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We discuss our recently proposed [1] model-independent framework for fitting hadronic form-
factor data, which are often only available at discrete kinematical points, using parameterisations
based on unitarity and analyticity. The accompanying dispersive bound on the form factors
(unitarity constraint) is used to regulate the ill-posed fitting problem and allow model-independent
predictions over the entire physical range. Kinematical constraints, for example for the vector and
scalar form factors in semileptonic meson decays, can be imposed exactly. The core formulae are
straight-forward to implement with standard math libraries. We demonstrate the method for the
exclusive semileptonic decay 𝐵𝑠 → 𝐾ℓ𝜈, an example requiring one to use a generalisation of the
original Boyd Grinstein Lebed (BGL) unitarity constraint. We further present a first application
of the method to 𝐵 → 𝐷∗ℓ𝜈 decays.

The 40th International Symposium on Lattice Field Theory (Lattice 2023)
July 31st - August 4th, 2023
Fermi National Accelerator Laboratory

© Copyright owned by the author(s) under the terms of the Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0). https://pos.sissa.it/

ar
X

iv
:2

31
2.

14
63

1v
1 

 [
he

p-
la

t]
  2

2 
D

ec
 2

02
3

mailto:j.m.flynn@soton.ac.uk
mailto:Andreas.Juttner@cern.ch
mailto:j.t.tsang@cern.ch
https://pos.sissa.it/


Extrapolating semileptonic form factors using Bayesian-inference fits regulated by unitarity and analyticity

1. Introduction

In the study of semileptonic 𝐵 (𝑠) -meson decays on the lattice one still faces the difficulty of
reconciling all relevant physical scales at the same time, while keeping systematic uncertainties
at bay.1 For instance, the heavy mass of the 𝑏 quark and the requirement to induce large spatial
final-state momenta both require fine lattice spacings. There is also the requirement of large physical
lattice volumes to limit finite-size effects. Besides these regulator-dependent limitations, there is
also the problem of the deteriorating signal-to-noise ratio when including data for larger final-state
momenta, data which is required to cover a larger fraction of the kinematically allowed momentum
transfer between the initial and final state hadrons.

While accommodating all the above constraints remains a long-term goal, a widely used
strategy in the meantime is to create lattice data for (near-)physical simulation parameters (in
particular quark masses), and to restrict predictions to relatively large momentum transfer 𝑞2. In
order to make predictions for hadronic form factors over the entire physical semileptonic region one
then requires reliable and model-independent extrapolation methods constrained by the available
lattice data and any further input quantum-field theory provides. The ideas presented here have
previously been published in Ref. [1] and applied in Ref. [3].

2. Fit ansatz

Boyd, Grinstein and Lebed (BGL) proposed one such model-independent ansatz [4],

𝑓𝑋 (𝑞2
𝑖 ) =

1
𝐵𝑋 (𝑞2

𝑖
)𝜙𝑋 (𝑞2

𝑖
, 𝑡0)

𝐾𝑋−1∑︁
𝑛=0

𝑎𝑋,𝑛𝑧(𝑞2
𝑖 )𝑛 =

𝐾𝑋−1∑︁
𝑛=0

𝑍𝑋𝑋,𝑖𝑛𝑎𝑋,𝑛, (1)

with the unitarity constraint for the coefficients, |a𝑋 |2 ≤ 1, derived from dispersion theory.
𝜙𝑋 (𝑞2, 𝑡0) is a known “outer function” and the Blaschke factor 𝐵𝑋 (𝑞2) is chosen to vanish at the
positions of sub-threshold poles 𝑀𝑋

𝑖
. Similar ideas underlie the approaches in for example [5, 6].

The subscript 𝑋 specifies the form factor, e.g. 𝑋 = +, 0 for the vector and scalar form factor in
tree-level pseudoscalar-to-pseudoscalar decay 𝐵𝑠 → 𝐾ℓ𝜈. To the very right of the equation we
introduce a vector-matrix notation for the ansatz. The objective is then to determine the coefficients
𝑎𝑋,𝑛 from a finite number 𝑁data of experimental or theory data points.

Within a frequentist fitting strategy the constraint on the number of degrees of freedom,
𝑁dof = 𝑁data −𝐾𝑋 ≥ 1, often limits one’s ability to estimate the truncation error reliably. Moreover,
a meaningful implementation and interpretation of the unitarity constraint within the Frequentist
framework is not straight forward. Here instead we propose to fit the parameterisation using
Bayesian inference. This provides a conceptually clean way to implement the unitarity constraint
and also to determine coefficients of the parameterisation beyond the Frequentist bound on 𝑁dof . In
particular, we propose to use the unitarity constraint as a regulator for the higher-order coefficients.
In essence, the unitarity constraint forces all coefficients to lie within a limited 𝐾𝑋-dimensional
space. Together with the fact that |𝑧 | ≤ 1 in Eq. (1), this leads to a suppression of higher-order
terms, allowing us to probe from which point on the statistical error dominates over the truncation
error.

1For a recent review of 𝐵(𝑠) -physics from lattice QCD we refer the reader to Ref. [2].
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Figure 1: Illustration of the mapping 𝑞2 → 𝑧(𝑞2), showing the physical semileptonic region (magenta),
poles (crosses) and branch cuts (light and dark green).

3. An aside on the unitarity constraint

In Fig. 1 we illustrate how the real 𝑞2 axis maps onto the complex unit disk where the 𝑧
parameter in Eq. (1) is defined. The physical semileptonic region is mapped to a range on the real
𝑧 axis around zero, and the branch cut is mapped onto the unit circle. For the 𝑏 → 𝑢 transition in
𝐵 → 𝜋ℓ𝜈 and 𝐵𝑠 → 𝐾ℓ𝜈 there are two qualitatively different situations: for 𝐵 → 𝜋ℓ𝜈 the relevant
two-particle production threshold and lower limit of integration for the corresponding unitarity
constraint is at 𝑞2 = (𝑀𝐵 + 𝑀𝜋)2, while the relevant threshold for 𝐵𝑠 → 𝐾ℓ𝜈 is at (𝑀𝐵𝑠 + 𝑀𝐾 )2,
which is the part corresponding to the arc [−𝛼𝐵𝑠𝐾 , +𝛼𝐵𝑠𝐾 ] in the 𝑧-plane, as indicated in the figure
(see also [7–9]). As a result, the corresponding unitarity constraints are

1
2𝜋𝑖

∮
𝐶

𝑑𝑧

𝑧
𝜃𝑧 |𝐵𝑋 (𝑞2)𝜙𝑋 (𝑞2, 𝑡0) 𝑓𝑋 (𝑞2) |2 ≤ 1 , (2)

where the step function 𝜃𝑧 = 𝜃 (𝛼𝐵𝑠𝐾 − |arg[𝑧] |) in the 𝐵𝑠 → 𝐾 case restricts the integration
over the unit circle to the relevant segment, i.e. the one corresponding to the branch cut above the
𝐵𝑠𝐾 threshold 𝑡+. Inserting the BGL expansion Eq. (1), the unitarity constraint takes the compact
form [1] ∑︁

𝑖, 𝑗≥0
𝑎∗𝑋,𝑖 ⟨𝑧𝑖 |𝑧 𝑗⟩𝛼𝐵𝑠𝐾𝑎𝑋, 𝑗 ≡ |a𝑋 |2𝛼𝐵𝑠𝐾 ≤ 1 , (3)

where the inner product is known analytically,

⟨𝑧𝑖 |𝑧 𝑗⟩𝛼 =
1

2𝜋

𝛼∫
−𝛼

𝑑𝜙(𝑧𝑖)∗𝑧 𝑗 |𝑧=𝑒𝑖𝜙 =


sin(𝛼(𝑖 − 𝑗))
𝜋(𝑖 − 𝑗) 𝑖 ≠ 𝑗 ,

𝛼

𝜋
𝑖 = 𝑗 .

(4)

4. Frequentist fit

We begin with the discussion of fits to lattice results for the 𝐵𝑠 → 𝐾ℓ𝜈 scalar ( 𝑓0(𝑞2
𝑖
))

and vector ( 𝑓+(𝑞2
𝑖
)) form factors, where we assume that we have data for 𝑁0 and 𝑁+ data points
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respectively. We collect all results in the data vector

f 𝑇 = (f𝑇+ , f𝑇0 ) = ( 𝑓+(𝑞2
0), 𝑓+(𝑞

2
1), . . . , 𝑓+(𝑞

2
𝑁+−1), 𝑓0(𝑞

2
0), 𝑓0(𝑞

2
1), . . . , 𝑓0(𝑞

2
𝑁0−1)) . (5)

Correspondingly, we collect the BGL parameters into the parameter vector

a𝑇 = (a𝑇+ , a𝑇0 ) = (𝑎+,0, 𝑎+,1, 𝑎+,2, ..., 𝑎+,𝐾+−1, 𝑎0,1, ..., 𝑎0,𝐾0−1) . (6)

With this notation the Frequentist fit is defined as the minimisation of

𝜒2(a, f) = [f − 𝑍a]𝑇 𝐶−1
f [f − 𝑍a] , (7)

with respect to the parameters, where 𝐶f is the correlation matrix of the input data f. Details on
how the kinematical constraint 𝑓+(0) = 𝑓0(0) can be implemented through the matrix 𝑍𝑋𝑋 can be
found in Ref. [1]. Note that we chose to use this constraint to eliminate the parameter 𝑎0,0, which
is therefore missing from the definition of a in Eq. (6). The solution for the Frequentist fit is

a =

(
𝑍𝑇𝐶−1

f 𝑍

)−1
𝑍𝐶−1

f f , 𝐶a =

(
𝑍𝑇𝐶−1

f 𝑍

)−1
, (8)

where 𝐶a is the covariance matrix of the fit parameters a.

5. Bayesian fit

Within the Bayesian framework the fit is defined in terms of the expectation value

⟨𝑔(a)⟩ = N
∫

𝑑a 𝑔(a) 𝜋(a|f, 𝐶f) 𝜋a , (9)

where 𝑔(a) is a function defined in terms of the BGL parameters. The probability density for the
integral is given as

𝜋a(a|f, 𝐶f𝑝 )𝜋a ∝ exp
(
−1

2
𝜒2(a, f𝑝)

)
𝜃 (1 − |a+ |2𝛼)𝜃 (1 − |a0 |2𝛼) , (10)

where the two Heaviside functions restrict the integration to parameters compatible with the unitarity
constraint. In Ref. [1] we explain how to estimate the integral in Eq. (9) by means of sampling from
a multivariate normal distribution.

6. Results for 𝐵𝑠 → 𝐾ℓ𝜈

Table 1 shows, as an example, the results for Frequentist fits to the HPQCD 14 data of [10].
The first two columns indicate the order of the fit in a given row for the vector and scalar form factor,
respectively. Acceptable fits (see 𝑝-values in the 3rd-last column) are achieved only for 𝐾+ ≥ 3
and 𝐾0 ≥ 2. Based on the results in this table, which shows various possible fits with 𝑁dof ≥ 1,
solid conclusions about convergence cannot be drawn. Tab. 2 shows the results of the Bayesian
fit with 𝐾+,0 ≤ 8, where the convergence of the fit parameters is clearly visible. The higher-order
coefficients are constrained by the unitarity constraint, which acts as regulator – without this the
parameters would not be well constrained.

While the Frequentist fit can provide important information about the compatibility of the fit
function with the data, the Bayesian fit allows for a meaningful imposition of the unitarity constraint
and also to study the convergence of the BGL parameterisation. We think that future analyses of
form-factor data should take advantage of this complementarity.
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𝐾+ 𝐾0 𝑎0,0 𝑎0,1 𝑎0,2 𝑎+,0 𝑎+,1 𝑎+,2 𝑝 𝜒2
red 𝑁dof

2 2 0.0883(44) -0.250(17) - 0.0270(13) -0.0792(50) - 0.03 2.93 3
2 3 0.0880(44) -0.242(19) 0.053(65) 0.0273(13) -0.0760(63) - 0.02 4.06 2
3 2 0.0906(45) -0.240(17) - 0.0257(14) -0.0805(50) 0.068(31) 0.15 1.89 2
3 3 0.0908(46) -0.215(22) 0.138(71) 0.0262(14) -0.0727(64) 0.096(34) 0.97 0.00 1

Table 1: Frequentist fit results for HPQCD 14 data, where 𝜒2
red = 𝜒2/𝑁dof .

𝐾+ 𝐾0 𝑎0,0 𝑎0,1 𝑎0,2 𝑎0,3 𝑎0,4 𝑎0,5 𝑎0,6 𝑎0,7
2 2 0.0883(44) -0.250(17) - - - - - -
2 3 0.0880(44) -0.243(19) 0.052(65) - - - - -
3 2 0.0907(46) -0.240(17) - - - - - -
3 3 0.0906(44) -0.215(22) 0.137(73) - - - - -
3 4 0.0907(47) -0.215(22) 0.14(11) -0.01(31) - - - -
4 3 0.0907(45) -0.214(22) 0.139(72) - - - - -
4 4 0.0907(46) -0.215(25) 0.12(19) -0.08(60) - - - -
5 5 0.0909(46) -0.218(25) 0.10(19) -0.12(55) 0.04(63) - - -
6 6 0.0907(45) -0.217(25) 0.10(19) -0.11(53) 0.06(66) -0.02(66) - -
7 7 0.0907(46) -0.217(26) 0.11(20) -0.08(51) 0.03(73) 0.03(81) -0.04(70) -
8 8 0.0908(46) -0.217(25) 0.11(20) -0.08(50) -0.01(84) 0.1(1.0) -0.09(96) 0.08(74)

Table 2: Results for BGL coefficients for the scalar form factor (results for the vector form factor can be
found in [1]).

7. 𝐵 → 𝐷∗ℓ𝜈 fit

The method can be extended to other decay channels such as the semileptonic decay of a
pseudo-scalar to a vector particle. We consider the case of 𝐵 → 𝐷∗ℓ𝜈 for which lattice data exists
from FNAL/MILC [11], HPQCD [12] and JLQCD [13]. Fig. 2 shows the result for the form factor
F1 from a simultaneous fit to the JLQCD data over all four form factors 𝑓 , 𝑔, F1, F2, including
kinematical constraints between F1 and 𝑓 , and F1 and F2, respectively. The plots show the fit results
once without imposing unitarity and once with. The result of imposing unitarity is a substantial
reduction in the statistical error in the extrapolation of the lattice data towards zero momentum
transfer (towards the right-hand side of the plots).

8. Conclusions

We presented novel ideas for fitting model- and truncation-independent parametersations to
data for semileptonic decay form factors. The combination of information from Frequentist and
Bayesian fits allows for a comprehensive understanding of fit-quality and truncation dependence.
Moreover, the Bayesian framework allows for a meaningful imposition of the unitarity constraint
to regulate the determination of fit parameters and, as demonstrated for the case of 𝐵 → 𝐷∗ℓ𝜈, to
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Figure 2: Result for BGL fit to JLQCD data [13] for the 𝐵 → 𝐷∗ℓ𝜈 form factor F1. Fit without (left) and
with (right) unitarity constraint.

reduce the statistical error in form-factor extrapolations. The code underlying the results of [1] is
publicly available under [14].
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