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Abstract

We deploy an advanced Machine Learning (ML) environment, leveraging a
multi-scale cross-attention encoder for event classification, towards the identi-
fication of the gg — H — hh — bbbb process at the High Luminosity Large
Hadron Collider (HL-LHC), where h is the discovered Standard Model (SM)-
like Higgs boson and H a heavier version of it (with my > 2my). In the
ensuing boosted Higgs regime, the final state consists of two fat jets. Our
multi-modal network can extract information from the jet substructure and the
kinematics of the final state particles through self-attention transformer layers.
The diverse learned information is subsequently integrated to improve classifica-
tion performance using an additional transformer encoder with cross-attention
heads. We ultimately prove that our approach surpasses in performance current
alternative methods used to establish sensitivity to this process, whether solely
based on kinematic analysis or else on a combination of this with mainstream
ML approaches. Then, we employ various interpretive methods to evaluate
the network results, including attention map analysis and visual representation
of Gradient-weighted Class Activation Mapping (Grad-CAM). Finally, we note
that the proposed network is generic and can be applied to analyse any pro-
cess carrying information at different scales. Our code is publicly available for

generic use'.

1]lttps://githul).com/A Hamamd150/Multi-Scale-Transformer-Encoder.
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1 Introduction

Information about jet identification provides powerful insights into collision events and can
help to separate different physics processes originating these. This information can be
extracted from the elementary particles localized inside a jet. Recently, various methods
have been used to exploit the substructure of a jet to probe new physics signatures using
advanced Machine Learning (ML) techniques [1-5].

Conversely, using the reconstructed kinematics from the final state jets for event classi-
fication spans the full phase space and exhibits large classification performance [(—15]. Such
high-level kinematics (i.e., encoding the global features of the final state particles), possibly
together with the knowledge of the properties of (known or assumed) resonant intermediate
particles, remains blind to the information encoded inside the final state jets.

A possible way to extract information from both jet substructure and global jet kine-
matics is to concatenate the information extracted from a multi-modal network [19-24].
However, such a simple concatenation leads to an imbalance of the extracted information,
within which the kinematic information generally dominates [25].

In this paper, we present a novel method for incorporating different-scale information
extracted from both global kinematics and substructure of jets via a transformer encoder
with a cross-attention layer. The model initially extracts the most relevant information
from each dataset individually using self-attention layers before incorporating these using
a cross-attention layer. The method demonstrates a larger improvement in classification
performance compared to the simple concatenation method.



To assess our results, we analyze the learned information by the transformer layers
through the examination of the attention maps of the self- and cross-attention layers. At-
tention maps provide information about the (most) important particles the model focuses on
when classifying signal and background events. However, they cannot highlight the region
in the feature (e.g., phase) space crucial for model classification. For this purpose, we uti-
lize Gradient-weighted Class Activation Mapping (Grad-CAM) to highlight the geometric
region in the n — ¢ (detector) plane where the model focuses on classifying events.

We test our approach for the dominant decay channel of Higgs boson pairs with Stan-
dard Model properties (hh) produced at the LHC, that is, into four b-(anti)quarks. This
signal has historically proved to be extremely challenging to extract owing to a significant
QCD background. Lately, there have been several attempts to tackle this signature us-
ing both standard [26-28] andML [29] approaches. Furthermore, in the case that the hh
intermediate state emerges from the (resonant) decay of a heavier Higgs state (H), the
kinematics becomes very challenging, as each of the two would-be (slim) b-jets produced by
the two h decays actually merge into one (fat) jet, as the two h states can be very boosted.
The final states in the detectors little resemble the primary parton kinematics of the un-
derlying physics in such case. Finally, we assume the HL-LHC collider environment. This
offers another challenge of increased presence of tracks in the final state not emerging from
the aforementioned hard scattering and subsequent parton-to-jet dynamics, e.g., pile-up,
soft underlying event, multi-parton scattering, etc.

The plan of this paper is as follows. In the next section, we describe the basics of a
transformer encoder. Then, in Sect. 3, we introduce the physics process that we use as an
example. Then, we present our numerical results. In Sect. 5, we interpret the classification
results using various methods. The Sect. 6 is for conclusions. The details of our network
structure can be found in the appendix.

2 Transformer encoder

Transformers were originally proposed as sequence-to-sequence models for machine trans-
lation [30]. The main ingredient of the original transformer model is the encoder-decoder
block. However, the models using encoder block only often appear for event classification
analysis at the LHC. [31-33]. Inherited by the word tokens in the original transformer
model, transformer encoders are used to analyze events in terms of clouds of particles for
High Energy Physics (HEP) analysis[34, 35]. Particle clouds represent the final state parti-
cles as a permutation invariant sequence of particles. Such a representation has the ability
to share the advantages of particle based representations, especially the flexibility to include
arbitrary features for each particle.

The motivation to apply transformer encoders to particle clouds stems from their inher-
ent ability to model interactions between particles irrespective of their spatial proximity. By
leveraging self-attention mechanisms, transformer encoders enable each particle to dynami-
cally weigh the influence of other particles within the entire cloud, thus capturing both local
and global dependencies. This can potentially revolutionize the analysis of HEP systems,
in particular, by offering a more holistic understanding of their behavior and interactions.

Understanding the scientific operation of transformer encoders in the context of particle
clouds requires diving into the core components of these models. At the heart of the
transformer architecture is the attention mechanism, an algorithm that allows the model
to focus on different parts of the input sequence when making predictions. An attention
mechanism operates by assigning attention weights to different particles based on their
relevance to the current particle being processed. This allows the model to consider global



relationships and dependencies, enabling it to capture emergent behaviors, interactions,
and patterns that may not be apparent in filter based methods, e.g., Convolutional Neural
Networks (CNNs), which mainly extract the local information.

2.1 Attention mechanism

The attention mechanism is an essential component of transformer models, playing a crucial
role in capturing information and dependencies amongst particles. In the transformer archi-
tecture, the attention mechanism enables the model to focus selectively on different parts of
the input sequence, allowing for the modelling of complex relationships and dependencies.
In general, the attention mechanism operates by assigning different weights to different
elements in the input sequence, emphasizing the more relevant parts while downplaying the
less relevant ones?. The attention mechanism broadly span two types, as follows.

e Self-attention is a more advanced form of attention where the model attends to
different positions in the input sequence to weight their importance concerning the
current position. In the context of the transformer model, self-attention allows each
element in the sequence to attend to all other elements, capturing both local and global
dependencies. Attention scores are calculated used to combine the values associated
with different positions linearly. The self-attention mechanism enables the model to
consider the entire context, making it particularly effective for tasks where long-range
dependencies are crucial.

e Cross-attention extends the self-attention mechanism to handle input sequences
from different sources. In the transformer architecture, it is often used when process-
ing pairs of sequences of different structures. Cross-attention allows each element in
the first sequence to attend to all other elements in the subsequent sequence. This
facilitates modeling the relationships between different modalities or extracting the
relevant information from sequences with different scales.

Consider the input data sets (x;,x;) that have first been passed by a linear fully con-
nected NN layer to generate the weight matrices as follows:

QZ':WQ-QJZ', Kj:WK-mj, Vj:WV'xja (1)

where K, (Q and V are called key, query, and value vectors, respectively, and used to compute
the attention to the whole data set.
Scaled dot-product attention can then be defined as

QZKJT> _ exp(Q; - KT /V/d)
Vd Y, exp(Qi - KT /Vd)’

while the attention output is computed as a weighted sum of the attention scores as follows:

J

(2)

aj; = softmax (

This is called self-attention if the attention is computed for the same data set, i.e., x; = x;.
In contrast, if the two input data sets differ, i.e., x; # z;, it is called cross attention.

At its basic level, each transformer layer includes a multi-head attention, which com-
bines different attention heads, allowing for a parallel multi-dimensional processing of the

2Dropping the less informative instances from the data can rectify the sparsity problem when using CNNs
to analyze jet images.



inputs. The multi-head attention is a key innovation in the transformer model architec-
ture, enhancing the expressive power and capturing complex patterns in data by allowing
the model to attend to different aspects of the input sequence simultaneously. Therefore,
this mechanism eases the understanding of varied and subtle connections within the data,
offering a more thorough representation.

As explained, a single set of attention weights is computed for the entire input sequence.
Multi-head attention extends this concept by employing multiple attention heads, each
responsible for learning different aspects of the relationships within the data. Each attention
head independently processes the input sequence, producing a set of output values. These
outputs are then linearly combined to form the final output of the multi-head attention
layer.

Mathematically, if h represents the number of attention heads, and head; denotes the
ith attention head, the output O is obtained by concatenating the outputs of each attention
head and linearly transforming these:

O = CONCAT (head;, heads, - - - heady) W°, (4)

with W the learnable linear transformation matrix. This enables the model to capture
different aspects of relationships and dependencies simultaneously.

The choice of the number of attention heads, denoted as h;, is a crucial hyperparameter
in designing a transformer model. Increasing the number of attention heads has several
implications, such as enhancing the model’s capacity to capture complex relationships.
It is also important to mention that a higher number of attention heads also increases
computational complexity. Training and inference times and memory requirements could
increase. Therefore, the number of attention heads should be balanced based on the task
requirements and available computational resources.

In this particular context, we present an innovative methodology aimed at integrating
inputs characterized by distinct scales within a multi-modal transformer model featuring
cross-attention layers. The schematic representation of the network architecture is shown
in Fig. 1. Considering the specific case of the HEP process to be studied at the LHC,
gg — H — hh — bbbb, the model dynamically adjusts three streams through self-attention
transformer layers, each devoted to analyzing the leading jet, second-leading jet and the
reconstructed kinematics, respectively. At this juncture, the model independently extracts
pivotal information from each data set, leveraging self-attention mechanisms before their
collective processing through a cross-attention layer.

The main role of the cross-attention layer is to extract the local jet substructure infor-
mation effectively and incorporate it into the extracted kinematic information. Notably, the
adaptability of the cross-attention layer in merging information from one data set into an-
other affords flexibility in determining how to integrate the extracted information, providing
the option to accentuate jet information for enhancing kinematics. Once the most relevant
pieces of information from the data sets are extracted and combined via the cross-attention
layer, we feed the output to fully connected NNs to analyze the captured information and
compute the classification probability. The inclusion of self-attention layers in the model
holds significance, as it allows for the independent extraction of the most relevant informa-
tion from each data set prior to their amalgamation using the cross-attention mechanism.
This characteristic makes the model proficient in analyzing multi-scale data characterized
by intricate structures.
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Figure 1: Structure of the transformer model used. Here, Pj1, Pj2 are the number of the
leading and second leading jet constituents while the P,,’s are the reconstructed particles,
j1, 72, and H. Also, MHSA stands for multi-heads self-attention layers, and MHCA stands
for multi-heads cross-attention layers. Finally, the A;’s are the number of the used trans-
former encoders. The transformer layers are stacked and work sequentially, as pointed out
by the black arrow.

3 Physics example

We undertake the analysis of SM-like di-Higgs boson (hh) production at the HL-LHC with
an integrated luminosity of 3000 fb~! within the framework of the 2HDM. In the boosted
regime, where the di-Higgs boson is produced from an on-mass-shell heavy Higgs, H, the
final state features two fat jets, as illustrated in Fig. 2 by the two red cones therein.

Figure 2: Feynman diagram for the signal process.

Therefore, to start with, in this section, we provide a brief review of the 2HDM with
type-1I Yukawa couplings focusing on the aspects that are relevant to our analysis. We then
describe the strategy behind our numerical analysis, together with its constituent elements,
i.e., the event generation and detector simulation procedures, as well as the signal and
background properties, in terms of the overall kinematics and internal dynamics of jets.



We adopt different transformer encoder configurations to analyze the kinematics and jet
substructure individually and efficiently combine the information from both of these.

3.1 The 2HDM

The 2HDM is an extension of the SM through a second SU(2); Higgs doublet with the
same quantum numbers under the SM symmetry gauge group [30, 37]. The most general
2HDM Higgs potential is given by

Vo = mi1(6]61) +my(ohen) — [miy(o]62) +hec.|
+ A1(@101) + Ao (6h62)” + Aa(@11) (9h2) + Aa(¢l2) (D)) (5)
+ % {)\5(¢1¢2)2 + {)\G(QZ)];QSl) + A7(¢;¢2)] (&1 o) + H.c.} '

The potential structure allows for Flavor Changing Neutral Currents (FCNCs) at the
tree level, which is strongly constrained by experimental measurements. Applying a global
Zy symmetry to the scalar potential, with (¢1, ¢2) — (¢1, —¢2) transformations, prevents
the existence of such FCNC sources [38]. However, the most general Yukawa interaction
violates such a Zo symmetry, thus leading to potential FCNCs at the tree level, as pointed
out in Ref. [39]. Therefore, to tame the latter, only specific Yukawa structures, known
as Types [30], are allowed. Yet, to enable Electro-Weak Symmetry Breaking (EWSB)
consistent with the measured particle spectrum of the SM, a softly broken Zs symmetry
should eventually be enabled by requiring a small but non-vanishing term m%Q(ﬂqﬁg) and
setting A = A7 = 0. (Herein, softly means that the model still respects the Zy symmetry
at small distances through all orders of perturbation theory.) The soft mass m?, and \s
are in general complex, though [10, 11]. In the following, we will consider a real potential
that thus preserves the CP symmetry, IM(m3,) = Im(A5) = 0. In such a configuration of
the 2HDM, then 7 independent parameters remain, which are the \;’s, with ¢ = 1,...5,
tan 3 = vy /v1® and m2,, from which the physical parameters, i.e., Higgs boson masses and
couplings, are obtained, with the constraint that one of the two CP-even Higgs fields should
be the discovered one with mass of 125 GeV or so (which in our case is the h field). Finally,
as mentioned already, we restrict our study to the Type-II among the possible Yukawa
structures.

The tree level mass matrix squared for the Higgs fields can be obtained as

: (6)

hi,]’:()

oV,
(MQ)U - 8h,~8¢;zj

where the h;’s (i = 1,...,4) are the four components of the complex doublet fields. Upon
EWSB, three physical neutral scalars are obtained after diagonalizing the corresponding
mass matrices, as intimated, two CP-even (scalar) ones (h, H) and a CP-odd (pseudoscalar)
one (A), with masses given by

1
M = 5 [x% G T 0 — 32 + 402 (7)
2m?2
2 12 2
- “A 8
A= Gin2g ~ Y (8)

3With vy and vz being the Vacuum Expectation Values (VEVs) of the two Higgs doublets.



with

Xi1 = miytan B + 2M10” cos® 3, 9)

X39 = M3y cot B + 2X9v? sin 3, (10)
1

XTp = —miy + 50\3 + A+ As)v”sin 28, (11)

where the VEVs satisfy the relation v = /vy + vs (with v being the SM one)*.

To stay with the neutral Higgs sector, the imposed CP conservation only allows for
tree level couplings between two massive gauge bosons and the CP-even Higgs states, while
the CP-odd Higgs state can only couple to a gauge boson and a CP-even Higgs one. Fur-
thermore, all neutral Higgs states can couple to fermions. The coupling strength of the
neutral Higgs bosons to both matter and forces are parameterized in terms of tan S and
another parameter, «, which is the mixing angle between the CP-even Higgs states [30].
Furthermore, the triple scalar coupling is independent of the Yukawa structure and is given
by [12]
€ Cl—a

m |:<2m% + m%{)SQQSQB + (38204 — SQﬁ)m%2j| s (12)

A(Hhh) = —
where e is the electric charge and s, ¢ are the sin and cos of the given angle.

The 2HDM free parameters are constrained from various theoretical considerations and
experimental observations, as described in [13]. Thus, profiting from the scan results per-
formed therein, we adopt four Benchmark Points (BPs), with mg = 600, 800, 1000, and
2000 GeV, that satisfy all the current bounds. In Tab. 1, we show the parameters values
of these points while the last column shows the production cross section op0q of our target
process (prior to the two h — bb decays) at /s = 14 TeV.

Table 1: Input parameters for our four BPs. The last column shows the production cross
section for the process gg — H — hh.

ma[GeVl A1 | A2 | Az | A4 A5 tan 3 | m?,[TeV?] | cos(B — a) | oproalfb]
600 1.801 0.23| 1.75| —2.06 | —1.09 | 5.00 —78.97 0.31 0.86
800 3.201 0.25] 1.75| —2.06 | —1.29 | 4.00 —128.91 0.33 0.375
1000 1.0 | 0.16| 3.50| —2.06 | —1.49| 3.00 —302.92 0.37 0.11
2000 1.0 | 0.14| 2.75| =1.06 | —1.97 | 5.00 —889.05 0.32 0.024

3.2 Analysis strategy

With the theoretical setup clarified, we now proceed to a phenomenological study of di-
Higgs boson production, focusing on final states with two boosted fat jets. We align our
analysis with the boosted analysis presented in the latest ATLAS paper [14]. The primary
background contamination arises from QCD multijet processes, specifically pp — j7jjj, con-
tributing an estimated 90% of the total background, while the di-top process tt contributes
at the 10% level. Other background processes, including SM h, hh, and EW di-boson pro-
duction, have been assessed to make negligible contributions to the selected event yields,
therefore, they are not included in our analysis. Given that BSM di-Hggs events suffer from
huge background contamination and it is not trivial to extract the signal information, we
employ various configurations of transformer encoders for this analysis.

“The other two Higgs states emerging from the 2HDM after EWSB are charged and are denoted by H™.



Commencing with the analysis of the global information encoded in the high-level recon-
structed kinematics of both the signal and relevant background events, we employ a trans-
former encoder with multi-head self-attention to optimize the separation power between
signal and background events. However, the presence of similar (to the signal) kinematic
structures in some background processes poses a challenge to the classification efficiency of
this network. Additionally, the substantial cross section of the background events dimin-
ishes signal significance, even after optimizing the cut on the output score. To enhance
the network performance, one may consider applying initial cuts on certain variables before
inputting the distributions into the network, aiming to amplify the signal and suppress the
backgrounds. In this analysis, we adhere to the pre-selection cuts outlined in [11], requiring
two fat jets with a double b-tagging each. Moreover, each event must have at least two
fat jets with radius R = 1.0 and pT" > 450 GeV for the leading jet and pT' > 250 GeV
for the second leading jet. Each of the two fat jets is required to have a pseudorapidity
In(J)| < 2.5, a lower mass cut of m(J) > 50 GeV, and a mass window of 200 GeV is applied
for the my reconstruction for my < 1 TeV and relaxed for higher masses to allow for more
statistics. Unlike the ATLAS analysis, we do not consider pile-up effects in this analysis.

In addition to the global kinematical variables, we can utilize jet substructure of the
jets to distinguish between signal and background events. This naturally arises from the
fact that jets initiated by different particles exhibit distinct characteristics. While heavy
boosted particles, such as W*, Z and Higgs bosons, can result in jets with a distinctive
multi-prong structure, quak and gluon jets are unlikely to have such structure. Furthermore,
the boosted color singlet particle is isolated in color flow, therefore two b jets from higgs
decay is color connected only among themselves unlike QCD jets.

Consequently, the features of the parent particles can be inferred from the structure of
the jet constituents. This information enables the recovery of various local details about
events from different processes, serving as a discriminating variable between signal and
background events. The study of jet substructure to identify the parent particle initiating
a jet, thereby Distinguishing jets initiated from heavy boosted particles from QCD jets was
introduced in [15-58] (and references herein). Recently, improvement on jet identification
continued by using ML methods for jet image analysis [59—(7], graph based analysis [68-70]
or sequence based analysis [71-70]. Exploiting the jet substructures of the Higgs jets to
discriminate between signal and background events, In this paper, we especially employ a
multi-modal transformer encoder with self-attention multi-heads to analyze the jet contents.
The different modalities are designed to extract information from the leading and second-
leading jet contents in parallel before a simple concatenation is performed for classification
purposes. Without cross attention to the high-level kinematical variable discussed next,
the classification performance is based solely on the information localized inside the fat jet.

Integrating inputs of varying scales encompassing both kinematics and jet substructure
information, we utilize a multi-modal transformer encoder equipped with three streams and
cross-attention head. The first and second streams process information from the leading
and second-leading jet contents. Each of them features a transformer encoder with self-
attention heads. Once important features are extracted from the jets, they are aggregated
in an addition layer. The third stream, dedicated to high-level kinematics, employs a
transformer encoder with self-attention heads. The output from the addition layer and
the final layer of the third transformer are fed into a cross-attention layer. This cross-
attention layer is pivotal in connecting information extracted from the jet constituents to
the corresponding kinematics, enhancing the overall classification performance. To elucidate
the impact of the cross-attention layer, we introduce a fourth model wherein we substitute
the cross-attention layer with a straightforward concatenation layer.

For events simulation, we use MadGraphb [77] to estimate multi-parton amplitudes and



to generate signal and background events for subsequent processing. Background processes
are computed at Leading Order (LO) while the Higgs production from gluon-gluon fusion is
calculated at Next-to-LO (NLO) in QCD using an effective coupling calculated by SPheno
[78, 79]. PYTHIA [30] is used for parton shower, hadronization, heavy flavor decays, and
for adding the soft underlying event. The DELPHES package [31] is used for detector
simulation. DELPHES parameterizes the detector response, including tracks, calorimeter
deposits, and high level objects such as isolated electrons, jets, taus, and Missing E7 (MET).
We use the default ATLAS card for resolution, but the (fat)jets are reconstructed from
the Eflow objects combining tracks and calorimeter information. The tt background is
simulated at LO and up to two more jets with the matching scale 20 GeV via the MLM
method [32, 83]. Fat jets are clustered using the anti-kr algorithm [$4, 85] with cone radius
R =1 and, to ensure further suppression of pile-up noise, jet trimming is performed [30].

3.3 Data pre-processing

Particle clouds enable configuring diverse data into the network, emphasizing the permuta-
tion symmetry of inputs to yield a promising representation of jets. Initially, we pre-process
the data sets for the leading and second-leading jet contents up to 50 constituents each.
The particles are arranged in descending order based on their transverse momentum. For
events with fewer constituents, the remaining positions are padded with zeros, ensuring
conformity with the stipulated count®. For each instance of the jet contents we store 4 fea-
tures: pT,n, ¢ and log Pﬁit) [35]. Fig. 3 shows the four features averaged over the number
of jet contents for 10000 events of the leading jet (left) and second leading jet (right).
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Figure 3: Left: distributions for the averaged constituents of 10000 leading jets. Right:
distributions for the averaged constituents of 10000 second leading jets. Signal distributions
are for the BP with my = 1 TeV.

To optimize the network discriminative accuracy, it is imperative to pre-process the jet
contents, ensuring the manifestation of a multi-prong structure specific to signal events.
For this purpose, the following transformations are applied before inputting the data into
the network.

o Translation Jet contents are shifted in the n — ¢ directions such that the jet axis is
at the center of the n — ¢ plane.

« Rotation Rotation is executed to mitigate the stochastic nature inherent in the
decay angle concerning the (n — ¢) coordinate system. This alignment is achieved in

SWe stress here that we use an attention mask such that the network performance is not affected by the
padded events[30)].
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a comprehensive manner by ascertaining the principal axis of the original data and
subsequently rotating the image around the jet-energy centroid. This rotation ensures
that the principal axis consistently aligns vertically. The rotation transformation is
performed by first computing the leading eigenvector of the covariance matrix as the
principle axis of the jet. A rotating angle, 6, is then defined as arctan2 (%)v with
x1,xo are the first and second components of the eigenvector respectively. Finally,
the rotating angle is used to rotate the (7 — ¢) coordinates of the jet constituents to
new non-physical coordinates, (7' — '), in which the principle axis of the jet is always
vertical.

« Flipping Jet constituents are reflected over the vertical axis such that the right side of
n’ always has the highest momentum. This ensures that the hardest radiation always
appears in similar locations, which can be exploited to enhance the classification
performance.

After pre-processing transformations, input data sets for the leading and second leading
jets have the dimensions of (n,50,4), where n is the number of events, 50 is the number of
jet constituents, and 4 is the number of pre-processed features.

PP
M- e

Figure 4: For illustration purposes, we show the accumulated average of 50000 pr distri-
butions of the leading (second leading) fat jet contents in the upper raw (lower raw) after
pre-processing steps for both signal and backgrounds. The signal events (left) are simulated
for the BP with my = 1 TeV and shown against the yield of the jjj;j (center) and ¢t (right)
background events. Here, X and Y ticks indicate the bin in 1 and ¢ direction.

Fig. 4 presents the cumulative average of 50000 pr distributions for both the leading
(upper row) and second-leading (lower row) jets. The impact of pre-processing transfor-
mations is evident in revealing the multi-prong structure characteristic of signal events,
wherein the leading and second-leading subjets are localized in specific regions within the
(7 — ¢') plane. In contrast, subjets from QCD multi-jets exhibit a broad energy range,
lacking a discernible prong structure. Conversely, tt events show a distinct three-prong
structure attributable to the fully hadronic decays of the top quark. Notably, despite the
multi-prong structure in ¢t background events, their contribution to the overall background
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is merely 10%. We will see later that background rejection efficiency is high, therefore tt
background can be important to estimate the accessibility of the signal.
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Figure 5: Kinematics distributions of 10000 events for the signal BP with my =1 TeV and
the corresponding backgrounds after applying the pre-selection cuts.

The kinematics data sets have dimension (n, 3,6) with n as the number of events, 3 as
the number of reconstructed particles, leading, second leading jet, and heavy Higgs, and 6
as the number of the kinematic variables for each reconstructed particle. The 6 kinematic
variables are mass m, pr, 1, ¢, and energy of the jet E and the rotation angle of the
jet 6. Note that we assign 5 inputs corresponding to the 4 momenta of the jet. Because

12



of the kinematical constraints p> = m? and py = pj1 + pJo, there are only 8 physically
independent observable among 15 kinematical inputs. These additional inputs help the
network to figure out relevant features for the classification.

Fig. 5 shows the normalized kinematic distributions for the signal point with mgy = 1
TeV and backgrounds. In addition to the reconstructed high-level kinematics, we incorpo-
rate the 6; distributions for the leading and second-leading jets (but not the heavy Higgs),
which are the rotating angles of the leading and second leading jet contents.

Incorporating the different data sets as input to the different networks as follows, inputs
to the first and second transformer encoders has the dimensions of (n,50,4). In contrast,
the input to the third transformer encoder has the dimension of (n,3,6). To enhance the
network performance in reaching a global minimum of the loss function, all inputs are
normalized using the so-called ‘Standard Scaler’ [37]. Once the data sets are pre-processed,
we stack signal and background events in each data set separately, attaching labels of
Y = 1 for the signal events and Y = 0 for the background events. During the training
of the network, the model tries to minimize a categorical cross entropy loss function by
minimizing the difference between the model prediction and the assigned labels. In this
analysis, we use equal size data sets for signal and background events for training with 1
million events® and 100000 event for test.

4 Results

We now present the analysis results for probing the signature of the heavy scalar in the
process of boosted di-Higgs boson production, gg — H — hh — bbbb, at the HL-LHC with
integrated luminosity of 3000 fb~!. The discriminating power of each network will measure
how well the signal and background may be characterised through their different features,
all entangled together into several kinematic distributions and jet substructure information.
For this purpose, we utilize four different attention based transformer models which analyze
the reconstructed high level kinematics or the jet substructures individually via transformer
encoders with self-attention mechanism. Alternatively, we adopt two multi-modals trans-
former encoders to analyze the combined information of kinematics and jets substructure.
In the latter, we incorporate the different information using a simple concatenation layer
or cross-attention layer. A full description of the used networks is in Appendix A.

The classification performance of the utilized networks is presented in Fig. 6. In the
left plot, we showcase the ROC for the employed networks for a signal with mpy = 1
TeV. The multi-modal transformer encoder with cross-attention layers demonstrates the
best performance, achieving an Area Under the Curve (AUC) of 98.8%. In contrast, the
transformer encoder trained solely on the jet substructure information exhibits the lowest
performance with an AUC of 84.4%. It is crucial to highlight the impact of the cross-
attention layer, which enhances performance by 7% over the transformer model trained
exclusively on kinematic information. Replacing the cross-attention layer with a simple
concatenation layer results in a degradation of classification performance by approximately
~ 4%, as depicted by the green line in the plot.

In the right plot, we present the 95% upper limit on the production cross-section at
the HL-LHC for heavy scalar mass ranges between 600 — 2000 GeV. The dashed black line
represents the limit for the ATLAS analysis [14], with linear scaling of the integrated lumi-
nosity to 3000 fb~!. For lower masses, my < 1 TeV, all the used transformer models show
enhanced performance over the ATLAS analysis, exhibiting over 10 times better sensitivity.

SA major problem in any attention based transformer model which exhibits larger classification perfor-
mance with larger size training set.
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Figure 6: Left: The Receiver Operating Characteristic (ROC) curves for the four networks
for the signal BP with my = 1 TeV. Right: 95% upper limit on the total cross section for
the process gg — H — hh (having factored out the SM-like h — bb decays) at the HL-
LHC with integrated Luminosity 3000 fb~! for different ML analyses. The band for each
plot represents the upper and lower values for 5 independent training of different randum
number seeds, and the middle line represents the central values. The ATLAS limits are
extracted from the latest analysis in [11] and linearly scaled to the integrated luminosity of
3000 fb1.

For larger masses, for which the reconstructed kinematics of the signal are faithful to its
true structure with vanishing background events, the performance of the transformer mod-
els saturates. In fact, for the limit, e.g., myg = 2 TeV, the background events can be easily
removed with a simple cut on the reconstructed distributions of the signal events, which
exhibits a clear difference from the background distributions. The transformer network
trained on the jet constituents only does not show a large impact with varying the heavy
scalar mass.

The network performance is subject to training uncertainty and the statistical uncer-
tainty coming from limited training and testing samples. For example, the network perfor-
mance can be influenced by the the random partitioning of the training and test data sets,
and the network performance varies when repeating the training and test steps with new
splits. We repeat the experiment for k times and report the results as bands between the
highest and lowest values. In our results, we use k = 5, and the bands represent the values
of the different represented experiments.

As for optimizing the signal-to-background yield, we enforce a cut on the networks
output score to keep only 20 events of the background. With this choice, we alleviate
the statistical errors that may occur for lower background[$8]. The optimized signal and
background events are used to derive the upper limit using the following formula [39]

(Ns + No)(No +03) ~ Nf (1 + 02N, 1/2 )
NbQ-i- (NS—FNI,)O'I? O'g Nb(Nb—i-Ug) ’

74 = [2 ((NS + Ny)In

with N and N, being the number of signal and background events, respectively, and where
op characterizes the uncertainty in the background events chosen to be the conservative
value of 10% given by ATLAS analysis[90]. In this approximation, one expects to exclude
regions with a total significance of Z4 > 2.

4.1 The influence of cross-attention

To evaluate the impact of the cross-attention layer on the classification performance, Fig. 7
presents the attention output, as defined in Equation 3, for both the multi-modal trans-
former with cross-attention trained on kinematics plus jet constituents and the transformer
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Figure 7: Top: output of the self-attention layer when trained on kinematics only. Bottom:
output of the cross-attention layer when trained on kinematics and jet information. Atten-
tion output has the dimensions of (reconstructed particles x features), and for both plots
we use 10000 test events and average over the features for the background and the signal
point with mpy =1 TeV.

network trained on kinematics only. In both networks, the attention output has dimensions
of (3,6), where 3 represents the reconstructed particles (leading, second-leading jet, and
heavy Higgs), and the last dimension accounts for the utilized features. We stress here that
in the network structure shown in Fig. 2, we adjust the Query matrix to be the output
of the transformer layers for the jet constituents. In contrast, the Key and Value matrices
are the output from the transformer layers for the kinematics. Accordingly, the output of
the cross-attention layers has the same dimensions as the kinematics dataset. In principle,
we have the freedom to choose whether to add the jet information to the kinematics by
fixing the assigned Query, Key, and Value matrices, but we opted to incorporate the jet
information into the high-level kinematics.

Fig. 7 displays the distributions of the attention output for each particle individually
and averaged over the used features. The top row shows that the attention output for signal
and background events using a transformer encoder trained on kinematics only. Conversely,
when the information of the jet constituents is included using the cross-attention layer, the
attention output distributions for background events are broader, and the signal distribu-
tions are narrower. The fact that background jets lack a multi-prong structure with broader
soft radiations influences the attention output for background events, increasing the output
variations in the feature space.

Finally, we include, alongside the described kinematical information, also the rotation
angle 0 aligning the fat jet axis to the ¢ direction after shifting the jet  and ¢ to the center
of the 7 — ¢ plane. This information allows the network to reconstruct the full events and
access the correlation of the jet shape to the other fat jet and the beam axis. In Fig. 8§,
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we show the ROC curve of the network trained without the # inputs (red) compared to
the ROC curve of our coss-attention model (blue). The improvement on the background
rejection is a factor of four for a signal efficiency of 80%. Therefore, including 6 results in a
drastically increased performance. The model with 6 has higher efficiency at mj, ~ my, and
pr ~ "L, In short, the model can focus more on the H — hh kinematics with 6 inputs.
We also looked for simple correlations among 6 and the other kinematical variables, such
as 1y ¢z, but did not find any apparent ones contributing to the selection improvement.
(The correlations within the internal structures of the jet will be investigated in future
publications.)
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Figure 8: left) The ROC curve and error band of the full model using € input (red) and the
model without 6 input (blue). The ROC is obtained by using 20,000 signal and background
testing events. The error is estimated as in Fig. 6. The middle(right) plot shows the signal
efficiency as varying m, (pr.,). The ratio is calculated at 80% of the signal efficiency for
20,000 signal samples. The efficiency (without) using  is shown by blue(red) bars indicating
statistical errors. The acceptance of the full model is higher than the one without 8 input
at my, ~ my and py, ~ mpg/2.

5 Interpretation of the transformer encoder results

In the following section, we discuss additional methods to interpret and analyze the results
of the transformer encoder with cross-attention, which performs best in Fig. 6 The inter-
pretation methods are generic and can be further applied to other networks to interpret
their results. As attention-based transformer models excel in capturing intricate spatial
relationships and global context within data, their interpretability becomes paramount.
Interpretation methods for attention-based transformers aim to elucidate the visual cues,
features, and regions that contribute significantly to the model’s predictions. Common
Interpretation Methods are

e Attention Maps: Attention maps visualize the focus of the model by highlighting
the particles in the cloud that receive higher attention. These maps provide a direct
view into which particles are considered most relevant for prediction, facilitating an
intuitive understanding of the model’s decision-making process.

e Grad-CAM It generates class-specific activation maps by weighting the gradients
of the predicted class score with respect to the final transformer layer [91]. This
technique highlights the regions in the feature space that are crucial for the model’s
classification decision and thus can provide a geometrical interpretation, n — ¢ plane,
of the learned information by the network.

e Saliency Maps Saliency maps for transformer models are a form of interpretabil-
ity technique used to understand and visualize the importance of different parts of
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the input sequence concerning the model’s predictions. Saliency maps highlight the
regions of the input that most significantly influence the model’s output, providing
insights into the model’s decision-making process [92-94]. By examining the saliency
map, users can gain insights into which parts of the input sequence are crucial for the
model’s predictions.

+ Layer-wise Relevance Propagation (LRP) The primary goal of LRP is to assign
relevance scores to input features, indicating their contribution to the model’s output
[95]. However, it’s worth noting that LRP has limitations, and its effectiveness can
vary depending on the specific neural network architecture and the nature of the
task. Different variants of LRP have been proposed to address specific challenges and
improve its applicability to various models.

The interpretation of attention-based transformer models is pivotal for unlocking their
full potential and ensuring their responsible deployment in real-world applications. Among
all the mentioned methods, we adopt the attention maps and Grad-CAM to interpret the
learned information using the transformer model.

5.1 Attention maps

Attention maps serve as a bridge between the abstract nature of neural network computa-
tions and the desired interpretability. These maps visualize the attention scores assigned
to each particle token in the input sequence, providing a clear representation of where the
model focuses its attention during processing.

Self Attention head-1 ) Self Attention head-2 ) Self Attention head-3 ) Self Attention head-4 0 Self Attention head-5

20
30
10

=20
30

40

Figure 9: Attention maps last self-attention transformer layer, which processes the jet
substructure for the signal (top) and backgrounds (bottom) for a 120K test event.

The analysis of the attention maps highlights the particle tokens that receive higher
attention scores, indicating their significance in the model’s decision. Also, it reveals how
particle tokens relate to each other. For instance, it highlights the information extracted
from the jet constituents relevant to the reconstructed objects. Importantly, examining
attention maps can pinpoint areas where the model might struggle or make mistakes.

In this context, we utilize attention maps to analyze the acquired information from
the last transformer layer of the jet constituents. Our focus centers on the output of the
network shown in Fig. 1. We begin by examining the attention maps of the Add() layer,
which contains information about the jet substructure. In this case, the attention maps
denoted as «;; in Equation 2, have dimensions of (npeqds, 50, 50), where 50 represents the
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Figure 10: Cross-attention maps of the cross-attention transformer layer averaged over the
8 cross-attention heads, which processes the jet substructure and the event kinematics for
the signal (top) and backgrounds (bottom) for a 120K test event. The X-axis shows the
attention score for the leading 20*" jet contents while the Y-axis shows the attention score
for the reconstructed final state particles.

number of constituents in the jet, and npeqqs denotes the number of self-attention heads
used (we use 5 heads, as explained in Appendix A).

Fig. 9 displays the values of the attention maps for each attention head individually,
with signal events in the top row and background events in the bottom row. Given that jet
constituents are ordered by their momentum, the X and Y axes ticks represent the attention
values of the jet constituents in descending order (where the zero tick represents the leading
jet constituent particle). The attention map values reveal that the model concentrates on
the leading and second-leading jet constituents to identify events as signal-like, particularly
evident in attention heads 1,2, 4, and 5. In fact, this reflects the efficiency of the network to
capture the two-prong structure of the signal events. On the other hand, the network assigns
high attention to the wide momentum orders of the jet constituents when the network
identifies the input as a background event. Conversely, the network assigns high attention
to a broad momentum range of jet constituents when identifying the input as a background
event. The attention maps for background events exhibit significant agreement with the
jet substructure of the background events presented in Fig. 4. To this end, through an
analysis of the attention scores from the last transformer layer of the jet constituents, we
confirm that the transformer model adeptly extracts the correct multi-prong structure of
signal events. Meanwhile, for background events dominated by QCD processes, the model
exhibits high attention across a wide momentum range of jet constituents.

The attention maps of the cross-attention layer illustrate the attention scores between
the jet constituents and the reconstructed particles, including the leading and second-
leading jets and the heavy Higgs. The dimension of the attention score in the cross-attention
layer is (Npeqds, 3, 50), where 3 represents the number of reconstructed particles, 50 is the
number of jet constituents, and npeqqs 1S the number of cross-attention heads, set at 8.
Fig. 10 displays the cross-attention maps for signal events (top) and background events
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(bottom), averaged over the used cross-attention heads.

The cross-attention maps for signal events exhibit a stronger correlation between the
highest momentum jet constituents and the heavy Higgs. In contrast, the Heavy Higgs
displays a flat attention pattern with jet constituents of different momenta. Indeed, the re-
sults from the cross-attention maps, along with the cross-attention output shown in Fig. 7,
provide a comprehensive overview of the impact of the cross-attention layer. This layer ef-
fectively assigns information from the jet constituents to the kinematics of the reconstructed
particles to enhance the classification performance.

5.2 Grad-CAM

Grad-CAM is a technique designed to visualize and interpret the decisions made by DNN
models. It builds upon the idea of class activation maps (CAMs) [96, 97], but extends it to
models with arbitrary architectures. The primary objective of Grad-CAM is to highlight the
important regions in an input features space, 7 — ¢ plane, that contribute to the prediction
of a specific class [93].

Let Fy(n, ) represent the activation of the final transformer layer for the k' event. The
gradient of the predicted class score (Y.) with respect to the activation output is computed
as:

oY,
14
oF, (14)
This gradient is then globally averaged to obtain the importance weights («) as
15
Z OF,(n <f>’ pT) (%)

where Z is the size of the feature activations and the sum runs over the jet constitutents. 7/,
¢’ and pT are the input features to the transformer encoder. The final Grad-CAM heatmap
is computed as a weighted of the summed gradients as

Grad_CAM( qb pT Zak 7] qb Fk( ,agblapT) (16)

This heatmap highlights the regions of the input image that contribute the most to the
prediction of the target class.

In general, it operates by utilizing the gradient information flowing into the final trans-
former layer in the following way; During the forward pass, the neural network processes
the input particle cloud, and the activations of the final transfomer layer are obtained. The
gradients of the predicted class score with respect to the final transformer layer activations
are computed during the backward pass. The gradients are then used to calculate the
importance of each activation map. These importance scores are essentially the weights
assigned to each spatial location of the final transformer layer. The weighted sum of the
activation maps is computed, creating the Grad-CAM. This map highlights the regions that
contributed the most to the final prediction. Additionally, upsampling is often employed to
match the Grad-CAM dimensions with the original input features.

To visualize the geometrical interpretation of the learned information from the jet con-
stituents, we utilize Grad-CAM on the final self-attention layer of the jets, specifically, the
Add() Layer depicted in Fig. 1. The results are shown in Fig. 11 for 5000 test images.
The left panel illustrates the pr distribution of the predicted events as signal (top) or back-
ground (bottom). Signal events are considered for the benchmark point with my = 1 TeV.
The right panel displays the heat map of the Grad-CAM output for the predicted signal
(top) and the predicted background (bottom).
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Figure 11: Grad-CAM results for 5000 test events of the transformer model with cross-
attention. Left: pp distribution of the jet constituents when events are predicted as signal
events (top) and background events (bottom). Right: heat-map of the Grad-CAM results.
Note that the asymmetric pattern is due to the flipping transformation in the pre-processing
steps in which all constituents with larger momentum are reflected in the positive n direc-
tion.

The visualization of the heat map clarifies that the transformer model focuses on the
two-prong structure to classify the input event as a signal. On the other hand, it relies on
the soft-radiation pattern to classify the input event as a background event. Interestingly,
we found that the result highlights that the model focuses on the positive n direction to
make predictions, which is due to the flipping transformation done in the pre-processing
step.

While Grad-CAM has the power to explain the considered regions in the feature space for
the network predictions, one of its drawbacks is that it relies on gradient information from
the final transformer layer. In cases where global context is crucial for decision-making,
Grad-CAM may not capture long-range dependencies effectively. Moreover, Grad-CAM
might be sensitive to small changes in the input, potentially making it less robust in the
presence of adversarial examples.

6 Conclusion

In conclusion, this paper introduces an innovative method for enhancing event classification
by effectively incorporating information from both global kinematics and substructure of
jets in an event. Conventional approaches, using simple concatenation to combine the
event information, have limitations, especially for scenarios where kinematical structures
dominate.
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Specifically, the proposed method utilizes a transformer encoder with cross-attention
layers, enabling the extraction of different scale information from both global kinematics
and jet substructure. The results demonstrate a substantial improvement in classification
performance compared to traditional concatenation methods. Indeed, the analysis of the
learned information, conducted through attention maps and a Grad-CAM algorithm for
visual representation, provides valuable insights into the model focus on important particles
and geometric regions in the 17 — ¢ plane that are crucial for event classification.

We have validated this approach by focusing on the dominant decay channel, i.e., into
four b-jets, of SM-like Higgs boson pairs produced in the resonant decay of a heavier CP-even
Higgs state, at the HL-LHC. This challenging scenario involves merging would-be slim b-jets
into fat ones, due to the boosted nature of the lighter Higgs states, so that the possibility of
accessing partonic dynamics is apparently lost at detector level. Furthermore, this occurs
in an environment rich of tracks and calorimetric information not directly pertaining to
the hard scattering sought, as typical of this CERN machine upgrade. Therefore, all these
aspects add complexity to the classification task. Despite these challenges, the proposed
method effectively addresses the intricacies of the final state in the detectors, ultimately
outperforming mainstream signal selection procedures, whether based solely on kinematical
analysis or also on less advanced ML tools.

In the broader context, this research contributes to utilizing advanced jet identification
techniques for global event reconstruction towards the understanding of collision events
consisting of dynamics acting at various physics scales. Thus, the proposed method offers
a promising avenue for improving the accuracy and efficiency of event classification in
potentially many more complex scenarios encountered in high energy physics experiments.
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A Networks structure

In this study, we employed four transformer encoders with distinct configurations to analyze
various datasets. For all networks, we configured an output layer with two neurons and
applied softmax activation. Additionally, we utilized the Adam optimizer [99] to minimize
the sparse categorical cross-entropy loss function [100], setting the learning rate at 0.005.
Our training dataset comprised one million samples, with 20,000 allocated for validation
and 100,000 for testing. The training batches were adjusted to a size of 500.

Following data preprocessing, we obtained three datasets: one for the leading jet con-
tents with dimensions of (50,4), where 50 represents the number of jet constituents and 4
denotes the considered features... We also use the same information for the second lead-
ing jet contents. The last dataset for event kinematics with dimensions of (3,6), where 3
corresponds to the leading jet, the second leading jet, and the (reconstructed) heavy Higgs
boson. The structure of the different networks is the following:

o A two-stream self-attention transformer encoder is employed for jet substructure.
The network takes two separate data sets for the leading and second-leading jet con-
stituents as input, processed through two distinct transformer layers. Each trans-
former layer is repeated three times. These transformer layers consist of five self-
attention heads operating in parallel. The output from the attention heads is then
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integrated with the original input data via a skip connection layer [101]. The result-
ing output from the skip connection is flattened and forwarded to two fully connected
layers with 128 and 4 neurons, respectively, using the GELU activation function [102].
The output from the final fully connected layer is subsequently combined with the
self-attention output through a second skip connection layer’. The final output of
the transformer layer undergoes a normalization layer and has the same dimension of
the input dataset. The normalized output from each transformer layer is combined
through an addition layer. This output then passes through a Multi-Layer Perceptron
(MLP) comprising two fully connected layers with dimensions 128 and 64, employing
the GELU activation function. Following each fully connected layer, a dropout layer
with a dropout rate of 20% is applied. The output is then passed to the output layer
for classification.

A single-stream self-attention transformer encoder is employed for kinematics analysis.
The network exclusively utilizes the kinematics dataset as input. To achieve this, we
adopt the identical structure of the self-attention transformer encoder designed for
jet substructure, but with a singular stream.

A three-stream transformer encoder is employed to analyze the leading, subleading
jets constituents, and the reconstructed kinematics. In this approach, we adjust the
transformer layers for the leading and subleading jets from the first network, while
the transformer layers for the kinematics are adapted from the latter network. The
output of the self-attention transformer encoder layers for jet constituents is added via
an addition layer. The resulting output from the addition layer, along with the output
from the self-attention transformer layers of the kinematics, is then fed to a cross-
attention transformer layer. This cross-attention transformer layer is repeated twice,
and the output has the same dimensions as the input kinematics dataset, i.e., (3,6).
Subsequently, this output passes through a MLP consisting of two fully connected
layers with dimensions 128 and 64, utilizing the GELU activation function. After
each fully connected layer, a dropout layer with a dropout rate of 20% is applied.
The resulting output is then forwarded to the output layer for classification.

The final network is configured to mirror the three-stream transformer encoder, with
the only modification being the substitution of the cross-attention transformer layers
with a single concatenation layer.
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