 𝑦, 𝑧) �̂� + O(𝜖) , (14)

where, in order to make sure the expansion is small, we take 𝜕𝑥𝑣
𝑥 =

−𝜕𝑦𝑣𝑦 + O(𝜖). The shear matrix is then given by

𝝈 =
©«

𝜕𝑥𝑣
𝑥 1

2
(
𝜕𝑥𝑣

𝑦 + 𝜕𝑦𝑣
𝑥
) 1

2 𝜕𝑧𝑣
𝑥

1
2

(
𝜕𝑥𝑣

𝑦 + 𝜕𝑦𝑣
𝑥
)

−𝜕𝑥𝑣𝑥 1
2 𝜕𝑧𝑣

𝑦

1
2 𝜕𝑧𝑣

𝑥 1
2 𝜕𝑧𝑣

𝑦 0

ª®®¬ + O(𝜖) , (15)

while the curl of v becomes

∇ × v = −
(
𝜕𝑧𝑣

𝑦 ) 𝑥 + (
𝜕𝑧𝑣

𝑥 ) �̂� + (
𝜕𝑥𝑣

𝑦 − 𝜕𝑦𝑣
𝑥 ) 𝑧 . (16)

This has to be ofO(𝜖) for background flows with only non-negligibile
shear, in which case

𝜕𝑧𝑣
𝑥 = 𝜕𝑧𝑣

𝑦 = O(𝜖) , 𝜕𝑦𝑣
𝑥 = 𝜕𝑥𝑣

𝑦 + O(𝜖), (17)

and as result the determinant of the shear matrix vanishes (more
precisely, is of order O(𝜖)). This is equivalent to saying that two
eigenvalues of the shear matrix are opposite and the third is zero
(to order O(𝜖)). In essence, a mainly two-dimensional flow with
negligible expansion and vorticity is characterized by a shear matrix
with one zero eigenvalue, and hence a vanishing determinant. This
will turn out to be a useful observation when we discuss the dispersion
relations in sections 5 and 6. We also note that having negligible
expansion (although relevant for the present analysis) is not strictly
necessary to the argument.

4 NON-INERTIAL EQUATIONS AND THE LOCAL FRAME

The ideal magneto-hydrodynamics equations above hold in an in-
ertial frame. However, as an observer locally co-moving with the

1 We follow the standard notation and use (straight) round brackets to indicate
(anti-)symmetrization of the indices enclosed.

MNRAS 000, 000–000 (2023)
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fluid cannot (in general) be expected to be inertial, we need to con-
sider the equations according to a non-inertial observer. As such, let
us now derive the Newtonian induction equation in a general (non-
inertial) frame starting from the Maxwell equations formulated in
covariant form. This is the natural starting point as electromagnetism
is inherently a relativistic theory. Moreover, we stress that the elec-
tric and magnetic field are observer dependent quantities, and the
standard textbook form of the Maxwell equations assume an inertial
observer/frame from the outset.

We then take as our starting point the covariant Maxwell equa-
tions (with indices 𝑎, 𝑏, . . . representing space-time components, in
contrast to the 𝑖, 𝑗 , 𝑘, . . . components from before)

∇𝑎𝐹
𝑏𝑎 = 𝜇0 𝑗

𝑏 , ∇[𝑎𝐹𝑏𝑐] = 0 , (18)

where 𝐹𝑎𝑏 is the Faraday tensor while 𝑗𝑏 is the four-current. From
these relations we derive the non-inertial (relativistic) induction equa-
tion and, finally, consider the Newtonian limit. Because we are in-
terested in the non-inertial equations associated with an observer
locally co-moving with the fluid, it is natural to decompose the co-
variant Maxwell equations in the “fluid frame” (Andersson & Comer
2021)—leading to a (fibration) formulation, commonly used in cos-
mology (Barrow et al. 2007). Hence, we introduce a four-velocity
𝑈𝑎 associated with a generic observer and decompose the Faraday
tensor and the charge current as

𝐹𝑎𝑏 = 2𝑈[𝑎𝑒𝑏] + 𝜀𝑎𝑏𝑐𝑏
𝑐 , 𝑗𝑎 = 𝜎𝑈𝑎 + 𝐽𝑎 , (19)

where

𝑒𝑎 = 𝐹𝑎𝑏𝑈
𝑏 , 𝑏𝑎 =

1
2
𝜀𝑎𝑏𝑐𝐹

𝑏𝑐 , and 𝜀𝑎𝑏𝑐 = 𝜀𝑑𝑎𝑏𝑐𝑈
𝑑 . (20)

With these definitions we can rewrite the Maxwell equations as (see
e.g. Ellis 1973; Andersson 2012; Andersson & Comer 2021)

⊥𝑎
𝑏
∇𝑎𝑒

𝑏 − 𝜇0𝜎 = 2𝑊𝑎𝑏𝑎 , (21a)

⊥𝑎
𝑏
∇𝑎𝑏

𝑏 = −2𝑊𝑎𝑒𝑎 , (21b)

⊥𝑎𝑏 ¤𝑒𝑏 − 𝜀𝑎𝑏𝑐∇𝑏𝑏𝑐 + 𝜇0𝐽𝑎 =

𝑒𝑏
(
𝜎𝑏𝑎 + 𝜔𝑏𝑎 − 2

3
𝜃 ⊥𝑏𝑎

)
+ 𝜀𝑎𝑏𝑐𝑎

𝑏𝑏𝑐 , (21c)

⊥𝑎𝑏
¤𝑏𝑏 + 𝜀𝑎𝑏𝑐∇𝑏𝑒𝑐 =

𝑏𝑏
(
𝜎𝑏𝑎 + 𝜔𝑏𝑎 − 2

3
𝜃 ⊥𝑏𝑎

)
− 𝜀𝑎𝑏𝑐𝑎

𝑏𝑒𝑐 , (21d)

where dots stand for co-moving time derivatives 𝑈𝑎∇𝑎 and ⊥𝑎𝑏=

𝑔𝑎𝑏+𝑈𝑎𝑈𝑏 is the projection orthogonal to the observer four-velocity
(𝑔𝑎𝑏 is the spacetime metric). In eq. (21), the terms on the left-
hand side should be familiar, while those on the right-hand side are
associated with gradients of the observer four-velocity2. As such,
they vanish identically for an inertial observer, and hence do not
appear in most textbook discussions.

To derive the induction equation, we follow the usual logic (see

2 The shear, vorticity and expansion are defined as the four dimensional
version of eq. (13)—that is with additional projections to ensure they are
flow orthogonal—while the observer four-acceleration is 𝑎𝑏 = 𝑈𝑎∇𝑎𝑈

𝑏

and 𝑊𝑎 = 1
2 𝜀

𝑎𝑏𝑐𝜔𝑏𝑐 .

Andersson et al. 2021, for a recent relativistic discussion) and “mas-
sage” the Faraday equation

⊥𝑎𝑏
¤𝑏𝑏 − 𝑏𝑏

(
𝜎𝑏𝑎 + 𝜔𝑏𝑎 − 2

3
𝜃 ⊥𝑏𝑎

)
︸                                             ︷︷                                             ︸

∼𝑏/𝑇

+ 𝜀𝑎𝑏𝑐

(
∇𝑏𝑒𝑐 + 𝑎𝑏𝑒𝑐

)
︸                     ︷︷                     ︸

∼𝑒/𝐿

= 0 , (22)

to see that 𝑒 ∼ 𝐿𝑏/𝑇 ∼ 𝑉𝑏, with 𝐿 and 𝑇 typical length- and time-
scales and 𝑉 the associated velocity3. As long as the electric and
magnetic fields are slowly evolving, a similar dimensional analysis
then leads us to neglecting terms involving the electric field (i.e. the
displacement current) in the Ampère law, so that

𝐽𝑎 =
1
𝜇0

(
𝜀𝑎𝑏𝑐∇𝑏𝑏𝑐 + 𝜀𝑎𝑏𝑐𝑎

𝑏𝑏𝑐
)
. (23)

As the Ampère law has now been demoted to a constraint on the
charge current (see Andersson et al. 2021), we need to introduce a
closure relation for the electric field. In the ideal case, this can be
obtained by looking at the electric field measured by an observer
locally co-moving with the fluid. In fact, because the local fluid
four-velocity 𝑢𝑎 is linked to the generic observer 𝑈𝑎 via

𝑢𝑎 = 𝑊
(
𝑈𝑎 + 𝑣𝑎

)
, 𝑈𝑎𝑣𝑎 = 0 , 𝑊 =

(
1 − 𝑣𝑎𝑣𝑎

)−1/2
, (24)

where 𝑣𝑏 is the spatial fluid velocity as measured by𝑈𝑎 , the electric
field measured by the fluid is (cf. eq. (20))

𝐹𝑎𝑏𝑢
𝑏 = 𝑊

[
𝑒𝑎 + 𝜀𝑎𝑏𝑐𝑣

𝑏𝑏𝑐 +𝑈𝑎 (𝑣𝑏𝑏𝑏)
]
. (25)

In a perfect conductor, where charges easily flow, one would expect
the electric field to “short out” as the matter becomes locally charge
neutral, so that

𝑒𝑎 + 𝜀𝑎𝑏𝑐𝑣
𝑏𝑏𝑐 = 0 . (26)

With this constraint, we can derive the induction equation from Fara-
day’s law. To do so, note that

𝜀𝑎𝑏𝑐𝜀
𝑐𝑑𝑒 = 𝑈 𝑓𝑈𝑔𝜀 𝑓 𝑎𝑏𝑐𝜀

𝑔𝑑𝑒𝑐 = −3!𝑈 𝑓𝑈𝑔𝛿
[𝑔
𝑓
𝛿𝑑𝑎𝛿

𝑒]
𝑏

=

(
𝛿𝑑𝑎𝛿

𝑒
𝑏
− 𝛿𝑒𝑎𝛿

𝑑
𝑏

)
−

(
//𝑑𝑎 𝛿𝑒

𝑏
− //𝑒𝑎 𝛿𝑑

𝑏

)
−

(
𝛿𝑑𝑎 //𝑒

𝑏
−𝛿𝑒𝑎 //𝑑

𝑏

)
, (27)

where we introduced the parallel projection //𝑎
𝑏
= −𝑈𝑎𝑈𝑏 . When this

is contracted with a spatial tensor (with respect to 𝑈𝑎) the last two
terms in eq. (27) can be dropped. It follows that

𝜀𝑎𝑏𝑐𝜀
𝑐𝑑𝑒

(
𝑎𝑏𝑣𝑑𝑏𝑒

)
=

(
𝑎𝑏𝑏𝑏

)
𝑣𝑎 −

(
𝑎𝑏𝑣𝑏

)
𝑏𝑎 . (28)

We also need to take care of the curl of 𝑒𝑎 term in the Faraday
equation. This can be written

− 𝜀𝑎𝑏𝑐∇𝑏
(
𝜀𝑐𝑑𝑒𝑣𝑑𝑏𝑒

)
=[

−𝜀𝑎𝑏𝑐
(
∇𝑏𝜀𝑐𝑑𝑒

)
𝑣𝑑𝑏𝑒

]
−

[
𝜀𝑎𝑏𝑐𝜀

𝑐𝑑𝑒∇𝑏 (𝑣𝑑𝑏𝑒)
]
, (29)

3 In order to avoid confusion, let us state clearly that the scales 𝐿, 𝑇 (and
the associated velocity 𝑉) in this argument are, in principle, not related to the
ones introduced above 𝑙𝑟 , 𝑡𝑟 and 𝑣𝑟 . The aim here is to reproduce the usual
argument for dropping the displacement current—and derive the induction
equation—not to argue in which sense we can consider perturbations rapidly
evolving on a non-stationary (but slowly evolving) background. When we
perturb the induction equation later on, however, we are in practice assuming
the displacement current to be small compared to perturbations.
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Local magneto-shear instability 5

where it is convenient to consider the two terms separately. We start
from the second term and, even if 𝑈𝑎 is not necessarily surface
forming (i.e. has non-vanishing vorticity), we introduce a “spatial”
covariant derivative 𝐷 in the usual way (projecting each index in the
sub-space orthogonal to 𝑈𝑎). Then, it is easy to see that

𝜀𝑎𝑏𝑐𝜀
𝑐𝑑𝑒𝐷𝑏 (𝑣𝑑𝑏𝑒) = 𝜀𝑎𝑏𝑐𝜀

𝑐𝑑𝑒
(
⊥𝑏

𝑓
⊥𝑔

𝑑
⊥ℎ
𝑒

)
∇ 𝑓 (

𝑣𝑔𝑏ℎ
)

= 𝜀𝑎𝑏𝑐𝜀
𝑐𝑑𝑒∇𝑏 (𝑣𝑑𝑏𝑒) , (30)

and hence

−𝜀𝑎𝑏𝑐𝜀𝑐𝑑𝑒∇𝑏 (𝑣𝑑𝑏𝑒) = 𝐷𝑏 (𝑣𝑏𝑏𝑎) − 𝐷𝑏 (𝑣𝑎𝑏𝑏) . (31)

As for the other term, writing it as

− 𝜀𝑎𝑏𝑐

(
∇𝑏𝜀𝑐𝑑𝑒

)
𝑣𝑑𝑏𝑒 = −𝑈𝑔𝜀𝑔𝑎𝑏𝑐𝜀

𝑓 𝑐𝑑𝑒
(
∇𝑏𝑈 𝑓

)
𝑣𝑑𝑏𝑒

= −𝑈𝑔𝛿
[ 𝑓
𝑔 𝛿𝑑𝑎𝛿

𝑒]
𝑏

𝑔 𝑓 ℎ

(
−𝑈𝑏𝑎ℎ + 𝜔𝑏ℎ + 𝜎𝑏ℎ + 1

3
𝜃 ⊥𝑏ℎ

)
𝑣𝑑𝑏𝑒 ,

(32)

we see that—given the anti-symmetrization—it vanishes identically.
In summary, the (relativistic) induction equation according to a

generic observer4 can be written as

⊥𝑎𝑏 ¤𝑏𝑏 + 𝐷𝑏 (𝑣𝑏𝑏𝑎) − 𝐷𝑏 (𝑣𝑎𝑏𝑏) =(
𝜎𝑎𝑏 − 𝜔𝑎𝑏 − 2

3
𝜃 ⊥𝑎𝑏

)
𝑏𝑏 + 𝑣𝑎 (𝑎𝑏𝑏𝑏) − 𝑏𝑎 (𝑎𝑏𝑣𝑏) . (33)

The terms on the left should be familiar, while those on the right
vanish for an inertial observer.

Next, let us show how the derived equation further simplifies in the
Newtonian limit. On dimensional grounds, we observe that the last
two terms on the right-hand side of eq. (33) contain an extra factor
of 1/𝑐2 (with respect to the others, where 𝑐 is the speed of light), and
will as a result be negligible in the non-relativistic limit (𝑐2 → ∞).
Similarly, let us also consider the absence of monopoles constraint.
From eq. (21) and eq. (26) we immediately obtain

⊥𝑎
𝑏
∇𝑎𝑏

𝑏 = 2𝑊𝑎𝜀𝑎𝑏𝑐𝑣
𝑏𝑏𝑐 , (34)

and we observe the term on the left hand side is ∼ 𝑏/𝐿 while that
on the right is ∼ 𝑏𝐿/𝑇2. Dimensional consistency implies the term
on the right-hand side contains an extra factor of 1/𝑐2 and should be
neglected in the Newtonian limit. In essence, non-inertial effects do
not affect the absence of monopoles constraint at the Newtonian level.
When it comes to the Lorentz force, we expect it not to change at the
Newtonian level, but let us nonetheless check this for consistency.
The Lorentz four-force can be written

− 𝑗𝑏𝐹
𝑏𝑎 = − (𝜎𝑈𝑏 + 𝐽𝑏)

(
𝑈𝑏𝑒𝑎 +𝑈𝑎𝑒𝑏 + 𝜀𝑏𝑎𝑐𝑑𝑈𝑐𝑏𝑑

)
= −𝑈𝑎

(
𝐽𝑏𝜀

𝑏𝑐𝑑𝑣𝑐𝑏𝑑

)
+ 𝜀𝑎𝑏𝑐 (𝐽𝑏 − 𝜎𝑣𝑏) 𝑏𝑐 , (35)

where we used the ideal magneto-hydrodynamics relation (26) in the
second step. The Lorentz three force corresponds to the second term,
where the charge density is measured by the observer, hence does not
(in general) vanish. However, if we insist on the local charge density
to be zero—consistently with (26)—then we have (cf. eq. (19))

−𝑈𝑎 𝑗𝑎 = 𝑊 (𝜎−𝑣𝑎𝐽𝑎) = 0 =⇒ 𝐽𝑏−𝜎𝑣𝑏 =

(
𝑔𝑎
𝑏
− 𝑣𝑎𝑣𝑏

)
𝐽𝑎 . (36)

4 The worldlines of the generic observer 𝑈𝑎 constitute a fibration of the
spacetime, hence we may call this the ideal induction equation in the fibration
framework, as opposed to the corresponding 3+1 form derived by, for example,
Andersson et al. (2021).

Re-inserting the factor of 1/𝑐2 we see that the second term is neg-
ligible with respect to the first. As also the second term in eq. (23)
is negligible in the Newtonian limit, we see that the Lorentz force in
the Euler equation is unchanged (as expected).

4.1 The local frame of an observer

Having derived the relativistic induction equation according to a
generic (non-inertial) observer and recalling that we are interested
in a local analysis, we now make contact with the concept of local
frame associated with an observer (Gourgoulhon 2013; Misner et al.
2017). Given an observer worldline with tangent𝑈𝑎 , the local frame
is constructed by considering three spatial unit vectors that complete
𝑈𝑎 to an orthonormal basis on the tangent space at any given point.
These unit vectors (including the observer four-velocity)—the com-
ponents of which are indicated by hats—are then transported along
the worldline according to

𝑈 �̂�∇�̂�𝑒�̂� = Ω�̂�
�̂�
𝑒
�̂�
, Ω

�̂��̂�
= 𝑈�̂�𝑎�̂� − 𝑎�̂�𝑈�̂�

− 𝜖
�̂��̂��̂�𝑑

𝑈 �̂�𝑊𝑑 , (37)

where 𝑎�̂� is the four-acceleration of 𝑈 �̂� (an intrinsic property of the
worldline) and 𝑊𝑑 is the arbitrary four-rotation of the local frame.
Focusing on the first term in the relativistic induction equation (33),
and using eq. (37),

¤𝑏
�̂�
=

(
𝑈 �̂�∇�̂�𝑏

)
�̂�
= 𝑈 �̂�𝜕�̂�𝑏�̂� +

(
𝑎�̂�𝑏�̂�

)
𝑈
�̂�
+ 𝜀

�̂��̂��̂�
𝑊 �̂�𝑏�̂� . (38)

The second term vanishes due to the orthogonal projection, while5

⊥�̂��̂� ¤𝑏
�̂�
+ 𝜔�̂��̂�𝑏

�̂�
=⊥�̂��̂�

(
𝑈 �̂�𝜕�̂�𝑏�̂�

)
. (39)

In practice, the term involving the four-rotation of the frame drops
out of the induction equation. We also note that, because we are now
considering the non-inertial equations in the local frame of a single
observer, there is no shear or expansion (associated with the fibration
of spacetime induced by the observer). Given this, the induction
equation in the Newtonian limit simplifies to

𝜕𝑡𝐵
𝑖 + ∇ 𝑗

(
𝑣 𝑗𝐵𝑖 − 𝑣𝑖𝐵 𝑗

)
= 0 . (40)

At the Newtonian level then, the induction equation in the local frame
of a generic observer retains the same form as for an inertial one.
This is similar to the case of the Lorentz force (entering the Euler
equation) and the Ampère law. However, this is only true in the
Newtonian case. Additional terms involving the four-acceleration of
the observer will appear at the special relativistic level so some care
will be required in order to extend our results in that direction.

When it comes to the non-inertial terms in the Euler equations,
these are obviously well known: we have to account for fictitious
acceleration. We refer to Gourgoulhon (2013) for a rigorous deriva-
tion in special relativity, showing how additional terms involving
the observer four-acceleration also enter the relativistic expressions.
Let us also stress that working with a rotating or non-rotating local
frame is entirely a matter of choice (Misner et al. 2017). At the local
Newtonian level, we can always get rid of the non-inertial terms as-
sociated with the frame rotation and effectively work with the inertial
equations.

We conclude this section by noting that, as previously anticipated,
some kind of filtering operation is key to separate between back-
ground and fluctuations in a highly dynamical environment. Post-
poning a discussion of this to section 7, let us simply note at this

5 Identifying the vorticity of the fibration observer with the four-rotation of
the chosen local frame.
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point that the notion of local frame discussed here is closely linked
to the covariant filtering procedure discussed in Celora et al. (2021).

5 GOING BACK TO HYDRODYNAMICS

As briefly hinted at in section 2, the magneto-rotational instability
relies on the hydrodynamic stability of axisymmetric modes. The
generic instability problem is more involved. If we relax the symme-
try assumptions on the background, we first of all need to consider
the fact that hydrodynamic shear flows tend to be unstable (Drazin &
Reid 2004). That is, we expect to find instabilities appearing already
at the hydrodynamic level. Clearly, such instabilities would be af-
fected by a magnetic field but not caused by it in the first place. This
is an important distiction seeing as the magneto-rotational instability
is due to the presence of the magnetic field.

With this observation in mind, let us first consider the fluid prob-
lem. This is important for two reasons: first, it will allow us to get a
better grasp on the magnetic field impact on the instability. Second,
it will allow us to make contact with the Rayleigh criterion (and
ultimately the magneto-rotational instability). As the fluid problem
is much simpler than the magneto-fluid one, we will study the case
where both shear and vorticity gradients are retained, and also dis-
cuss the impact of shear viscosity—either of microphysical origin or
due to filtering6. Shear viscosity is introduced in the usual way (see
Landau & Lifshitz 1959), and the shear viscosity coefficient 𝜂 will
be considered constant, consistent with the local analysis.

Because the calculation is a bit tedious and we want to focus
on the implications for the physics, the derivation of the relevant
fluid dispersion relation(s) is provided in appendix C. There we also
express the coefficients of the resulting characteristic polynomial(s)
in terms of scalars built from the background quantities. This allows
us to keep the discussion as general as possible, without having to
refer to a specific background configuration. It is, however, worth
stressing that, in many situations of interest the relevant dynamics is
either sub- or supersonic. Given this, for these problems it is worth
considering models that filter out modes that are either faster or
slower than the sound waves. This can be done starting from a fully
compressible dispersion relation and taking either of two limits:
either we assume the speed of sound to be very large, in which case
the model becomes sound-proof (we point to Vasil et al. 2013, for
more details), or very small. In the following, we typically work
in the sound-proof limit, noting that the MRI is typically discussed
within the so-called Boussinesq approximation (Barletta 2022), thus
removing fast magneto-sonic waves7 (Balbus & Hawley 1991).

Starting from the continuity equation, perturbing it and introducing
the plane-wave expansion we readily obtain

𝜕𝑡𝛿𝜌+𝛿𝜌∇𝑖𝑣
𝑖+𝑣𝑖∇𝑖𝛿𝜌+𝜌∇𝑖𝛿𝑣

𝑖 = 0 =⇒ −𝑖𝜔𝛿𝜌+𝑖𝜌𝑘𝑖𝛿𝑣𝑖 = 0 , (41)

where 𝜔 and 𝑘𝑖 are defined as in section 2. Note that we set 𝑣𝑖 = 0
as we evaluate the relation at the centre of the local box, and assume
that the background expansion rate ∇𝑖𝑣

𝑖 can be neglected. Similarly,

6 Any filtering operation will introduce additional residual terms every time
it acts upon a non-linear term (M. Lesieur 2005; Berselli et al. 2006; Mc-
Donough 2014; Schmidt 2015). These terms are akin to (but not quite the
same as) dissipative terms (Celora et al. 2021), and are meant to capture
transport to/from unresolved scales.
7 They do, however, retain perturbations in the fluid pressure in the Euler
equation as they consider a non-barotropic equation of state and the impact
of stratification.

we write the perturbed Euler equation including a shear-viscous term
as

𝜕𝑡𝛿𝑣𝑖 + 𝛿𝑣 𝑗∇ 𝑗𝑣𝑖 +
1
𝜌
∇𝑖𝛿𝑃 − 𝛿

(
𝜂∇ 𝑗𝜏𝑗𝑖

)
= 0

=⇒ −𝑖𝜔𝛿𝑣𝑖 + 𝑖
𝑐2
𝑠

𝜌
𝑘𝑖𝛿𝜌+𝜎𝑖 𝑗𝛿𝑣 𝑗 + 𝜖𝑖 𝑗𝑘𝑊 𝑗𝛿𝑣𝑘 −𝛿

(
𝜂∇ 𝑗𝜏𝑗𝑖

)
= 0 ,

(42)

where 𝜏𝑗𝑖 is the rate-of-strain tensor and𝑊 𝑖 = 1/2𝜖 𝑖 𝑗𝑘𝜔 𝑗𝑘 . Working
this out we have retained gradients in the background flow only, used
the velocity gradient decomposition (section 3.1), introduced the adi-
abatic speed of sound 𝑐2

𝑠 = 𝜕𝑃/𝜕𝜌, and considered the gravitational
potential to be externally sourced (hence neglecting its perturba-
tions).

As a first example, consider a background with negligible vorticity,
set the shear viscosity to zero and take the sound-proof limit. Then
consider the case det(𝝈) = 0, and first of all look for modes such that
𝜎𝑖 𝑗 𝑘

𝑗 = 0. Recalling that, as discussed in section 3.1, a mainly two
dimensional flow with negligible vorticity is characterized by having
a shear matrix with vanishing determinant—that is det(𝝈) ∼ O(𝜖)—
and noting that we can choose the orientation of the local axes in such
a way that the background flow is, say, along the 𝑥, �̂� directions, we
can always consider the determinant to be zero. This means that there
always exists a wave-vector living in the eigen-space corresponding
to the zero eigenvalue8. Taking these steps, we end up with9 (cf.
eq. (C6))

𝜔2 = −1
2

Tr(𝝈2) =⇒ 𝜔 = ±𝑖
√︂

1
2

Tr(𝝈2) . (43)

These modes are non-propagating, and half of them are unstable with
a growth rate independent of the wave-vector. Next, we consider
wave-numbers such that10 𝜎𝑖 𝑗 𝑘

𝑖𝑘 𝑗 = 0 (but 𝜎𝑖 𝑗 𝑘 𝑗 ≠ 0), noting
that such modes will always exist—even in the more general case
(considered below) where det(𝝈) ≠ 0. It follows that for such modes

𝜔2 = −1
6

Tr(𝝈2) =⇒ 𝜔 = ±𝑖
√︂

1
6

Tr(𝝈2) . (44)

These modes are also non-propagating, and half of them are unstable
with a (constant) growth rate about a factor of 2 smaller than in the
previous case. As the dispersion relation is quadratic (in the sound-
proof limit), we can explicitly solve it and confirm the expectation
(and well known fact) that shearing flows are generically unstable.
Given the role played by Tr(𝝈2) here and in what follows, let us
briefly comment on how one can intuitively see why this makes sense.
First, let us note that the same term enters the growth of entropy in
the generalized second law equation. Second, we also note that the

8 We note that these modes correspond to those propagating in the 𝑧-direction
in terms of the adapted Cartesian coordinates introduced in section 3.1. We
also stress that the same condition is satisfied by the fastest growing unstable
modes, which also propagate vertically, although with respect to the “global”
cylindrical system.
9 Note that the same dispersion relation applies in the opposite limit where
𝑐𝑠 is small.
10 Using the adapted coordinates of section 3.1 it is possible to see that
these wave-vectors have non-zero 𝑥 and 𝑦 components, the ratio between
the two being equal to that of the independent entries of the shear matrix.
More importantly, it can be seen that the same condition is satisfied by the
axisymmetric modes usually considered in the derivation of the magneto-
rotational instability.
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same term when evaluated on the usual background for the magneto-
rotational instability would lead to Tr(𝝈2) = 4(dΩ/dln𝑅)2. As such
a term enters the usual instability dispersion relation and criterion, it
is not surprising it plays a pivotal role also for the present discussion.

Let us now build on this and discuss how vorticity and shear viscos-
ity impact on the generic instability of shearing flows. First consider
the case where the background has negligible vorticity but non-
vanishing shear viscosity, observing that the corresponding modes
in a homogeneous background are stable provided 𝜂 > 0. If viscosity
is of microphysical origin, then 𝜂 > 0 follows from the second law of
thermodynamics (see Landau & Lifshitz 1959; Andersson & Comer
2021). If the viscosity is instead due to filtering, a positive value of
𝜂 corresponds to an eddy-type model where energy is cascading to
smaller/unresolved scales11 (M. Lesieur 2005; Berselli et al. 2006;
McDonough 2014; Schmidt 2015). Going back to the case with both
shear and viscosity (in the sound-proof limit), the dispersion relation
of modes such that 𝜎𝑖 𝑗 𝑘 𝑗 = 0 is (cf. eq. (C8))

𝜔2 + 𝑖𝜂𝑘2𝜔 − 1
4

[
𝜂2 (𝑘2)2 − 2Tr(𝝈2)

]
= 0 , (45)

where 𝑘 = |k|. Assuming 𝜂 > 0, stability corresponds to

𝜂2 (𝑘2)2 − 2Tr(𝝈2) > 0 . (46)

In essence, comparing this to eq. (43) we see that viscosity tends
to stabilize shear-unstable modes, with a larger impact at smaller
scales. This makes intuitive sense. Next, consider modes such that
𝜎𝑖 𝑗 𝑘

𝑖𝑘 𝑗 = 0, which are solutions of

𝜔2 + 𝑖𝜂𝑘2𝜔 − 1
12

[
3𝜂2 (𝑘2)2 − 2Tr(𝝈2)

]
= 0 . (47)

As before, these modes—to be compared with their counterparts in
eq. (44)—are also stable (assuming 𝜂 > 0) provided the last term
in eq. (47) is negative. This will be true when the wave-number
is sufficiently large, and we have verified that the same trend is
true for generic wave-vectors. In essence, we learn (as one may
have expected) that shear viscosity generically slows the growth rate
of unstable shear modes, and stabilises modes with small enough
wavelengths.

Turning to the case where the background has non-negligible vor-
ticity and shear, and taking the sound-proof limit as before, we first
observe that the fastest growing modes encountered before, namely
those characterized by 𝜎𝑖 𝑗 𝑘

𝑗 = 0, are not guaranteed to exist any-
more, as the determinant of the shear matrix cannot in general be
assumed to be negligible (see section 3.1). Should these modes exist,
though, their dispersion relation would be (cf. eq. (C10))

𝜔2 = −1
2

Tr(𝝈2) + ( �̂� · W)2

=⇒ 𝜔 = ±𝑖
√︂

1
2

Tr(𝝈2) − ( �̂� · W)2 , �̂� = k/𝑘 (48)

and we see, comparing this to eq. (43), that vorticity tends to stabilize
them. We also observe that—in contrast to shear viscosity—vorticity
affects all such modes by reducing their growth rate in a way that
does not depend on their wave-number (although the direction of
propagation is important). Next—and also because the modes we just

11 We also note that it is in principle possible to have 𝜂 < 0 when this is not
of micro-physical origin but an effective viscosity instead. Negative values
of 𝜂 would correspond, in the simplest eddy-viscosity-type models to net
energy source at the resolved scales, and hence an inverse cascade from the
unresolved ones (see, e.g. section VIB in Celora et al. (2021)).

looked at may not exist—we consider modes such that 𝜎𝑖 𝑗 𝑘 𝑖𝑘 𝑗 = 0,
with dispersion relation

𝜔2 = −1
6

Tr(𝝈2) + ( �̂� · W)2 . (49)

Comparing this to eq. (44), we observe again that vorticity tends to
stabilize such modes in a way that does not depend on the wave-
number. We have verified that the same trend is also true for generic
wave-vectors. As a final point, it is easy to verify that the case with
only background vorticity is generally stable (not only in the sound-
proof limit).

In summary, a sheared background flow is generically unstable
already at the hydrodynamic level, which is a well-known fact. How-
ever, we have considered the impact that shear viscosity and/or vor-
ticity have on the instability of the possible hydrodynamic modes.
The results show that shear viscosity tends to weaken the instability
in general, with larger effects for larger wave-numbers. Meanwhile,
vorticity has a stabilizing effect which does not depend on the wave-
number. Finally, let us also point to appendix B where we show
that the general dispersion relation derived in appendix C (discussed
here) is shown to encompass the classic Rayleigh stability criterion.

6 MAGNETO-SHEAR INSTABILITY IN THE LOCAL
FRAME

Having explored the hydrodynamic case, let us perturb the corre-
sponding MHD equations and study the impact of the magnetic field
on the generic shear instabilities we encountered. We consider a
barotropic equation of state and retain gradients in the background
velocity only, as we want to focus on the magneto-shear nature of the
instability (cf. Hawley & Balbus 1991; Shibata 2015). The continuity
equation is obviously unchanged, while the perturbed Euler equation
becomes

𝜕𝑡𝛿𝑣𝑖 + 𝛿𝑣 𝑗∇ 𝑗𝑣𝑖 +
1
𝜌
∇𝑖𝛿𝑃 + 1

𝜇0𝜌

[
𝐵 𝑗∇𝑖𝛿𝐵

𝑗 − 𝐵 𝑗∇ 𝑗𝛿𝐵𝑖
]
= 0

=⇒ −𝑖𝜔𝛿𝑣𝑖 + 𝑖
𝑐2
𝑠

𝜌
𝑘𝑖𝛿𝜌 + 𝑖

𝜇0𝜌

[
(𝐵 𝑗𝛿𝐵

𝑗 )𝑘𝑖 − (𝐵 𝑗 𝑘 𝑗 )𝛿𝐵𝑖
]

+ 𝜎𝑖 𝑗𝛿𝑣
𝑗 + 𝜖𝑖 𝑗𝑘𝑊

𝑗𝛿𝑣𝑘 = 0 . (50)

Finally, the perturbed induction equation is

𝜕𝑡𝛿𝐵
𝑖 + 𝐵𝑖∇ 𝑗𝛿𝑣

𝑗 − 𝐵 𝑗∇ 𝑗𝛿𝑣
𝑖 − 𝛿𝐵 𝑗∇ 𝑗𝑣

𝑖 + 𝛿𝐵𝑖∇ 𝑗𝑣
𝑗 = 0

=⇒ −𝑖𝜔𝛿𝐵𝑖 + 𝑖𝐵𝑖 (𝑘 𝑗𝛿𝑣 𝑗 ) − 𝑖(𝐵 𝑗 𝑘 𝑗 )𝛿𝑣𝑖

− 𝜎𝑖 𝑗𝛿𝐵 𝑗 − 𝜖 𝑖 𝑗𝑘𝑊𝑘𝛿𝐵 𝑗 +
2
3
𝜃𝛿𝐵𝑖 = 0 . (51)

We will now discuss the linearized system that follows from these
equations, as before focussing on the results and providing more
detailed steps in appendix D.

Let us first recap the mode analysis for the homogeneous case. In
order to derive the fully compressible dispersion relation, we first
re-scale the magnetic field as

v𝐴 �
B

√
𝜇0𝜌

, 𝛿v𝐴 �
𝛿B

√
𝜇0𝜌

. (52)

Then, computing the dispersion relation from the linearized equa-
tions above (neglecting background shear and vorticity) we obtain
(cf. eq. (D7))

−𝜔
(
𝜔2 − (v𝐴 · k)2

) [
𝜔4 −

(
𝑣2
𝐴
+ 𝑐2

𝑠

)
𝑘2𝜔2 + 𝑐2

𝑠𝑘
2 (v𝐴 · k)2

]
= 0 ,

(53)
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where the roots of the second factor correspond to Alfvén waves,
while those of the quartic polynomial in square brackets describe
fast and slow magneto-sonic waves. Before moving on to discuss
the impact of shear and vorticity, let us briefly note what happens
to such modes when we take the sound-proof limit—in which the
speed of sound is large. From eq. (53) we see that in the first case
fast magneto-sonic waves are filtered out, while the slow ones reduce
to Alfvén waves. In the opposite limit—when disturbances are much
faster than the sound waves—the dispersion relation describes Alfvén
waves and the low-𝑐𝑠 limit of fast magneto-sonic waves. This limit
corresponds to ignoring fluid pressure perturbations while retaining
variations in the magnetic pressure.

Let us now consider the impact of a non-negligible background
shear. Again, we focus on the results, with the details of the deriva-
tion provided in appendix D2. We start from the fully compressible
dispersion relation and consider the sound-proof limit, leading to the
dispersion relation (D11). As in the hydrodynamic case considered
earlier, we first consider the case det(𝝈) = 0, and look for modes
such that 𝜎𝑖 𝑗 𝑘 𝑗 = 0. It is then easy to see that the general dispersion
relation (D11) simplifies to (ignoring a trivial root)[
𝜔2 −

(
1
2

Tr(𝝈2) − (v𝐴 · k)2
)]2

= 0 . (54)

Comparing to the corresponding hydrodynamic modes in eq. (43),
we immediately see that the magnetic field tends to have a stabilizing
effect (provided it is not orthogonal to the wave-vector, in which case
it has no effect whatsoever).

Next, we take (again, as before) det(𝝈) = 0 and consider modes
such that 𝜎𝑖 𝑗 𝑘 𝑖𝑘 𝑗 = 0 (but 𝜎𝑖 𝑗 𝑘 𝑗 ≠ 0). The relevant dispersion
relation can then be written (making use of eq. (C5))

𝜔4 + 𝑏2𝜔
2 + 𝑏4 = 0 , (55)

with

𝑏2 =
2
3

Tr(𝝈2) − 2(v𝐴 · k)2 , (56a)

and

𝑏4 =
1
12

Tr(𝝈2)2 − 2
3

Tr(𝝈2) (v𝐴 · k)2 + (v𝐴 · k)4 . (56b)

The stabilizing effect of the magnetic field is evident from fig. 1,
where both the frequency and |v𝐴 ·k| are plotted in units of

√︁
Tr(𝝈2).

The key point here is that, while the background shear is required for
the instability (the vanishing-shear modes are stable Alfvèn waves
in the sound-proof limit), the magnetic field is not the main driver.
This is evident from the results as the imaginary part of the un-
stable modes remains finite in the limit v𝐴 → 0, and the limiting
value coincides with the hydrodynamic result (from the previous sec-
tion). This observation, possibly unexpected at first sight, deserves a
thorough discussion, and we will return to this issue in section 7.1.
Before we expand on that aspect, let us stress that the results make
intuitive sense. The magnetic field impacts on the instability in that
it breaks the hydrodynamic isotropy and dampens the growth of
unstable modes propagating along magnetic field lines. This also
suggests that shear-instability driven turbulence is isotropic in the
hydrodynamic case but inherently anisotropic for magnetized flows,
consistently with the overall picture (see e.g. Schekochihin 2020;
Beresnyak 2019). Before moving on, it is also worth noting that the
background velocity profile considered by Balbus & Hawley (Balbus
& Hawley 1991; Balbus & Hawley 1998) is characterized by having
a shear matrix with vanishing determinant (and expansion rate), and
also that for axisymmetric modes 𝜎𝑖 𝑗 𝑘

𝑖𝑘 𝑗 = 0, while the fastest
growing MRI modes propagate vertically, with 𝜎𝑖 𝑗 𝑘

𝑗 = 0.

As a final comment before we make contact with the usual MRI
and the Rayleigh criterion, we have also considered the case with
non-negligible background vorticity only. The details are discussed
in appendix D3, but the crucial result is that magnetized flows are
generically stable in this case. As this feature is unchanged from the
corresponding fluid case, it is reasonable to expect that the same trend
we discussed for the purely hydrodynamical case will also apply to
the magnetized case with both shear and vorticity: Vorticity tends to
stabilize shear-unstable modes in a manner independent of the wave
number (although the orientation of the wave-vector with respect to
the vorticity is expected to have an impact.).

7 CONCLUDING REMARKS: THE INSTABILITY IN
PERSPECTIVE

We set out with the intention of discussing the magneto-rotational in-
stability in a general background, relaxing the symmetry constraints
associated with the standard analysis and possibly deriving an insta-
bility “criterion” relevant for (highly) dynamical environments and
nonlinear simulations. In fact, the usual criterion is often used to
compute a quality factor for the instability, and hence measure how
well the mechanism “could be resolved” in a given simulation. How-
ever, having set up the analysis (and the required tools) in an arguably
sensible way, we arrived at results which were not in line with the
“naïve” expectations. Given this, it makes sense to comment on the
implications. Moreover, we need to highlight an important “missing
ingredient” in the discussion; the need to involve some suitable fil-
tering operation to make the discussion sensible in the first place.
We will deal with each of these questions in turn, starting with the
implications of our results for the MRI.

7.1 The MRI vs the Rayleigh criterion

A key aspect of the MRI is that adding a weak magnetic field on top
of a hydrodynamically stable shearing flow changes the nature of the
problem and makes it unstable. In discussing this problem, however, it
is often “forgotten” that the relevant hydrodynamic stability criterion
(Rayleigh 1917) guarantees stability only for axisymmetric modes
(cf. the discussion in appendix B). Adding a magnetic field renders
such modes unstable—technically, the non-axisymmetric ones are
not (Balbus & Hawley 1992). Thus it is clear that the MRI is relevant
only in situations where we can think of axisymmetric modes as
being “preferred” in some sense. An immediate example of this is an
accretion disk, which involves a globally axisymmetric background
for the perturbations. This then immediately tells us that applying the
results to the dynamical context of neutron star mergers is a much
more subtle endeavour. In fact, this exercise is problematic from the
outset.

To back up this claim, we show in appendix A that we can repro-
duce the MRI perturbation equations and dispersion relation through
the local frame construction. However, for the specific MRI calcula-
tion there exists a preferred local frame: the co-rotating frame. This
local frame is set up considering an observer that is co-rotating with
the fluid along some orbit, and the coordinate axes rotate in such a
way that one of them always points in the radial direction of a global
cylindrical coordinate system. Another coordinate axis always points
in the azimuthal direction. This local frame is “preferred” as the axes
are (by construction) tied to those of the most natural global coordi-
nate system. In a sense, we could set up different local co-rotating
observers and construct the global axes by stitching together the local
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Figure 1. Real and imaginary part of the solutions of eq. (55), with the frequency and |v𝐴 · k | in units of
√︁

Tr(𝝈2 ) . The solutions plotted correspond to the
fastest growing modes evolving on top of an MHD sheared background. We see that the magnetic field has a stabilizing effect, as the growth rates are reduced
with respect to those of the corresponding hydrodynamic modes. The stabilizing effect is all the more pronounced the more the wave-vector is aligned with the
magnetic field lines, and is switched off for modes propagating in the directions perpendicular to the magnetic field lines. In particular, modes corresponding to
sufficiently large values of |v𝐴 · k | are turned stable.

ones. In the case of a general and truly local analysis, however, this
additional piece of information is not available.

Moreover, we show in appendix B how one may set up (for the
circular and axisymmetric background flow) a local frame that is “co-
moving but not co-rotating” with the fluid. In doing so, we derived
the corresponding dispersion relation, confirmed that the result is
consistent with the general formulae (cf. appendix C), and showed
how we can recover the usual Rayleigh criterion (and hence also the
MRI criterion) as long as we perform the conversion to the relevant
co-rotating frame frequency.

These arguments clarify the sense in which the MRI (and sim-
ilarly the Rayleigh stability) is a “global instability analyzed with
local tools”. The local analysis needs to be “augmented” by pieces of
information that cannot be truly local. The upshot of this is that, in a
merger-like scenario (where assumptions regarding the global prop-
erties of the flow are debatable) we should probably not expect the
standard instability criteria to provide a faithful indication/diagnostic
of what is actually going on. The standard argument will apply, but
only if there is a meaningful sense of (Rayleigh stable) flow on a
scale larger than that at which the plane-wave analysis is carried out.
This would make a discussion much more difficult for any given
numerical simulation, but so be it.

7.2 The missing ingredient: Filtering

Throughout the discussion we have focussed on the analytical de-
velopment, sweeping issues associated with actual numerical data
“under the carpet”. The key issue here is that we ignored the question
of how one would, in practice, construct the background suitable for
the perturbation analysis given nonlinear simulation dynamics. If the
numerical data shows some degree of axisymmetry, then the split
could be achieved via an azimuthal averaging (and the usual criteria
will apply). If this is not the case, however, we need to apply some
suitable filtering operation to remove small scale fluctuations from
a gradually varying “background”. With such a filtering procedure
at hand we could start from real numerical data and perform the
split into background plus fluctuations. The background data could
then be used as numerical input in the dispersion relations we have
discussed to assess whether or not the instability is active and how

rapidly it grows. In a nonlinear setting this split is (obviously) not
guaranteed to make sense. Suppose that the instability we are trying
to uncover acts on some characteristic scale 𝐿, say. Then we need
a background that varies on a larger scale than this, otherwise the
notion of a shear flow that becomes unstable due to smaller scale
waves makes no sense. This argument relies on an explicit filtering
step, separating the instability scale 𝐿 from the variation of the back-
ground. The construction of such a filter should be possible, at least in
principle, in many situations (see, for example, Celora et al. (2021)).
Of course, the scale separation may not apply in actual problems of
interest. In addition, the analysis in this work (like any linear stability
analysis) relies on the expansion detailed in section 2 and the neglect
of non-linear fluctuations. The intention is to describe the early stages
of the development of the instability. Crucially, because the split into
background and fluctuations depends on the filtering procedure, the
requirement that fluctuations are indeed small will further constrain
the procedure (e.g. the filter width).

Further complicating the discussion is the unavoidable implicit
filtering associated with the finite numerical resolution. We know
from the large body of work on turbulence simulations that sub-
grid dynamics may play an important role in a robust description of
the dynamics. This typically involves a suitable large-eddy scheme
to represent the subgrid dynamics. Hence, the analysis involves el-
ements of choice (effectively, the closure relations). Crucially, the
effective field theory that is/should be simulated is not that of the
ideal theory. All current models—both the ones discussed in Car-
rasco et al. (2020) and Radice (2020) as well as the covariant scheme
of Celora et al. (2021)—modify the principal part of the equations of
motion. Therefore the analysis of the model “that is actually solved”
is fundamentally changed, even when the closure terms are small. In
essence, an instability analysis of numerical simulation data needs
to consider the impact of an effective viscosity/resistivity. Given the
presently available tools, we do not have a particularly good handle
on this issue. We are forced to conclude that we also need to make
progress on the development of robust large-eddy models before we
can make a sensible attempt to demonstrate the presence of the MRI
in a highly dynamical environment.
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APPENDIX A: FORMULATING THE MRI IN THE LOCAL
FRAME

In this appendix we derive the MRI using the local frame construction
discussed in the main text. We consider the circular velocity profile
assumed in Balbus & Hawley (1991), v = 𝑣 �̂� �̂� with 𝑣 �̂� = Ω(𝑅)𝑅
where we use cylindrical coordinates and an orthonormal basis on the
“tangent space” (as usual). We then distinguish between indices with
a “hat” corresponding to the orthonormal basis, and those without
that correspond to the coordinate basis. We then pick an orbit at
some radial distance 𝑅0 and choose an observer that is co-rotating
with angular frequency identical to that of the background flow at
𝑅0, that is v𝑜𝑏𝑠 = Ω0𝑅�̂� where Ω0 = Ω(𝑅0). The observer is then
accelerated with acceleration a = −Ω2

0𝑅�̂�, and the velocity of the
fluid with respect to such an observer then is v′ = (Ω − Ω0)𝑅�̂�.
We then set up the axes of the observer’s local frame so that one is
pointing in the radial direction (𝑒1), one is pointing in the azimuthal
direction (𝑒2) and the third one is aligned with the rotation axis (𝑒3).
Introducing coordinates associated with this observer, we can then
write the background fluid velocity as

v′ =
dΩ

dln𝑅

����
𝑅0

𝑥′𝑒2 + O(𝑥′2) . (A1)

We have neglected terms of order O
(
𝑥′2

)
as we will only need the

velocity and its gradients evaluated at the origin of the frame—so
that such terms will not enter the perturbation equations anyway.
Computing the gradients we then obtain

𝜕′𝑖 𝑣
′
𝑗 =

©«
0 𝑠0 0
0 0 0
0 0 0

ª®¬ , 𝑠0 =
dΩ

dln𝑅

����
𝑅0

. (A2)

As the local frame of the observer is rotating with angular velocity
Ω0𝑒3, we need to include the Coriolis force into the perturbation
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equations. We then write the perturbed Euler and continuity equations
(dropping the primes for clarity, and retaining only gradients in the
background velocity) as

𝜕𝑡𝛿𝜌 + 𝜌𝜕𝑖𝛿𝑣
𝑖 = 0 , (A3a)

𝜕𝑡𝛿𝑣𝑖 + 2Ω0𝜖𝑖3𝑘𝛿𝑣
𝑘 + 𝛿𝑣 𝑗𝜕 𝑗𝑣𝑖 +

𝑐2
𝑠

𝜌
𝜕𝑖𝛿𝜌

+ 1
𝜇0𝜌

[
𝐵 𝑗𝜕𝑖𝛿𝐵

𝑗 − 𝐵 𝑗𝜕 𝑗𝛿𝐵𝑖
]
= 0 , (A3b)

and, introducing a WKB plane-wave expansion,

−𝑖𝜔𝛿𝜌 + 𝑖𝜌𝑘𝑖𝛿𝑣
𝑖 = 0 , (A4a)

− 𝑖𝜔𝛿𝑣𝑖 + 2Ω0𝜖𝑖3𝑘𝛿𝑣
𝑘 + 𝑠0𝛿𝑖2𝛿𝑣

1 + 𝑖
𝑐2
𝑠

𝜌
𝑘𝑖𝛿𝜌

+ 𝑖

𝜇0𝜌

[
𝐵 𝑗 𝑘𝑖𝛿𝐵

𝑗 − 𝐵 𝑗 𝑘 𝑗𝛿𝐵𝑖
]
= 0 , (A4b)

Next, focus on the induction equation. As we have discussed above,
the induction equation in the co-rotating frame retains the inertial
form. We then have

𝛿

[
𝜕 𝑗

(
𝑣 𝑗𝐵𝑖 − 𝑣𝑖𝐵 𝑗

)]
= 𝛿𝑣 𝑗𝜕 𝑗𝐵

𝑖 + 𝑣 𝑗𝜕 𝑗𝛿𝐵𝑖 − 𝐵 𝑗𝜕 𝑗𝛿𝑣
𝑖 − 𝛿𝐵 𝑗𝜕 𝑗𝑣

𝑖 ,

(A5)

where we made use of the no-monopoles constraint, the vanishing
expansion of the background flow and got rid of the divergence of
the perturbed velocity consistently with the Boussinesq approxima-
tion. Introducing the WKB plane-wave expansion and evaluating the
background quantities at the origin of the local frame we then end up
with

−𝑖𝜔𝛿𝐵𝑖 − 𝑖𝐵 𝑗 𝑘 𝑗𝛿𝑣
𝑖 − 𝛿𝐵1𝑠0𝛿

𝑖2 = 0 . (A6)

In eqs. (A4) and (A6) we recognize the terms entering the pertur-
bation equations in Balbus & Hawley (1991) (with the exception of
gradients in the background pressure that we are neglecting here).
We also note that we do not need to formally neglect terms of the
form 𝐵/𝑅 as these terms do not appear in the explicit local frame
construction. We conclude by noting that, at the special relativistic
level, a uniformly rotating observer and the co-rotating one are not
the same as the latter is also accelerated (see Gourgoulhon 2013, ch.
13). However, this difference is irrelevant at the level of the Newto-
nian perturbation equations since i) pseudo-acceleration terms drop
out of the perturbed Euler equation ii) non-inertial terms in the in-
duction equation involving the four-acceleration are negligible in the
Newtonian limit.

A1 Another look at the non-inertial MHD equations

Before we move on to take a closer look at the Rayleigh criterion, let
us show how the terms involving the local frame rotation drop out
of the induction equation. Even though we have already argued this
happens in general (cf. eq. (39)), we here prove this for the specific
case of a co-rotating observer. We do so as this allows us to appreciate
better why the cancellation comes about. We will use a notation that
is common in general relativity, that is the notion of spin coefficients
associated with a non-coordinate basis (Carroll 2019). The covariant
derivative of a tensor 𝑇 �̂�

�̂�
is

∇𝑎𝑇
�̂�

�̂�
= 𝜕𝑎𝑇

�̂�

�̂�
+ 𝜔 �̂�

𝑎 �̂�
𝑇 �̂�

�̂�
− 𝜔 �̂�

𝑎 �̂�
𝑇 �̂�
�̂�
, (A7)

with

𝜔 �̂�
𝑎 �̂�

= 𝑒�̂�
𝑑
𝑒𝑒
�̂�
Γ𝑑𝑎𝑒 − 𝑒𝑑

�̂�
𝜕𝑎𝑒

�̂�
𝑑
, (A8)

where Γ𝑎
𝑏𝑐

are the connection coefficients associated with the co-
ordinates chosen while 𝑒�̂�

𝑏
is the matrix connecting the coordinate

basis to the orthonormal one. We also note here that for a local frame
we identify 𝑢𝑎𝜔 �̂�

𝑎 �̂�
= Ω�̂�

�̂�
introduced in eq. (37). We then introduce

(Born) coordinates associated with a uniformly rotating observer
(axes suitably oriented so that the angular velocity is Ω0𝑧)

𝑡′ = 𝑡 , 𝑧′ = 𝑧 , 𝑥′ = 𝑅cos(Ω0𝑡 + 𝜑) , 𝑦′ = 𝑅sin(Ω0𝑡 + 𝜑) ,
(A9)

where primed coordinates are Cartesian (i.e. non-rotating). Comput-
ing the spin coefficients (starting from a flat metric) we then obtain

𝜔 �̂�
𝜑 �̂�

= −1 , 𝜔
�̂�

𝜑 �̂�
= +1 , 𝜔 �̂�

𝑡 �̂�
= −Ω0 , 𝜔

�̂�

𝑡 �̂�
= Ω0 , (A10)

showing that, as the coordinates “mix space and time” we need to
introduce a covariant derivative in the time-direction as well. We
then write the non-inertial induction equation as (cf. eq. (33))

∇𝑡𝐵
𝑖 + ∇ 𝑗

(
𝑣 𝑗𝐵𝑖 − 𝑣𝑖𝐵 𝑗

)
+ 𝜖 𝑖 𝑗 �̂�𝐵 𝑗Ω

0
�̂�
= 0 . (A11)

It is then easy to verify, by means of eq. (A10) that

∇𝑡𝐵
𝑖 + 𝜖 𝑖 𝑗 �̂�𝐵 𝑗Ω

0
�̂�
= 𝜕𝑡𝐵

𝑖 , (A12)

thus confirming the result in eq. (39) and the use of the inertial
induction equations. We stress that the co-rotating frame rotation
vector is Ω0𝑒3, and is the same (by construction) as the vorticity of
the observer. This is why we see the same cancellation as in eq. (39),
where we assumed they are equal.

APPENDIX B: A CLOSER LOOK AT THE RAYLEIGH
STABILITY CRITERION

The key point of the magneto-rotational instability is that the circu-
lar velocity background is stable against axisymmetric hydrodynamic
perturbations, while adding a (however weak) magnetic field changes
completely the nature of the system and makes it unstable to such
perturbations. We now revisit the Rayleigh criterion in order to high-
light the key role played by the co-rotating observer in deriving the
criterion. These important aspects have to be kept in mind when
looking at the general results derived below (cf. appendices C and D)
and discussed in sections 5 and 6.

Starting from eq. (A4), and ignoring terms associated with the
magnetic field, we write the coefficient matrix (ordering the perturbed
quantities as {𝛿𝜌/𝜌, 𝛿𝑣1, 𝛿𝑣2, 𝛿𝑣3})

©«
−𝜔 𝑘1 𝑘2 𝑘3
𝑐2
𝑠𝑘1 −𝜔 2𝑖Ω0 0
𝑐2
𝑠𝑘2 −𝑖 𝜅2

2Ω0
−𝜔 0

𝑐2
𝑠𝑘3 0 0 −𝜔

ª®®®®¬
, (B1)

where

𝜅2

2Ω0
= 2Ω0 + 𝑠0 = 2Ω0 + dΩ

dln𝑅

����
𝑅0

, (B2)

and the dispersion relation reads

𝜔4 −
(
𝑐2
𝑠𝑘

2 − 𝜅2
)
𝜔2 + 𝑖𝑐2

𝑠𝑠0𝑘1𝑘2𝜔 + 𝑐2
𝑠𝜅

2 (𝑘3)2 = 0 . (B3)

MNRAS 000, 000–000 (2023)
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Taking the sound-proof limit we then end up with

𝑘2𝜔2 − 𝑖𝑠0𝑘1𝑘2𝜔 − 𝜅2𝑘2
3 = 0 . (B4)

From this we easily see that, if we assume axisymmetric perturba-
tions, namely 𝑘2 = 0, we obtain the usual Rayleigh stability criterion,
that is 𝜅2 > 0 (Rayleigh 1917). We stress that, as is well-known, the
criterion does not guarantee that non-axisymmetric modes are stable.
In fact, rewriting the dispersion relation in terms of Δ = −𝑖𝜔 and
using the Routh-Hurwitz criterion (Korn & Korn 2013) we find that,
on top of the Rayleigh criterion we would also need

𝑠0𝑘1𝑘2 ⩽ 0 . (B5)

We also note that, the story changes if we take the opposite limit, in
which case the Rayleigh criterion is sufficient to guarantee stability
of non-axisymmetric perturbations as well. This would also be the
case had we assumed incompressibility from the start.

Having discussed the usual Rayleigh criterion using the co-rotating
observer, we now re-work it using an observer that is orbiting with
the fluid at a given orbital distance 𝑅0 but whose (local frame) axes
are non rotating. We do this for two reasons. First, it will allow for
a direct comparison with the general results in appendix C. Second,
we have argued that choosing to work with a rotating or non-rotating
observer is, in general, just a matter of taste. We then pick up an
orbit 𝑅0 as before, and choose the observer to be co-orbiting with the
background flow at the specific orbit

v𝑜𝑏𝑠 = −Ω0𝑦0𝑥 +Ω0𝑥0 �̂� , (B6)

where we used global Cartesian coordinates and 𝑥0 (𝑡) =

𝑅0cos(Ω0𝑡), 𝑦0 (𝑡) = 𝑅0sin(Ω0𝑡) describe the worldline of the ob-
server (the origin of the axes is suitably chosen so that 𝑧0 (𝑡) = 0).
The background fluid velocity is then

v = −Ω𝑥�̂� +Ω𝑦𝑥 , Ω = Ω(
√︃
𝑥2 + 𝑦2) , (B7)

so that, considering the relative velocity v′ = v−v𝑜𝑏𝑠 and expanding
around (𝑥0, 𝑦0) we obtain

v′ = −
[
𝑠0

𝑥0𝑦0
𝑥2

0 + 𝑦2
0
𝑥′ +

(
Ω0 + 𝑠0

𝑦2
0

𝑥2
0 + 𝑦2

0

)
𝑦′

]
𝑥

+
[(
Ω0 + 𝑠0

𝑥2
0

𝑥2
0 + 𝑦2

0

)
𝑥′ + 𝑠0

𝑥0𝑦0
𝑥2

0 + 𝑦2
0
𝑥′

]
�̂� , (B8)

where 𝑥′ = 𝑥 − 𝑥0, 𝑦
′ = 𝑦 − 𝑦0. We can now choose a local region

around a specific point (𝑥0, 𝑦0, 𝑧0) on the orbit and choose to re-
orient the axes by a constant rotation so that the observer velocity is
moving only in the 𝑦−direction. We then set up the local frame in
such a way that the local axes are non-rotating and oriented like the
global cartesian ones. We can therefore write the gradients as

𝜕′𝑖 𝑣
′
𝑗 =

©«
0 Ω0 + 𝑠0 0

−Ω0 0 0
0 0 0

ª®¬ , (B9)

and the coefficient matrix of the linearized Euler plus continuity
system is (cf. eq. (A4) and ignore both magnetic field terms and the
Coriolis force as the axis are non-rotating)

©«
−𝜔 𝑘1 𝑘2 𝑘3
𝑐2
𝑠𝑘1 −𝜔 𝑖Ω0 0
𝑐2
𝑠𝑘2 −𝑖(Ω0 + 𝑠0) −𝜔 0
𝑐2
𝑠𝑘3 0 0 −𝜔

ª®®®¬ . (B10)

We can then compute the dispersion relation to find

𝜔4 −
[
𝑐2
𝑠𝑘

2 +Ω0 (Ω0 + 𝑠0)
]
𝜔2 + 𝑖𝑐2

𝑠𝑘1𝑘2𝑠0 𝜔

+ 𝑐2
𝑠Ω0 (Ω0 + 𝑠0) (𝑘3)2 = 0 , (B11)

and observe this is consistent with the general dispersion relation
in eq. (C10) when restricted to the shear and vorticity associated
with eq. (B9). However, this is not quite the dispersion relation we
obtained above. The reason for this is that the two local observers we
have considered measure different frequencies, as the axes of the co-
rotating observer rotate with angular velocityΩ0𝑒3 with respect to the
other. To show why this is the resolution to the apparent conflict, let us
consider once again the Born coordinates (cf. eqs. (A9) and (A10)).
Given any vector 𝑎𝑖 we have

∇𝑡𝑎
𝑖 = 𝜕𝑡 �̂�

𝑖 +Ω0𝜖
𝑖3̂�̂�𝑎

�̂�
. (B12)

This relation, when we introduce a plane-wave WKB expansion trans-
lates to

−𝑖𝜔𝑟𝑜𝑡𝛿𝑎
𝑖 = −𝑖𝜔𝑛𝑟 𝛿𝑎

𝑖 +Ω0𝜖
𝑖3̂�̂�𝛿𝑎

�̂�
, (B13)

where 𝜔𝑟𝑜𝑡 is the frequency measured by the co-rotating observer,
while 𝜔𝑛𝑟 is the frequency measured by an observer that has the
same worldline but uses non-rotating axes. Specifying eq. (B13) to
the perturbed velocity (noting that it would not apply to the continuity
equation as the density is a scalar), and noting that the frequency in
eq. (B10) corresponds to 𝜔𝑛𝑟 , we can reconcile the results obtained
from eq. (B10) with those from eq. (B1). We also note here that
the same logic applies when we consider magnetized flows. That
is, if we work with the inertial induction equation and compute the
background velocity gradients as in eq. (B9), we also need to take
into account the relation in eq. (B13) for magnetic field disturbances
to get back to eq. (A6) and the MRI dispersion relation.

APPENDIX C: HYDRODYNAMIC DISPERSION
RELATIONS

In this appendix we provide more details of the results discussed in
section 5 of the main text. In order to derive the dispersion relation
and study the effects of a sheared background, it is convenient to
choose a basis that is adapted to it. Because the shear is a symmetric
trace-free matrix there exists a basis such that

𝜎𝑖 𝑗 = diag (𝜎1, 𝜎2,−(𝜎1 + 𝜎2)) . (C1)

We will make use of this basis to write down the coefficients matrix
of the linearized system. Before doing so, however, it is reasonable
to wonder whether this change of basis has any impact on the pertur-
bation equations. We are, in fact always free to choose a basis in the
tangent space that is not associated with the coordinates chosen, but
this (in general) introduces additional terms in the covariant deriva-
tive. Let us spell out why this is not the case here. Working with
a non-coordinate basis, we need to account for spin-coefficients—
defined as in eq. (A8)—when a derivative acts on vectors and tensors.
The first term in eq. (A8) then vanishes as we are here working with
a non-rotating Cartesian frame (so that the Christoffel symbols van-
ish), while the second term is in general non vanishing, and accounts
for the fact that the change of basis (in the tangent space) needed to
diagonalize the shear matrix may change from point to point. In the
context of this analysis, however, we are looking at scales smaller
than those over which background quantities vary. In essence, also
this second term vanishes as the shear matrix is (by construction)
constant over the local region of fluid we are zooming on.

MNRAS 000, 000–000 (2023)
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Working in the shear adapted basis (cf. eq. (C1)), we write the
coefficient matrix of the linearized system as (cf. eq. (42))

©«

−𝜔 𝜌𝑘1 𝜌𝑘2 𝜌𝑘3
𝑐2
𝑠

𝜌 𝑘1 −𝜔 − 𝑖𝜎1 − 𝑖𝜂𝐿1 𝑖𝑊3 − 𝑖
6𝜂𝑘1𝑘2 −𝑖𝑊2 − 𝑖

6𝜂𝑘1𝑘3
𝑐2
𝑠

𝜌 𝑘2 −𝑖𝑊3 − 𝑖
6𝜂𝑘2𝑘1 −𝜔 − 𝑖𝜎2 − 𝑖𝜂𝐿2 𝑖𝑊1 − 𝑖

6𝜂𝑘2𝑘3
𝑐2
𝑠

𝜌 𝑘3 𝑖𝑊2 − 𝑖
6𝜂𝑘3𝑘1 −𝑖𝑊1 − 𝑖

6𝜂𝑘3𝑘2 −𝜔 + 𝑖𝜎3 − 𝑖𝜂𝐿3

ª®®®®®®¬
,

(C2)

where 𝜎3 = 𝜎1 +𝜎2, 𝐿1 = 2
3 𝑘

2
1 +

1
2 𝑘

2
2 +

1
2 𝑘

2
3 and 𝐿2, 𝐿3 are similarly

defined.
The dispersion relation is computed taking the determinant of this

matrix and equating it to zero. In order to keep the discussion as gen-
eral as possible (i.e. without having to refer to a specific background
configuration) we will decompose the coefficients of the characteris-
tic polynomial in terms of scalars built from background quantities.
In the simplest cases this can be done “by eye”, but the procedure
can easily become quite messy. The logic is nonetheless simple: we
group the different terms in each coefficients according to the power
of the various background quantities, for example we group all the
terms quadratic in the shear and wave-vector components. We then
build all the possible scalars that are quadratic in the shear and wave-
vector, and look for the correct linear combination of them. This
logic can be easily implemented on a computer algebra program like
Mathematica12. We now discuss the dispersion relations obtained by
retaining only shear terms, both shear and viscous terms, and lastly
shear and vorticity terms.

Before doing so, we first observe that the coefficients will involve
scalars constructed from the shear matrix only. As with any 3 × 3
matrix, the shear matrix 𝝈 has three invariants

𝐼1 = Tr(𝝈) , 𝐼2 =
1
2

[
Tr(𝝈2) − (Tr(𝝈))2

]
, 𝐼3 = det(𝝈) ,

(C3)

related via the Cayley-Hamilton theorem as

𝝈3 − 𝐼1𝝈
2 + 𝐼2𝝈 − 𝐼3I = 0 , (C4)

where I is the 3×3 identity matrix. Because the shear matrix is trace-
free, we will write the coefficients in terms of 1/2Tr(𝝈2) and det(𝝈).
It is also useful to note that there will always exist modes such that
𝜎𝑖 𝑗 𝑘

𝑖𝑘 𝑗 = 0. In the convenient shear basis, these are characterized
by 𝑘1 = 𝑘2 = 𝑘3 if the determinant is not vanishing (that is 𝑠1 ≠ 𝑠2),
and 𝑘1 = 𝑘2 when it does. It follows that for such modes

−1
2

Tr(𝝈2) + 𝜎2
𝑖 𝑗 �̂�

𝑖 �̂� 𝑗 = −1
6

Tr(𝝈2) , �̂� = k/|k| = k/𝑘 . (C5)

The resulting dispersion relation for the case with negligible vor-
ticity and viscosity is then

𝜔4 + 𝑎2𝜔
2 + 𝑎1𝜔 + 𝑎0 = 0 (C6)

with

𝑎2 = −𝑐2
𝑠𝑘

2 + 1
2

Tr(𝝈2) , (C7a)

𝑎1 = 𝑖

[
𝑐2
𝑠𝜎𝑖 𝑗 𝑘

𝑖𝑘 𝑗 − det(𝜎)
]
, (C7b)

𝑎0 = 𝑐2
𝑠

[
𝜎2
𝑖 𝑗 𝑘

𝑖𝑘 𝑗 − 1
2

Tr(𝝈2)𝑘2
]
, (C7c)

whose solutions are discussed in the main text (cf. section 5).

12 See https://doi.org/10.5281/zenodo.7612469 for more details.

Turning to the case with non-vanishing shear viscosity, the disper-
sion relation is then

𝜔4 + 𝑎3𝜔
3 + 𝑎2𝜔

2 + 𝑎1𝜔 + 𝑎0 = 0 , (C8)

with

𝑎3 =
5
3
𝑖𝜂𝑘2 , (C9a)

𝑎2 = −𝑐2
𝑠𝑘

2 + 1
2

Tr(𝝈2) − 1
12

𝜂

[
11𝜂(𝑘2)2 − 2𝜎𝑖 𝑗 𝑘 𝑖𝑘 𝑗

]
, (C9b)

𝑎0 = 𝑐2
𝑠

[
𝜎2
𝑖 𝑗 𝑘

𝑖𝑘 𝑗 − 1
2

Tr(𝝈2)𝑘2 − 1
2
𝜂𝑘2𝜎𝑖 𝑗 𝑘

𝑖𝑘 𝑗 + 1
4
𝜂2 (𝑘2)3

]
,

(C9c)

and

𝑎1 = 𝑖𝑐2
𝑠

[
𝜎𝑖 𝑗 𝑘

𝑖𝑘 𝑗 − 𝜂(𝑘2)2
]

+ 𝑖

{
− 1

6

[
𝜎2
𝑖 𝑗 𝑘

𝑖𝑘 𝑗 − 2Tr(𝝈2)𝑘2
]

+ 1
12

𝜂2𝑘2 (𝜎𝑖 𝑗 𝑘 𝑖𝑘 𝑗 ) − 1
6
𝜂3 (𝑘2)3 − det(𝝈)

}
. (C9d)

We can sanity check this dispersion relation by considering the ho-
mogeneous background limit. It is then immediate to see that, in the
sound-proof limit, this would be stable provided 𝜂 > 0. It turns out
that this condition guarantees stability even outside of the sound-
proof limit, as can be verified by means of the Routh-Hurwitz crite-
rion (Korn & Korn 2013). As discussed in the main text, this is the
case both when shear viscosity is of micro-physical origin (due to
the second law of thermodynamics) but also when this is an effective
viscosity due to filtering provided this models a net energy transfer
to smaller unresolved scales—which is intuitive.

Finally, the dispersion relation in the case where the background
has non-negligible vorticity and shear is

𝜔4 + 𝑎2𝜔
2 + 𝑎1𝜔 + 𝑎0 = 0 , (C10)

with

𝑎2 = −𝑐2
𝑠𝑘

2 −𝑊2 + 1
2

Tr(𝝈2) , (C11a)

𝑎1 = 𝑖

[
𝑐2
𝑠𝜎𝑖 𝑗 𝑘

𝑖𝑘 𝑗 − det(𝝈) − 𝜎𝑖 𝑗𝑊
𝑖𝑊 𝑗

]
, (C11b)

𝑎0 = 𝑐2
𝑠

[
𝜎2
𝑖 𝑗 𝑘

𝑖𝑘 𝑗 − 1
2

Tr(𝝈2)𝑘2 + (k · W)2
]
. (C11c)

APPENDIX D: MHD DISPERSION RELATIONS

In this appendix we provide more details on the results discussed
in section 6 of the main text. In order to keep the presentation tidy,
we will discuss separately the homogeneous background case (cf.
appendix D1), the sheared case (cf. appendix D2) and the case with
non-negligible background vorticity (cf. appendix D3).

D1 Homogeneous background

In order to derive the fully compressible dispersion relation for the
homogeneous case, we first re-scale the magnetic field as in eq. (52),
and introduce a convenient basis {�̂�𝐴, 𝑞, 𝑠} where �̂�𝐴 = v𝐴/|v𝐴 |
while 𝑞, 𝑠 complete it to an orthonormal basis. For instance, assuming
v𝐴 is not aligned with k we can construct it as

q = k − (k · �̂�𝐴) �̂�𝐴 , 𝑞 =
q
|q| , 𝑠 = �̂�𝐴 × 𝑞 , (D1)
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so that13

k = 𝑘𝑣𝐴 ˆ𝑣𝐴 + 𝑘𝑞𝑞 . (D2)

The coefficient matrix of the linearized system can then be written
as (cf. eqs. (41), (50) and (51) and ignore background vorticity and
shear)

M =

(
A C

C⊤ D

)
(D3)

with

A =

©«
−𝜔 𝜌𝑘𝑣𝐴 𝜌𝑘𝑞 0

𝑐2
𝑠

𝜌 𝑘𝑣𝐴 −𝜔 0 0
𝑐2
𝑠

𝜌 𝑘𝑞 0 −𝜔 0
0 0 0 −𝜔

ª®®®®®¬
, (D4a)

C =

©«
0 0 0
0 0 0

𝑏𝑘𝑞 −𝑏𝑘𝑣𝐴 0
0 0 −𝑏𝑘𝑣𝐴

ª®®®¬ , (D4b)

and

D =
©«
−𝜔 0 0
0 −𝜔 0
0 0 −𝜔

ª®¬ . (D4c)

As D is clearly invertible, we can reduce M into factors via the Schur
complement(

A C
C⊤ D

)
=

(
I4 CD−1

04×3 I3

) (
A − CD−1C⊤ 04×3

03×4 D

) (
I4 04×3

D−1C⊤ I3

)
,

(D5)

and then compute the determinant as

det(M) = det(D) det(A − CD−1C⊤) . (D6)

The resulting dispersion relation is

−𝜔
(
𝜔2 − (v𝐴 · k)2

) [
𝜔4 −

(
𝑣2
𝐴
+ 𝑐2

𝑠

)
𝑘2𝜔2 + 𝑐2

𝑠𝑘
2 (v𝐴 · k)2

]
= 0 .

(D7)

D2 Sheared Background

Let us now consider the case where the background vorticity is
negligible while shear terms are not. Re-scaling the magnetic field
as in eq. (52) and decomposing eqs. (41), (50) and (51) (ignoring
vorticity terms) as well as 𝛿v and 𝛿v𝐴 in the shear-adapted basis, the
coefficient matrix of the linearized system of equations reads

M =

(
A C

C⊤ D

)
, (D8)

where

A =

©«

−𝜔 𝜌𝑘1 𝜌𝑘2 𝜌𝑘3
𝑐2
𝑠

𝜌 𝑘1 −𝜔 − 𝑖𝜎1 0 0
𝑐2
𝑠

𝜌 𝑘2 0 −𝜔 − 𝑖𝜎2 0
𝑐2
𝑠

𝜌 𝑘3 0 0 −𝜔 + 𝑖(𝜎1 + 𝜎2)

ª®®®®®®¬
, (D9a)

13 If the wave-vector is along the background magnetic field we just have to
set 𝑘𝑞 = 0 in the following.

D =
©«
−𝜔 + 𝑖𝜎1 0 0

0 −𝜔 + 𝑖𝜎2 0
0 0 −𝜔 − 𝑖(𝜎1 + 𝜎2)

ª®¬ , (D9b)

C =

©«
0 0 0

𝐼1 𝑣2
𝐴
𝑘1 𝑣3

𝐴
𝑘1

𝑣1
𝐴
𝑘2 𝐼2 𝑣3

𝐴
𝑘2

𝑣1
𝐴
𝑘3 𝑣2

𝐴
𝑘3 𝐼3

ª®®®®®®¬
, (D9c)

while

𝐼1 = 𝑣1
𝐴
𝑘1 − (v𝐴 · k) , (D10)

and 𝐼2, 𝐼3 are defined similarly.
In a similar fashion as for the hydrodynamic case considered above,

we will decompose the coefficients of the characteristic polynomial in
terms of scalars built from background quantities. As we might have
expected, the resulting dispersion relation is a complicated seventh-
degree polynomial14 (and we sanity-checked it reduces to the ho-
mogeneous case when we set to vanish the shear terms). In order to
learn something useful out of it, we then consider the sound-proof
limit and retain only terms proportional to the speed of sound. We
end up with the following dispersion relation

𝑎5𝜔
5 + 𝑎4𝜔

4 + 𝑎3𝜔
3 + 𝑎2𝜔

2 + 𝑎1𝜔 + 𝑎0 = 0 , (D11)

with

𝑎0 = −𝑖
{
det(𝝈)

[
𝜎2
𝑖 𝑗 𝑘

𝑖𝑘 𝑗 − 1
2

Tr(𝝈2)
]

+(v𝐴 ·k)2
[
det(𝝈)𝑘2− 1

2
(𝜎𝑖 𝑗 𝑘 𝑖𝑘 𝑗 )Tr(𝝈2)

]
+(v𝐴 ·k)4𝜎𝑖 𝑗 𝑘

𝑖𝑘 𝑗

}
,

(D12a)

𝑎1 =

{
(v𝐴 · k)4𝑘2 + (v𝐴 · k)2

[
𝜎2
𝑖 𝑗 𝑘

𝑖𝑘 𝑗 − Tr(𝝈2)𝑘2
]
+

det(𝝈)
(
𝜎𝑖 𝑗 𝑘

𝑖𝑘 𝑗
)
+ 1

2
Tr(𝝈2)

[
1
2

Tr(𝝈2)𝑘2 − 𝜎2
𝑖 𝑗 𝑘

𝑖𝑘 𝑗

] }
,

(D12b)

𝑎2 = 𝑖

{
− 1

2
(𝜎𝑖 𝑗 𝑘 𝑖𝑘 𝑗 )Tr(𝝈2) + det(𝝈)𝑘2 + 2(v𝐴 · k)2 (𝜎𝑖 𝑗 𝑘 𝑖𝑘 𝑗 )

}
,

(D12c)

𝑎3 =

[
Tr(𝝈2)𝑘2 − 2(v𝐴 · k)2𝑘2 − 𝜎2

𝑖 𝑗 𝑘
𝑖𝑘 𝑗

]
, (D12d)

𝑎4 = −𝑖(𝜎𝑖 𝑗 𝑘 𝑖𝑘 𝑗 ) , (D12e)

𝑎5 = 𝑘2 . (D12f)

14 See https://doi.org/10.5281/zenodo.7612479 for the details of the scalar
decomposition.
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D3 Background with vorticity

We now turn to the case with non-negligible background vorticity
(but negligible shear). We re-scale the magnetic field as in eq. (52)
and introduce a convenient basis {�̂�, 𝑞, 𝑠}, where �̂� = W/|W|
while 𝑞, 𝑠 complete it to an orthonormal basis. For instance, assuming
v𝐴 is not aligned with W we can construct it as

q = v𝐴 −
(
v𝐴 · �̂�

)
�̂� , 𝑞 =

q
|q| , 𝑠 = �̂� × 𝑞 , (D13)

and the magnetic field15

v𝐴 = 𝑣𝑊
𝐴
�̂� + 𝑣

𝑞

𝐴
𝑞 . (D14)

The coefficient matrix of the linearized system then is (cf. eqs. (41),
(50) and (51) and ignore shear terms)

M =

(
A C

C⊤ D

)
, (D15)

with

C =

©«

0 0 0

−𝑣𝑞
𝐴
𝑘𝑞 𝑣

𝑞

𝐴
𝑘𝑊 0

𝑣𝑊
𝐴
𝑘𝑞 −𝑣𝑊

𝐴
𝑘𝑊 0

𝑣𝑊
𝐴
𝑘𝑠 𝑣

𝑞

𝐴
𝑘𝑠 −

(
𝑣𝑊
𝐴
𝑘𝑊 + 𝑣

𝑞

𝐴
𝑘𝑞

)
ª®®®®®®¬
, (D16a)

A =

©«

−𝜔 𝜌𝑘𝑊 𝜌𝑘𝑞 𝜌𝑘𝑠

𝑐2
𝑠

𝜌 𝑘𝑊 −𝜔 0 0
𝑐2
𝑠

𝜌 𝑘𝑞 0 −𝜔 +𝑖𝑊
𝑐2
𝑠

𝜌 𝑘𝑠 0 −𝑖𝑊 −𝜔

ª®®®®®®¬
, (D16b)

and

D =

©«
−𝜔 0 0

0 −𝜔 −𝑖𝑊
0 +𝑖𝑊 −𝜔

ª®®®¬ (D16c)

As for the sheared case, we compute the dispersion relation by
taking the determinant of this matrix and decompose each coefficient
as a sum of scalars16. Having sanity-checked the result by contrasting
it against the homogeneous background dispersion relation, we take
the sound proof limit. The sound-proof dispersion relation can then
be written as

𝜔4 + 𝑏2𝜔
2 + 𝑏4 = 0 , (D17)

with

𝑏2 = −
[
𝑊2 + ( �̂� · W)2 + 2(v𝐴 · k)2

]
, (D18a)

𝑏4 =

[
(v𝐴 · k)2 +𝑊2

] [
( �̂� · W)2 + (v𝐴 · k)2

]
. (D18b)

As this is a particularly simple quartic polynomial, we can study
the stability of its roots analytically. Considering eq. (D17) as an
equation for 𝜔2 and computing the discriminant we obtain[
𝑊2 − ( �̂� · W)2

]2
⩾ 0 (D19)

15 Note that the definition of �̂� changes when the background magnetic field
is aligned with the vorticity, even though in what follows we would simply
have to set 𝑣𝑞

𝐴
= 0.

16 More details on the decomposition can be found at
https://doi.org/10.5281/zenodo.7612479.

so that𝜔2-roots are real. As complex roots of a real algebraic polyno-
mials occur in pairs of complex conjugates, complex 𝜔2-roots would
correspond to an instability. In order to have stable roots though, we
also need other conditions to be met. We, in fact need 𝑏2 < 0 and
𝑏4 > 0 to make sure that the 𝜔2-roots are real and positive, so that 𝜔-
roots are real as well. As this is evidently the case, we conclude that
background vorticity—just like in the purely hydrodynamic case—
does not lead to an instability.

MNRAS 000, 000–000 (2023)

https://doi.org/10.5281/zenodo.7612479

	Introduction
	Background gradients and plane-wave expansion
	The slowly evolving background
	Velocity gradient decomposition

	Non-inertial equations and the local frame
	The local frame of an observer

	Going back to hydrodynamics
	Magneto-shear instability in the local frame
	Concluding Remarks: The instability in perspective
	The MRI vs the Rayleigh criterion
	The missing ingredient: Filtering

	Formulating the MRI in the local frame
	Another look at the non-inertial MHD equations

	A closer look at the Rayleigh stability criterion
	Hydrodynamic dispersion relations
	MHD dispersion relations
	Homogeneous background
	Sheared Background
	Background with vorticity


