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A B S T R A C T 

The magneto-rotational instability (MRI), which is due to an interplay between a sheared background and the magnetic field, 
is commonly considered a key ingredient for developing and sustaining turbulence in the outer envelope of binary neutron star 
merger remnants. To assess whether (or not) the instability is active and resolved, criteria originally derived in the accretion disc 
literature, thus exploiting the symmetries of such systems, are often used. In this paper, we discuss the magneto-shear instability 

as a truly local phenomenon, relaxing common symmetry assumptions on the background on top of which the instability grows. 
This makes the discussion well suited for highly dynamical environments such as binary mergers. We find that, although this 
is somewhat hidden in the usual deri v ation of the MRI dispersion relation, the instability crucially depends on the assumed 

symmetries. Relaxing the symmetry assumptions in the background, we find that the role of the magnetic field is significantly 

diminished, as it affects the modes’ growth but does not drive it. We conclude by making contact with a suitable filtering 

operation, as this is key to separating background and fluctuations in highly dynamical systems. 

Key words: instabilities – stars: neutron – stars: oscillations – stars: rotation. 
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 I N T RO D U C T I O N  

he magneto-rotational instability was disco v ered by Balbus and 
a wle y in the early 1990s [Balbus & Ha wle y 1991 , 1998 ; Ha wle y &
albus 1991 ; linking to earlier ideas from, for example, Chan-
rasekhar ( 1960 ) and Velikhov ( 1959 )]. Due to the fast instability
rowth rate, this mechanism is considered the most promising candi- 
ate for developing/sustaining magneto-hydrodynamic turbulence in 
ccretion discs as well as explaining enhanced angular momentum 

ransfer (Shakura & Sunyaev 1973 ; Balbus & Hawley 1998 ). The
nstability is due to an interplay between a weak magnetic field and
 sheared background flow. With few exceptions [see, for example, 
ahajan & Krishan ( 2008 ) and Shakura et al. ( 2022 )] and due to

ts ‘local’ nature, the magneto-rotational instability is commonly 
iscussed in the so-called ‘shearing box approximation’ (Hill 1878 ; 
oldreich & Lynden-Bell 1965 ). That is, the instability is established 

n a frame that corotates with a fiducial point in the mid-plane
f the undisturbed disc (see also Goodman & Xu 1994 ). This is
onvenient for analytical studies as well as numerical analysis since 
ocal simulations can reach much higher resolutions than global 
nes (see, for e xample, Ha wle y, Gammie & Balbus 1995 ; Zier &
pringel 2022 , and references therein). Shearing box simulations 
onfirmed the predictions of the linear theory, and allowed studies 
f non-linear features, such as the formation of the so-called channel 
odes, eventually leading to a turbulent regime as these are destroyed 

y a parasitic instability (Goodman & Xu 1994 ). As turbulence 
ecays, the magneto-rotational instability may be re vi ved, and the 
rocess can start again in cycles. Most importantly, while it has 
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ecently become possible to perform fully kinetic simulations (see, 
.g. Hoshino 2015 ; Inchingolo et al. 2018 ), shearing box simulations
re necessary to explore the parameter space in a variety of different
et-ups (Sharma et al. 2006 ; Kempski et al. 2019 ; Guilet et al. 2022 ;
eld & Mamatsashvili 2022 ). 
Although originally discussed in the context of accretion discs, the 
agneto-rotational instability is also thought to play a role in neutron

tar mergers (Duez et al. 2006 ; Siegel et al. 2013 ; Hayashi et al. 2022 ;
iuchi et al. 2022 ; Margalit et al. 2022 ; Palenzuela et al. 2022 ), espe-

ially for sustaining a magneto-turbulent state in the outer envelope 
f the remnant, where the Kelvin–Helmholtz instability is less signif- 
cant or, indeed, not active (Kiuchi et al. 2018 ). To assess whether or
ot the magneto-rotational instability is active and resolved in merger 
imulations, criteria discussed/established in the context of accretion 
iscs (Ha wle y, Guan & Krolik 2011 ; Ha wle y et al. 2013 ; Shibata
015 ) are often used. Ho we ver, because binary neutron star mergers
re highly dynamical environments, framing a discussion of the 
agneto-rotational instability using criteria that e xploits restrictiv e 

ymmetry conditions might be misleading. Moti v ated by this, we
im to explore the impact of relaxing common assumptions – well 
oti v ated in the accretion disc scenario, like an axisymmetric and cir-

ular background flow, but less so for mergers – on the magneto-shear
nstability. 

The paper is laid out as follows: We start in Section 2 by intro-
ucing the Wentzel, Kramers, and Brillouin (WKB)-type expansion 
ogether with the concept of fast versus slow background gradients, 
s needed to derive dispersion relations associated with perturbations 
ropagating on top of a non-homogeneous background flow. In 
ection 3 , we discuss how we can, in highly dynamical environments
uch as mergers, still refer to an unspecified background – with 
o symmetries stated from the outset – and consider perturbations 
apidly evolving on top of that. We continue in Section 4 by deriving
is is an Open Access article distributed under the terms of the Creative 
h permits unrestricted reuse, distribution, and reproduction in any medium, 
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he non-inertial induction equation, and making contact with the
oncept of a local frame. We do so as we will study the instability from
he perspective of an observer moving around with the background
ow, which cannot be expected to be inertial on a general basis. We
iscuss our main findings in Sections 5 and 6 . These are based on
he dispersion relations, which are derived in detail in Appendices C
nd D, in order to be able to focus on the physics in the main body
f the paper. In particular, we discuss the magneto-shear instability,
aying careful attention to the differences introduced by the addition
f a magnetic field. We draw our conclusions and make contact
ith the magneto-rotational instability (and the associated criteria)

n Section 7 . 

 B  AC K G R  O U N D  G R A D I E N T S  A N D  

LANE-WAV E  EXPANSION  

et us begin by noting that the magneto-rotational instability is,
n some sense, a ‘global instability analysed with local tools’.
he local nature is evident since the instability is established
y means of a dispersion relation (hence involves a plane-wave
xpansion and, by assumption, a short-wavelength approximation).
t the same time, one may appreciate the ‘global nature’ of

he instability by recalling the key aspects of the instability: the
ddition of a weak magnetic field turns axisymmetric modes (which
ould otherwise be hydrodynamically stable) unstable. The global

xisymmetry of the background, then, plays a crucial role as the
ele v ant hydrodynamic stability criterion – the Rayleigh criterion
Rayleigh 1917 ) – applies to axisymmetric modes only. Although
he standard deri v ation of the instability does not highlight this
ubtlety, this aspect becomes apparent if we formulate the problem
sing a co-rotating local frame (cf. the discussion in Appendices
 , B ). 
With these points in mind, let us spell out how we intend to

iscuss the magneto-shear instability without referring to a given
xisymmetric and circular background. Consistent with the shearing
ox idea (Hill 1878 ; Goldreich & Lynden-Bell 1965 ), the strategy is
o zoom in on a small region of fluid, small enough for the analysis
o be local but large enough to allow for a meaningful hydrodynamic
escription. We then set up a local Cartesian frame co-moving with
he background flow so that the background velocity vanishes at the
rigin of the local box. As this frame mo v es with the flow, and hence
annot be expected to be inertial, we need to consider the (at this
oint Newtonian) ideal magneto-hydrodynamics equations in a non-
nertial frame. This step is commonly left out of the discussion, so
e first of all have to fill this gap. The non-inertial equations will

hen be perturbed, retaining gradients in the background quantities
s explained below, and a local WKB-type dispersion relation will
e derived and studied. This way, we can account for the effects of
 sheared background and its interplay with the magnetic field in a
eneral setting. 
Strictly speaking, the plane-wav e e xpansion only makes sense for a

omogeneous background, i.e. the plane-wave amplitude is assumed
o vary on the same scales as the background. At the same time,
e know that a sheared background is key to the magneto-rotational

nstability. Therefore, giv en an y quantity/field a , we first write it as
 sum of background plus perturbations 

 = A + δA, (1) 
NRAS 527, 2437–2451 (2024) 

c  
nd then introduce a WKB-type expansion of the form (Anile 1989 ;
horne & Blandford 2017 ) 

A = 

⎛ 

⎝ 

∑ 

q= 0 

εq Ā q 

⎞ 

⎠ e iθ/ε δ̄, (2) 

ith book-keeping parameters δ̄ and ε (see also Palapanidis 2018 ).
he former 

(
δ̄
)

is introduced to measure the relative magnitude of
ackground versus perturbations, while the latter ( ε) is given by ε
λ/ L , where λ is the typical wavelength of the waves and L is the

ypical length-scale o v er which the wav e amplitude, polarization,
nd wa velength vary. Ha ving split the perturbations into amplitude
nd phase, we follow the standard convention (Misner et al. 2017 )
nd stick all ‘post-geometric optics’ corrections into the amplitude
¯
 q . With this Ansatz, the background equations are obtained by

ollecting all terms of order O( ̄δ0 , ε0 ), while the perturbation
quations are obtained collecting terms of order O( ̄δ1 , ε0 ). Terms
f higher order in ε correspond to post-geometric optics, while those
f higher order in δ̄ represent non-linear perturbations. 
Along with this WKB-type Ansatz, we need to introduce the

oncept of fast and slowly varying quantities. Given a specific choice
f coordinates, a quantity is slow in the variable x if A = A ( X ), where
 = εx while it is fast if A = A ( x ). Deciding which quantities are

ast or slow corresponds to specifying (in a qualitative manner) the
ackground configuration. As an illustration, consider the simple toy
roblem 

( ∂ x b + ∂ x c) = 0 , (3) 

ogether with the Ansatz from equation ( 2 ). Let us first assume that
oth B and C are fast, so that ∂ x B ≈ O( ̄δ0 , ε0 ) and similarly for C .
he background equation is then 

 ( ∂ x B + ∂ x C) = 0 . (4) 

f we instead assume that, say, B is fast while C is slow, then
 x B ≈ O( ̄δ0 , ε0 ) while ∂ x C ≈ O( ̄δ0 , ε) and the background equa-

ion becomes 

 ∂ x B = 0 . (5) 

learly, the two problems are different already at the background
evel. 

Let us now turn to the linear perturbations. Because we have
xplicitly introduced the book-keeping parameter ε in equation ( 2 ),
e take all amplitude terms as well as the phase to be slowly varying.
hen, to order O( ̄δ, ε0 ) we have (
A + δ̄Ā 0 e 

iθ/ε
)
∂ x 

[
B + δ̄B̄ 0 e 

iθ/ε + C + δ̄C̄ 0 e 
iθ/ε

] = 0 . (6) 

ssuming again that the background quantity B is fast, while C is
low, the perturbation equation becomes 

¯
 0 ( ∂ x B) e iθ/ε + A 

(
B̄ 0 ∂ x e 

iθ/ε + C̄ 0 ∂ x e 
iθ/ε

) = 0 . (7) 

e xt, Taylor e xpanding the phase, which is slowly varying, and we
et 

θ ( x) 

ε
≈ θ (0) 

ε
+ 

∂θ

∂X 

∣∣∣
X= 0 

x + · · · = θ (0) /ε + k x x + O( ε) , (8) 

here we define the wav ev ector k x = ∂ θ/ ∂ X from the first order
erm in the expansion, while the overall constant can be neglected.
hen, introducing an analogous expansion for the fast background
radients ∂ x B( x) = ∂ x B(0) + O( ε), we end up with 

¯
 0 ( ∂ x B) + A ( ik x B̄ 0 + ik x C̄ 0 ) = 0 , (9) 

here both ∂ x B and A are e v aluated at a point (conveniently
hosen as the origin of the coordinate system). Therefore, if all
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ackground quantities are ‘slow’, we get back the dispersion relation 
e would have obtained ignoring all background gradients. This is 
uite intuiti ve. Ho we ver, the strategy also allows us to account for
he impact that ‘fast’ background gradients have on the dispersion 
elation. In short, as long as these terms are treated as constants, we
ay retain them and work out a dispersion relation in the usual way.

 T H E  SLOW LY  E VO LV I N G  B  AC K G R  O U N D  

he starting point for any hydrodynamic perturbation analysis is 
he choice/identification of a stationary background flow configu- 
ation, which is then perturbed in order to establish stability (or
ot). Here, we want to frame the analysis of the magneto-shear 
nstability without considering a specific background configuration 
ith constraining symmetries stated from the outset. None the less, 
e need to clarify how we can refer to a suitable ‘background’ in
ighly dynamical environments like binary neutron star mergers. We 
ill first analyse the problem analytically and return to discuss the 

ink to numerical simulations in Section 7 . Given real numerical 
imulation data, this discussion will inevitably involve some kind 
f filtering operation. Anticipating that this can be done in a 
eaningful way, we consider perturbations evolving rapidly with 

espect to the evolution time-scale of an unspecified ‘background’ 
ow. 
To make this statement more precise, let us consider the inertial 

deal MHD equations and introduce reference values for each 
uantity (indicated with an ‘ r ’ subscript) such as ρ = ρr ˜ ρ. We
ntroduce the (dimensionless) Strouhal, Mach, Froude, and magnetic 
nteraction numbers as 

 St = 

l r 

t r v r 
, ε Ma = 

v r 

c r 
, ε Fr = 

v r √ 


 r 

, ε B = 

B 

2 
r 

μ0 ρr v 2 r 

, (10) 

here l r , t r , v r are characteristic length-scale, time-scale, and ve-
ocity (respectively) while B r , 
 r , ρr are reference values for the

agnetic field, gravitational potential, and density and c r is the 
adiabatic) speed of sound. This way, the non-dimensional inertial 
deal MHD equations read (now dropping the tildes for notational 
larity) 

 St ∂ t ρ = −ρ∇ i v 
i − v i ∇ i ρ, (11a) 

 St ∂ t B 

i = −v j ∇ j B 

i + B 

j ∇ j v 
i − B 

i ∇ j v 
j , (11b) 

 St ∂ t v 
i = −v j ∇ j v 

i − 1 

ε2 
Ma 

1 

ρ
∇ 

i ρ − 1 

ε2 
Fr 

∇ 

i 
 

− εB 
1 

ρ

[
B 

j ∇ j B 

i − ∇ 

i 

(
B 

2 

2 

)]
. (11c) 

rom this, we see that a generic flow configuration can be considered
lo wly e volving (in time) as long as the corresponding Strouhal
umber is small. In practice, given a characteristic length-scale l r 
nd velocity v r of a generic flow, we consider disturbances evolving 
n time-scales t r such that εSt � 1, o v er which the background
an be ef fecti vely taken as stationary. In turn, this determines
he time-scales o v er which we e xpect the following results to be
eliable. 

.1 Velocity gradient decomposition 

n the following, we will consider the impact that gradients in the
ackground flow v elocity hav e on the time evolution of perturbations. 
t is then convenient to introduce the standard decomposition of the 
elocity gradient into expansion, shear and vorticity. That is, 

 i v j = 

1 

3 
θg ij + σij + ω ij , (12) 

here 1 

θ = ∇ i v 
i , (13a) 

ij = ∇ ( i v j ) − 1 

3 
θg ij = 

1 

2 
( ∇ i v j + ∇ j v i ) − 1 

3 
θg ij , (13b) 

 ij = ∇ [ i v j ] = 

1 

2 
( ∇ i v j − ∇ j v i ) . (13c) 

n order to bring out the magneto-shear nature of the instability, we
ill consider the impact of having a background with non-negligible 

hear and vorticity separately. We will, ho we ver, not consider the
mpact of a background expansion rate, as exact non-linear results 
re sufficient to predict this. In fact, due to the Alfv ́en theorem, we
now that the magnetic intensity must grow in a (ideal magneto-)fluid
ndergoing compression as the field lines are squeezed together. 
imilarly, the field will get weaker in an expanding fluid. In essence,
e expect – and have verified explicitly – this non-linear prediction 
ill emerge in the analysis as a generic ‘instability’. The background
agnetic field cannot grow in time as it is assumed to be slowly

volving by construction, so the required growth must be represented 
y perturbations. 
Before we mo v e on to deriv e the non-inertial equations, it is useful

o take a brief detour and consider a realization of a flow with only
on-negligible shear. Because we are interested in flows that are 
lo wly e volving, we can start by assuming that v i = v i ( εt , x , y , z)
nd suppress the time dependence in the following. We then take the
 elocity v ector as mainly two-dimensional, specifically in the x –y
lane of a set of local Cartesian coordinates 

 = v x ( x , y , z) ̂  x + v y ( x , y , z) ̂  y + O( ε) , (14) 

here, in order to make sure the expansion is small, we take ∂ x v x =
∂ y v 

y + O( ε). The shear matrix is then given by 

= 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

∂ x v 
x 

1 

2 

(
∂ x v 

y + ∂ y v 
x 
) 1 

2 
∂ z v 

x 

1 

2 

(
∂ x v 

y + ∂ y v 
x 
) −∂ x v 

x 
1 

2 
∂ z v 

y 

1 

2 
∂ z v 

x 1 

2 
∂ z v 

y 0 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

+ O( ε) , (15) 

hile the curl of v becomes 

 × v = − (
∂ z v 

y 
)

ˆ x + 

(
∂ z v 

x 
)

ˆ y + 

(
∂ x v 

y − ∂ y v 
x 
)

ˆ z . (16) 

his has to be of O( ε) for background flows with only non-negligibile
hear, in which case 

 z v 
x = ∂ z v 

y = O( ε) , ∂ y v 
x = ∂ x v 

y + O( ε) , (17) 

nd as result the determinant of the shear matrix vanishes (more
recisely, is of order O( ε)). This is equi v alent to saying that two
igenvalues of the shear matrix are opposite and the third is zero
to order O( ε)). In essence, a mainly two-dimensional flow with
e gligible e xpansion and vorticity is characterized by a shear matrix
ith one zero eigenvalue, and hence a vanishing determinant. This 
ill turn out to be a useful observation when we discuss the dispersion

elations in Sections 5 , 6 . We also note that having negligible
MNRAS 527, 2437–2451 (2024) 
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xpansion (although rele v ant for the present analysis) is not strictly
ecessary to the argument. 

 NON-INERTIAL  E QUAT I O N S  A N D  T H E  

O C A L  FRAME  

he ideal magneto-hydrodynamics equations abo v e hold in an
nertial frame. Ho we v er, as an observ er, locally co-mo ving with
he fluid cannot (in general) be expected to be inertial, we need to
onsider the equations according to a non-inertial observer. As such,
et us now derive the Newtonian induction equation in a general (non-
nertial) frame starting from the Maxwell equations formulated in
ovariant form. This is the natural starting point as electromagnetism
s inherently a relativistic theory. Moreo v er, we stress that the
lectric and magnetic fields are observer dependent quantities, and
he standard textbook form of the Maxwell equations assume an
nertial observer/frame from the outset. 

We then take as our starting point the covariant Maxwell equa-
ions (with indices a , b , . . . representing space–time components, in
ontrast to the i , j , k , . . . components from before) 

 a F 

ba = μ0 j 
b , ∇ [ a F b c ] = 0 , (18) 

here F 

ab is the Faraday tensor while j b is the four-current. From
hese relations, we derive the non-inertial (relativistic) induction
quation and, finally, consider the Newtonian limit. Because we are
nterested in the non-inertial equations associated with an observer
ocally co-moving with the fluid, it is natural to decompose the
ovariant Maxwell equations in the ‘fluid frame’ (Andersson &
omer 2021 ), leading to a (fibration) formulation, commonly used in
osmology (Barrow, Maartens & Tsagas 2007 ). Hence, we introduce
 four-velocity U 

a associated with a generic observer and decompose
he Faraday tensor and the charge current as 

 ab = 2 U [ a e b] + ε abc b 
c , j a = σU 

a + J a , (19) 

here 

 a = F ab U 

b , b a = 

1 

2 
ε abc F 

bc , and ε abc = ε dabc U 

d . (20) 

ith these definitions, we can rewrite the Maxwell equations as (see
.g. Ellis 1973 ; Andersson 2012 ; Andersson & Comer 2021 ) 

⊥ 

a 
b ∇ a e 

b − μ0 σ = 2 W 

a b a , (21a) 

⊥ 

a 
b ∇ a b 

b = −2 W 

a e a , (21b) 

⊥ ab ė 
b − ε abc ∇ 

b b c + μ0 J a 

= e b 
(

σba + ω ba − 2 

3 
θ ⊥ ba 

)
+ ε abc a 

b b c , (21c) 

⊥ ab ḃ 
b + ε abc ∇ 

b e c 

= b b 
(

σba + ω ba − 2 

3 
θ ⊥ ba 

)
− ε abc a 

b e c , (21d) 

here dots stand for co-moving time deri v ati ves U 

a ∇ a and ⊥ ab =
 ab + U a U b is the projection orthogonal to the observer four-velocity
 g ab is the space–time metric). In equation (21), the terms on the left-
and side should be familiar, while those on the right-hand side are
ssociated with gradients of the observ er four-v elocity. 2 As such,
NRAS 527, 2437–2451 (2024) 

 The shear, vorticity, and expansion are defined as the four-dimensional 
ersion of equation (13), i.e. with additional projections to ensure they are 
ow orthogonal, while the observer four-acceleration is a b = U 

a ∇ a U 

b and 
 

a = 

1 
2 ε 

abc ω bc . 

o
a
e
e
p
t

hey vanish identically for an inertial observer, and hence do not
ppear in most textbook discussions. 

To derive the induction equation, we follow the usual logic (see
ndersson et al. 2021 , for a recent relativistic discussion) and

massage’ the Faraday equation 

⊥ ab ḃ 
b − b b 

(
σba + ω ba − 2 

3 
θ ⊥ ba 

)
︸ ︷︷ ︸ 

∼b/T 

(22) 

+ ε abc ( ∇ 

b e c + a b e c ) ︸ ︷︷ ︸ 
∼e/L 

= 0 , 

o see that e ∼ Lb / T ∼ Vb , with L and T typical length- and time-
cales and V the associated velocity. 3 As long as the electric and
agnetic fields are slowly evolving, a similar dimensional analysis

hen leads us to neglecting terms involving the electric field (i.e. the
isplacement current) in the Amp ́ere law, so that 

 

a = 

1 

μ0 

(
ε abc ∇ 

b b c + ε abc a 
b b c 

)
. (23) 

s the Amp ́ere law has now been demoted to a constraint on the
harge current (see Andersson et al. 2021 ), we need to introduce a
losure relation for the electric field. In the ideal case, this can be
btained by looking at the electric field measured by an observer
ocally co-moving with the fluid. In fact, because the local fluid
our-velocity u a is linked to the generic observer U 

a via 

 

a = W ( U 

a + v a ) , U 

a v a = 0 , W = 

(
1 − v a v a 

)−1 / 2 
, (24) 

here v b is the spatial fluid velocity as measured by U 

a , the electric
eld measured by the fluid is (cf. equation 20 ) 

 ab u 

b = W 

[
e a + ε abc v 

b b c + U a ( v 
b b b ) 

]
. (25) 

n a perfect conductor, where charges easily flow, one would expect
he electric field to ‘short out’ as the matter becomes locally charge
eutral, so that 

 a + ε abc v 
b b c = 0 . (26) 

ith this constraint, we can derive the induction equation from
 araday’s la w. To do so, note that 

 abc ε 
cde = U 

f U g ε f abc ε 
gdec = −3! U 

f U g δ
[ g 
f δ

d 
a δ

e] 
b 

= 

(
δd 
a δ

e 
b − δe 

a δ
d 
b 

) − (
// d a δ

e 
b − // e a δ

d 
b 

) − (
δd 
a // 

e 
b −δe 

a // 
d 
b 

)
, 

(27) 

here we introduced the parallel projection // a b = −U 

a U b . When this
s contracted with a spatial tensor (with respect to U 

a ), the last two
erms in equation ( 27 ) can be dropped. It follows that 

 abc ε 
cde 

(
a b v d b e 

) = 

(
a b b b 

)
v a −

(
a b v b 

)
b a . (28) 

e also need to take care of the curl of e a term in the Faraday
quation. This can be written 

−ε abc ∇ 

b 
(
ε cde v d b e 

)
= 

[ − ε abc ( ∇ 

b ε cde ) v d b e 
] − [

ε abc ε 
cde ∇ 

b ( v d b e ) 
]
, (29) 
nes introduced abo v e l r , t r , and v r . The aim here is to reproduce the usual 
rgument for dropping the displacement current and derive the induction 
quation, not to argue in which sense we can consider perturbations rapidly 
volving on a non-stationary (but slowly evolving) background. When we 
erturb the induction equation later on, ho we ver, we are in practice assuming 
he displacement current to be small compared to perturbations. 
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here it is convenient to consider the two terms separately. We start
rom the second term and, even if U 

a is not necessarily surface
orming (i.e. has non-vanishing vorticity), we introduce a ‘spatial’ 
ov ariant deri v ati ve D in the usual way (projecting each index in the
ubspace orthogonal to U 

a ). Then, it is easy to see that 

ε abc ε 
cde D 

b ( v d b e ) = ε abc ε 
cde 

(⊥ 

b 
f ⊥ 

g 

d ⊥ 

h 
e 

)∇ 

f ( v g b h ) 

= ε abc ε 
cde ∇ 

b ( v d b e ) , (30) 

nd hence 

− ε abc ε 
cde ∇ 

b ( v d b e ) = D 

b ( v b b a ) − D 

b ( v a b b ) . (31) 

s for the other term, writing it as 

−ε abc ( ∇ 

b ε cde ) v d b e = −U 

g ε gabc ε 
f cde 

(∇ 

b U f 

)
v d b e 

= −U 

g δ[ f 
g δ

d 
a δ

e] 
b g f h 

(
−U 

b a h + ω 

bh + σbh + 

1 

3 
θ ⊥ 

bh 

)
v d b e , 

(32) 

e see that, given the anti-symmetrization, it vanishes identically. 
In summary, the (relativistic) induction equation according to a 

eneric observer 4 can be written as 

⊥ 

ab ḃ b + D b ( v 
b b a ) − D b ( v 

a b b ) 

= 

(
σab − ω 

ab − 2 

3 
θ ⊥ 

ab 

)
b b + v a 

(
a b b 

b 
) − b a 

(
a b v 

b 
)
. (33) 

he terms on the left should be familiar, while those on the right
anish for an inertial observer. 

Next, let us sho w ho w the deri ved equation further simplifies in the
ewtonian limit. On dimensional grounds, we observe that the last 

wo terms on the right-hand side of equation ( 33 ) contain an extra
actor of 1/ c 2 (with respect to the others, where c is the speed of
ight), and will as a result be negligible in the non-relativistic limit
 c 2 → ∞ ). Similarly, let us also consider the absence of monopoles
onstraint. From equations (21) and ( 26 ), we immediately obtain 

⊥ 

a 
b ∇ a b 

b = 2 W 

a ε abc v 
b b c , (34) 

nd we observe the term on the left hand side is ∼b / L while that on
he right is ∼bL / T 

2 . Dimensional consistency implies that the term
n the right-hand side contains an extra factor of 1/ c 2 and should be
eglected in the Newtonian limit. In essence, non-inertial effects do 
ot affect the absence of monopole constraints at the Newtonian level. 
hen it comes to the Lorentz force, we expect it not to change at the
e wtonian le vel, but let us none the less check this for consistency.
he Lorentz four-force can be written 

− j b F 

ba = − ( σU b + J b ) 
(
U 

b e a + U 

a e b + ε b ac d U c b d 
)

= −U 

a 
(
J b ε 

b c d v c b d 
) + ε abc ( J b − σv b ) b c , (35) 

here we used the ideal magnetohydrodynamics relation ( 26 ) in the
econd step. The Lorentz three force corresponds to the second term, 
here the charge density is measured by the observer, hence does not

in general) v anish. Ho we ver, if we insist on the local charge density
o be zero, consistent with ( 26 ), then we have (cf. equation 19 ) 

− U 

a j a = W 

(
σ − v a J 

a 
) = 0 =⇒ J b − σv b = 

(
g a b − v a v b 

)
J a . 

(36) 
 The worldliness of the generic observer U 

a constitutes a fibration of the 
pace–time, hence, we may call this the ideal induction equation in the 
bration framework, as opposed to the corresponding 3 + 1 form derived 
y, for example, Andersson et al. ( 2021 ). 

b
P  

5

t

e-inserting the factor of 1/ c 2 , we see that the second term is
egligible with respect to the first. As also the second term in
quation ( 23 ) is negligible in the Newtonian limit, we see that the
orentz force in the Euler equation is unchanged (as expected). 

.1 The local frame of an obser v er 

aving derived the relativistic induction equation according to a 
eneric (non-inertial) observer and recalling that we are interested 
n a local analysis, we now make contact with the concept of local
rame associated with an observer (Gourgoulhon 2013 ; Misner et al.
017 ). Giv en an observ er worldline with tangent U 

a , the local frame is
onstructed by considering three spatial unit vectors that complete U 

a 

o an orthonormal basis on the tangent space at any given point. These
nit vectors (including the observer four-velocity) – the components 
f which are indicated by hats – are then transported along the
orldline according to 

 

ˆ c ∇ ˆ c e ˆ a = 
ˆ b 
ˆ a e ˆ b ,  ˆ a ̂ b = U ˆ a a ˆ b − a ˆ a U ˆ b − ε ˆ a ̂ b ̂ c ̂ d U 

ˆ c W 

ˆ d , (37) 

here a ̂ a is the four-acceleration of U ̂

 a (an intrinsic property of the
orldline) and W 

ˆ d is the arbitrary four-rotation of the local frame.
ocusing on the first term in the relativistic induction equation ( 33 ),
nd using equation ( 37 ) 

˙
 ˆ b = 

(
U 

ˆ c ∇ ˆ c b 
)

ˆ b 
= U 

ˆ c ∂ ˆ c b ˆ b + 

(
a ˆ c b ˆ c 

)
U ˆ b + ε ˆ b ̂ e ̂ c W 

ˆ e b ˆ c . (38) 

he second term vanishes due to the orthogonal projection, while 5 

⊥ 

ˆ a ̂ b ḃ ˆ b + ω 

ˆ a ̂ b b ˆ b =⊥ 

ˆ a ̂ b 
(
U 

ˆ c ∂ ˆ c b ˆ b 
)
. (39) 

n practice, the term involving the four-rotation of the frame drops
ut of the induction equation. We also note that, because we are
ow considering the non-inertial equations in the local frame of a
ingle observer, there is no shear or expansion (associated with the
bration of space–time induced by the observ er). Giv en this, the

nduction equation in the Newtonian limit simplifies to 

 t B 

ˆ i + ∇ ˆ j ( v 
ˆ j B 

ˆ i − v 
ˆ i B 

ˆ j ) = 0 . (40) 

t the Newtonian level then, the induction equation in the local
rame of a generic observer retains the same form as for an inertial
ne. This is similar to the case of the Lorentz force (entering the
uler equation) and the Amp ́ere law. Ho we ver, this is only true in the
ewtonian case. Additional terms involving the four-acceleration of 

he observer will appear at the special relativistic level so some care
ill be required in order to extend our results in that direction. 
When it comes to the non-inertial terms in the Euler equations,

hese are obviously well known: we have to account for fictitious
cceleration. We refer to Gourgoulhon ( 2013 ) for a rigorous deri v a-
ion in special relati vity, sho wing ho w additional terms involving
he observer four-acceleration also enter the relativistic expressions. 
et us also stress that working with a rotating or non-rotating local

rame is entirely a matter of choice (Misner et al. 2017 ). At the local
e wtonian le vel, we can al w ays get rid of the non-inertial terms

ssociated with the frame rotation and ef fecti vely work with the
nertial equations. 

We conclude this section by noting that, as previously antici- 
ated, some kind of filtering operation is key to separate between
ackground and fluctuations in a highly dynamical environment. 
ostponing a discussion of this to Section 7 , let us simply note at this
MNRAS 527, 2437–2451 (2024) 

 Identifying the vorticity of the fibration observer with the four-rotation of 
he chosen local frame. 
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8 We note that these modes correspond to those propagating in the z-direction 
in terms of the adapted Cartesian coordinates introduced in Section 3.1 . We 
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oint that the notion of local frame discussed here is closely linked
o the covariant filtering procedure discussed in Celora et al. ( 2021 ).

 G O I N G  BAC K  TO  H Y D RO DY NA M I C S  

s briefly hinted at in Section 2 , the magneto-rotational instability
elies on the hydrodynamic stability of axisymmetric modes. The
eneric instability problem is more involved. If we relax the symme-
ry assumptions in the background, we first of all need to consider
he fact that hydrodynamic shear flows tend to be unstable (Drazin &
eid 2004 ). That is, we expect to find instabilities appearing already
t the hydrodynamic level. Clearly, such instabilities would be
ffected by a magnetic field but not caused by it in the first place. This
s an important distiction, seeing as the magneto-rotational instability
s due to the presence of the magnetic field. 

With this observation in mind, let us first consider the fluid
roblem. This is important for two reasons: first, it will allow us to get
 better grasp on the magnetic field impact on the instability. Second,
t will allow us to make contact with the Rayleigh criterion (and
ltimately the magneto-rotational instability). As the fluid problem
s much simpler than the magneto-fluid one, we will study the case
here both shear and vorticity gradients are retained, and also discuss

he impact of shear viscosity – either of microphysical origin or due
o filtering. 6 Shear viscosity is introduced in the usual way (see
andau & Lifshitz 1959 ), and the shear viscosity coefficient η will
e considered constant, consistent with the local analysis. 
Because the calculation is a bit tedious and we want to focus on

he implications for the physics, the deri v ation of the rele v ant fluid
ispersion relation(s) is provided in Appendix C . There, we also
xpress the coefficients of the resulting characteristic polynomial(s)
n terms of scalars built from the background quantities. This allows
s to keep the discussion as general as possible without having to
efer to a specific background configuration. It is, ho we ver, worth
tressing that, in many situations of interest, the rele v ant dynamics
re either sub- or supersonic. Given this, for these problems, it is
orth considering models that filter out modes that are either faster
r slower than the sound waves. This can be done starting from a
ully compressible dispersion relation and taking either of two limits:
ither we assume the speed of sound to be very large, in which case
he model becomes sound-proof (we point to Vasil et al. 2013 , for

ore details), or very small. In the following, we typically work
n the sound-proof limit, noting that the MRI is typically discussed
ithin the so-called Boussinesq approximation (Barletta 2022 ), thus

emoving fast magneto-sonic waves 7 (Balbus & Ha wle y 1991 ). 
Starting from the continuity equation, perturbing it and introducing

he plane-wave expansion we readily obtain 

 t δρ + δρ∇ i v 
i + v i ∇ i δρ + ρ∇ i δv 

i = 0 =⇒ −i ωδρ + i ρk i δv 
i = 0 , (41) 

here ω and k i are defined as in Section 2 . Note that we set v i = 0
s we e v aluate the relation at the centre of the local box, and assume
hat the background expansion rate ∇ i v 

i can be neglected. Similarly,
e write the perturbed Euler equation including a shear-viscous term
NRAS 527, 2437–2451 (2024) 

 Any filtering operation will introduce additional residual terms every time 
t acts upon a non-linear term (M. Lesieur 2005 ; Berselli, Iliescu & Layton 
006 ; McDonough 2014 ; Schmidt 2015 ). These terms are akin to (but not 
uite the same as) dissipative terms (Celora et al. 2021 ), and are meant to 
apture transport to/from unresolved scales. 
 They do, ho we ver, retain perturbations in the fluid pressure in the Euler 
quation as they consider a non-barotropic equation of state and the impact 
f stratification. 

a
m
c
9

i
1

t
t
M
a
r

s 

∂ t δv i + δv j ∇ j v i + 

1 

ρ
∇ i δP − δ

(
η∇ 

j τji 

) = 0 

=⇒ −i ω δv i + i 
c 2 s 

ρ
k i δρ + σij δv 

j + εijk W 

j δv k − δ
(
η∇ 

j τji 

) = 0 , 

(42) 

here τ ji is the rate-of-strain tensor and W 

i = 1/2 εijk ω jk . Working
his out, we have retained gradients in the background flow only,
sed the velocity gradient decomposition (Section 3.1 ), introduced
he adiabatic speed of sound c 2 s = ∂ P / ∂ ρ, and considered the
ravitational potential to be externally sourced (hence neglecting
ts perturbations). 

As a first example, consider a background with negligible vorticity,
et the shear viscosity to zero, and take the sound-proof limit. Then,
onsider the case det ( σ ) = 0, and first of all look for modes such that
ij k j = 0. Recalling that, as discussed in Section 3.1 , a mainly two-
imensional flow with negligible vorticity is characterized by having
 shear matrix with vanishing determinant, i.e. det ( σ ) ∼ O( ε), and
oting that we can choose the orientation of the local axes in such a
ay that the background flow is, say, along the ˆ x and ˆ y directions, we

an al w ays consider the determinant to be zero. This means that there
l w ays exists a wave vector li ving in the eigen space corresponding
o the zero eigenvalue. 8 Taking these steps, we end up with 9 (cf.
quation C6 ) 

 

2 = −1 

2 
Tr ( σ 2 ) =⇒ ω = ±i 

√ 

1 

2 
Tr ( σ 2 ) . (43) 

hese modes are non-propagating, and half of them are unstable
ith a growth rate independent of the wav ev ector. Ne xt, we consider
avenumbers such that 10 σ ij k i k j = 0 (but σ ij k j �= 0), noting that such
odes will al w ays e xist, ev en in the more general case (considered

elow), where det ( σ ) �= 0. It follows that for such modes 

 

2 = −1 

6 
Tr ( σ 2 ) =⇒ ω = ±i 

√ 

1 

6 
Tr ( σ 2 ) . (44) 

hese modes are also non-propagating, and half of them are unstable
ith a (constant) growth rate about a factor of 2 smaller than in the
revious case. As the dispersion relation is quadratic (in the sound-
roof limit), we can explicitly solve it and confirm the expectation
and well known fact) that shearing flows are generically unstable.
iven the role played by Tr 

(
σ 2 

)
here and in what follows, let us

riefly comment on how one can intuitively see why this makes sense.
irst, let us note that the same term enters the growth of entropy in

he generalized second law equation. Second, we also note that the
ame term when e v aluated on the usual background for the magneto-
otational instability would lead to Tr ( σ 2 ) = 4( d / d ln R) 2 . As such
 term enters the usual instability dispersion relation and criterion,
lso stress that the same condition is satisfied by the fastest growing unstable 
odes, which also propagate vertically, although with respect to the ‘global’ 

ylindrical system. 
 Note that the same dispersion relation applies in the opposite limit where c s 
s small. 
0 Using the adapted coordinates of Section 3.1 , it is possible to see that 
hese wav ev ectors hav e non-zero x and y components, the ratio between 
he two being equal to that of the independent entries of the shear matrix. 

ore importantly, it can be seen that the same condition is satisfied by the 
xisymmetric modes usually considered in the deri v ation of the magneto- 
otational instability. 
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t is not surprising that it also plays a pivotal role for the present
iscussion. 
Let us now build on this and discuss how vorticity and shear

iscosity impact on the generic instability of shearing flows. First, 
onsider the case where the background has negligible vorticity 
ut non-vanishing shear viscosity, observing that the corresponding 
odes in a homogeneous background are stable provided η > 0. 

f viscosity is of microphysical origin, then η > 0 follows from
he second law of thermodynamics (see Landau & Lifshitz 1959 ; 
ndersson & Comer 2021 ). If the viscosity is instead due to filtering,
 positi ve v alue of η corresponds to an eddy-type model where
nergy is cascading to smaller/unresolved scales 11 (M. Lesieur 2005 ; 
erselli et al. 2006 ; McDonough 2014 ; Schmidt 2015 ). Going back to

he case with both shear and viscosity (in the sound-proof limit), the
ispersion relation of modes such that σ ij k j = 0 is (cf. equation C8 ) 

 

2 + i ηk 2 ω − 1 

4 

[
η2 ( k 2 ) 2 − 2 Tr ( σ 2 ) 

] = 0 , (45) 

here k = | k | . Assuming η > 0, stability corresponds to 

2 ( k 2 ) 2 − 2 Tr ( σ 2 ) > 0 . (46) 

n essence, comparing this to equation ( 43 ), we see that viscosity
ends to stabilize shear-unstable modes, with a larger impact at 
maller scales. This makes intuitiv e sense. Ne xt, consider modes 
uch that σ ij k i k j = 0, which are solutions of 

 

2 + i ηk 2 ω − 1 

12 

[
3 η2 ( k 2 ) 2 − 2 Tr ( σ 2 ) 

] = 0 . (47) 

s before, these modes – to be compared with their counterparts 
n equation ( 44 ) – are also stable (assuming η > 0), provided the
ast term in equation ( 47 ) is ne gativ e. This will be true when the
avenumber is sufficiently large, and we have verified that the same 

rend is true for generic wav ev ectors. In essence, we learn (as one
ay hav e e xpected) that shear viscosity generically slows the growth

ate of unstable shear modes and stabilizes modes with small enough 
avelengths. 
Turning to the case where the background has non-negligible 

orticity and shear, and taking the sound-proof limit as before, we first
bserve that the fastest growing modes encountered before, namely 
hose characterized by σ ij k j = 0, are not guaranteed to exist anymore,
s the determinant of the shear matrix cannot in general be assumed
o be negligible (see Section 3.1 ). Should these modes exist, though,
heir dispersion relation would be (cf. equation C10 ) 

ω 

2 = −1 

2 
Tr ( σ 2 ) + ( ̂ k · W ) 2 

⇒ ω = ±i 

√ 

1 

2 
Tr ( σ 2 ) − ( ̂ k · W ) 2 , ˆ k = k /k (48) 

nd we see, comparing this to equation ( 43 ), that vorticity tends to
tabilize them. We also observe that – in contrast to shear viscosity –
orticity affects all such modes by reducing their growth rate in a way
hat does not depend on their wavenumber (although the direction of
ropagation is important). Next, and also because the modes we just
ooked at may not exist, we consider modes such that σ ij k i k j = 0,
1 We also note that it is in principle possible to have η < 0 when this is not 
f micro-physical origin but an ef fecti v e viscosity instead. Ne gativ e values 
f η would correspond, in the simplest eddy-viscosity-type models to net 
nergy source at the resolved scales, and hence an inverse cascade from the 
nresolved ones (see, e.g. section VIB in Celora et al. ( 2021 )). 

T
t  

(

w  

w

ith a dispersion relation 

 

2 = −1 

6 
Tr ( σ 2 ) + ( ̂ k · W ) 2 . (49) 

omparing this to equation ( 44 ), we observe again that vorticity
ends to stabilize such modes in a way that does not depend on the
a venumber. We ha ve verified that the same trend is also true for
eneric wav ev ectors. As a final point, it is easy to verify that the case
ith only background vorticity is generally stable (not only in the

ound-proof limit). 
In summary, a sheared background flow is generically unstable 

lready at the hydrodynamic level, which is a well known fact.
o we v er, we hav e considered the impact that shear viscosity and/or
 orticity ha ve on the instability of the possible hydrodynamic
odes. The results show that shear viscosity tends to weaken the

nstability in general, with larger effects for larger wavenumbers. 
eanwhile, vorticity has a stabilizing effect that does not depend 

n the wavenumber. Finally, let us also point to Appendix B , where
e show that the general dispersion relation derived in Appendix C

discussed here) is shown to encompass the classic Rayleigh stability 
riterion. 

 MAGNETO-SHEAR  INSTABILITY  IN  T H E  

O C A L  FRAME  

aving explored the hydrodynamic case, let us perturb the corre- 
ponding MHD equations and study the impact of the magnetic field
n the generic shear instabilities we encountered. We consider a 
arotropic equation of state and retain gradients in the background 
elocity only, as we want to focus on the magneto-shear nature
f the instability (cf. Ha wle y & Balbus 1991 ; Shibata 2015 ). The
ontinuity equation is obviously unchanged, while the perturbed 
uler equation becomes 

∂ t δv i + δv j ∇ j v i + 

1 

ρ
∇ i δP + 

1 

μ0 ρ

[
B j ∇ i δB 

j − B 

j ∇ j δB i 

] = 0 

=⇒ −i ω δv i + i 
c 2 s 

ρ
k i δρ + 

i 

μ0 ρ

[
( B j δB 

j ) k i − ( B 

j k j ) δB i 

]
+ σij δv 

j + εijk W 

j δv k = 0 . (50) 

inally, the perturbed induction equation is 

∂ t δB 

i + B 

i ∇ j δv 
j − B 

j ∇ j δv 
i − δB 

j ∇ j v 
i + δB 

i ∇ j v 
j = 0 

=⇒ −i ωδB 

i + i B 

i 
(
k j δv 

j 
) − i 

(
B 

j k j 
)
δv i 

− σ ij δB j − εijk W k δB j + 

2 

3 
θδB 

i = 0 . (51) 

e will now discuss the linearized system that follows from these
quations, as before focussing on the results and providing more 
etailed steps in Appendix D . 
Let us first recap the mode analysis for the homogeneous case.

n order to derive the fully compressible dispersion relation, we first
e-scale the magnetic field as 

 A 
. = 

B √ 

μ0 ρ
, δv A 

. = 

δB √ 

μ0 ρ
. (52) 

hen, computing the dispersion relation from the linearized equa- 
ions abo v e (ne glecting background shear and vorticity), we obtain
cf. equation D7 ) 

− ω 

[
ω 

2 − ( v A · k ] 2 
) [

ω 

4 − (
v 2 A + c 2 s 

)
k 2 ω 

2 + c 2 s k 
2 ( v A · k ) 2 

] = 0 , 

(53) 

here the roots of the second factor correspond to Alfv ́en waves,
hile those of the quartic polynomial in square brackets describe 
MNRAS 527, 2437–2451 (2024) 
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M

Figure 1. Real and imaginary parts of the solutions of equation ( 55 ), with the frequency and | v A · k | in units of 
√ 

Tr ( σ 2 ) . The solutions plotted correspond to 
the fastest growing modes evolving on top of an MHD sheared background. We see that the magnetic field has a stabilizing effect, as the growth rates are reduced 
with respect to those of the corresponding hydrodynamic modes. The stabilizing effect is all the more pronounced the more the wav ev ector is aligned with the 
magnetic field lines, and is switched off for modes propagating in the directions perpendicular to the magnetic field lines. In particular, modes corresponding to 
sufficiently large values of | v A · k | are turned stable. 
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ast and slow magneto-sonic waves. Before moving on to discuss
he impact of shear and vorticity, let us briefly note what happens to
uch modes when we take the sound-proof limit, in which the speed
f sound is large. From equation ( 53 ), we see that in the first case,
 ast magneto-sonic w aves are filtered out, while the slow ones reduce
o Alfv ́en waves. In the opposite limit, when disturbances are much
aster than the sound waves, the dispersion relation describes Alfv ́en
aves and the low- c s limit of fast magneto-sonic waves. This limit

orresponds to ignoring fluid pressure perturbations while retaining
ariations in the magnetic pressure. 

Let us now consider the impact of a non-negligible background
hear. Again, we focus on the results, with the details of the deri v ation
rovided in Appendix D2 . We start from the fully compressible
ispersion relation and consider the sound-proof limit, leading to the
ispersion relation ( D11 ). As in the hydrodynamic case considered
arlier, we first consider the case det ( σ ) = 0, and look for modes
uch that σ ij k j = 0. It is then easy to see that the general dispersion
elation ( D11 ) simplifies to (ignoring a trivial root) [
ω 

2 −
(

1 

2 
Tr ( σ 2 ) − ( v A · k ) 2 

)]2 

= 0 . (54) 

omparing to the corresponding hydrodynamic modes in equa-
ion ( 43 ), we immediately see that the magnetic field tends to have a
tabilizing effect (provided it is not orthogonal to the wav ev ector, in
hich case it has no effect whatsoever). 
Next, we take (again, as before) det ( σ ) = 0 and consider modes

uch that σ ij k i k j = 0 (but σ ij k j �= 0). The rele v ant dispersion relation
an then be written (making use of equation C5 ) 

 

4 + b 2 ω 

2 + b 4 = 0 , (55) 

ith 

 2 = 

2 

3 
Tr ( σ 2 ) − 2( v A · k ) 2 , (56a) 

nd 

 4 = 

1 

12 
Tr ( σ 2 ) 2 − 2 

3 
Tr ( σ 2 )( v A · k ) 2 + ( v A · k ) 4 . (56b) 

he stabilizing effect of the magnetic field is evident from
ig. 1 , where both the frequency and | v A · k | are plotted in units
f 
√ 

Tr ( σ 2 ) . The key point here is that, while the background
NRAS 527, 2437–2451 (2024) 
hear is required for the instability (the vanishing-shear modes are
table Alfv ́en waves in the sound-proof limit), the magnetic field
s not the main driver. This is evident from the results, as the
maginary part of the unstable modes remains finite in the limit v A 

 0, and the limiting value coincides with the hydrodynamic result
from the previous section). This observation, possibly unexpected
t first sight, deserves a thorough discussion, and we will return
o this issue in Section 7.1 . Before we expand on that aspect,
et us stress that the results make intuitive sense. The magnetic
eld impacts on the instability in that it breaks the hydrodynamic

sotropy and dampens the growth of unstable modes propagating
long magnetic field lines. This also suggests that shear-instability-
riven turbulence is isotropic in the hydrodynamic case but inherently
nisotropic for magnetized flows, consistent with the o v erall picture
see e.g. Beresnyak 2019 ; Schekochihin 2020 ). Before moving
n, it is also worth noting that the background velocity profile
onsidered by Balbus & Ha wle y (Balbus & Ha wle y 1991 , 1998 )
s characterized by having a shear matrix with vanishing determinant
and expansion rate), and also that for axisymmetric modes σ ij k i k j =
, while the fastest growing MRI modes propagate vertically,
ith σ ij k j = 0. 
As a final comment before we make contact with the usual MRI

nd the Rayleigh criterion, we have also considered the case with
on-negligible background vorticity only. The details are discussed
n Appendix D3 , but the crucial result is that magnetized flows are
enerically stable in this case. As this feature is unchanged from
he corresponding fluid case, it is reasonable to expect that the
ame trend we discussed for the purely hydrodynamical case will
lso apply to the magnetized case with both shear and vorticity:
orticity tends to stabilize shear-unstable modes in a manner in-
ependent of the wave number. (Although the orientation of the
av ev ector with respect to the vorticity is expected to have an

mpact.) 

 C O N C L U D I N G  REMARKS:  T H E  

NSTABILITY  IN  PERSPECTIVE  

e set out with the intention of discussing the magneto-rotational
nstability in a general background, relaxing the symmetry con-
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traints associated with the standard analysis and possibly deriving an 
nstability ‘criterion’ rele v ant for (highly) dynamical environments 
nd non-linear simulations. In fact, the usual criterion is often 
sed to compute a quality factor for the instability, and hence 
easure how well the mechanism ‘could be resolved’ in a given 

imulation. Ho we ver, having set up the analysis (and the required
ools) in an arguably sensible way, we arrived at results that were
ot in line with the ‘na ̈ıve’ expectations. Given this, it makes sense
o comment on the implications. Moreo v er, we need to highlight
n important ‘missing ingredient’ in the discussion: the need to 
nvolve some suitable filtering operation to make the discussion 
ensible in the first place. We will deal with each of these ques-
ions in turn, starting with the implications of our results for the

RI. 

.1 The MRI versus the Rayleigh criterion 

 key aspect of the MRI is that adding a weak magnetic field on
op of a hydrodynamically stable shearing flow changes the nature 
f the problem and makes it unstable. In discussing this problem, 
o we ver, it is often ‘forgotten’ that the rele v ant hydrodynamic
tability criterion (Rayleigh 1917 ) guarantees stability only for 
xisymmetric modes (cf. the discussion in Appendix B ). Adding 
 magnetic field renders such modes unstable – technically, the 
on-axisymmetric ones are not (Balbus & Ha wle y 1992 ). Thus,
t is clear that the MRI is rele v ant only in situations, where we
an think of axisymmetric modes as being ‘preferred’ in some 
ense. An immediate example of this is an accretion disc, which 
nvolves a globally axisymmetric background for the perturba- 
ions. This then immediately tells us that applying the results to 
he dynamical context of neutron star mergers is a much more 
ubtle endea v our. In fact, this e x ercise is problematic from the
utset. 
To back up this claim, we show in Appendix A that we can

eproduce the MRI perturbation equations and dispersion relation 
hrough the local frame construction. Ho we ver, for the specific MRI
alculation, there exists a preferred local frame: the co-rotating 
rame. This local frame is set up considering an observer that is
o-rotating with the fluid along some orbit, and the coordinate 
xes rotate in such a way that one of them al w ays points in the
adial direction of a global cylindrical coordinate system. Another 
oordinate axis al w ays points in the azimuthal direction. This local
rame is ‘preferred’ as the axes are (by construction) tied to those of
he most natural global coordinate system. In a sense, we could set
p different local co-rotating observers and construct the global axes 
y stitching together the local ones. In the case of a general and truly
ocal analysis, ho we ver, this additional piece of information is not
vailable. 

Moreo v er, we show in Appendix B how one may set up (for the
ircular and axisymmetric background flow) a local frame that is ‘co- 
oving but not co-rotating’ with the fluid. In doing so, we derived

he corresponding dispersion relation, confirmed that the result is 
onsistent with the general formulae (cf. Appendix C ), and showed 
ow we can reco v er the usual Rayleigh criterion (and hence also the
RI criterion) as long as we perform the conversion to the rele v ant

o-rotating frame frequency. 
These arguments clarify the sense in which the MRI (and similarly

he Rayleigh stability) is a ‘global instability analysed with local 
ools’. The local analysis needs to be ‘augmented’ by pieces of
nformation that cannot be truly local. The upshot of this is that, in a
erger-like scenario (where assumptions regarding the global prop- 

rties of the flow are debatable), we should probably not expect the
tandard instability criteria to provide a faithful indication/diagnostic 
f what is actually going on. The standard argument will apply, but
nly if there is a meaningful sense of (Rayleigh stable) flow on a
cale larger than that at which the plane-wave analysis is carried out.
his would make a discussion much more difficult for any given
umerical simulation, but so be it. 

.2 The missing ingredient: filtering 

hroughout the discussion, we have focussed on the analytical 
evelopment, sweeping issues associated with actual numerical data 
under the carpet’. The key issue here is that we ignored the question
f how one would, in practice, construct the background suitable for
he perturbation analysis given non-linear simulation dynamics. If 
he numerical data shows some degree of axisymmetry, then the split
ould be achieved via an azimuthal averaging (and the usual criteria
ill apply). If this is not the case, ho we ver, we need to apply some

uitable filtering operation to remo v e small-scale fluctuations from 

 gradually varying ‘background’. With such a filtering procedure 
t hand, we could start from real numerical data and perform the
plit into background plus fluctuations. The background data could 
hen be used as numerical input in the dispersion relations we have
iscussed to assess whether or not the instability is active and how
apidly it grows. In a non-linear setting, this split is (obviously)
ot guaranteed to make sense. Suppose that the instability we are
rying to unco v er acts on some characteristic scale L , say. Then, we
eed a background that varies on a larger scale than this; otherwise,
he notion of a shear flow that becomes unstable due to smaller
cale w aves mak es no sense. This argument relies on an explicit
ltering step, separating the instability scale L from the variation of

he background. The construction of such a filter should be possible,
t least in principle, in many situations (see, for example, Celora
t al. ( 2021 )). Of course, the scale separation may not apply in
ctual problems of interest. In addition, the analysis in this work
like any linear stability analysis) relies on the expansion detailed in
ection 2 and the neglect of non-linear fluctuations. The intention 

s to describe the early stages of the development of the instability.
rucially, because the split into background and fluctuations depends 
n the filtering procedure, the requirement that fluctuations are 
ndeed small will further constrain the procedure (e.g. the filter 
idth). 
Further complicating the discussion is the una v oidable implicit 

ltering associated with the finite numerical resolution. We know 

rom the large body of work on turbulence simulations that subgrid
ynamics may play an important role in a robust description of
he dynamics. This typically involves a suitable large-eddy scheme 
o represent the subgrid dynamics. Hence, the analysis involves 
lements of choice (ef fecti vely, the closure relations). Crucially, 
he ef fecti ve field theory that is/should be simulated is not that
f the ideal theory. All current models, both the ones discussed
n Carrasco, Vigan ̀o & Palenzuela ( 2020 ) and Radice ( 2020 ) as
ell as the covariant scheme of Celora et al. ( 2021 ), modify the
rincipal part of the equations of motion. Therefore, the analysis 
f the model ‘that is actually solved’ is fundamentally changed, 
ven when the closure terms are small. In essence, an instability
nalysis of numerical simulation data needs to consider the impact 
f an ef fecti ve viscosity/resisti vity. Gi ven the presently available
ools, we do not have a particularly good handle on this issue. We
re forced to conclude that we also need to make progress on the
evelopment of robust large-eddy models before we can make a 
ensible attempt to demonstrate the presence of the MRI in a highly
ynamical environment. 
MNRAS 527, 2437–2451 (2024) 
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PPENDI X  A :  F O R M U L AT I N G  T H E  M R I  IN  

H E  L O C A L  FRAME  

n this appendix, we derive the MRI using the local frame construc-
ion discussed in the main text. We consider the circular velocity
rofile assumed in Balbus & Ha wle y ( 1991 ), v = v ̂ ϕ ˆ ϕ with v ̂ ϕ =
( R ) R , where we use cylindrical coordinates and an orthonormal

asis on the ‘tangent space’ (as usual). We then distinguish between
ndices with a ‘hat’ corresponding to the orthonormal basis, and
hose without that correspond to the coordinate basis. We then pick
n orbit at some radial distance R 0 and choose an observer that is co-
otating with angular frequency identical to that of the background
ow at R 0 , that is v obs = 0 R ̂  ϕ , where 0 = ( R 0 ). The observer is

hen accelerated with acceleration a = −2 
0 R 

ˆ R , and the velocity of
he fluid with respect to such an observer then is v ′ = (  − 0 ) R ̂  ϕ .

e then set up the axes of the observer’s local frame so that one is
ointing in the radial direction ( ̂ e 1 ), one is pointing in the azimuthal
irection ( ̂ e 2 ) and the third one is aligned with the rotation axis ( ̂ e 3 ).
ntroducing coordinates associated with this observer, we can then
rite the background fluid velocity as 

 

′ = 

d 

d ln R 

∣∣∣∣
R 0 

x ′ ˆ e 2 + O( x ′ 2 ) . (A1) 

e hav e ne glected terms of order O( x ′ 2 ) as we will only need the
elocity and its gradients e v aluated at the origin of the frame, so
hat such terms will not enter the perturbation equations anyway.
omputing the gradients, we then obtain 

 

′ 
i v 

′ 
j = 

⎛ 

⎝ 

0 s 0 0 
0 0 0 
0 0 0 

⎞ 

⎠ , s 0 = 

d 

d ln R 

∣∣∣∣
R 0 

. (A2) 

s the local frame of the observer is rotating with angular velocity
0 ̂  e 3 , we need to include the Coriolis force in the perturbation
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quations. We then write the perturbed Euler and continuity equa- 
ions (dropping the primes for clarity and retaining only gradients in 
he background velocity) as 

 t δρ + ρ∂ i δv 
i = 0 , (A3a) 

∂ t δv i + 2 0 εi3 k δv 
k + δv j ∂ j v i + 

c 2 s 

ρ
∂ i δρ

+ 

1 

μ0 ρ

[
B j ∂ i δB 

j − B 

j ∂ j δB i 

] = 0 , (A3b) 

nd, introducing a WKB plane-wave expansion, 

− i ωδρ + i ρk i δv 
i = 0 , (A4a) 

−i ωδv i + 2 0 εi3 k δv 
k + s 0 δi2 δv 

1 + i 
c 2 s 

ρ
k i δρ

+ 

i 

μ0 ρ

[
B j k i δB 

j − B 

j k j δB i 

] = 0 , (A4b) 

ext, focus on the induction equation. As we have discussed above, 
he induction equation in the co-rotating frame retains the inertial 
orm. We then have 
[
∂ j ( v 

j B 

i − v i B 

j ) 
] = δv j ∂ j B 

i + v j ∂ j δB 

i − B 

j ∂ j δv 
i − δB 

j ∂ j v 
i , (A5) 

here we made use of the no-monopoles constraint, the vanishing 
xpansion of the background flow, and got rid of the divergence of the
erturbed velocity consistently with the Boussinesq approximation. 
ntroducing the WKB plane-wave expansion and e v aluating the 
ackground quantities at the origin of the local frame, we then end
p with 

− i ωδB 

i − i B 

j k j δv 
i − δB 

1 s 0 δ
i2 = 0 . (A6) 

n equations ( A4 ) and ( A6 ), we recognize the terms entering the per-
urbation equations in Balbus & Ha wle y ( 1991 ) (with the exception
f gradients in the background pressure that we are neglecting here). 
e also note that we do not need to formally neglect terms of the

orm B / R as these terms do not appear in the explicit local frame
onstruction. We conclude by noting that, at the special relativistic 
evel, a uniformly rotating observer and the co-rotating one are not the 
ame as the latter is also accelerated (see Gourgoulhon 2013 , ch. 13).
o we ver, this dif ference is irrele v ant at the level of the Newtonian
erturbation equations since i) pseudo-acceleration terms drop out 
f the perturbed Euler equation and ii) non-inertial terms in the 
nduction equation involving the four-acceleration are negligible in 
he Newtonian limit. 

1 Another look at the non-inertial MHD equations 

efore we mo v e on to take a closer look at the Rayleigh criterion,
et us show how the terms involving the local frame rotation drop
ut of the induction equation. Even though we have already argued 
his happens in general (cf. equation 39 ), we here pro v e this for the
pecific case of a co-rotating observer. We do so as this allows us to
ppreciate better why the cancellation comes about. We will use a 
otation that is common in general relativity, that is the notion of spin
oefficients associated with a non-coordinate basis (Carroll 2019 ). 
he covariant derivative of a tensor T 

ˆ a 
ˆ b 

is 

 a T 
ˆ a 
ˆ b = ∂ a T 

ˆ a 
ˆ b + ω 

ˆ a 
a ̂ c T 

ˆ c 
ˆ b − ω 

ˆ c 
a ̂ b 

T ˆ a ˆ c , (A7) 

ith 

 

ˆ b 
a ̂ c = e ˆ c d e 

e 
ˆ b � 

d 
ae − e d ˆ b ∂ a e 

ˆ c 
d , (A8) 
here � 

a 
bc are the connection coefficients associated with the coordi- 

ates chosen while e ˆ a b is the matrix connecting the coordinate basis
o the orthonormal one. We also note here that for a local frame we
dentify u 

a ω ̂

 a 

a ̂ b 
=  ˆ a 

ˆ b 
introduced in equation ( 37 ). We then introduce

Born) coordinates associated with a uniformly rotating observer 
axes suitably oriented so that the angular velocity is 0 ̂  z ) 

 

′ = t, z ′ = z, x ′ = R cos ( 0 t + ϕ ) , y ′ = R sin ( 0 t + ϕ ) , 

(A9) 

here primed coordinates are Cartesian (i.e. non-rotating). Comput- 
ng the spin coefficients (starting from a flat metric), we then obtain 

 

ˆ R 
ϕ ̂ ϕ = −1 , ω 

ˆ ϕ 
ϕ ̂  R 

= + 1 , ω 

ˆ R 
t ̂ ϕ = −0 , ω 

ˆ ϕ 
t ̂  R 

= 0 , (A10) 

howing that, as the coordinates ‘mix space and time’ we need to
ntroduce a covariant derivative in the time-direction as well. We then
rite the non-inertial induction equation as (cf. equation 33 ) 

 t B 

ˆ i + ∇ ˆ j ( v 
ˆ j B 

ˆ i − v 
ˆ i B 

ˆ j ) + ε
ˆ i ̂ j ̂ k B ˆ j 

0 
ˆ k = 0 . (A11) 

t is then easy to verify, by means of equation ( A10 ) that 

 t B 

ˆ i + ε
ˆ i ̂ j ̂ k B ˆ j 

0 
ˆ k = ∂ t B 

ˆ i , (A12) 

hus confirming the result in equation ( 39 ) and the use of the inertial
nduction equations. We stress that the co-rotating frame rotation 
ector is 0 ̂  e 3 , and is the same (by construction) as the vorticity
f the observer. This is why we see the same cancellation as in
quation ( 39 ), where we assumed they are equal. 

PPENDI X  B:  A  CLOSER  L O O K  AT  T H E  

AY L E I G H  STABILITY  C R I T E R I O N  

he key point of the magneto-rotational instability is that the circular
elocity background is stable against axisymmetric hydrodynamic 
erturbations, while adding a (ho we ver weak) magnetic field changes
ompletely the nature of the system and makes it unstable to such
erturbations. We no w re visit the Rayleigh criterion in order to
ighlight the key role played by the co-rotating observer in deriving
he criterion. These important aspects have to be kept in mind when
ooking at the general results derived below (cf. Appendices C and
 ) and discussed in Sections 6 , 5 . 
Starting from equation ( A4 ), and ignoring terms associated with

he magnetic field, we write the coefficient matrix (ordering the 
erturbed quantities as { δρ/ ρ, δv 1 , δv 2 , δv 3 } ) 
 

 

 

 

−ω k 1 k 2 k 3 
c 2 s k 1 −ω 2i 0 0 
c 2 s k 2 −i κ

2 

2 0 
−ω 0 

c 2 s k 3 0 0 −ω 

⎞ 

⎟ ⎟ ⎠ 

, (B1) 

here 

κ2 

2 0 
= 2 0 + s 0 = 2 0 + 

d 

d ln R 

∣∣∣∣
R 0 

, (B2) 

nd the dispersion relation reads 

 

4 − (
c 2 s k 

2 − κ2 
)
ω 

2 + i c 2 s s 0 k 1 k 2 ω + c 2 s κ
2 ( k 3 ) 

2 = 0 . (B3) 

aking the sound-proof limit we then end up with 

 

2 ω 

2 − i s 0 k 1 k 2 ω − κ2 k 2 3 = 0 . (B4) 

rom this, we easily see that, if we assume axisymmetric perturba-
ions, namely k 2 = 0, we obtain the usual Rayleigh stability criterion,
hat is κ2 > 0 (Rayleigh 1917 ). We stress that, as is well known, the
riterion does not guarantee that non-axisymmetric modes are stable. 
MNRAS 527, 2437–2451 (2024) 



2448 T. Celora et al. 

M

I  

u  

o

s

W  

i  

s  

b
 

o  

t  

a  

a  

w  

o  

o  

b

v

w  

y  

o  

v

v

s  

a

v

w  

a  

o  

i  

s  

g

∂

a  

s  

a⎛
⎜⎜⎝
W

a  

e  

w  

w  

w  

c  

t  

l  

A

∇
T  

t

w  

w  

w  

t  

e  

i  

o  

n  

fl  

c  

a  

m  

M

A
R

I  

S  

a  

c  

t

σ

W  

o  

t  

p  

t  

b  

d  

w  

d  

t  

w  

s  

a  

s  

t  

s  

e  

c  

o
 

t⎛
⎜⎜⎜⎜⎝

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/527/2/2437/7259169 by H
artley Library user on 08 January 2024
n fact, rewriting the dispersion relation in terms of � = −i ω and
sing the Routh–Hurwitz criterion (Korn & Korn 2013 ) we find that,
n top of the Rayleigh criterion we would also need 

 0 k 1 k 2 ≤ 0 . (B5) 

e also note that the story changes if we take the opposite limit,
n which case the Rayleigh criterion is sufficient to guarantee the
tability of non-axisymmetric perturbations as well. This would also
e the case if we had assumed incompressibility from the start. 
Having discussed the usual Rayleigh criterion using the co-rotating

bserver, we now re-work it using an observer that is orbiting with
he fluid at a given orbital distance R 0 but whose (local frame) axes
re non-rotating. We do this for two reasons. First, it will allow for
 direct comparison with the general results in Appendix C . Second,
e have argued that choosing to work with a rotating or non-rotating
bserver is, in general, just a matter of taste. We then pick up an
rbit R 0 as before, and choose the observer to be co-orbiting with the
ackground flow at the specific orbit 

 obs = −0 y 0 ̂  x + 0 x 0 ̂  y , (B6) 

here we used global Cartesian coordinates and x 0 ( t ) = R 0 cos( 0 t ),
 0 ( t ) = R 0 sin( 0 t ) describe the worldline of the observer (the origin
f the axes is suitably chosen so that z 0 ( t ) = 0). The background fluid
elocity is then 

 = −x ̂  y + y ̂  x ,  = ( 
√ 

x 2 + y 2 ) , (B7) 

o that, considering the relativ e v elocity v ′ = v − v obs and expanding
round ( x 0 , y 0 ) we obtain 

 

′ = −
[
s 0 

x 0 y 0 

x 2 0 + y 2 0 

x ′ + 

(
0 + s 0 

y 2 0 

x 2 0 + y 2 0 

)
y ′ 
]

ˆ x 

+ 

[(
0 + s 0 

x 2 0 

x 2 0 + y 2 0 

)
x ′ + s 0 

x 0 y 0 

x 2 0 + y 2 0 

x ′ 
]

ˆ y , (B8) 

here x ′ = x − x 0 , y 
′ = y − y 0 . We can now choose a local region

round a specific point ( x 0 , y 0 , z 0 ) on the orbit and choose to re-
rient the axes by a constant rotation so that the observer velocity
s moving only in the y -direction. We then set up the local frame in
uch a way that the local axes are non-rotating and oriented like the
lobal cartesian ones. We can therefore write the gradients as 

 

′ 
i v 

′ 
j = 

⎛ 

⎝ 

0 0 + s 0 0 
−0 0 0 

0 0 0 

⎞ 

⎠ , (B9) 

nd the coefficient matrix of the linearized Euler plus continuity
ystem is [cf. equation (A4 ) and ignore both magnetic field terms
nd the Coriolis force as the axes are non-rotating] 
 

 

 

 

−ω k 1 k 2 k 3 
c 2 s k 1 −ω i 0 0 
c 2 s k 2 −i( 0 + s 0 ) −ω 0 
c 2 s k 3 0 0 −ω 

⎞ 

⎟ ⎟ ⎠ 

. (B10) 

e can then compute the dispersion relation to find 

ω 

4 − [
c 2 s k 

2 + 0 ( 0 + s 0 ) 
]
ω 

2 + i c 2 s k 1 k 2 s 0 ω 

+ c 2 s 0 ( 0 + s 0 )( k 3 ) 
2 = 0 , (B11) 

nd observe this is consistent with the general dispersion relation in
quation ( C10 ) when restricted to the shear and vorticity associated
ith equation ( B9 ). Ho we ver, this is not quite the dispersion relation
e obtained abo v e. The reason for this is that the two local observers
e have considered measure different frequencies, as the axes of the

o-rotating observer rotate with angular velocity 0 ̂  e 3 with respect to
NRAS 527, 2437–2451 (2024) 
he other. To show why this is the resolution to the apparent conflict,
et us consider once again the Born coordinates (cf. equations A9 ,
10 ). Given any vector a ˆ i , we have 

 t a 
ˆ i = ∂ t ̂  a i + 0 ε

ˆ i ̂ 3 ̂ k a ˆ k . (B12) 

his relation, when we introduce a plane-wav e WKB e xpansion
ranslates to 

− i ω rot δa 
ˆ i = −i ω nr δa 

ˆ i + 0 ε
ˆ i ̂ 3 ̂ k δa ˆ k , (B13) 

here ω rot is the frequency measured by the co-rotating observer,
hile ω nr is the frequency measured by an observer that has the same
orldline but uses non-rotating axes. Specifying equation ( B13 ) to

he perturbed velocity (noting that it would not apply to the continuity
quation as the density is a scalar), and noting that the frequency
n equation ( B10 ) corresponds to ω nr , we can reconcile the results
btained from equation ( B10 ) with those from equation ( B1 ). We also
ote here that the same logic applies when we consider magnetized
ows. That is, if we work with the inertial induction equation and
ompute the background velocity gradients as in equation ( B9 ), we
lso need to take into account the relation in equation ( B13 ) for
agnetic field disturbances to get back to equation ( A6 ) and the
RI dispersion relation. 

PPENDI X  C :  H Y D RO DY NA M I C  DI SPERS IO N  

E L AT I O N S  

n this appendix, we provide more details of the results discussed in
ection 5 of the main text. In order to derive the dispersion relation
nd study the effects of a sheared background, it is convenient to
hoose a basis that is adapted to it. Because the shear is a symmetric
race-free matrix, there exists a basis such that 

ij = diag ( σ1 , σ2 , −( σ1 + σ2 )) . (C1) 

e will make use of this basis to write down the coefficient matrix
f the linearized system. Before doing so, ho we ver, it is reasonable
o wonder whether this change of basis has any impact on the
erturbation equations. We are, in fact always free to choose a basis in
he tangent space that is not associated with the coordinates chosen,
ut this (in general) introduces additional terms in the covariant
eri v ati ve. Let us spell out why this is not the case here. Working
ith a non-coordinate basis, we need to account for spin-coefficients,
efined as in equation ( A8 ), when a deri v ati ve acts on vectors and
ensors. The first term in equation ( A8 ) then vanishes as we are here
orking with a non-rotating Cartesian frame (so that the Christoffel

ymbols vanish), while the second term is in general non-vanishing,
nd accounts for the fact that the change of basis (in the tangent
pace) needed to diagonalize the shear matrix may change from point
o point. In the context of this analysis, ho we ver, we are looking at
cales smaller than those o v er which background quantities vary. In
ssence, this second term also vanishes as the shear matrix is (by
onstruction) constant o v er the local region of fluid we are zooming
n. 
Working in the shear adapted basis (cf. equation (C1) ), we write

he coefficient matrix of the linearized system as (cf. equation (42) ) 
 

 

 

 

 

 

−ω ρk 1 ρk 2 ρk 3 
c 2 s 
ρ
k 1 −ω − i σ1 − i ηL 1 i W 

3 − i 
6 ηk 1 k 2 −i W 

2 − i 
6 ηk 1 k 3 

c 2 s 
ρ
k 2 −i W 

3 − i 
6 ηk 2 k 1 −ω − i σ2 − i ηL 2 i W 

1 − i 
6 ηk 2 k 3 

c 2 s 
ρ
k 3 i W 

2 − i 
6 ηk 3 k 1 −i W 

1 − i 
6 ηk 3 k 2 −ω + i σ3 − i ηL 3 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎠ 

, 

(C2) 
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here σ 3 = σ 1 + σ 2 , L 1 = 

2 
3 k 

2 
1 + 

1 
2 k 

2 
2 + 

1 
2 k 

2 
3 , and L 2 and L 3 are

imilarly defined. 
The dispersion relation is computed taking the determinant of 

his matrix and equating it to zero. In order to keep the discussion
s general as possible (i.e. without having to refer to a specific
ackground configuration), we will decompose the coefficients of the 
haracteristic polynomial in terms of scalars built from background 
uantities. In the simplest cases, this can be done ‘by eye’, but
he procedure can easily become quite messy. The logic is none 
he less simple: We group the different terms in each coefficient 
ccording to the power of the various background quantities, for 
xample, we group all the terms quadratic in the shear and wav ev ector
omponents. We then build all the possible scalars that are quadratic 
n the shear and wav ev ector, and look for the correct linear combi-
ation of them. This logic can be easily implemented in a computer
lgebra program like MA THEMA TICA . 12 We now discuss the dispersion
elations obtained by retaining only shear terms, both shear and 
iscous terms, and lastly, shear and vorticity terms. 
Before doing so, we first observe that the coefficients will involve 

calars constructed from the shear matrix only. As with any 3 × 3
atrix, the shear matrix σ has three invariants 

 1 = Tr ( σ ) , I 2 = 

1 

2 

[
Tr ( σ 2 ) − ( Tr ( σ ) ) 2 

]
, I 3 = det ( σ ) , (C3) 

elated via the Cayley–Hamilton theorem as 

3 − I 1 σ
2 + I 2 σ − I 3 I = 0 , (C4) 

here I is the 3 × 3 identity matrix. Because the shear matrix is
race-free, we will write the coefficients in terms of 1 / 2 Tr 

(
σ 2 

)
and

et ( σ ). It is also useful to note that there will al w ays exist modes such
hat σ ij k i k j = 0. In the convenient shear basis, these are characterized
y k 1 = k 2 = k 3 if the determinant is not vanishing (i.e. s 1 �= s 2 ), and
 

1 = k 2 when it does. It follows that for such modes 

− 1 

2 
Tr ( σ 2 ) + σ 2 

ij ̂
 k i ˆ k j = −1 

6 
Tr ( σ 2 ) , ˆ k = k / | k | = k /k. (C5) 

The resulting dispersion relation for the case with negligible 
orticity and viscosity is then 

 

4 + a 2 ω 

2 + a 1 ω + a 0 = 0 (C6) 

ith 

 2 = −c 2 s k 
2 + 

1 

2 
Tr ( σ 2 ) , (C7a) 

 1 = i 
[
c 2 s σij k 

i k j − det ( σ ) 
]
, (C7b) 

 0 = c 2 s 

[
σ 2 

ij k 
i k j − 1 

2 
Tr ( σ 2 ) k 2 

]
, (C7c) 

hose solutions are discussed in the main text (cf. Section 5 ). 
Turning to the case with non-vanishing shear viscosity, the 

ispersion relation is then 

 

4 + a 3 ω 

3 + a 2 ω 

2 + a 1 ω + a 0 = 0 , (C8) 

ith 

 3 = 

5 

3 
i ηk 2 , (C9a) 

 2 = −c 2 s k 
2 + 

1 

2 
Tr ( σ 2 ) − 1 

12 
η
[
11 η( k 2 ) 2 − 2 σij k 

i k j 
]
, (C9b) 

 0 = c 2 s 

[
σ 2 

ij k 
i k j − 1 

2 
Tr ( σ 2 ) k 2 − 1 

2 
ηk 2 σij k 

i k j + 

1 

4 
η2 ( k 2 ) 3 

]
, (C9c) 
2 See https:// doi.org/ 10.5281/ zenodo.7612469 for more details. 

1

s

nd 

 1 = i c 2 s 

[
σij k 

i k j − η( k 2 ) 2 
]

+ i 
{ 

− 1 

6 

[
σ 2 

ij k 
i k j − 2 Tr ( σ 2 ) k 2 

]
+ 

1 

12 
η2 k 2 

(
σij k 

i k j 
) − 1 

6 
η3 ( k 2 ) 3 − det ( σ ) 

} 

. (C9d) 

e can sanity check this dispersion relation by considering the 
omogeneous background limit. It is then immediate to see that, 
n the sound-proof limit, this would be stable provided η > 0. It
urns out that this condition guarantees stability even outside of the
ound-proof limit, as can be verified by means of the Routh–Hurwitz
riterion (Korn & Korn 2013 ). As discussed in the main text, this is
he case not only when shear viscosity is of micro-physical origin
due to the second law of thermodynamics) but also when this is an
f fecti ve viscosity due to filtering, provided this models a net energy
ransfer to smaller unresolved scales, which is intuitive. 

Finally, the dispersion relation in the case where the background 
as non-negligible vorticity and shear is 

 

4 + a 2 ω 

2 + a 1 ω + a 0 = 0 , (C10) 

ith 

 2 = −c 2 s k 
2 − W 

2 + 

1 

2 
Tr ( σ 2 ) , (C11a) 

 1 = i 
[
c 2 s σij k 

i k j − det ( σ ) − σij W 

i W 

j 
]
, (C11b) 

 0 = c 2 s 

[
σ 2 

ij k 
i k j − 1 

2 
Tr ( σ 2 ) k 2 + ( k · W ) 2 

]
. (C11c) 

PPENDI X  D :  M H D  DI SPERSI ON  R E L AT I O N S  

n this appendix, we provide more details on the results discussed
n Section 6 of the main text. In order to keep the presentation tidy,
e will discuss separately the homogeneous background case (cf. 
ppendix D1 ), the sheared case (cf. Appendix D2 ), and the case
ith non-negligible background vorticity (cf. Appendix D3 ). 

1 Homogeneous background 

n order to derive the fully compressible dispersion relation for 
he homogeneous case, we first re-scale the magnetic field as in
quation ( 52 ), and introduce a convenient basis { ̂  v A , ˆ q , ̂  s } , where

ˆ  A = v A / | v A | while ˆ q , ̂  s complete it to an orthonormal basis. For
nstance, assuming v A is not aligned with k we can construct it as 

 = k − ( k · ˆ v A ) ̂  v A , ˆ q = 

q 
| q | , ˆ s = ˆ v A × ˆ q , (D1) 

o that 13 

k = k v A ˆ v A + k q ˆ q . (D2) 

he coefficient matrix of the linearized system can then be written as
cf. equations ( 41 ), ( 50 ), and ( 51 ), and ignore background vorticity
nd shear) 

 = 

(
A C 

C 

� D 

)
(D3) 
MNRAS 527, 2437–2451 (2024) 

3 If the wav ev ector is along the background magnetic field we just have to 
et k q = 0 in the following. 

https://doi.org/10.5281/zenodo.7612469
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14 See https:// doi.org/ 10.5281/ zenodo.7612479 for the details of the scalar 
decomposition. 
15 Note that the definition of ˆ q changes when the background magnetic field 
is aligned with the vorticity, even though in what follows we would simply 
have to set v q = 0. 
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 = 

⎛ 

⎜ ⎜ ⎜ ⎝ 

−ω ρk v A ρk q 0 
c 2 s 
ρ
k v A −ω 0 0 
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s D is clearly invertible, we can reduce M into factors via the Schur
omplement (
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)
(D5) 
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)
, 

nd then compute the determinant as 

et ( M ) = det ( D ) det ( A − C D 

−1 C 

� ) . (D6) 

he resulting dispersion relation is 
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4 − (
v 2 A + c 2 s 

)
k 2 ω 

2 + c 2 s k 
2 ( v A · k ) 2 
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(D7) 

2 Sheared background 

et us now consider the case where the background vorticity is
egligible while shear terms are not. Re-scaling the magnetic field
s in equation ( 52 ) and decomposing equations ( 41 ), ( 50 ), and ( 51 )
ignoring vorticity terms) as well as δv and δv A in the shear-
dapted basis, the coefficient matrix of the linearized system of
quations reads 

 = 

(
A C 

C 

� D 

)
, (D8) 

here 
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−ω ρk 1 ρk 2 ρk 3 
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ρ
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ρ
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ρ
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, (D9a) 

 = 
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−ω + i σ1 0 0 
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⎞ 

⎠ , (D9b) 
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I 1 v 2 A k 1 v 
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A k 1 

v 1 A k 2 I 2 v 3 A k 2 
v 1 A k 3 v 

2 
A k 3 I 3 

⎞ 

⎟ ⎟ ⎠ 

, (D9c) 

hile 

 1 = v 1 A k 1 − ( v A · k ) , (D10) 

nd I 2 , I 3 are defined similarly. 
In a similar fashion to that for the hydrodynamic case considered

bo v e, we will decompose the coefficients of the characteristic
olynomial in terms of scalars built from background quantities.
NRAS 527, 2437–2451 (2024) 
s we might hav e e xpected, the resulting dispersion relation is a
omplicated sev enth-de gree polynomial 14 (and we sanity-checked
hat it reduces to the homogeneous case when we set to vanish the
hear terms). In order to learn something useful out of it, we then
onsider the sound-proof limit and retain only terms proportional to
he speed of sound. We end up with the following dispersion relation: 

 5 ω 

5 + a 4 ω 

4 + a 3 ω 

3 + a 2 ω 

2 + a 1 ω + a 0 = 0 , (D11) 
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 2 = i 

{
− 1 

2 
( σij k 

i k j ) Tr ( σ 2 ) + det ( σ ) k 2 + 2( v A · k ) 2 ( σij k 
i k j ) 

}
, 

(D12c) 

 3 = 

[
Tr ( σ 2 ) k 2 − 2( v A · k ) 2 k 2 − σ 2 

ij k 
i k j 

]
, (D12d) 

 4 = −i 
(
σij k 

i k j 
)
, (D12e) 

 5 = k 2 . (D12f) 

3 Background with vorticity 

e now turn to the case with non-negligible background vortic-
ty (but negligible shear). We re-scale the magnetic field as in
quation ( 52 ) and introduce a convenient basis { ˆ W , ˆ q , ˆ s } , where
ˆ 
 = W / | W | while ˆ q , ̂  s complete it to an orthonormal basis. For

nstance, assuming v A is not aligned with W we can construct it as 

q = v A − ( v A · ˆ W ) ˆ W , ˆ q = 

q 
| q | , ˆ s = 

ˆ W × ˆ q , (D13) 

nd the magnetic field 15 

 A = v W 

A 
ˆ W + v 

q 

A ̂  q . (D14) 

The coefficient matrix of the linearized system then is (cf.
quations ( 41 ), ( 50 ), and ( 51 ) and ignore shear terms) 

 = 

(
A C 
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� D 

)
, (D15) 
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, (D16a) 
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−ω ρk W ρk q ρk s 

c 2 s 
ρ
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ρ
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ρ
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nd 

 = 

⎛ 

⎝ 

−ω 0 0 
0 −ω −i W 

0 + i W −ω 

⎞ 

⎠ . (D16c) 

As for the sheared case, we compute the dispersion relation by 
aking the determinant of this matrix and decompose each coefficient 
s a sum of scalars. 16 Having sanity-checked the result by contrasting 
t against the homogeneous background dispersion relation, we take 
he sound proof limit. The sound-proof dispersion relation can then 
e written as 

 

4 + b 2 ω 

2 + b 4 = 0 , (D17) 

6 More details on the decomposition can be found at https:// doi.org/ 10.528
/zenodo.7612479 . 
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 2 = −[
W 

2 + ( ̂ k · W ) 2 + 2( v A · k ) 2 
]
, (D18a) 

 4 = 

[
( v A · k ) 2 + W 

2 
][

( ̂ k · W ) 2 + ( v A · k ) 2 
]
. (D18b) 

s this is a particularly simple quartic polynomial, we can study the
tability of its roots analytically. Considering equation ( D17 ) as an
quation for ω 

2 and computing the discriminant we obtain 

 W 

2 − ( ̂ k · W ) 2 ] 2 ≥ 0 , (D19) 

o that ω 

2 -roots are real. As complex roots of a real algebraic
olynomials occur in pairs of comple x conjugates, comple x ω 

2 -roots
ould correspond to an instability. In order to have stable roots

hough, we also need other conditions to be met. We, in fact, need b 2 
 0 and b 4 > 0 to make sure that the ω 

2 -roots are real and positive, so
hat ω-roots are real as well. As this is evidently the case, we conclude
hat background vorticity, just like in the purely hydrodynamic case, 
oes not lead to an instability. 
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