PHYSICAL REVIEW D 108, 124062 (2023)

Secondary accretion of dark matter in intermediate mass-ratio inspirals:
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When particle dark matter is bound gravitationally around a massive black hole in sufficiently high
densities, the dark matter will affect the rate of inspiral of a secondary compact object that forms a binary
with the massive black hole. In this paper, we revisit previous estimates of the impact of dark-matter
accretion by black-hole secondaries on the emitted gravitational waves. We identify a region of parameter
space of binaries for which estimates of the accretion were too large (specifically, because the dark-matter
distribution was assumed to be unchanging throughout the process, and the secondary black hole accreted
more mass in dark matter than that enclosed within the orbit of the secondary). To restore consistency in
these scenarios, we propose and implement a method to remove dark-matter particles from the distribution
function when they are accreted by the secondary. This new feedback procedure then satisfies mass
conservation, and when evolved with physically reasonable initial data, the mass accreted by the secondary
no longer exceeds the mass enclosed within its orbital radius. Comparing the simulations with accretion
feedback to those without this feedback, including feedback leads to a smaller gravitational-wave
dephasing from binaries in which only the effects of dynamical friction are being modeled. Nevertheless,
the dephasing can be hundreds to almost a thousand gravitational-wave cycles, an amount that should allow

the effects of accretion to be inferred from gravitational-wave measurements of these systems.
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I. INTRODUCTION

Astronomical measurements on galactic and larger scales
have produced compelling evidence for the existence of
dark matter (see, e.g., [1] for a review). The underlying
particle or (quantum) field that gives rise to dark matter has
not yet been identified despite a large experimental and
observational research program with this aim. This has led
some to advocate in favor of searching for a wide range of
possible dark matter models using a broad set of techniques
to increase the chances of gaining new insight into the
nature of the dark matter that pervades throughout the
Universe [2]. Following the discovery of gravitational
waves by the LIGO-Virgo-KAGRA Collaboration [3]
(and more recently by pulsar timing arrays [4-6]), the
idea of using gravitational waves to search for the presence
of dark matter in and around compact objects became more
promising [7]. While the review [7] focuses on a broad
range of dark-matter candidates (spanning 90 orders of
magnitude in mass) and a variety of corresponding
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gravitational-wave signatures, this work will focus on
cold, particle dark matter and the modifications to the
gravitational-wave phase induced by the dark matter, which
the Laser Interferometer Space Antenna (LISA) observa-
tory [8] could measure during its operation.

A. Background and context

The possibility of using LISA to probe the dark-matter
environment of a stellar-mass compact object inspiraling
into an intermediate-mass black hole (IMBH)—called an
intermediate-mass-ratio inspiral (IMRI)—was explored
previously by Eda and collaborators [9,10] (and sub-
sequently by others, e.g., [11-20]). For dark matter to
have a significant effect on the orbital dynamics, Eda ef al.
found that the dark matter needed to form an overdensity,'
which they called a dark-matter “minispike” (or “spike” for
short). Working within the context of Newtonian physics,
Eda et al. identified two physical effects, in fact, that could
cause the dark-matter spike to change the orbital dynamics
of the IMRI strongly enough that it would have an

"The fact an overdensity was required was also noted in [21] in
the context of environmental effects in EMRISs.
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observable effect on the emitted gravitational waves. The
first [9] was a (quasi)conservative effect: the dark matter
enclosed within the orbit of the secondary changes the
Keplerian frequency at a given orbital radius from that of
a black hole in vacuum. While this would be challenging, at
a fixed orbital radius, to distinguish from an IMRI with a
slightly more massive primary, the enclosed mass changes
as the system inspirals. This (slow) time dependence of the
enclosed mass leads to a small, but distinctive, change in
the evolution of the frequency from what would be
expected for an IMBH without surrounding dark matter.
This, in turn, produces a dephasing of the inspiral with
respect to an inspiral in vacuum, which could be measured
by LISA [9]. However, it was later noted by Eda ef al.
in [10] (see also [22] in a different context), that this
enclosed-mass effect is, in fact, smaller than another effect
that arises from the presence of dark matter known as
dynamical friction [23]. Dynamical friction is produced by
the gravitational scattering of dark-matter particles with the
secondary, which induces an overdensity (a wake) that
gives rise to an effective drag force (which then increases
the rate of inspiral of the IMRI system). Under the
assumption that the distribution of dark matter remained
unchanged throughout the IMRI’s inspiral, some features of
the density of dark matter could be inferred precisely from a
gravitational-wave measurement of the system by the LISA
detector [10].

The assumption that the dark-matter distribution
remained static throughout the inspiral was shown in [14]
to be in tension with energy conservation for a nontrivial
portion of the parameter space of IMRIs and dark-matter
spikes studied in [10].2 As a result, it was demonstrated
in [14] that it is necessary to jointly evolve the IMRI’s
orbital dynamics with the distribution of dark matter to
determine consistently the effect of the dark matter on the
emitted gravitational waves. We will refer to this evolution
of the dark-matter distribution in response to dynamical
friction as “dynamical-friction (DF) feedback” in the rest of
this paper. A procedure was developed in [14] to evolve
the dark matter on timescales that are long compared to the
IMRPI’s orbital timescale, under the assumption that the
dark-matter halo remained spherically symmetric by rap-
idly equilibrating on the orbital timescale. The results of
jointly evolving the IMRI and the dark matter were
pronounced; For example, for certain representative

*More specifically, the gravitational scattering that gives rise to
dynamical friction is a conservative process for the combined
system of the binary and dark matter. This implies that the
decrease in orbital energy of the secondary, as it inspirals because
of dynamical friction, must be balanced by an increase in the
energy of the dark-matter particles. Reference [14] showed that
the energy increase was sufficiently large to unbind the entire
dark-matter spike with significant kinetic energy for a large
region of the IMRI (specifically, mass-ratio) and dark-matter
(specifically, density normalization, and radial power law)
parameter space.

IMRIs and dark-matter spikes considered in [10], the
number of gravitational-wave cycles of dephasing (from
a similar IMRI in vacuum) for a dynamically evolved dark-
matter distribution could be as much as 100 times smaller
than the equivalent dephasing for a distribution that
remained static [14]. Nevertheless, it was shown in [15]
that despite the much smaller dephasing, the presence of
dark matter around the IMRI was detectable with LISA
(and waveform models with dark matter had significantly
higher Bayes factors over the best-fit waveform models
without dark matter); in addition, the properties of the
initial dark-matter distribution could still be inferred from
the gravitational waves even for events near the threshold of
detection.

Several years after the work of Eda et al, Yue and
Han [11] noted that if the secondary were a black hole,
there would be one additional (relativistic) effect that the
dark matter would have on the rate of inspiral of the binary:
the black hole would accrete dark matter as the dark-matter
particles fell through the event horizon, and the secondary
black hole would increase in mass.” To avoid confusion
with accretion of dark matter onto the primary (which we
will not model in this paper), we will sometimes refer to
this accretion onto the secondary during the inspiral as
secondary accretion (SA). Reference [11] considered the
dark-matter distribution to be static as the secondary
inspirals and found that it induced a dephasing with respect
to vacuum systems that was a few to a few tens of a percent
of the amount of the dephasing induced by dynamical
friction.” There is then an interesting numerical coincidence
that the dephasing induced by dynamical friction with
feedback onto the distribution function turns out to be
comparable to the dephasing induced by accretion for a
static halo for some binaries. It is then natural to wonder if
the effects of accretion would be comparable if they were
computed in a dark-matter distribution with dynamical-
friction feedback rather than a static distribution.

We give a brief argument here why we expect the
accretion in a halo with DF feedback not to change the
mass accreted significantly. First, it is important to note that

3References [9,10,14,15] assumed that the secondary was a
neutron star (and that the cross section between dark matter and
nuclear matter in neutron stars was sufficiently small) so that
dark-matter accretion by the neutron star would be negligible.

As will be discussed in more detail in Sec. II, given the form
of the accretion term in the IMRI’s equations of motion, it will
produce an effect on the IMRI’s dynamics at one post-Newtonian
(PN) order (an additional power of v?/c?) higher than the term
responsible for dynamical friction. Given that the PN parameter is
of order 1072 to 10! at the initial frequencies for the systems
considered, the size of this effect is then consistent with the order-
of-magnitude expectations from a simple counting of PN orders.
While the counting of PN powers is useful for understanding the
relative importance of different terms in the equations of motion,
the phenomenon of accretion of dark matter by the secondary is a
genuinely relativistic effect that arises because the secondary has
a horizon; it is not a weak-field phenomenon.
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the decreased dephasing from dynamical friction, when
including DF feedback, occurred because the local density
of dark-matter particles moving more slowly than the
orbital speed of the secondary (those particles that con-
tribute to dynamical friction) was significantly decreased
(often by one or more orders of magnitude) [14,15]. These
more slowly moving particles compose roughly half the
total density in these systems, for static dark-matter dis-
tributions governed by a single power-law in radius [141°
While the accretion cross section does have a dependence
on velocity, the secondary black hole can accrete particles
with any speeds that come close enough to the secondary’s
event horizon. As a result, this suggests that the calculations
of secondary accretion in [11] for static halos could be
within a factor of a few of the capture that occurs in the
dynamical halos of [14].

This, however, will pose a problem for computing
reasonable estimates of dark-matter accretion onto the
secondary during the inspiral for the following reason:
Because dark-matter accretion occurs most efficiently for
dark-matter particles that are closer to the secondary’s event
horizon, then as the secondary inspirals, the total amount of
dark matter accreted should not be much larger than the
total amount of dark matter enclosed within the initial orbit.
However, as we will show in this paper, the model of dark-
matter accretion used in [11] predicts for static dark-matter
spikes and for less-extreme IMRI mass ratios that the mass
accreted by the secondary can exceed the mass enclosed
within the orbit. From the arguments above, incorporating
DF feedback will reduce the amount of accretion by only
a factor of a few. Thus, it will be necessary develop a
procedure that accounts for the loss of dark-matter particles
from the distribution function as they are accreted by the
secondary to ensure that mass is conserved and to obtain
accurate estimates of the amount of gravitational-wave
dephasing induced by accretion. We introduce such a
procedure in this paper, and it will follow in the same
spirit of the DF feedback of [14] (in particular, in terms of
its assumption of spherical symmetry and fast equilibration
over the orbital timescale). We will call this new feedback
“secondary-accretion (SA) feedback” to distinguish it from
the dynamical-friction feedback of [14].

Secondary accretion and dynamical friction also will
ultimately have different effects on the dark-matter dis-
tribution after the secondary has inspiraled through the
dark matter distribution and merged with the primary. In
Refs. [14,15], while dynamical friction did unbind a small
fraction of the dark matter particles, it primarily redistrib-
uted them to higher-energy bound orbits. Thus, while there
could be a large transient redistribution of the dark-matter

>With the more complicated functional form of the distribution
function with feedback, the total local density can deplete by
more than a factor of two; we will return to this point later in this

paper.

particles during the inspiral, the effect on the distribution of
dark matter afterwards was not particularly large. However,
because secondary accretion simply removes particles from
the distribution function, it has the potential to produce a
larger, lasting change in the dark matter density during and
after the inspiral. This could impact the evolution of other
IMRI systems that might form subsequently.

B. Summary of results and structure of this paper

The structure of this paper, and the main results in each
of the paper’s parts, will now be summarized below.
Section II is primarily a review, in which we introduce
some of the notation and approximations that we use
throughout the paper in Sec. IIA. We then give the
evolution equations for the IMRI’s orbital dynamics and
the equation that determines the mass accreted onto
the secondary in Sec. II B. Next, Sec. III gives analytical
expressions for the accreted mass normalized by the
enclosed mass for binaries that evolve in a static halo
under the influence of either gravitational radiation reaction
or both radiation reaction and dynamical friction. We show
that, in both cases, the amount of mass accreted can exceed
the mass enclosed; this gives the first indication that the
dark-matter distribution should be evolved self-consistently
with the accretion onto the secondary.

The next part of the paper, Sec. IV, focuses on reviewing
the DF feedback procedure of [14] (in Sec. IV A), and then
computing new results with and without accretion onto the
secondary. The results without accretion (in Sec. IV B)
evolve the same equations of motion for the dark matter and
IMRI as in [14], but they simulate larger secondary masses
that had not been studied in works with DF feedback
(though they had been studied for static dark-matter
distributions in [11]). While the results are qualitatively
similar to those with a lighter secondary at a fixed mass
ratio, they are quantitatively different, and they also cover
a different range of less extreme mass ratios than those
in [14]. They will then also serve as an important set of
baseline simulations against which we compare the number
of gravitational-wave cycles when accretion effects are
included. The final part of this section (Sec. IV C) then
treats secondary accretion with DF feedback but without
SA feedback. For the less-extreme mass ratios, the amount
of mass accreted can be comparable to the mass enclosed
within the initial orbital radius, even though it did not
exceed this value for the mass ratios that we simulated.
Nevertheless, the fact that they are of the same order
gives the second indication that feedback onto the dark-
matter distribution in response to the mass accreted will be
necessary in several cases to avoid overestimating the
impact of accretion on the gravitational waves emitted
from these systems (and more generally, to conserve mass
during the evolution).

The secondary-accretion-feedback formalism is intro-
duced in Sec. V, and it is applied to compute results with
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SA feedback in isolation. The modifications to the evolu-
tion equations for the dark-matter distribution are derived in
Sec. VA, where they are also shown to lead to a mass loss
rate from the dark-matter distribution that is equal and
opposite to the rate of mass accreted by the secondary.
The effect of SA feedback on the distribution function is
computed analytically in Sec. VB when the binary
evolves under radiation reaction and dynamical friction
is neglected. This allows the dark-matter density to
be computed efficiently and studied in more detail. For
example, it allows us to determine reasonable initial
conditions corresponding to an inspiral from a larger initial
radius and to determine how large the effects of accretion
could be on the dark-matter distribution after the merger.

The next part (Sec. VI) finally presents the results
of simulations that include both dynamical-friction and
secondary-accretion feedback. The first part (Sec. VI A)
discusses the gravitational-wave dephasing and the
accreted mass normalized by the enclosed mass. The
dephasing induced by dynamical-friction and secondary-
accretion feedback have effective post-Newtonian orders
that differ from the respective static cases because of the
relevant local densities for accretion and dynamical-friction
effects differ when dark-matter dynamics is included. The
normalized accreted mass, with DF and SA feedback, is
now smaller: at most one quarter in the cases we consid-
ered. In Sec. VIB, we show the effect of SA feedback
on the dark-matter distribution when combined with DF
feedback. We find that SA feedback can deplete the dark-
matter density significantly even with DF feedback, though
the amount of depletion is not quite as strong as that with
only SA feedback in Sec. VB. We provide further
discussion and our conclusions in Sec. VIIL.

II. DARK MATTER IN INTERMEDIATE-MASS-
RATIO INSPIRALS AND THE BINARY’S
EVOLUTION

This section will begin by reviewing some notation that
we use to describe the orbital dynamics of the IMRI and the
dark-matter distribution. We then turn to the equations of
motion that describe the IMRI’s dynamics (including the
effects of dark-matter accretion, as in [11]).

A. Notation and approximations used

As in [14], we will denote the dark-matter density of a
spherically symmetric, power-law profile by

,Dsp(rsp/r)ySp Tin <r< rsp

2.1
0 r<rip 2.1)

pom(r) = {

This density is what was referred to as a “dark-
matter spike” in [10]. For a dark-matter distribution formed
during the adiabatic growth of a smaller seed black hole
into an IMBH, the power law index yg, is in the range

(9/4,9/2) [24]. As in [14], however, we often will allow
for a wider range of possible values for yg, in case the
formation scenario does not precisely match this adiabatic-
growth prescription (which can be disrupted by a number
of processes [25]). The inner radius is assumed to be
in = 4Gm,/c?, where m, is the mass of the IMBH (the
primary), which is the inner radius at which the density
goes to zero in the relativistic calculations of dark-matter
spikes in [26].6 The distance rg, was assumed in [10] to be
given by ry, ~0.2r,, where ry, is the radius at which the
enclosed dark-matter mass is twice the primary’s mass,

/ hPDM(”)d3x =2m;.

in

(2.2)

Given rg, ~0.2r,, Eq. (2.2) and the form of ppy(r) in
Eq. (2.1), this implies that m, pg,, rg,, and yg, are not all
independent. We will then determine rg, from the other
three variables as

0.2°77%(3 —yg)my |3
27pg, '

~

I’SPN

(2.3)

For r > rg,, the spike would smoothly transition to the
initial dark-matter halo out of which it was adiabatically
compressed. We will not treat the binary dynamics or
the dark matter at radii of r > rg,, however, which is why
we do not specify the functional form of the dark-matter
distribution when r > rg, in Eq. (2.1).

We will also find it useful to have an expression for the
mass enclosed within a given radius r for a power-law
density. We write the result as in [14] as

mpp(r) = mpum(rin)  Fin ST
mactr) = { ¢ VO ErS )
m
with
Amporiy
mpy (1) = ——22 3T, (2.5)
3- Vsp

Next, we will discuss our notation for the various masses
that we will use and some common approximate expres-
sions for these quantities. In addition to the mass of the
IMBH, m;, which we have already introduced, we will
denote the mass of the secondary as m,. The mass ratio
will be denoted by ¢ = m,/m;, the total mass by

®We do not incorporate any of the other relativistic features
found in the density in [26] in the region closest to the black-hole
horizon in our Newtonian analysis. We use the prescription of a
sharp cut at r;,, as was done in Refs. [14,15], so as to more easily
compare with the results given there. The density computed
in [26] does not have this feature; it smoothly goes to zero as the
radius approaches r;,.
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M = m; + m,, the reduced mass by u = m;m,/M, the
symmetric mass ratio by # = u/M, and the chirp mass by
M = ’/5M. The IMRIS in this paper have ¢ < 1. We will
work to leading order in g throughout this paper, so we will
frequently make approximations such as

M =m(1+q)~my, (2.6a)
u:lﬁ;~mb (2.6b)
n= ﬁ ~dq, (2.6¢)

- (1”1’];;?/5 ~my . (2.6d)

It will also be useful to consider an effective (radius-
dependent) mass ratio which is the ratio of the enclosed
mass Eq. (2.4) to the primary mass, m,

Qenc(r> = menc(r)/ml' (27)
We will work with dark-matter spikes, binary mass ratios ¢,
and orbital separations r,, for which g,.(r2)/g < 1. Thus,
in addition to working to the leading order in ¢, we consider
effects related to g, (7>) to occur at an equivalent order to
those in ¢ [i.e., we effectively will treat ¢ and g,.(r,) as the
same small parameter].

Because m, ~pu will be a function of time when
accretion occurs, so too will ¢, #, and M. However, since
the amount of mass accreted will be a small fraction of m,
for the cases we consider, when we refer to ¢ (for example)
throughout this paper, we will typically be referring to the
initial value, which we will sometimes denote as g; to make
this explicit. If we were to consider accretion onto the
primary, m; would also be time dependent; however, we
will not consider such accretion in this paper.7

When we treat time-dependent dark-matter densities, we
will denote them by ppy(7, 7). In the dynamical case, we
will continue to assume that the density will be zero within
the inner radius, and we will not evolve them at radii

"Ignoring accretion onto the primary can be argued to be
reasonable for the following reasons. In the absence of the
secondary, accretion of dark matter onto the primary is expected
to be negligible given the weak interactions between dark-matter
particles. In the presence of the secondary, some dark matter will
be scattered onto orbits that can be captured by the primary black
hole. Since this requires reasonably strong scattering, the mass of
the dark-matter particles accreted onto the primary during the
inspiral should be of the order of m,.(r,;), so that the fractional
change in mass m during the inspiral is of order q.,.(r,), for r»;
being the initial separation. However, since we will not treat
effects of order ¢, in this paper, neglecting accretion onto the
primary should be consistent with this approximation used
throughout this paper.

r > rg, either (and we will use the same values of rj, and r,
as in the corresponding static density, which is used as
initial data for the evolution of the time-dependent density).
We will similarly denote the mass enclosed by m,.(r, ) in
the time-dependent case. On occasion, we also use the

notation mSt,(r) for the static case and m& (r) for the time-
dependent case to distinguish the two without specifying
the time dependence of the function in the dynamic case.
We could similarly make a time-dependent definition of
Genc(r, 1), but we do not use it in this paper.

B. IMRI evolution equations

The orbital dynamics of the IMRI are naturally expressed
in terms of the motion of the reduced mass y = m, in the
Newtonian limit. In vacuum, the dynamics of these systems
[and the closely related extreme mass-ratio inspirals
(EMRIs)] are most precisely modeled using the techniques
associated with the gravitational self-force (see, e.g., [27]
for a review). When dark matter is included, however,
relativistic analyses of such binaries have been more
limited (see [18] for a notable exception for static dark-
matter distributions), and the description of the binary
and dark matter has largely been restricted to the
mostly8 Newtonian approximation (e.g., [9-13]). This is
especially true of when the dark matter has been allowed
to evolve in response to dynamical-friction feedback
(e.g., [14-17,19,20]), as there have been no such relativistic
studies (to the best of our knowledge). We will thus not
attempt to move beyond this mostly Newtonian approxi-
mation in our calculations in this paper, as we will also be
considering dark-matter dynamics and feedback (both
dynamical-friction and secondary-accretion feedback).

As in [14], only IMRIs in circular orbits will be treated
in this paper. While gravitational radiation [28,29] and
dynamical friction [16] have circularizing effects in IMRISs,
the precise formation scenarios of these binaries could lead
to residual eccentricity (so this assumption should be
revisited in future work). In the absence of dissipative
effects (which includes dynamical friction and dark-matter
accretion, in this discussion), the orbital dynamics for
circular orbits is simple, as it is determined by just the
Keplerian frequency

_ G[M—i_mcnc(rZ)} ~ Gml
Q‘V (@)’ N¢mw

where a, is the semimajor axis of the binary’s reduced
mass, and r, is the coordinate distance of the secondary

(2.8)

The “mostly” caveat here is that the effects of gravitational
radiation reaction were taken into account using the leading
(Newtonian) quadrupole formula. This is a relativistic effect, but
it is being treated at leading order using Newtonian information
about the binary’s quadrupole moment.
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from the center of mass. The speed of the secondary in
these circular orbits is given by the expression

GM Gm1
vy, = ’/—z 1 [——.
) )

Because r, is constant on the orbital timescale, then Q is
constant as well, and the angular component of Newton’s
second law becomes trivial for circular orbits.

Including dark-matter accretion, dynamical friction, and
gravitational radiation reaction causes the orbits to evolve
on timescales much longer than the orbital timescale, so we
will introduce a (slow) time dependence to r,(7) and Q(7).
This leads to dissipative dynamics which describe how the
system moves from larger to smaller circular radii. These
dynamics were computed in [14] by postulating that energy
balance holds. In [14], the change in the orbital energy
of the IMRI was equated to the energy radiated from the
system in gravitational waves plus the energy transferred to
the dark-matter distribution through dynamical friction.
However, this approach does not work as straightforwardly
when including dark-matter accretion, because, roughly
speaking, the accretion can be considered an inelastic
scattering process, which conserves momentum but not
necessarily energy.

Here we will work directly with Newton’s equations and
allow the change in momentum of the secondary to have a
term that arises from the increase in inertia of the secondary
as it accretes dark matter (as in [11]). Radiation reaction,
dynamical friction, and accretion introduce effective forces
into the tangential component of Newton’s second law
(in the orbital plane of the binary) that cause Q to evolve
on a timescale much longer than the orbital one. Using
the expression for this component of the acceleration,
rQ + 2iQ, and Eq. (2.8), the tangential acceleration term
reduces to Qi-/2, for circular orbits. This allows us to compute
an equation for the evolution of i. Including gravitational
radiation reaction, dynamical friction, and dark-matter accre-
tion leads to an equation of motion of the form

(2.9)

Fy = —iRR — iDF — i, (2.10a)
where
64 (Gm\3

iRR g — L), 2.10b
2 qSCS < s ) ( )

G
5"~ g8, /m—r;/2 log Appm(ra, ;v < v5),  (2.10¢)

1
I"2Az2r2m2/m2. (210(1)

The expression for 7 can also be understood as the change in
the orbit that occurs when the mass of the secondary increases

while the orbital angular momentum remains an adiabatic
invariant [30]. In the expression for i5F, we introduced the
notation ppy (7, ;v < v,) to denote the (in general, time-
dependent) density of dark-matter particles at r, moving more
slowly than the orbital speed of the secondary, »,, and log A
for the Coulomb logarithm. As in [14], we will assume

A = +/1/q, where g here is the initial mass ratio of the
binary.9 For static dark-matter spikes of the form in Eq. (2.1),
the fraction of dark-matter particles moving more slowly than
the orbital speed at each radius is proportional to the total
dark-matter density at that radius: namely ppy(r2; v < v,) =
Eppm(r2) (see [14]) for all radii r,." In this special case, then,
there is a single, constant £ that determines the fraction of
particles moving more slowly than the local orbital speed
at rp, though for more general densities and distribution
functions, this will not be the case. To solve Eq. (2.10), we
need to determine an evolution equation for 7.

For this evolution equation, we use a similar treatment of
the accretion of dark matter and the evolution of the mass
that was used in [11]. Specifically we compute 71, from

iy = 6(v2)ppm(r2: 1) vs, (2.12)
where o(v,) is the accretion cross section of a (nonrotating)
black hole, and v, (the speed of secondary) is used as a
proxy for the relative speed of the particles with respect to
the black hole (as in [11]). Because Ref. [11] assumed a
static dark-matter density, ppy was a function of only r,,
whereas we allow it to be a function of time, instead. It is
worth noting that, unlike with dynamical friction, the
full density ppp (72, ) contributes, regardless of the speed
of the dark-matter particles. When we specialize to
static dark-matter distributions for our analytical calcula-
tions, we will find it convenient to use Eq. (2.12) with
pom(ra, t) = Cppm(ra), where ¢ will be a phenomenologi-
cal parameter that represents the effect of being able
to accrete only a fraction of the density ppy(7,). The
cross section o(v,) was computed in full general relativity

Recall that when there is accretion onto the secondary, the
mass ratio will be time dependent. However, because the mass
accreted during the inspiral will be at most a few percent for the
binaries we consider in this paper, we do not expect that keeping
A constant produces any significant errors here. When we
numerically solve for the orbital dynamics in subsequent sections
of this paper, we will not assume that A is constant.

"“Eddington inversion relates the spherically symmetric den-
sity in Eq. (2.1) to the distribution function in Eq. (4.2). From
integrating Eq. (4.2) over velocities up to the orbital speed of
circular orbits at r,, it follows that £ is a constant that depends on
just yg, which is given by

E=1=1(rp—1/2.3/2). (2.11)
The function 7, 5(ys, — 1/2,3/2) is the regularized incomplete
beta function. For yg, = 7/3, this gives rise to the value £ ~ 0.58
used in Ref. [14].
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in [31]; here we will only use the leading ‘“Newtonian”
expression

_16ﬂ(Gm2)2
olva) = (Cvz)z '

Combining Egs. (2.9), (2.12), and (2.13) gives an
evolution equation for m, in terms of r,,

) 1 [r
my X 16H(Gm2)2pDM(r2, t)? G—}’ill (214)

Thus, we can write the rate of change of radius due to dark-
matter accretion as

(2.13)

B g g (Gra) (). (215)
For our analytical calculations with static dark-matter
distributions, we replace ppy (72, 1) with Cppm(rs) in
Eq. (2.15). The expression for i3, like /AR and iDF,
naturally has a factor of ¢ that can be scaled out, which
implies that it is also a small effect in the small mass-
ratio expansion. Finally, note that the ratio of i to iD¥F is
given by

B 4Gm pow(r) (2.16)
DY 2ry pom(ra, v < vy)logA’ '

The factor of Gm,/(c?r,) [or equivalently (v,/c)?] shows
that accretion causes a change in the orbital separation at
one post-Newtonian order higher than that caused by
dynamical friction. For static dark-matter distributions,
the coefficient multiplying the post-Newtonian (PN)
parameter is 4¢/(Elog A), which will typically be an
order-one quantity. However, for time-dependent dark-
matter densities, the ratio of the total density ppy(7s, )
to the density of particles moving more slowly than the
local orbital speed ppy(7s, 150 < v5) could be large, in
which case the post-Newtonian suppression of accretion
could be outweighed by the greater density available to
accretion. This scenario will arise in our discussion in
Secs. IV C and VIA.

We conclude this part with a comment about the relative
perturbative orders of the different dissipative effects
(radiation-reaction, dynamical friction, and dark-matter
accretion) in terms of the PN parameter (v,/c)? ~ Gm, /r,,
the mass ratio ¢, and the enclosed mass ratio gen(r,). All
effects enter at order ¢ in the mass ratio relative to the
conservative dynamics associated with the Keplerian
motion. From a simple counting of powers of r,, dynamical
friction (respectively, accretion) would be a negative
11/2 =y, (respectively, 9/2 —y,)-order effect relative
to radiation reaction in the dissipative dynamics of the
binary (as noted in [14,15]). Because dynamical friction is a

Newtonian effect, and radiation reaction is a 2.5 PN-order
effect, then it is somewhat more natural to think of it as a
relative, negative 2.5 PN-order effect in the radial motion
for circular binaries (because of its Newtonian nature).
While having, in this sense, a negative PN order, dynamical
friction can be comparable in magnitude to radiation
reaction at a given orbital separation, because dynamical
friction contains an additional factor of g.,.(r,), which

scales as r;_y“’ (and which accounts for the remaining
negative 3 —yg, orders in the PN-parameter counting in
terms of r,). Thus, it is more natural to think of it as a
negative 2.5 PN-order effect relative to radiation reaction
that is one order higher in gn.(7>). A similar line of logic
would also lead to thinking about dark-matter accretion as a
negative 1.5 PN-order effect relative to radiation reaction
that is one order higher in g,.(r,). This is consistent with
dark-matter accretion being 1 PN order higher than
dynamical friction in the PN expansion.

III. ENCLOSED DARK-MATTER MASS AND ITS
ACCRETION FOR STATIC DARK-MATTER
DISTRIBUTIONS

We introduce and discuss several different analytical
estimates and calculations of the captured mass in this
section for static dark-matter distributions (as in [11]). We
show that there are binaries for which more dark matter
would be accreted onto the secondary during the inspiral
than there is dark matter enclosed within the secondary’s
initial orbit, when assuming that the dark-matter spike
remains static throughout the inspiral.

When the dark-matter distribution remains static during
the inspiral, the accreted mass onto the secondary can be
computed analytically in terms of elementary or special
functions, respectively, in the cases in which the evolution
of r, is driven either (i) by gravitational radiation reaction
alone, or (ii) by both radiation reaction and dynamical
friction. In both cases, the equation for the evolution of m,
in Eq. (2.14) can be integrated by using the chain rule

de
My = ihy—— 3.1
2= h G.1)
this allows us to combine Eqgs. (2.10) and (2.14) to obtain a
separable ordinary differential equation for dm,/dr, in
terms of r,. It will be useful to write the result of solving the
differential equation for dm,/dr, in terms of the ratio of
My = my(ryg) 10 my; = my(ry;). The quantity
Mace = Amy = my g — myj, (3.2)
which is the accreted mass, will also prove useful for
interpreting the expressions that we derive.
For the analytical estimates given in this section, we
will use the parameter { defined in Sec. II when it takes on
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two different values (primarily for illustrative purposes).
We will consider both when the density is the total density
at r, (¢ = 1) and when it is the density of particles moving
more quickly than the local orbital speed for a static spike
(=1-¢). The { =1 case acts as an upper limit of the
amount of dark-matter mass accreted. The = 1 — £ case is
an analytical estimate (for static halos) of the effect of
dynamical-friction feedback taking away all of the avail-
able more slowly moving particles on the accretion process.
As we will show later in Sec. IV, it turns out to be a good
lower limit when DF feedback does not induce a large
(transient) change in the distribution function; however,
when there is significant dynamical-friction feedback, it is
not a lower limit.

A. Gravitational radiation reaction only

Supposing that the term 5 is the only term on the right-
hand side in Eq. (2.10), then by integrating Eq. (3.1), we
find the ratio m,¢/m,; is given by

yS
mas oo [ 57 (€ VR oty o]
i 4m1 Gm1 9/2 — ysp

(3.3)

/2_}'5p

; is negative for

Here A(rg/ ey = - rg
ryp < Iy, 5O that myp > my;.
To understand some features of Eq. (3.3), we will take
the limit in which the argument of the exponential is small,
so that e ~ 1 + x is a good approximation. Working also
under the assumption that r,; > r, ¢ & ry,;, as well, we can
write the ratio of the accreted mass to the enclosed dark-

11
matter mass = as

5 3—vg \ [ Gm\32
MO (o) (ST s
menc(rz,i) 16 9/2 - 7/sp CI;

where g; = m,;/m, refers to the initial mass ratio. Again
when r,; > ry ¢ & 1y, it can be shown that at a fixed time

. 1/4 3/4
from merger, r,; scales with m; and ¢; as q-/ 1/

m
1

(assuming that leading, Newtonian-order radiation reaction
is driving the inspiral). Thus, because the mass ratio g;

scales as 1/m; for a given secondary mass m,, then

9/2_}'513
Ty g

Mace/ Mene (72 ;) scales as m1_7/ *. Furthermore, it has a weak
dependence on pg, and y;,, even though both Mene (1) and
m,.. depend strongly on pg, and v, as can be seen from the
approximate expression in Eq. (3.4).

Because of this argument, we plot only the dependence
of Mmye./Mep.(r5;) on my in Fig. 1 at fixed m, = 10M fora
given value of pg, = 226Mg/pc® and y,, =7/3. We

""We will normalize by the total enclosed mass in both the
¢ =1land { = 1— £ cases, although one could argue it would be
more reasonable to normalize by the enclosed mass of particles
moving more quickly than the orbital speed in the { = 1 — £ case.

10! 5
ENY --= GWs; (=1
] \\ GWs+DF; (=1
’5: 1004 \\ —— GWs+DF; (=1-¢
S
ERTEE
5] 43 ) N
S E s
~— ] o
g 1072 3 "N\
1073 | T T T T T T 1T | T T T L ||
103 104 10°
my (M ]
FIG. 1. The accreted mass m,. normalized by the enclosed

Mass Meye (7 4y ). The blue dashed curve corresponds to including
only gravitational radiation reaction with { = 1 corresponding to
no additional restriction on the speeds to dark-matter particles
being accreted. The gray dashed-dotted curve with { =1 is the
corresponding one with both radiation reaction and dynamical
friction. Finally, the solid orange curve also includes dynamical
friction and radiation reaction in the dynamics, but assumes
¢ = 1 — &, which mimics the effects of only being able to accrete
particles in a static spike that move more quickly than the orbital
speed of the secondary. The secondary mass was chosen to be
my = 10M . The dark matter distribution is given by the static
spike in Eq. (2.1) with pg, = 226M/pc’ and yy, = 7/3. The
enclosed mass is computed for an initial orbital separation r; 4,
such that the IMRI will merge in four years (a duration which is
consistent with the nominal length of the LISA mission). For all
cases, there is a range of parameter space in which the accreted
mass exceeds the enclosed mass. Further discussion of the
implications of this figure is given in the text of Sec. IIl.

choose ry; = 1 4y, Where we use r, 4, to denote the binary
separation such that the secondary will inspiral to the
innermost stable circular orbit (ISCO) in 4 years for each
value of my. The period of four years is chosen to be
consistent with the nominal LISA mission lifetime.
Choosing different values for the parameters pg, and v,
only makes a very small difference for the case of an
inspiral driven by radiation reaction. We do use the full
expression for m,; in Eq. (3.3) when computing
Myee/Menc(T2.4y), Tather than the approximate expression
in (3.4).

All three curves in Fig. 1 suggest that the previous
estimates of the effect of dark-matter accretion on the
IMRI’s dynamics (and thus the emitted gravitational
waves) were likely overestimated for smaller primary
masses m;. We focus here on the dashed blue curve in
which only the effects of radiation reaction are included
in the evolution of r, (the other curves will be discussed in
Sec. IMI B next). In cases in which mye./menc(r24y) > 1,
then more dark matter would be accreted during the inspiral
than there is dark matter enclosed within a sphere of the
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size of the secondary’s orbital radius. For primary masses
less than a few times 103MO, there is likely more dark-
matter accretion than there is nearby dark matter
to accrete. Moreover, even for m,e./Menc(r24y) < 1 (but
not < 1), the secondary accretion could significantly alter
the dark-matter distribution in the neighborhood of the
secondary.

However, this estimate of accreted dark matter for a static
halo when the binary evolves due only to radiation reaction
(the dashed blue curve in Fig. 1) is an upper bound on the
amount of accretion that could occur.’> As we show next,
including the effects of dynamical friction on the binary’s
orbit for a static halo also can lead to a somewhat smaller
estimate.

B. Gravitational radiation reaction
and dynamical friction

Suppose now that both ¥R and P contribute to the
evolution of the binary’s separation in Eq. (2.10). The
amount of time elapsed as the binary inspirals between two
orbital radii and the mass captured can be written as
integrals over r, between these radii, and these integrals
can be expressed in terms of hypergeometric functions. For
the elapsed time, the integral is

5 S T2 3d
Ar= ) 3/ 2 (rlzl)/z—r2 ’ (3:5)
64Gm )" Jray 1+ 0,
where the coefficient ¢, was given in [14] as
8m1 (Gm1)5/2 (36)

a Sacpyriy Elog A’

up to corrections of order g. The elapsed time then can be
written as

569 (}’2)4 r;l/z_y“’ leX
At=||————= |, F|1,b,,1 +b,;— ,
|G (1001 0i= 20

raf

(3.7)

where b, = 8/(11 - 2yy,). The hypergeometric function is
bounded between zero and one for positive r, and ¢, (and
the values of y, that we consider), so the expression (3.7)
has the form of the fraction of the time to inspiral to zero
separation at the initial radius minus that of the final.
Because the hypergeometric function is a decreasing
function of radius, this is consistent with the fact that

">The reason it is an upper bound is that neglecting dynamical
friction causes the binary to inspiral more slowly, thereby giving
the secondary more time to accrete dark matter. This will be
shown more quantitatively in the next part, Sec. III B.

the system will always inspiral more quickly between two
given radii when dynamical friction is present than absent.

A similar calculation to solve for the accreted mass
shows that

log M) _ 5  \? Cpspr;/f,"
m27i 4 Gml my
i r;/z_npdrz
x 27y,
re 1+ Ty /¢,

(3.8)

The integral can again be evaluated in terms of a hyper-
geometric function

log (220 = Sr (N Lpyry /2T
my ; 4m1 Gm1 9/2_}/Sp 2

r11/2—y>p .
szl(l,bm,bm—s—l;—z )] ,

Cr g

(3.9)

where b,, = (9 —2y,)/(11 = 2y,). The function in the
exponent for the accreted mass has a similar form to that
without dynamical friction, but it is rescaled by a hyper-
geometric function. For similar reasons to those described
above for the time to inspiral, the amount of accreted mass
will be decreased.

The accreted mass in this case is depicted by the gray
dotted-dashed ({ = 1) and orange solid ({ = 1 — &) curves
in Fig. 1. They show that there is a region of binary primary
masses, similar to that of the radiation-reaction only, in
which the accreted mass can exceed the enclosed mass. The
deviation of these curves from a power law in m; with slope
—7/4 arises from two somewhat competing effects that take
place when dynamical friction is included with gravita-
tional radiation reaction. First, from Eq. (3.7), it follows
that the binary inspirals from a larger radius in a fixed
time interval when dynamical friction is included; this gives
the opportunity to accrete more dark matter over a larger
range of radii. However, dynamical friction speeds up the
time to inspiral inward from a given radius, thereby
decreasing the amount of time spent at a given radius
(and hence the amount of mass accreted at a given radius).
From Eq. (3.9) and Fig. 1, it is possible to deduce that the
latter effect is more significant than the former.

Since it was previously demonstrated in [14] that
neglecting feedback from dynamical friction on the dark-
matter distribution could lead to energy balance being
violated significantly during the inspiral, it is perhaps not
too surprising that there could be an excess in accreted mass
when the halo is assumed to be static. However, since the
dynamical-friction feedback was shown in [14] to produce
a large transient depletion of the dark-matter density in the
vicinity of the secondary (see also [15]), it would not be
surprising if feedback also had an important effect on the
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mass captured. We describe the effects of including feed-
back from dynamical friction in the next section.

IV. EVOLVING DARK MATTER WITH
DYNAMICAL-FRICTION FEEDBACK

We first review the formalism of [14] and the assump-
tions that enter into this formalism. We then present results
in which we ignore the effects of dark-matter accretion as
in [14], but we consider more massive secondary compan-
ions (namely m, = 10M) than had been studied previ-
ously in [14]. The final part of this section is our treatment
of secondary accretion with dynamical-friction feedback,
but without attempting to include feedback on the dark-
matter distribution from the accretion process. Dynamical-
friction feedback prevents the captured mass from
exceeding the initial enclosed mass (for the binaries that
we consider), but the ratio of the two masses approaches
unity for mass ratios near ¢ = 1072 (or m; = 10°M). This
suggests that feedback from secondary accretion will be
important in this region of parameter space.

A. Review of dynamical-friction feedback

The dynamical-friction feedback introduced in [14]
made use of the specific relative energy

Gm1 1
£=""1 g2 4.1
r 2U (4.1)

where bound orbits are £ > 0, and where we have
neglected the potential of the dark-matter spike, which is
consistent with our approximation of the Keplerian orbital
frequency in Eq. (2.8)." The distribution function (mass
density on phase space) will be assumed to be isotropic in
momentum space and spherically symmetric in position
space, so that it can be written as just f(€) when static, and
f(E,t) when dynamic. In the absence of the secondary, a
distribution function related through Eddington inversion
to the density ppy(7) in Eq. (2.1) was shown in [13] to be
given by

7s (73 _1) r(Ys _1) Ts &
1O =" Trp-1/2 (anl

>7sppsp5—3/2. (4.2)

When the secondary is present, it will scatter with dark-
matter particles and introduce a time dependence into the
dark-matter distribution.

The formalism in [14] relied upon a few key assump-
tions. There the dark matter was not modeled on the orbital
timescale of the secondary, but only on timescales longer
than the orbital period. During the orbital time, the dark-
matter distribution was assumed to equilibrate quickly after

BAs a result, we do not introduce the notation

Y(r) = ®(r) — ®,, which is used in [14].

scattering, and that on timescales longer than the orbital
time the distribution function remains spherically symmet-
ric and isotropic, so that it can be written as a function
of just £ and not also angular momentum.'* On the longer
dissipative timescale, the dark-matter dynamics were mod-
eled by considering the average interactions between the
secondary and the dark-matter distribution over an orbital
period. We will also follow similar assumptions when
modeling the accretion of dark matter by the secondary.15

Because f(&,t) is the phase-space mass density of
particles with a given &£ per volume in position and velocity
space, it is convenient to introduce the density of states at
each energy, which is given by

g9(&) :/d3r/d3v5(5—5(r, v)). (4.3)

Using the definition of £ in Eq. (4.1), this can be written as
(see, e.g., [14])
9(&) = V2(rGm,)3E-5/2, (4.4)
Note that it has units of phase-space volume per energy, so
that f(€)g(€) has units of mass per energy.
The density of states is used to compute the differential
scattering rate, per energy change AE and per orbital

period, of particles with energy £ to an energy £ — A€.
This was given in [14] by

ngl( = / &r / Bos(E - E(r,v))

x 8(AE(b) — AE).

Re(AE) =

(4.5)

In the equation above, b is the impact parameter for a
scattering event with energy change A&, and T, is the
orbital period of the secondary. In a lengthy calculation
outlined in Sec. IV and Appendix D of [14], this integral
over phase space can be reduced to an integral over a torus

“It is noted in Ref. [14] that dynamical friction also provides a
torque that causes the angular momentum of the binary to
decrease. Thus, through angular momentum conservation, the
dark-matter distribution should have some dependence on an-
gular momentum. However, it was argued in [14] that for the
distribution function to develop a strong dependence on angular
momentum, the dark-matter particles would need to undergo a
large number of scatterings that would tend to unbind the
particles from dark-matter spike. Thus, the distribution of bound
dark-matter particles could be approximated reasonably by a
distribution function that depends only on the specific energy &.

For accretion onto the secondary, it was noted in [30] that the
change in the orbital radius 74 could be understood as the change
in the orbit that occurs when the angular momentum remains an
adiabatic invariant as the secondary’s mass increases. Thus,
considerations of angular-momentum balance do not require that
angular-momentum dependence of the distribution function
change in response to accretion onto the secondary.
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with minor radius b and major radius r,. In the limit that
b/r, is small, the leading-order expression for the integral
in this small parameter can be expressed in terms of
incomplete elliptic integrals of the second kind, which
speeds up the computation of this differential scattering
rate. We do not make any changes to the calculation in [14]
aside from the fact that the notation R¢(AE) for the rate
that we use is related to the scattering probability of [14]
by Pe(AE) = TyRe(AE). Thus, we do not reproduce all
the expressions for the impact parameter and scattering
rate here. Finally, it will also be useful to compute the
total scattering rate at a given energy, which we
denote by

Re = / AAER¢(AE). (4.6)

With these quantities defined, we can write the pre-
scription of [14] for evolving the distribution function due
to dynamical-friction feedback. The basic principle is
similar to that of chemical kinetics, where the distribution
function takes the place of the concentrations, and scatter-
ing rates replace the rate constants. Specifically, scattering
takes away particles with a given energy £ at the rate R¢ in
a way that is proportional to the phase-space density of
particles at that energy f(&, t). This leads to an “outflux”
term of the form —R¢f (&, t). However, scattering also adds
particles at energy &£ by scattering from other energies
& — A€ to the energy £ This “influx” term involves an
integral of the form

/ dAE (5_75&) R e se(AE(E— AED). (A7)

The first term in the integrand is the ratio of the densities of
states at energies £ — A€ and £. The net influxes and
outfluxes then give the following prescription for the
evolution of the distribution function:

of (E,1)
ot

=—Rcf(E,1)

& 5/2
+ / dA5< A 5) Re_ac(AE)F(E = AE.1).

(4.8)

There is an implicit dependence on the position of the
secondary r,() in the scattering rate R¢(AE) (and thus
also R¢), because the impact parameter depends upon the
radial position of r,. This implies that the integro-partial-
differential equation (4.8)—or IPDE, for short—is coupled
to the ordinary differential equation (ODE) describing the
evolution of r, in Eq. (2.10). In addition, because the total
mass density in position space is computed via

pom(r.1) = / Pof(E.1). (4.9)

the dynamical-friction and the secondary-accretion
terms i>F and i) are coupled to the IPDE through
pom(ra, ;v < v,) and ppy(rs, 1), respectively. Thus, the
evolution of i, and the IPDE must be solved as a coupled
IPDE-ODE system. The HALOFEEDBACK code [32] imple-
ments this procedure to evolve the distribution function and
solve the coupled IPDE-ODE system. We use this code to
produce the results in the next subsection.

B. Results without secondary accretion

As a baseline for our comparisons of the effects of
secondary accretion on IMRIs with dynamical dark-matter
distributions, we evolve a set of five binaries with different
mass ratios for which we do not include the effect of the
secondary accretion in the evolution equation for 7, (so that
the simulations follow the same method as those in [14]).
We do this for two reasons: First, we would like to consider
mass ratios closer to one than were simulated in [14] to
better compare with the cases treated in [11] for static halos.
Second, although we will treat some of the same mass
ratios as in [14], we will use a larger secondary mass m,
that is more appropriate for a black hole (whereas [14] used
a mass appropriate for a neutron star). Unlike vacuum
black-hole binaries, those with dark matter have an addi-
tional mass scale (that of the dark matter), which implies
that the total mass of the two black holes does not scale out
of the problem. As a result, it is not clear that we can rescale
some of the results in [14] to apply to our case with a larger
secondary mass.

Specifically, we consider a secondary with mass m, =
10M and five different primary masses m; = 103M,
3x 10°My, 10*Mg, 3 x 10*M, and 10°M, (i.e., initial
mass ratios of ¢ = 1072, 3 x 1073, 1073, 3 x 107, and
10~). We evolve the system for an initial dark-matter spike
with a power law of yg, = 7/3 and with pg, = 226M,/pc?
for all mass ratios. We compute the evolution using an
initial separation that is three times the separation at which
the binary would merge in vacuum in four years (37, 4y),
which is computed assuming an inspiral driven by the
Newtonian-order quadrupole formula. As discussed in
further detail in [14], when the binary starts its inspiral
at this separation, the dark-matter distribution at radii
smaller than r, 4, is largely unaffected even as the dark-
matter distribution reaches a “steady-state” configuration
during the slow, quasicircular inspiral from 3r; 4,. This then
makes the dark-matter distribution when the secondary
reaches r; 4, consistent with a formation history involving
an adiabatic inspiral from much larger radii (something
which is not true of the part of the inspiral much closer to
3ry4y). We compute the number of gravitational-wave
cycles from the separation of r,4,. The HALOFEEDBACK
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TABLE I. Number of gravitational-wave cycles with dynami-
cal-friction feedback and dephasing from vacuum binaries. We

use the notation N, Cécles for the number when dynamical-friction

feedback is included and ANS;:]L)S for the dephasing from vacuum
systems (difference in number of cycles, from the same starting
frequency, between vacuum binaries and those with dark
matter when DF feedback is included). The secondary mass
is my = 10My, and the initial dark-matter distribution has
v =7/3 and pg, = 226My/pc’. The number of cycles is
computed four years from merger, where the merger is defined
as when the secondary reaches the ISCO.

(0-1)

m [MO] N((:;fgzles A‘Ncycles
103 2,098,000 700
3x 103 1,591,500 1,700
10 1,174,000 4,000
3x10% 886,900 6,200
10° 650,300 4,300

code solves the ODE-IPDE system with a maximum time
step that is a multiple of the orbital period at a given radius;
for the simulations below, we chose this to be 50 orbital
periods.16 Since the gravitational waves are quadrupolar in
the leading, Newtonian approximation, this corresponds to
100 gravitational-wave cycles. Thus, we will round our
expressions for the number of cycles and the amount of
dephasing to the nearest 100 cycles here and below.

The number of gravitational-wave cycles and the amount
of dephasing from vacuum signals is presented in Table I.
There are several ways to compute these quantities; in
terms of the separation r,, the number of cycles can be

written as
1 rsco
N, cycles — — Q
r 2

where Q is the Keplerian orbital frequency given in
Eq. (2.8). We will also find it useful to consider the number
of cycles as a function of the starting frequency by mapping
the orbital separation to the gravitational-wave frequency
using Kepler’s third law. The difference in the number of
cycles (the dephasing) is given by

i5tdr,, (4.10)

(0-1)
cycles

_ N

cycles?’

_NO

cycles

AN (4.11)

(0) (1)

cycles cycles
is the number when dynamical-friction feedback is
included. Because the binary inspirals more quickly with
the additional source of energy loss from the binary via

where N is the number of cycles in vacuum and N,

'We performed numerical convergence tests to verify that the
binary separation and phase converged at a rate consistent with
the second-order method used to solve the IPDE-ODE system
using time steps of 50 orbital periods and larger.

(0-1)
cycles

dynamical friction, the dephasing AN is a positive
quantity.

First, it is useful to compare the results here for mass
ratios of 10~* and 10~ with those in [14], which have a
lower total mass (and chirp mass). At a fixed mass ratio and
for a fixed time to reach the ISCO, the total number of
cycles scales like the chirp mass to the —5/8 power (in
the Newtonian approximation) which also just goes like
the primary mass to the same power. Thus, it is not
too surprising that the total number of cycles at these mass
ratios is roughly a factor of 107>/% ~ (.24 times smaller
than the corresponding results at the same mass ratio
in [14]; with dynamical-friction feedback, the inspiral is
driven primarily by gravitational radiation reaction.

The magnitude of the dephasing ANg(y);l]gS (which is
computed from a fixed initial frequency between binaries
in vacuum and those with dynamical-friction feedback) is
somewhat more subtle to compare, at fixed mass ratio,
between the results here and in [14]. Dynamical friction
with feedback is determined by an effective density
(discussed in [15]) evaluated at the location of the secon-
dary and the secondary’s mass; this effective density is also
a function of the binary separation, binary masses, and the
initial dark-matter distribution. Thus, at fixed secondary
mass and for similarly parametrized dark-matter densities,
we would need to study the effective density and its scaling
with the primary mass; however, we will leave studies of
this effective density to future work. Instead, we will focus
primarily on the qualitative similarities in the dephasing.

In particular, we note that the dephasing is not a
monotonic function of the mass ratio, but it peaks at a
mass ratio between 10~* and 1073 before decreasing. This
was also observed in [14], where the explanation for this
phenomenon was associated with the increased local
depletion of the dark-matter density near the secondary
for less-extreme mass ratios (i.e., a lower effective density).
We observe here that this effect becomes even more
pronounced at less extreme mass ratios; thus, although
the total number of cycles increases, the amount of
dephasing actually decreases, thereby leading to both a
smaller absolute and relative effect. We will next turn to
some of the implications of this when we introduce
accretion onto the secondary in this evolving dark-matter
distribution without incorporating feedback on the distri-
bution from accretion.

C. Secondary accretion with
dynamical-friction feedback

To understand the effect of dynamical-friction feedback
on the accreted mass, we evolve the IMRI with the
accretion term in the IMRI equations of motion, so that
Eq. (2.10) includes all three terms. We also compute m, as a
function of time using its evolution equation (2.12). We
evolve the five cases described in Sec. IV B similarly, with

124062-12



SECONDARY ACCRETION OF DARK MATTER IN INTERMEDIATE ...

PHYS. REV. D 108, 124062 (2023)

101 =
7 —— Static
] ® Dynamic
/;;) 100 o~ Fit
E
89 ]
%3 10_1 3
S ]
3 ]
g 10_2—5
] e
10_3 | T T ||||||| T T |||||||
103 104 10°
my[Mog ]

FIG. 2. The accreted mass m,., normalized by the enclosed
mass mguc(r24,) of a static dark-matter distribution. The dark
matter and binary parameters are chosen as in Fig. 1. The solid
orange line is the same { =1—¢ curve in Fig. 1 with the
secondary’s secular evolution driven by radiation reaction and
dynamical friction. The blue circles are the results of five
numerical simulations performed with the HALOFEEDBACK code,
and the dotted blue line is a fit to these five points using a single
power law. Further discussion of the implications of this figure
are given in the text of Sec. IV C.

the only difference being the additional term in the
evolution equation for i,. The results are summarized in
Fig. 2 and Table II

In Fig. 2, the solid orange curve is the same as the solid
orange curve in Fig. 1; namely, the { = 1 — £ case with
both gravitational waves and dynamical friction driving the
evolution of the binary in a static dark-matter distribution.
The five blue circles are the results of the numerical
simulations described above for the accreted mass normal-
ized by the enclosed mass. A power-law least-squares fit to

TABLE II. Number of cycles of dephasing, as well as the
normalized accreted and enclosed masses for binaries with
dynamical friction and accretion. The configuration of the dark
matter and the binary are the same as in Table I. The second
column of dephasing numbers is the same as in Table I, and is
reproduced here for ease of comparison. The third column of
numbers is the dephasing when dynamical-friction feedback is
included in both cases, but the effect of accretion on 7, is included
in only one case. The fourth column contains the same data as
the blue points in Fig. 2. The final column is the ratio of the
dynamical and static enclosed masses, as described further in the
text of Sec. IV C.

m Mo AN ANUGY /s mEe/mi,
103 700 3,400 0.8640 0.645
3x 103 1,700 1,400 0.1843 0.674
104 4,000 600 0.0326 0.693
3 x 10* 6,200 300 0.0080 0.729
10° 4,300 200 0.0018 0.852

the five data points is shown as the blue dotted curve in
Fig. 2. A single power law with slope ~ —1.3 (to two
significant figures) is able to capture the qualitative trend in
the data.

A brief comment regarding the convention we use for the
enclosed mass for the dynamic halo is in order. In the
dynamic case, we normalized by the enclosed mass within
a4y When using the initial static dark-matter density to
compute the enclosed mass. For the evolution with
dynamical-friction feedback, however, we start the evolu-
tion at a distance of r,; = 3r, 4, to produce a dark-matter
distribution once the binary reaches a radius of r, = ry 4
that is consistent with inspiral from a radius much larger
than r, 4,. The dark-matter density when the binary is at
ry4y does differ (significantly in some cases) from the
initial power-law distribution in Eq. (2.1) that is used when
the binary is at 3r, 4, in the dynamic case (or at r, 4, in the
static case). Thus, the mass enclosed using the initial static
density, m3 (r,4y) is different from m3e (raay), the mass
enclosed for the dynamical dark-matter distribution when
DF feedback is included. We choose to normalize m,,
by mgi.(r24y) in Fig. 2 so that the total accreted mass
can be compared more easily between the static and
dynamic cases depicted there. We will also give the ratio
me (raay)/mse(ry4y) in Table II which indicates the
extent to which dark-matter mass is redistributed once
the binary reaches the radius r, 4, in the dynamic case. It
can also be used to determine how efficient the accretion
process is in terms of the available amount of enclosed
mass that could be accreted.

At the largest primary mass m; = 103My, (or ¢ = 107%),
the accreted mass in the dynamic case is larger than in the
static case for { =1 —¢& This suggests that dynamical
friction feedback is not significantly influencing the dark-
matter halo and that both dark-matter particles moving
more quickly and more slowly than the orbital speed can be
accreted by the secondary. For masses m; <3 x 10*M,
(i.e., g = 3 x 1073), the mass captured in the dynamic case
is less than that in the static case, even though in the static
case the assumption that { = 1 — £ could be understood
as representing that only particles moving faster than the
secondary’s speed are accreted, as compared with dynami-
cal-friction feedback that acts on the more slowly moving
particles. While this may seem surprising, the fact that the
number of more slowly moving particles is simply propor-
tional to the total density times ¢ holds for a single-
power-law distribution, as in Eq. (2.1), and not more
generally. Thus, {ppy(r2) can overestimate the amount
of dark matter at the location of the secondary, particularly
when dynamical-friction feedback has a large effect on the
dark-matter distribution.

The approximate power-law slope of ~ —1.3 in the fit
rather than —7/4 when radiation-reaction is driving the
inspiral of the binary could be understood if the density
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during the inspiral had a flatter power law than yg, in
Eq. (2.1) (the same calculations in Sec. III apply to any
power law). The density would need to follow a power law
of roughly —1.6 instead of yy, = —7/3 for this to be the
case. The results for the density in Sec. VI B show that the
density has a slope that is less steep than the initial dark-
matter-spike power law at radii larger than the binary
separation, but steeper at smaller radii. Thus, we did not
arrive at a similar, simple explanation for the scaling of the
accreted over the enclosed mass with the primary mass
when dynamical-friction feedback was included.

In Table II, the second column reproduces the
gravitational-wave dephasing between vacuum and with
dynamical-friction feedback only. The third column com-
pares the dephasing between dynamical-friction feedback
only and including the accretion term in the evolution of r,

without feedback. (We do not show the total number of
1A
<(:ycl<)es’
because the dephasing is typically less than one percent of
the total number of cycles.) We then show the difference
ANUEIA) (1A) (1)

cycles cycles cycles
when only dynamical-friction feedback is included (as in
Sec. IV B). The fourth column m,../m% contains the same
data that appears in the five points in Fig. 2. The fifth column
shows the ratio of the mass enclosed within r;4, in the
dynamic versus the static dark-matter distributions [the latter
being known analytically and computed from Eq. (2.4)].

Table Il illustrates some clear trends in both the dephasing
and mass accreted. For larger primary masses (above
~10*M ), the mass accreted is a small fraction of the total
mass enclosed within the orbit, and the dephasing induced
by accretion is significantly smaller than that due to
dynamical friction with feedback. Nevertheless, the final
column (dynamical over static mass enclosed) shows that
dynamical-friction feedback does have a nontrivial effect
on the distribution of dark matter. For masses m; below
~3 x 103M, the dephasing induced by dynamical friction
with feedback and accretion without feedback become
comparable, or even several times larger for accretion. In
addition, the amount of accreted mass approaches the
enclosed mass as the primary mass approaches 10°M.

The results of Fig. 2 and Table II suggest that for smaller
my (or g =3 x 1072), the lack of feedback on the distri-
bution function from dark-matter particles being removed
leads to a larger amount of dephasing and mass captured
than would occur if feedback were included. We thus turn
to introducing a procedure to implement feedback from
secondary accretion on the dark-matter distribution in the
next part, Sec. V.

cycles in the case, which would be denoted by N,

between N and the number of cycles N

V. SECONDARY-ACCRETION FEEDBACK

In the previous section, we found that with dynamical-
friction feedback the amount of mass accreted remains less

than the enclosed mass in the cases we have simulated (but
the two masses could be nearly equal). In addition, for the
systems in which the largest fraction of the enclosed mass
was accreted, the effect of secondary accretion on the
evolution of the orbital phase exceeded that of dynamical
friction with feedback on the dark matter. This result
seemed surprising given the higher post-Newtonian nature
of the secondary-accretion process, and it suggested that we
need a procedure to remove the accreted dark-matter mass
from the distribution function so as avoid these scenarios
that lead to unreasonably large dark-matter secondary
accretion. To do so, it will then be necessary to evolve
the dark-matter distribution in response to the removal of
dark-matter particles from the distribution function for
particles with orbits that fall within the accretion cross
section of the secondary. We discuss a procedure to
implement this removal process in this section.

A. Formalism for secondary-accretion feedback

In this part, we derive how the accretion of dark matter
modifies the evolution of the distribution function. The
final result is relatively simple: only an additional term of
the form —R¥*°f(&, t) must be added to Eq. (4.8) for the
distribution function. Namely, secondary accretion simply
removes particles from f(&, t) at each energy by an energy-
dependent rate R¥°; this causes the magnitude of the
distribution function to decrease at all the energies for
which R is nonzero. This mass loss must be balanced by
an increase in mass of the secondary; our prescription for
accretion feedback is consistent with the mass accretion
rate in Eq. (2.12).

1. Derivation of secondary-accretion feedback rate

The procedure that we use is qualitatively similar to that
of the dynamical-friction feedback on the dark-matter
spike. We make similar assumptions to those used in
dynamical-friction feedback, in particular with regard to
the quick equilibration on the orbital timescale (which is
used to justify maintaining spherical symmetry on the
longer dissipative timescale). We then will compute the
total rate of dark-matter accreted per orbital period at each
specific relative energy &.

We compute this per-orbit rate of accretion to be

acc _ 1

& ng(g) rer?

d3r/d3v5(5—8(r, v)). (5.1)

The domain of the integral over position, denoted by r € 72,
indicates that it should take place over the interior of a torus
of major radius r, and of minor radius b,.. = \/o(v,)/7.
The integral over v can be evaluated using the properties of
the delta function, but some care must be taken when doing
this. The result of this integration is a square root,
which must be positive for the rate to be real. Because

124062-14



SECONDARY ACCRETION OF DARK MATTER IN INTERMEDIATE ...

PHYS. REV. D 108, 124062 (2023)

we consider only bound orbits, then the rate is restricted to
values of & that satisfy £e€[0,Gm,/r], for values of r
where there are at least some values that lie in the torus.
However, for simplicity we will make the further
assumption that if &£ satisfies £ > Gm,/r for any value
of r €[ry — baee, 2 + baee), then the rate for this energy is
zero. In this approximation, the result of integrating over
velocities is

4”\f ,/ Mg forg <" m'
T29 re’7? acc

Gml
) =+ bacc
(5.2)

Re‘lacc —_
for £ >

We now argue that this approximation will have a small
effect on the final expression for the rate. To do so, it is
useful to first note that the ratio of the inner radius to the
outer radius of the torus can be written as

b, 4G
e AT _ g2, (53)
r CraUy C

where Gm, /r, = (v,)? was used in the second equality.
Thus, even as v, becomes relativistic, the ratio of the radii is
always a small quantity of order ¢. This implies that we can
write Gm/r on the domain of integration of the torus as

Gm1 Gml

r ry

[1+ 0(q)] (5.4)

and we can neglect the O(g) terms. Similarly, this means
that when we consider the integral in Eq. (5.2) for energies
E < Gmy/(ry + by.), then to good approximation, we can
replace £ < Gm,/(ry + by..) with £ < Gm,/r,. This also
shows that our approximation for the value of the energy at
which the rate vanishes had errors of order ¢; however, we
have frequently worked to leading order in ¢ throughout
this paper.

With Gm, /r ~ Gm,/r,, the integrand can be treated as
constant on the torus, so the integral in Eq. (5.2) reduces to
the integrand evaluated at r, times the volume of the torus.
As a result, the secondary-accretion rate for particles of
energy £ will be given by

Sﬂzﬂm %—5 for & < Gmy
Rgcc — TZQ(S) ) )

0 fore> 2™

I

(5.5)

where we still consider only bound orbits with £ > 0.
Using the results in [14], one can show that R¥°/R;
scales as (v,/c)?, so the secondary-accretion rate is one PN

order higher than the rate of feedback from dynamical
friction. This is similar to the fact that the dissipative effects
in the equations of motion for the IMRI are one PN order
higher for dark-matter accretion than they are for dynamical
friction. However, unlike dynamical friction, which pref-
erentially transfers energy to dark matter particles that are
moving more slowly than the orbital speed v,, dark-matter
accretion affects both the more slowly moving and the more
rapidly moving particles. Consequently, while secondary
accretion will have a weaker effect on the more slowly
moving dark matter particles at a given r, it will have a
leading-order effect on the distribution of dark matter for
the more rapidly moving particles at a given r.

2. Evolution equations with secondary feedback
and mass conservation

Next, we discuss how secondary feedback affects the
coupled IPDE-ODE system that describes the evolution of
the IMRI and the surrounding dark matter. Secondary
accretion adds one new term to the IPDE in Eq. (4.8) of
the form R¥°f(&, ), so that the IPDE can be written as

af (E.1)
o

—(Re + Rg°)f(E.1)

g \32
+/dAg<S—A8> Rg_Ag(Ag)f(g—Ag,l).

(5.6)

A key difference between the dynamical-friction and
secondary-accretion feedback is that secondary-accretion
feedback removes particles from the distribution function
without replacing them (they fall into the secondary black
hole), whereas dynamical-friction feedback redistributes
particles with slower speeds to those with greater speeds.
Thus, dynamical-friction feedback largely conserves mass
in the distribution function (aside from some particles
scattering onto unbound orbits), whereas secondary-
accretion feedback causes the total mass of the dark-matter
distribution to decrease; however, the loss of mass from the
dark-matter distribution should be balanced precisely by an
increase in mass of the secondary.

It is not obvious, a priori, that the formalism for
accretion feedback introduced above will lead to a loss
of mass from the dark-matter distribution that is consistent
with the increase in mass of the secondary given in
Eq. (2.12). We can prove that the two are consistent in a
few lines, however. To do so, we integrate over phase space
[using the density of states g(€)] the term —R¥°f(&,1)
that governs the loss of dark-matter mass from accretion
feedback,

deM

Pom / REF(E,)g(E)dE. (5.7)
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This reduces, for RE¥C in Eq. (5.5), to

dmpy
dt

= —4nvy0(v;) ngf(g,t) 2<Gm1—5>.
0

)

(5.8)

The expression (5.8) has the same dependence on v, and on
the cross section ¢(v,) as the evolution of m, in Eq. (2.12).
The integral can be shown to be proportional to the density
at r, by writing the energy at r, as £ = &£(r,, v) and using
d€ = vdv at fixed r,. The square root in the integrand
reduces to the speed v. Writing f(E(ry, v), 1) = f(ry, v, 1),
then the integral reduces to

deM Umax

= —v30(v2)

o | f(ra, v, t)dmv?do,

(5.9)

where v, = \/2Gm; /r, is the maximum bound velocity
at r,. The integral is written now in a form in which it is
more clearly equal to ppy (75, 7); this shows that the rate of
mass loss from the distribution function is given by

deM

- (5.10)

= —0,6(v2)ppm(72. 7).

Thus, the accretion feedback rate is consistent with the
accretion rate onto the secondary, Eq. (2.12). This implies
that secondary-accretion feedback as implemented here
conserves the combined mass of dark matter and the
secondary,

d mpwm

- (5.11)

7}12 —
We can then continue to compute the accretion term i in
the equation of motion for i, as before. As a first study of
the secondary-accretion-feedback term, we investigate how
it behaves in isolation (without dynamical-friction and its
feedback) in the next part.

B. Results with secondary-accretion feedback
but without dynamical-friction feedback

To help understand the properties of secondary-accretion
feedback on the dark-matter distribution, we first consider a
simpler test case of how accretion influences the distribu-
tion without dynamical-friction feedback. In this case, the
IPDE for the evolution of the distribution function reduces
to a standard PDE,

) .
a—{ — _REF(E 1), (5.12)

Since RE¢ depends on the position r,, the PDE is coupled
to the ODE for r, (and vice versa). This coupling makes it

more challenging to find general analytical solutions, but
there are some solutions that can be found when additional
approximations are made. These simpler scenarios can
provide some intuition about the secondary-accretion
process.

First, when the secondary is held at a fixed location, the
secondary-accretion rate RE is no longer time dependent.
We can then integrate Eq. (5.12) directly to write it in
the form

F(1.€) = F(€) exp (~RE=1), (5.13)
where f(&) is the initial value of the distribution function at
time ¢ = 0. Accretion then produces an exponential decay
of the distribution function at each specific energy at
the rate R¥°, for energies for which the rate is nonzero.
The expression for the rate in Eq. (5.5) has the properties
that it goes to zero at both £ = 0 and £ = Gm,/r,, and it
peaks at an energy equal to (5/6)(Gm,/r,). The distribu-
tion function then gets depleted most strongly around this
value of the energy. The dark-matter density, being an
integral over velocity space of the distribution function, has
a more nontrivial profile as a function of position from the
accretion process (as we will show in more detail below
when we do not keep the secondary’s location fixed).

Second, in the approximation in which the binary’s
separation r, evolves under the effect of gravitational
radiation reaction only, the distribution function as a
function of £ and time ¢ can again be determined analyti-
cally. In this case, it is more convenient to use the chain rule
to write the differential equation as

af B _Rgcc
arz = }"‘2 f((‘:, rz). (514)

For the energies for which R¥* is nonzero, the product
R¥¢(i,)~" can be written as

Ry 5q3r)*E [Gm,

= E. 5.15
2 7n(Gm,)°? r (-13)
If we then define the “energy radius” by
G
re = % (5.16)

and the normalized (dimensionless) radius by

)

ry = —
/e =

(5.17)
then the distribution function has the following reasonably
simple form in terms of the changes in the initial and final
normalized radii r, /€5
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2gc3
637832

f(r2,f7g) _
f(rz,i,g)

log (1- r2/5)3/20(% _ )

r
X 9(5)(35;’3/5 + 301%/5 +24ry/¢ + 16)] .
(5.18)

The A means that the difference of the expression at the
final and initial radii /¢ should be taken. The two unit step
functions €(x) are required to set the argument of the
exponential to zero when the secondary-accretion rate goes
to zero. The expression (5.18) is implicitly a function of an
interval of time, At, because when r, evolves because of
radiation reaction, the final value of r, is given by

256q(Gm, )3 1/4
If = <’”§,i‘ a(Gm) At) :

563

(5.19)

The analytical expression for f(r,,&) in Eq. (5.18)
allows one to see that as the secondary inspirals between
an initial radius r, ; and the ISCO radius, rigcq, dark-matter
particles with smaller £ are much more efficiently accreted
than those with larger £ This likely occurs because
secondary-accretion feedback occurs only up to the energy
Gm,/r, but down to an energy of £=0. When the
secondary evolves as a result of radiation reaction, it
spends a larger number of orbital periods at larger sepa-
rations, which allows it to accrete more dark matter with
specific energies closer to zero during the inspiral. Only late
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FIG. 3.

in the evolution do the particles with larger £ become
accessible to accretion feedback.

We also compute the density ppy(7) by numerically
integrating f(r,, £) over all velocities. The several different
dark-matter densities at different initial and final radii are
shown in the left and right panels of Fig. 3 for a binary
with masses m; = 10°Mg and m, = 10M. The curves
labeled “initial” correspond to the static, power-law dark-
matter distribution in Eq. (2.1) for pg, = 226M,/pc® and
Ysp = 7/3. Three different initial conditions for the binary’s
separation r; 4y, 375 4y, and 10r, 4, are considered on the
right and just the larger two are treated on the left. As
before, r; 4, is the radius for the binary to inspiral to the
ISCO under the influence of only gravitational radiation
reaction. The solid blue curves show the dark-matter
distribution after the binary evolves from ry; = 107, 4,
with f(r,;, £) given by Eq. (4.2) to r, ¢ = 1, 4y (on the left)
and r,¢ = rigco (on the right). The dotted-dashed orange
curves are the analogous densities for ry; = 3r; 4. The
dashed gray curve in the right panel shows the density
when ry; = ry4y and ryy = rigco. One can also interpret
the curves in the right panel as being the result of evolving
the curves with the corresponding line styles in the left
panel from the same initial separation of ry; = ry4y
0 1y ¢ = risco-

This latter interpretation of the corresponding curves in
the two panels is useful for understanding what are suitable
initial starting radii that lead to a robust evolution of the
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Dark-matter density during and following the inspiral for different initial separations assuming no dynamical-friction feedback

and orbital evolution governed by radiation reaction only. In both panels, the binary began as two black holes with masses m; = 103M
and m, = 10M . The curves labeled “initial” are the initial dark-matter density in Eq. (2.1) for pg, = 226M/ pc? and ysp = 7/3. The
radius r 4, is shown with a vertical light-gray dotted line and the radii 3r, 4, and 10r, 4, are the dotted orange and blue vertical lines,
respectively. In the left panel, the two other curves of different colors and line styles (dashed-dotted orange and solid blue) show the
densities when the binary reaches the radius r, 4, after having inspiraled from different starting radii (3r; 4, and 10r, 4, for orange and
blue, respectively). This illustrates how the density at radii larger than r, 4, depends strongly on the initial conditions, whereas it does not
for radii smaller than r; 4, when the initial radius is larger than 3r; 4,. The right panel shows the density after the secondary reaches the
ISCO for the three initial separations of ry 4y, 3754y, and 10r, 4, (the dashed gray, dotted-dashed orange, and solid blue curves,
respectively). The figure is discussed further in the text of Sec. V B.
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binary and to what extent the final dark-matter distribution
is influenced by the choice of initial data (similar questions
were considered in [14] when treating dynamical-friction
feedback only). Since for initial radii with r; 2 3r; 4, the
dark-matter distribution when the binary reaches r; 4y
is nearly identical at radii with r < ry4, (and since the
evolution of the mass m5® in Eq. (2.12) depends on just
the local density of dark matter), then the calculations of
the accreted mass 1, (7, 4y) are not too strongly dependent
on the initial radius for r; 2 37 4,. The same is not true of
the dark-matter distribution after the secondary reaches the
ISCO. Comparing the orange and blue curves, the two
agree in a region of r < r;4,/2. Thus, there is a smaller
range of radii over which the final dark-matter distribution
is insensitive to the choice of initial conditions. This should
be kept in mind when interpreting Fig. 3.

Nevertheless, in these calculations that neglect dynami-
cal friction, secondary accretion has a very large effect
on the final dark-matter distribution, particularly at larger
radii, where the secondary undergoes more orbits before
inspiraling to smaller radii. The effect on the dark matter
near the ISCO (the left-side of the plots) is much smaller,
because radiation reaction causes the binary to inspiral very
rapidly there. Unlike dynamical friction, which has a larger
transient effect on the particles moving more slowly than
the local orbital speed, accretion by the secondary can
cause a more significant lasting change to the dark-matter
distribution. Moreover, Fig. 3 suggests that to model
accurately the final distribution of dark matter, it is
necessary to know the correct initial conditions of the
binary."”

The results shown in Fig. 3 should be interpreted with
some caution, however. First, as elaborated on in
Footnote 17, the different curves assume an improbable
formation scenario in which the binary appears at the initial
radius r,; without having inspiraled or been captured at a
larger radius. Second, the results neglect feedback from
dynamical friction, which we expect to be more efficient,
because of its lower post-Newtonian order in the evolution
equation for r,. In particular, this suggests that the feedback
from dynamical friction could redistribute particles away
from the locations in phase space where they are most
efficiently accreted by the secondary. Thus, the results in
Fig. 3 are likely overestimates of the influence of secondary
accretion on the distribution of dark matter after the merger.

As a result, we do not present results for m,../mi% in
this subsection, because without dynamical-friction feed-
back, the accreted mass in this case will certainly be greater

"The case of Iy = ry4y, for example, corresponds to a
scenario in which the binary “materialized” at the radius 7, 4,
in the initial density profile in Eq. (2.1) precisely four years from
merging without migrating in from some larger separation.
Similar statements hold for the other separations r,; that are
multiples of r; 4.

than when both types of feedback are included. However,
we will show the results for m,../m2, in Sec. VI A to help
explain some of the qualitative features of this ratio for
different primary masses.

We now turn to the self-consistent modeling of the
binary and dark matter including both dynamical-friction

and secondary-accretion feedback in the following section.

VI. RESULTS WITH BOTH TYPES OF FEEDBACK

We implement the new secondary-accretion feedback
term written in Eq. (5.6) by adding it to the
HALOFEEDBACK code. This allows us to solve the full
evolution equations in (5.6) with both dynamical-friction
and secondary-accretion feedback, when coupled to the
ODE with all terms in the evolution equation for i, and to
the evolution for the secondary’s mass, 71,. In the sub-
sections below, we focus on the impact of secondary-
accretion feedback in this context: in particular, how it
changes the number of orbital (or similarly, gravitational-
wave) cycles during the merger, influences the accreted
mass onto the secondary, and affects the dark-matter
distribution during (and after) the inspiral.

A. Gravitational-wave dephasing and accreted mass

To help compare with the simulations in Tables I and II,
we again evolve the same five primary and secondary
masses as in these tables, with the same initial dark-matter
density pg, = 226M/pc’ and yy, =7/3. We show the
results in Table III. The second column is the dephasing
between simulations with both DF and SA feedback
[where the number of gravitational-wave cycles with both
)

cycles

types of feedback is N /,..] and simulations with only

TABLE III. Two cases of dephasing, as well as normalized
accreted and enclosed masses for binaries including dynamical
friction and accretion effects. The configuration of the dark
matter and the binary are the same as in Table I. The second and
third columns show dephasing in two cases. The second is the
dephasing between simulations with both types of feedback and
with only dynamical friction feedback. The third compares both
types of feedback to a case with accretion without feedback and
dynamical-friction with feedback. The fourth and fifth columns
are the analogs of the same columns in Table II, but now the
accreted and dynamical enclosed masses are computed in
simulations with both types of feedback. The interpretation of
these numbers is given in the text of Sec. VI A.

m M) ANGD ANGIN  m/m mE/m,
103 500 2,100 0.2461 0.604
3% 103 800 700 0.1167 0.641
10* 500 100 0.0302 0.686
3% 104 200 100 0.0079 0.727
10° 200 0 0.0018 0.851
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dynamical-friction feedback. We denote this by ANS;]?S.

The third column shows the dephasing between calcula-
tions with both types of feedback and DF feedback with
accretion onto the secondary, but without feedback from
s
the accreted mass normalized by the enclosed mass in the
initial (static) halo, as well as the ratio of the mass enclosed
in the dynamical halo at a binary separation of r, 4, to the
static enclosed mass (for an initial separation of 37, 4, as in
the dynamical-friction feedback only simulations).

A few comments are in order about the results in
Table III, especially with regards to how the numbers here
compare with those in Table II. First, comparing the second
and third columns, it is clear that feedback has a relatively
small effect for primary masses larger than 10*M,
(g < 1073). However, for smaller m, neglecting feedback
can lead to an overestimate of the amount of dephasing by a
multiplicative factor of a few. Another noteworthy feature
of adding feedback is that the amount of dephasing peaks
at a mass ratio of around 3 x 1073, similarly to how the
simulations with DF feedback only have a maximum
dephasing at a mass ratio about ten times smaller. One
way to understand this behavior relies on an explanation
similar to that given to explain the peak dephasing that
occurs with DF feedback. As m; decreases, accretion
becomes more efficient and feedback becomes stronger.
At some point, it becomes so strong that there is a
significant depletion of the dark-matter density, which
causes the amount of dephasing to decrease (since the
effects of accretion on #, depend linearly on the density in
the differential equation). Likely due to the higher post-
Newtonian order of accretion, the peak mass ratio for the
dephasing takes place at a less extreme value than it does
with dynamical friction.

Comparing the values of the accreted and enclosed
masses in Tables II and III, respectively, one can similarly
see that feedback does have a relatively small effect for m,
greater than ~104M@- At larger mass ratios, the total
accreted mass is now well below one, but still a significant
fraction of the total enclosed mass. Thus, feedback plays an
important role in enforcing the conservation of mass and
in producing more reliable estimates of the amount of
gravitational-wave dephasing.

Next, in Fig. 4, we show the accreted mass normalized
by the enclosed (static) mass of the initial dark-matter
distribution for four different cases. First, the dark gray plus
signs are the visualization of the fourth column of Table III.
Second, the blue circles and dotted line are the same results
as in Fig. 2, which corresponds to accretion onto the
secondary with dynamical-friction feedback, but without
feedback from secondary accretion. Third, the dashed light-
gray curve is the case in which secondary accretion and its
feedback are taken into account, but dynamical friction is
neglected (as in Sec. V B). Specifically, the accreted mass

accretion (denoted AN, )). The final two columns are

E ——— Static
0 SA only
= 10 X e DF only
~ :+ ------ DF only fit
< 4 o
~— 1 +'- + DF and SA
221075
g ]
\
g 1 .
g 102 3 .
4 .".,‘
1073 | T T T T T || T T T T T ||
103 104 105
mi[Me ]

FIG. 4. The accreted mass m,. normalized by the enclosed
mass mn.(72.4y) for different types of feedback. The dark matter
and binary parameters are chosen as in Fig. 2, and the enclosed
mass is that of the initial power-law distribution, also as in Fig. 2.
The solid orange curve is the same as the { = 1 case in Fig. 1 with
gravitational radiation reaction and dynamical friction. The blue
circles and dotted line are the same as the dynamical-friction
feedback case in Fig. 2. The dashed light-gray curve corresponds
to including feedback from secondary accretion only, and the
dark-gray plus symbols are results of numerical simulations that
include both dynamical-friction and accretion feedback. Further
discussion of the implications of this figure are given in the text
of Sec. VIA.

was computed from the density ppy(r, ), which was
obtained by numerically integrating the analytical expres-
sion for the distribution function in Eq. (5.18) over
velocities. The accreted mass was then computed through
mass conservation. Specifically, the difference in the
enclosed dark-matter masses was computed when the
secondary is at a separation of r, 4, and when it reaches
the ISCO. The enclosed masses were computed by numeri-
cally integrating the density ppy (7, 7) from the inner radius
to an outer radius of 3073 4y; in fact, there was less of a
percent difference when the upper limit of the integral
was 30r; 4y or 10r; 4. Fourth, the solid orange curve is the
¢ =1 case with both dynamical friction and radiation
reaction in Fig. 1. It is provided primarily for comparison
with the dashed gray curve.

As suggested in Sec. V B, for larger primary masses,
simulations that include secondary-accretion feedback only
(no dynamical friction) overestimate the amount of accreted
mass, because dynamical-friction feedback makes part of
the dark matter density inaccessible to capture. This is
illustrated in Fig. 4, which shows how the SA only curve
remains above the DF only curve for larger m;, and in fact
approaches the static curve which is a result with no
feedback effects. Given that it agrees with these static
results near m; = 103M, this also suggests that feedback
from secondary accretion is negligible for these large
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primary masses. However, for primary masses close to
103 M, (mass ratios close to 1072), including only accretion
feedback leads to an accreted mass that significantly
deviates from the static case, and even is a factor of two
smaller than that from including only dynamical-friction
feedback. This indicates that modeling only dynamical-
friction feedback for these systems leads to an inaccurate
estimate of the accreted mass.

The combined effects of dynamical-friction and secon-
dary-accretion feedback on the accreted mass are shown by
the dark-gray plus symbols in Fig. 4. For the two larger
primary masses, the results are nearly indistinguishable
from those with only dynamical-friction feedback.
However, for m; = 104MO, a small difference can be seen,
and for m; = 10°M, using only dynamical-friction feed-
back leads to an overestimate of the accreted mass by
roughly a factor of four. Including secondary-accretion
feedback therefore proves important to obtaining accurate
estimates of the mass accreted and the impact of the
secondary’s inspiral on the dark-matter density after the
merger (which will be the subject of the next subsection).

Figure 5 shows how the gravitational-wave dephasing
accumulates as a function of frequency for three different
dephasing comparisons and for two different primary
masses; 10*My (left) and 10°M (right). The orange
(0-1)

cycles
between simulations with dynamical-friction feedback and

dot-dashed curve, which depicts the dephasing AN

16yr 8yr 4yr 2yr lyr 6mo 3mo

those in vacuum is similar to the curves in [14], though a
larger secondary mass m, = 10M, is used than that in [14]

for the corresponding primary masses m;. The solid blue

curves then show the dephasing ANcycle)5 between simu-

lations with both kinds of feedback and those with only
dynamical-friction feedback. Although AN ("2) is smaller

cycles

than AN iycle)b for all frequencies shown in the left panel of

Fig. 5 (and comparable or smaller for separations smaller
than ry 4, in the right panel), the slope as a function of

frequency is steeper than the slope of AN 1) This

cycles®
suggests that the effect of accretion with feedback behaves
like a more negative post-Newtonian-order effect than
dynamical friction with feedback.

This last statement is worth commenting on in more
detail, since for static halos, the opposite holds (the
dephasing induced by accretion is a less negative post-
Newtonian effect than that induced by dynamical friction,
which makes the accretion dephasing less steep as a
function of frequency than that of dynamical friction).
The key difference with feedback is that the different
densities that contribute to the evolution of r, from
dynamical friction (the local density of particles moving
slower than the orbital speed) and from accretion (the local
density without a restriction on speeds) have different
dependencies on radius. Because dynamical-friction feed-
back is more efficient, the local, effective density of more

32yr 16yr 8yr 4yr 2yr lyr 6mo 3mo

(0-1 1 0-1)
104 = o ANcycleq) 4 S~ i T A]Vc<ycles
E - A]\/vc(;cles?> 1 04 ] - AN(S;CIGSZ)
" 4 .\.\ (2-14 “ _E 2—1A
= i S Aj\/vcycles ) = ] A]\/véycles )
Z 103 < Z, 1
< ] \\.\ < 103 4
102 T T T _I3 T T T | T _.2 ()2 T T _I3 T T | T _2.""
5 x 10 102 2x10 6 x 10 102 2x10
few[Hz] faw[Hz]
FIG. 5. Difference in the number of gravitational-wave cycles versus gravitational-wave frequency in three cases for primary masses

of 10*M, (left) and 10° M, (right). Lefi: The initial masses of the black holes are m; = 10*M and m, = 10M,; the initial dark-matter
distribution has py, = 226M/ pc? and Ysp = 7/3. We show the number of cycles of dephasing in three different cases as a function of
(0-

cycles

the initial frequency fgw. which was computed using Eqs. (4.10) and (4.11). The dephasing curves shown are AN (vacuum minus

dynamical-friction feedback) as the dot-dashed orange curve, AN

the solid blue curve, and ANgCl]e:\)
dashed light-gray curve. The top axis shows the time it takes for the binary to inspiral to the ISCO in vacuum from the corresponding
frequency on the lower axis (with the vertical, dotted black line highlighting the four-year mark). Right: The same as the left, except

we start with a central black hole of mass m; = 103M,. Further discussion of the implications of this figure are given in the text
of Sec. VIA.

(dynamical-friction with feedback minus both feedback types) as

Cycles

(dynamical-friction feedback and accretion without feedback minus both types of feedback) as the
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slowly moving particles becomes a steeper function of
radius than both the initial density and the local density of
all particles (see [15]). Having the density be a steeper
function of radius makes the PN order of the effect less
negative. Even though dynamical friction feedback only
depletes the local density of more slowly moving dark
matter particles, the depletion from accretion feedback
(which depletes the local density of all particles, regardless
of speed) is still smaller. This then makes this effective
density less steep, and the dephasing induced by accretion a
more negative PN-order effect.

This also argues for describing dynamical friction or
accretion not simply in terms of powers of r, or frequency
f, butin terms of a PN order (the number of factors of 1/c?)
and a second small parameter, the enclosed mass ratio as
a function of radius, as discussed in Sec. IIB. In this
classification, the PN orders of these effects are fixed,
but the radial dependence of the enclosed mass ratio of all
particles or of only the more slowly moving particles
changes between the static and dynamic cases. This makes
it more apparent what is producing the difference in the
frequency dependence of the dephasing in these cases.

The dashed light-gray curve shows the amount of
dephasing with dynamical friction with feedback and
accretion without feedback from evolutions with both types
of feedback [i.e., ANZ2')]. For the 10*M, primary (left),

cycles
this dephasing is a factor of a few below the dephasing

AN

cycles®
overestimates the amount of dephasing, but not too

which suggests that not including feedback

........ Inltlal
. 1023 TN - DF only
m& SA only
\@ 1021 | —— DF and SA
= "k,
S T
=1 19 _| -l
= 10 ~
Q XN
QL -,
1017+ S
T T ||||||| T T ||||||| T T ||||||| T T—Trorrrl
107° 1078 1077
r[pc]

significantly. However, for the 10°M primary (right),
the dephasing ANg;]Lf)
A N(I—Z)

cycles®
important role. These gray curves are consistent with the
numbers in Table III, but they give a more detailed picture
of how the dephasing accumulates with frequency.

is significantly larger than

which suggests that feedback is playing an

B. Dark-matter density

In this subsection, we show the combined impact
of dynamical-friction and secondary-accretion feedback on
the dark-matter distribution. The results for dynamical-
friction feedback only were previously illustrated
in [14,15]; those for secondary-accretion feedback only
were shown in Fig. 3. In Fig. 6, we show all three cases (DF
feedback only, SA feedback only, and both DF and SA
feedback) to illustrate their respective impact on the dark
matter density.

Figure 6 shows the density as a function of position for
the three different cases of feedback (the solid blue, dashed
light gray, and dash-dotted orange curves) as well as the
initial density (the thick, black dotted curve) with pg, =
226M/pc® and yg, = 7/3, as before. The case illustrated
is a binary with primary mass m; = 10° M, and mass ratio
g = 1072; of the mass ratios that we considered, feedback
has the most pronounced effect on the dark-matter dis-
tribution for this case. The evolution of the binary begins
at a separation or 3r, 4, in both panels, but the density is
shown at two different times in the binary’s evolution.

........ Initial

. 1024 N, e DF only
m& SA only
102 4 N —— DF and SA
S 19 _| \“t:'.'::.

2 10 \lg"’..\

Q "~Z,\‘

SN .,

1074 2
T T IIIIII| T T IIIIII| T T IIIIII| T T—rrorl
107 1078 1077
r[pc]

FIG. 6. Dark-matter density during (left) and after (right) the inspiral for several different cases of feedback. Left: The binary started
with two black holes with masses m; = 103M and m, = 10My. The black dotted curve is the initial dark matter distribution in
Eq. (2.1) for pg, = 226M o/ pc? and Ysp = 7/3. The three other curves of different colors and line styles (dot-dashed orange, dashed light
gray, and solid blue) show the densities after the binary inspirals from 3r; 4, to r; 4y, under three different scenarios. The three colored
curves (orange, light gray, and blue) correspond to having only dynamical friction with feedback, only secondary accretion with
feedback, and both types of feedback, respectively. In all three cases, the binary evolution includes gravitational radiation reaction. In
addition, for the case labeled “DF only” dynamical friction is also included, for “SA only” accretion is included but not dynamical
friction, and for “DF and SA” all effects are included. The radius T4y is shown in the left plot with a vertical black dotted line, that
passes through the black star. Right: The same as the left, except the density is shown after the secondary reaches the ISCO. Further
discussion of the implications of this figure are given in the text of Sec. VIB.
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In the left panel is the density when the secondary has
reached the separation r, 4, (as indicated by the thin, black,
vertical dotted line and black star), and in the right panel is
the density when the secondary reaches the ISCO.

For both final radii, the curves with both types of
feedback are qualitatively more similar to those of secon-
dary accretion only at larger radii and of dynamical friction
only at radii closer to the ISCO (though in the left panel,
all three cases are much more similar to the initial density
at these smaller radii). In the regions where the solid
blue curves are less similar to the other two cases, the
density is at a value that falls somewhere between the
(typically) larger DF-only curve and the smaller SA-only
curve. This behavior of the density can be understood
qualitatively as follows. When the secondary is at a fixed
location, dynamical friction, in isolation, tends to increase
the density at larger radii and decrease it elsewhere.
However, as the secondary inspirals, regions that were
depleted of dark matter become partially replenished.
Secondary accretion, however, only depletes the dark
matter density and does not replenish it. Thus, as the
secondary inspirals, dynamical-friction feedback makes
some dark-matter particles inaccessible to accretion feed-
back, so that both feedback types together generally lead
to a density between that of the two feedback types in
isolation. At larger radii, the inspiral is slower, which leads
to a larger net decrease in the density, whereas at smaller
radii, the more rapid inspiral makes feedback less effective
(and thereby leads to smaller changes in the density).

In both panels, some caution should be taken in
interpreting the density at the larger radii illustrated in
these plots. The region of nearly constant density that is
present for only secondary-accretion feedback is sensitive
to the initial radius (as illustrated in the right panel of
Fig. 3). Thus, that the combined feedback case asymptotes
to the secondary-feedback-only case should happen
independently of the choice of the initial radius of the
secondary, but the specific value to which it asymptotes
will depend on the initial radius. While these figures
then capture the properties of the density qualitatively,
the quantitative features are sensitive to the choice of
initial data.

It is also worth commenting that in the left panel, the fact
that the density differs significantly from the initial density
in all three cases indicates the importance of starting the
evolution at 3r,4, so as to obtain “reasonable” initial
conditions for the evolution from r, 4, (Where gravitational-
wave emission would be strongest) that are more consistent
with an adiabatic inspiral from larger radii.

VII. DISCUSSION AND CONCLUSIONS

In this paper, we investigated the effect of accretion onto
the secondary in intermediate mass-ratio inspirals taking
place within dense distributions of dark matter. We showed
that previous calculations of the effects of the accretion on

the orbital evolution of the binary were overestimates for
some binaries, because they neglected the feedback from
dynamical friction and from accretion. Without any feed-
back, the amount of mass accreted onto the secondary
could exceed the mass enclosed within the secondary’s
orbit. When including feedback from dynamical friction,
the amount of mass accreted still could be of the same order
as the enclosed mass. This suggested that it would be
necessary to develop a method to evolve the dark-matter
distribution in response to the mass removed from the dark-
matter distribution via accretion.

We derived an approach to provide feedback to the dark-
matter distribution from the mass accreted onto the sec-
ondary, and we proved that it satisfies mass conservation.
After implementing this method, we showed that systems
without feedback do indeed overestimate the number of
gravitational-wave cycles of dephasing from systems that
include accretion onto the secondary but ignore feedback
from accretion. The amount of overestimation was largest
for the least extreme mass ratios and became less signifi-
cant at more extreme mass ratios. Once feedback from
accretion was included, the amount of dephasing induced
by accretion (compared to dynamical friction) was smaller
than that induced by dynamical friction (compared to
vacuum), although they were of the same order at the
least extreme mass ratios that we considered. In addition,
for the less extreme mass ratios, the effects of accretion
on the dark-matter density after the merger could
become more significant than those of dynamical friction,
particularly at larger distances from the binary’s initial
separation.

The frequency dependence of the dephasing induced by
accretion differed significantly between static and dynamic
dark-matter distributions. For static densities, dynamical
friction and accretion were negative post-Newtonian order
effects, with dynamical friction being the more strongly
negative. For dynamic densities with feedback, the effects
were still negative in their post-Newtonian order, but much
less so. In addition, accretion became the more negative of
the two effects (a steeper dependence on frequency than
dynamical friction). This relative reversal of roles could be
understood from the different properties of the enclosed
mass as a function of radius of the more slowly moving
particles (for dynamical friction) versus all particles (for
accretion).

There are several clear directions in which the method
outlined here could be extended or applied, some of which
relate to the modeling of the IMRI’s dynamics, others to
the modeling of the gravitational waves emitted by these
systems, and yet others pertaining to how well LISA could
measure the effects of accretion in the emitted gravita-
tional waves.

We begin with the aspects of the binary’s dynamics. First,
the work here specialized to circular orbits, for simplicity.
However, the formation mechanisms of these IMRIs with
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dark matter have not been explored systematically, and the
formation process is important in determining if the IMRIs
form with residual eccentricity or if they would circularize
once they reach the orbital separations for which LISA has
the best chance of detecting their emitted gravitational
waves. Given that EMRIs without dark matter are often
expected to be on eccentric orbits, it seems natural to
generalize the IMRI’s evolution equations to incorporate
nonzero eccentricity. Second, we used the leading
Newtonian-order effects to describe the equations of motion
of the IMRI. It would also be important to formulate a
relativistic description of the binary dynamics and the dark
matter, so as to have a more accurate description of the
binary’s motion. Third, we worked to only leading order in
the mass ratio. For IMRIs, particularly with less extreme
mass ratios, it could be important to include higher-order
terms in the mass-ratio expansion. Fourth, the assumption of
spherical symmetry was made in the evolution of the dark
matter; this should also be revisited. Finally, we assumed the
black holes were nonspinning, but it would be of interest to
consider spinning black holes, as well. Each of these five
topics would require significant new calculations, and are
beyond the scope of this current work.

These improvements in computing the orbital dynamics
of the binary would then make it possible to obtain more
accurate predictions of the emitted gravitational waves. In
the Newtonian limit, computing the waves can be done
using the quadrupole approximation to gravitational-wave
emission, and the results could be obtained straight-
forwardly from those presented in this paper (both in the
time domain or frequency domain). Obtaining more accu-
rate, fully relativistic waveforms, however, would be more

nontrivial, as radiation reaction influences the binary’s
orbital dynamics; thus, the waveform generation and binary
evolution equations are coupled and should be solved
simultaneously.

Developing accurate gravitational-wave predictions is a
necessary prerequisite for determining how well LISA
could measure the presence of dark matter in IMRIs
and, in addition, the effects of accretion. The former has
been investigated in [15] using Newtonian waveforms, but
the latter has yet to be studied. An important development
that allowed the detection and measurement prospects of
dark matter in [15] were approximate frequency-domain
waveform models that allowed the waveform to be evalu-
ated rapidly enough to do signal-to-noise calculations over
a wider range of the dark-matter parameter space and to do
parameter estimation. Similar waveform modeling would
need to be performed to do the equivalent calculations with
accretion included. Again, it would be more natural to start
with Newtonian-order calculations before generalizing to
fully relativistic ones.
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