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Influence maximization has commonly been studied in the context of strategically al-
locating resources to agents in a network to maximize the spread of an opinion. In the
first part of this thesis, we relate influence maximization to network control and con-
sider a version of an inter-temporal influence maximization problem. Specifically, we
study the competition between two external controllers with fixed campaign budgets.
In this competition, one or both of the controllers have the flexibility to determine when
to start control in order to maximize the share of a desired opinion in a group of agents
who exchange opinions on a social network subject to voting dynamics. We first inves-
tigate the inter-temporal influence maximization in a constant-opponent setting where
an active controller maximizes its vote share against a known-strategy opponent. Start-
ing with a simplified model where influence starts to be allocated to all agents at the
same time, we find that, for short time horizons, maximum influence is achieved by
starting relatively later on more heterogeneous networks than in more homogeneous
networks, while the opposite holds for long time horizons. Furthermore, by compar-
ing the vote shares achievable via the node-specific optimization where each agent has
different starting times and budget allocations with the same-starting-time scenario,
we show that strategic allocations of the node-specific optimization are more effective
when fewer resources are available to the controller. Apart from the constant-opponent
setting, we also explore the game-theoretical setting where both controllers compete to
maximize their influence. We find that the controller with budget superiority will start
earlier, while the other controller will concentrate its resources in a later stage in order
to use limited resources more effectively and achieve some pull-back from its oppo-
nent’s initial advantage.
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In the above, we have assumed either complete or no information about the opponent’s
strategy in solving the influence maximization problem. However, while the strategy
will not always be known in real-world settings, we can infer information by observing
the dynamics of opinion exchanges. Furthermore, instead of only passively observing
the dynamics for inference, we are interested in influencing the opinion dynamics in
such a way that observations can be improved. For this purpose, we propose a frame-
work of strategically influencing a dynamical process with the aim of making hidden
parameters more easily inferable. More specifically, we consider a model of networked
agents who exchange opinions subject to voting dynamics. Agent dynamics are subject
to peer influence and to the influence of two controllers. One of these controllers is
treated as passive and we presume its influence is unknown. We then consider a sce-
nario in which the other active controller attempts to infer the passive controller’s influ-
ence from observations. We explore how the active controller can strategically deploy
its own influence to manipulate the dynamics with the aim of accelerating the conver-
gence of its estimates of the opponent. Along with benchmark cases, we then propose
two heuristic algorithms for designing optimal influence allocations. We first demon-
strate that it is possible to accelerate the inference process by strategically interacting
with the network dynamics. Investigating configurations in which optimal control is
deployed, we find that agents with higher degrees and larger opponent allocations are
harder to predict. Furthermore, even when applying the heuristic algorithms, oppo-
nent’s influence is typically the harder to predict the more degree-heterogeneous the
social network.

In the third part of the thesis, we extend the previous framework from the voter model
to the Ising model. Different from the linearity of the voter model, which results in high
levels of mathematical tractability, the non-linearity of the Ising model requires differ-
ent techniques for analysis. By comparing to benchmark cases of equally targeting, we
first demonstrate that it is also possible to accelerate the inference by strategically inter-
acting with the non-linear Ising dynamics. We then apply series expansions to obtain
an approximation of the optimized influence configurations in the high-temperature
region. By using mean-field estimates, we demonstrate the applicability of the method
in a more general scenario where real-time tracking of the system is infeasible. Last, by
analyzing the optimized influence profiles, we describe heuristics for manipulating the
Ising dynamics for faster inference. For example, we show that agents targeted more
strongly by the passive field should also be strongly targeted by the active one, so as to
even out the inaccuracy for inferring larger values.
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Chapter 1

Introduction

With hundreds of millions of users worldwide, the prevalence of online social media
has facilitated information diffusion and led to a growing influence on opinion forma-
tion (Xiong and Liu, 2014). As a result of the small-world and scale-free structure of
online social networks (Dorogovtsev and Mendes, 2002), opinions by any user in the
networks can become influential through replicating and forwarding. This revolution-
ized mass opinion formation process further invokes concerns about the spreading of
negative influences, since, while providing new channels to guide and influence peo-
ple for public benefits (e.g., health (Korda and Itani, 2013), education (Tess, 2013)), the
increasing use of social media has also led to a wider spread of fake news (van der Lin-
den et al., 2020) and misinformation (Loomba et al., 2021).

Owing to the considerable social and commercial impacts of influencing people on a
large scale, the intervention in influence propagation through social networks has al-
ready been shown to be powerful in practical applications (Guille et al., 2013). One
of the applications of governmental intervention on influence propagation is proposed
by Yadav et al. (2016), which strategically selects the most influential participants to
maximally spread influence to raise awareness of HIV. More recently, issues of vac-
cine hesitancy fueled by anti-vaccination efforts towards COVID-19 vaccination pro-
grams on social media have found much attention (Puri et al., 2020; Chadwick et al.,
2021). Outside of the public benefit field, there are also plenty of high-impact applica-
tions in the commercial and political domains (Azaouzi et al., 2021), where powerful
agents can leverage their influence to shape and dominate prevailing views through
communication channels. Typical examples include viral marketing (Razali et al., 2023;
Goyal et al., 2019), political manipulation (McFaul and Kass, 2019; Badawy et al., 2018),
and the propagation of radical opinions and formation of radicalization (Galam and
Javarone, 2016). Consequently, it is of great importance to understand the intricate dy-
namics stemming from external influence exerted by influential agents, so as to prevent
manipulation or guide public opinions.



2 Chapter 1. Introduction

A canonical setting for modelling opinion propagation intervention in social networks
is known as influence maximization (IM) (Kempe et al., 2003). The concept of influ-
ence maximization was first proposed by Domingos and Richardson (Domingos and
Richardson, 2001; Richardson and Domingos, 2002) and has since garnered significant
attention. IM involves modeling one or more external influences, often referred to as ex-
ternal controllers (Masuda, 2015), that strategically allocate resources (e.g. money, infor-
mation, incentives) to agents in the network. The objective is to maximize the expected
number of agents adopting their opinions, also known as the expected spread (Goyal
et al., 2013). For example, advertisers may offer free products or discounts to a number
of selected agents to spread brand awareness or drive the adoption of products through
word-of-mouth marketing. However, achieving this objective necessitates operating
within a budget constraint, as resources available for allocations to agents are inher-
ently limited (Kempe et al., 2003; Bharathi et al., 2007). By employing the framework
of IM, it enables a comprehensive exploration of optimal implementation strategies, in-
cluding the strategic manipulation of opinion dynamics as well as the identification of
effective preventive measures against manipulation (Chen et al., 2022). Additionally,
the framework provides ways to understand the effects arising from dynamic interac-
tions between external controllers and internal agents (Alshamsi et al., 2018).

Usually, the IM problem is explored under the assumptions that the underlying net-
works over which the opinion spreads are fully observed or we have prior knowledge
about the opponents’ strategies. However, in many realistic situations, the network
structures or opponents’ strategies are unknown and can only be obtained indirectly
from observations of the spreading process (Hoang et al., 2019). Therefore, how to infer
the network topology or reconstruct opponents’ strategies from observed system dy-
namics, is also a fundamental problem in network science (Casadiego et al., 2017), and
is also part of our research topics. Moreover, the issue of inferring structural and mod-
elling parameters of complex-networked systems from observed system dynamics has
gained significant attention in a variety of research domains. Applications range from
discovering neural connection networks from observed neural spike data (Cocco et al.,
2009), uncovering genetic interaction networks from gene expression level data (Lezon
et al., 2006), reconstructing three-dimensional protein structure from amino acids se-
quences (Morcos et al., 2011), revealing contact networks from infection data (Fajardo
and Gardner, 2013), to inferring online social networks from information flows (Myers
and Leskovec, 2010).

Despite a large amount of research devoted to tackling influence maximization and
network inference, several challenges remain to be addressed in these fields. In the
rest of this chapter, we detail the research challenges and our contributions towards
addressing parts of these challenges, and present the organization of the rest of this
thesis.
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1.1 Research Challenges and Questions

As described in the preceding section, influence maximization serves as a prevailing
framework for examining the interplay between external opinion control and the dy-
namics of opinions within a social system. However, the majority of research in this
field has focused on maximizing opinion spreads in equilibrium (stationary) states
(Brede et al., 2019a), after dynamics have fully unfolded. Nonetheless, the potentially
prolonged dynamics of the opinion propagation process contrasts with the need for
real-world influence maximization to obtain optimal outcomes in shorter time hori-
zons (Hegselmann et al., 2014). In this context, the transient dynamics before equi-
librium matter, as a strategy optimized for equilibrium may be suboptimal early on.
However, the transient analysis of the system dynamics in influence maximization is
less researched and is needed in order to reveal how to allocate resources at specific
times to steer the trajectory most effectively over short timescales.

In addition to the applicational challenges of the IM problem, the network inference
problem also leaves unanswered questions. Specifically, most previous research on
network inference uses passive inference approaches, which rely on a fixed dataset
that has already been collected. There is no capability to dynamically choose which
data to collect next based on what has been learned so far. For example, imagine we
have made some initial inferences about a model’s parameters from limited data. Pas-
sive methods cannot then actively decide to collect data from certain experiments that
would help refine ambiguous parts of the model. Instead, they are constrained to make
inferences from whatever static dataset happens to be available, which may be unin-
formative about key parameters. In contrast, by actively influencing dynamics during
inference, data collection can be optimized adaptively, such as shifting focus to param-
eters with high uncertainty. However, methods for actively manipulating dynamics
during inference to expedite the convergence of inference remain largely unexplored
(see literature review in Section 2.5 for more details).

In the following, we enumerate the open research problems tackled in this thesis in
more detail, and we identify a number of research questions for each.

1. Leveraging transient dynamics for influence maximization through inter-temp-
oral network control. Compared to time-invariant resource allocations, the inter-
temporal network control is more realistic for maximizing influence by leverag-
ing transient dynamics. It allows controllers to allocate different amounts of re-
sources over time in order to maximize their influence during the transient pe-
riod, which can more efficiently exploit transient effects and take advantage of
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short-term opinion evolution before equilibrium. However, the effect of tran-
sient dynamics and inter-temporal network control are less researched (see Sec-
tion 2.4.3 for more details), and a variety of questions remain to be addressed,
specifically:

(a) How can inter-temporal control be integrated into the existing framework of
the classic IM problem to leverage transient opinion dynamics?

(b) Depending on network structures and time horizons, what are the optimal
inter-temporal allocation strategies during transient phases before equilib-
rium?

(c) How do controller strategies in IM differ when facing a constant adversary
with a known strategy (constant-opponent setting) versus competing in an
environment where strategies are unknown (game-theoretical setting), espe-
cially when considering inter-temporal network control? What methods can
be used to compute these strategies within the game-theoretical framework,
and under what conditions can a Nash equilibrium be established?

2. Actively manipulating dynamics to expedite the convergence of inference. In
the typical setting investigated in the literature of network inference, observa-
tional data for reconstructing network structure and inferring parameters of dy-
namical processes are assumed to be given and fixed. Little attention has been put
on the aspect of enhancing the inference performance by improving the dataset’s
quality to obtain more accurate estimators with less data for social network in-
ference. However, this approach has shown promise in biology (Ud-Dean and
Gunawan, 2016), where the optimal design of gene knockout experiments re-
duces uncertain gene interactions and improves gene regulatory network infer-
ence. This motivates reframing the inference problem from an experimental de-
sign perspective: Can we shift the focus from purely algorithmic methods of
passively inferring from a given dataset to an experimental design perspective,
where intervention in network dynamics produces a dataset that allows for the
most accurate inference from a constrained set of observations? How will manip-
ulating agent interactions shape the data generation process, thus rendering the
network dynamics into states that more readily expose the underlying parame-
ters? Addressing these questions yields several specific research inquiries:

(a) How does interacting with system dynamics through network control con-
tribute to accelerating the convergence of inference strategies?

(b) Within this framework, what are the methods to optimize the distribution
of budget allocations for one controller in order to hasten the inference of
another controller’s strategy?



1.2. Research Contributions 5

(c) Considering the diversity of opinion diffusion models, is the accelerated in-
ference strategy universally viable, or does its applicability vary across dif-
ferent models? More specifically, how does the transition from linear to non-
linear opinion diffusion models affect the success of the accelerated inference
approach?

(d) What constitutes the optimal configuration of budget allocations to effec-
tively manipulate network dynamics, thereby generating a dataset that more
accurately reveals an opponent’s strategy?

(e) How do these optimal budget allocations depend on the particular network
topologies and the constraints of budget availability?

This thesis aims to tackle the aforementioned research questions. The subsequent sec-
tion will outline the specific contributions that arise from our work.

1.2 Research Contributions

This thesis explores the effects of external influence on opinion dynamics in two key
scenarios. One is the context of influence maximization, where we study the temporal
aspects of IM with the aim of finding out the system behaviours and optimal alloca-
tion strategies subject to inter-temporal network control. We also examine how these
outcomes depend on factors like agent heterogeneity, network topology, and budget
availability. The other scenario is about how we can best utilize the external influ-
ence to interact with the opinion dynamics to generate a more informative dataset for
inference. Through these investigations, our aim is to gain deeper insights into math-
ematical properties of social systems, as well as unravelling the intricate interplay that
unfolds between these systems and external sources of influence.

More specifically, we make the following contributions:

1. We present the first study of utilizing inter-temporal network control to achieve
influence maximization over complex networks. Specifically, in the context of
inter-temporal influence maximization, we assume that one or both controllers
have the flexibility to determine when to start control in order to achieve maxi-
mum expected spread subject to time and budget constraints. Then, we consider
a more complicated scenario where controllers optimize starting times and bud-
get allocations for individual agents in the network, which is also referred to as
individual optimization. This addresses Research Challenge 1a, as detailed in Sec-
tion 1.1.

2. We conduct a comprehensive analysis of optimal starting times for the active con-
troller in the constant-opponent setting, taking into account network topologies,



6 Chapter 1. Introduction

budget availability, and time horizons. To achieve this, we employ the heteroge-
neous mean-field method (Dezső and Barabási, 2002) and Taylor expansion tech-
niques to derive estimates for the network’s influence propagation timescales.
This addresses Research Challenge 1b and parts of Research Challenge 1c, as de-
tailed in Section 1.1.

Contributions 1 and 2 are described in the following paper:

Cai, Z., Brede, M. and Gerding, E. Influence maximization for dynamic allo-
cation in voter dynamics. In Complex Networks and Their Applications IX:
Volume 1, Proceedings of the Ninth International Conference on Complex Net-
works and Their Applications COMPLEX NETWORKS 2020 (pp. 382-394).
Springer International Publishing.

3. We present the first investigation of inter-temporal influence maximization in the
game-theoretical setting where both controllers compete to maximize their influ-
ence without prior knowledge about their opponent’s strategy. Specifically, to
study the game-theoretic aspects of competitive influence maximization, we use
the iterative searching algorithm to find Nash equilibria. By doing so, we show
the differences in the strategies of controllers for inter-temporal influence max-
imization between considering a known-strategy opponent and an unknown-
strategy opponent. Moreover, we provide a possible way to numerically calcu-
late the strategies of controllers in the game-theoretical setting. This addresses
Research Challenge 1c, as detailed in Section 1.1.

4. We present the first study of investigating the network information inference from
the perspective of accelerating the estimation of the opponent’s strategy by opti-
mally deploying the active controller’s budget allocations. More specifically, we
model the opinion propagation process for an individual agent in the network
as a non-homogeneous Markov chain and further derive estimators of the oppo-
nent’s strategy via maximum likelihood estimation. We also provide uncertainty
quantification of our estimators by using the variance deduced from the expec-
tation of the second-order derivative of the likelihood function. This, in turn, is
used to inform decisions on the optimal allocations and understand the process of
inference acceleration. This addresses Research Challenges 2a and 2b, as detailed
in Section 1.1.

5. We provide a systematic investigation of how to optimally deploy resources in or-
der to maximally accelerate the opponent strategy inference in the voter model,
which is a commonly-used linear model in opinion dynamics for characterizing
interactions between individuals. A detailed introduction for the voter model can
be found in Section 2.2.2. To this end, we propose several novel heuristic algo-
rithms for speeding up opponent strategy inference via minimizing the variance
of estimators. Moreover, we verify the effectiveness of our algorithms in a variety
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of scenarios with varying network topologies and budget availability. This ad-
dresses Research Challenges 2d and 2e, as detailed in Section 1.1.

Contributions 4 and 5 are described in the following two papers:

Cai, Z., Gerding, E., and Brede, M. Accelerating Opponent Strategy Inference
for Voting Dynamics on Complex Networks. In Complex Networks and Their
Applications X: Volume 1, Proceedings of the Tenth International Conference
on Complex Networks and Their Applications COMPLEX NETWORKS 2021
(pp. 844-856). Springer International Publishing.

Cai, Z., Gerding, E., and Brede, M. (2022). Control Meets Inference: Using
Network Control to Uncover the Behaviour of Opponents. Entropy, 24(5), 640.

6. After investigating the problem of inference acceleration in the linear voter model,
it is of interest if similar ideas can be applied in relatively complex settings of non-
linear models such as the Ising model. Therefore, we extend this idea and present
the first study of accelerating the inference of the opponent’s strategy in the Ising
model. Different from the linearity of the voter model, which results in high
levels of mathematical tractability, the non-linearity of the Ising model requires
different techniques for analysis. To achieve this, we combine numerical results
obtained from newly-proposed heuristics with detailed analytical explanations
obtained via the Taylor series approximation to gain a deeper understanding for
the structure of optimal allocation strategies in the high-temperature region. Fur-
thermore, we analyze the performance of the heuristics for generating the optimal
allocations in the scenario where the real-time tracking of the system states is in-
accessible via mean-field approximations. This addresses Research Challenge 2c,
as detailed in Section 1.1. This contribution is described in the following paper:

Cai, Z., Gerding, E., and Brede, M. Accelerating Convergence of Inference in
the Inverse Ising Problem. Under review in Physica A: Statistical Mechanics
and its Applications.

1.3 Report Outline

The structure of this thesis is as follows. Chapter 2 covers the background needed to
understand work in the fields of influence maximization and network inference, as well
as state-of-the-art frameworks and techniques in these areas. Chapter 3 formalizes the
influence maximization problem under the framework of inter-temporal network con-
trol based on voter dynamics, and provides both analytical and numerical solutions to
solve the optimization problem. Chapter 4 investigates the reconstruction of the op-
ponent’s strategy from the perspective of accelerating the estimation of the opponent’s
strategy by optimally deploying the active controller’s budget allocations in the voter
model. Chapter 5 extends the context of reconstructing the opponent’s strategy in the



8 Chapter 1. Introduction

Ising model. The report concludes with a summary and discussion of future work in
Chapter 6.
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Chapter 2

Background Theory and Literature
Review

In this chapter, we conduct a thorough literature review, specifically focusing on influ-
ence maximization and network inference. In more detail, we start with an introduction
for networks and the main network models in Section 2.1. Then, in Section 2.2, we re-
view the most commonly-used opinion formation models with a special emphasis on
the models that are employed in the remainder of the manuscript. Next, in Section 2.3,
we discuss ways of how external influences can interact with the internal network dy-
namics. Section 2.4 covers the frameworks and techniques on influence maximization
and points out the gaps in current research, with a special focus on the time-critical
influence maximization problem. Section 2.5 presents state-of-the-art methodologies
for network inference in the domains of epidemiology and information flow, and then
delves into the widely adopted inverse Ising model, renowned in the statistical physics
community for studying network inference from opinion dynamics.

2.1 Network Properties and Models

Social systems are complex webs of interactions and relationships between individuals.
The evolution of individuals’ opinions, cultural and linguistic characteristics, social
standing, and other dynamic attributes are profoundly shaped by their locations in
a social structure (Borgatti et al., 2018). To understand and model the structure and
dynamics of social systems, networks provide a powerful representational framework
that goes beyond simply analyzing attributes of individuals to examining the relational
ties and patterns that connect them (Knoke and Yang, 2019).
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Adopting the network perspective, a society is represented as a graph G = {V, E},
where individuals are represented by vertices (nodes) vi ∈ V, and the edge eij ∈ E rep-
resents an existing social interaction between vi and vj. Moreover, neighbors of node i
refer to nodes that are directly connected to node i. To account for interaction intensity,
weights wij can be assigned to each existing edge eij, while, non-existing links are mod-
elled as wij = 0. These weights populate the weighted adjacency matrix W = {wij},
signifying linking strengths and rendering the graph weighted. Unweighted graphs
can also be captured in the weighted adjacency matrix W , with binary elements wij = 1
or wij = 0 reflecting the presence or absence of an edge between nodes i and j.

Furthermore, in undirected graphs, the weighted adjacency matrix is symmetric, indi-
cating a bidirectional connection between nodes i and j. However, in directed graphs,
connections can be directed to indicate asymmetry in influence between individuals
and will result in asymmetry in the weighted adjacency matrix. Moreover, by sum-
ming up the weights that are directly connected to a particular node i, we obtain the
degree of node i, denoted as

ki = ∑
j

wji. (2.1)

The node degree reflects the number of immediate weighted neighbors a node has 1.
Beyond node degrees, several key metrics are used to quantify properties of network
topology (Newman, 2018):

Degree Distribution: The degree distribution p(k) gives the fraction of nodes with de-
gree k. Networks with power-law degree distribution p(k) ∼ k−λ are called scale-free
networks (Barabási and Bonabeau, 2003), where λ represents the degree exponent. This
implies the existence of hubs – nodes with significantly more connections than others.
Many real-world networks have been reported to be scale-free (Clauset et al., 2009).

Degree Assortativity: The assortativity coefficient r is commonly applied to unweighted
networks with discrete integer degree values. It measures the degree correlation be-
tween nodes on either end of an edge and quantifies the preference for high-degree
nodes to attach to other high-degree nodes (assortative mixing, r > 0) versus low-
degree nodes attaching to high-degree nodes (disassortative mixing, r < 0). The assor-
tativity coefficient can be calculated using the following formula (Newman, 2003a):

r = ∑i qii − ∑i uiyi

1 − ∑i uiyi
, (2.2)

where qii is the fraction of edges that connect nodes of degree i to other nodes of the
same degree i. This represents the probability that an edge links two nodes with iden-
tical degrees. In the denominator, ui is the fraction of edges that start from a node with

1Note that, some literature (Newman, 2003b; Lewis, 2011) distinguishes “degree” for unweighted net-
works and “strength” for weighted ones. Additionally, in directed networks, we can differentiate between
out-strength kout

i = ∑j wij (the sum of outgoing edge weights) and in-strength kin
i = ∑j wji (the sum of

incoming edge weights).
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degree i, and yi is the fraction of edges that end at a node with degree i. This encodes
the expected frequency of edges between nodes of degree i and any other degree, if
connections were made randomly.

To gain an insight into how the above-mentioned properties of network topology influ-
ence social dynamics, several algorithmic frameworks are proposed for generating syn-
thetic networks that exhibit similar structural characteristics to real-world networks.
These network models define how nodes and edges are added, connected, or modi-
fied, thereby shaping the resulting network structure. Utilizing these network models
allows for controlled experiments and investigations into various network properties
that closely resemble real networks in structure and characteristics. In the following,
we list some of the most widely used network models and their distinct characteristics
(Newman, 2018).

Erdős-Rényi (ER) Model: The ER model (Erdős et al., 1960) has two primary variants –
the G(N, p) model and the G(N, m) model. In the G(N, p) model, a network of N nodes
is formed by connecting each pair of nodes randomly with probability p. This generates
a random graph with approximately pN(N − 1)/2 edges distributed randomly. The
G(N, m) model, on the other hand, fixes the number of edges to m and connects pairs
of nodes uniformly at random until m edges have been placed. Due to its mathematical
tractability, the ER model allows analytical calculations of network properties (Erdős
and Rényi, 1959) and is often used as a baseline for comparing with more complex
network structures. However, the ER model has limitations in reproducing important
features of many real-world networks, including heavy-tailed power-law degree distri-
butions (Barabási and Albert, 1999), highly clustered connections (Watts and Strogatz,
1998), and heterogeneous nodes or edges (Newman, 2003b).

Random Regular Graphs: To construct a random regular graph (Kim and Vu, 2003), nodes
are first assigned k stubs (half-edges). These stubs are then randomly paired by con-
necting two unconnected stubs at a time until no stubs remain. This results in a ran-
domized graph topology where all nodes have the same degree k. The controlled gen-
eration of random regular graphs allows systematic experiments isolating the impact
of narrow degree distributions on network structure and function for modeling and
analysis. However, many other topological features of real networks like heavy-tailed
degree distributions, high clustering, and heterogeneity are still not captured in the
random regular graph.

Barabási-Albert (BA) Model: The BA model (Albert and Barabási, 2002) generates net-
works with a power law degree distribution using a growth process with preferential
attachment. Specifically, networks start with a small graph. Then, new nodes are it-
eratively added and connected to existing nodes with probability proportional to their
degrees, resulting in high-degree hub nodes acquiring more links over time. By doing
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(a) (b) (c) (d)

FIGURE 2.1: The star graph (a); The complete graph (b); The bipartite graph (c); The
two-dimensional lattice (d).

so, the BA model accurately captures the scale-free topology characteristic of numer-
ous real-world networks, such as the Internet, social networks, and citation networks
(Newman, 2005). Moreover, the BA model provides a way to systematically study
the emergence and functions of hub nodes on network robustness and information
spreading through the simple growth process (Liu et al., 2017). However, the BA model
lacks structural properties like high clustering and community structure (Ravasz and
Barabási, 2003). Variants of the BA model aim to address these limitations. For in-
stance, the Holme-Kim model incorporates a triad formation step to produce clustered
networks (Holme and Kim, 2002).

Configuration Model: The configuration model (Newman et al., 2001) generates net-
works with a given degree distribution by randomly connecting stubs of nodes. How-
ever, this random wiring process often creates invalid connections such as self-loops
and multi-edges, which improperly distort network metrics. To address these issues,
rewiring is needed to replace invalid connections while preserving the degree distri-
bution. Moreover, the uncorrelated configuration model is an important variant that
generates scale-free networks with a given power-law degree distribution (Catanzaro
et al., 2005). In more detail, this model limits the maximum expected degree to avoid
degree correlations. The resulting uncorrelated scale-free networks serve as useful null
models for evaluating the analytical solutions of dynamic processes on complex net-
works (Váša and Mišić, 2022). Additionally, it enables controlled experiments on the
impacts of varying power-law degree distributions versus random topology, and can
be used to mimic scale-free structure observed in many real-world networks.

Watts-Strogatz (WS) Model: The WS model (Watts and Strogatz, 1998) generates small-
world networks that exhibit both high local clustering and short average path lengths
between nodes. The model starts with a regular lattice structure and randomly rewires
a fraction of the edges to introduce randomness and create shortcuts. This rewiring
allows for long-range connections and reduces path lengths while maintaining signifi-
cant local clustering, which successfully replicates the small-world property observed
in many real networks.
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Apart from the aforementioned network models, in the following, we also present de-
scriptions of commonly employed synthetic and simple network structures. These fun-
damental network topologies enable us to isolate and analyze the impact of simple
network characteristics on opinion dynamics, influence maximization, and network
inference.

Star Graphs: Star networks (see Fig. 2.1 (a)) are a specific type of network structure
wherein a central node is directly connected to all other nodes, while the peripheral
nodes are not connected to each other. This configuration forms a pattern resembling
the shape of a star, hence the name. Star networks exhibit a high level of connectivity,
with the central node serving as a focal point for communication and information flow.
The central node plays a crucial role in coordinating and disseminating information to
the peripheral nodes, making it an important hub within the network.

Complete Graphs: Complete graphs, as shown in Fig. 2.1 (b), are highly interconnected
networks where every node is directly connected to all other nodes. Their distinct
property is having the maximum possible number of edges, creating a dense structure.
Complete graphs are commonly used as theoretical constructs and as a baseline for
comparison in network analysis and algorithm design.

Bipartite Graphs: Bipartite graphs (see Fig. 2.1 (c)) consist of two sets of nodes, where
edges only exist between nodes of different sets. These networks are generated by
specifying the two sets of nodes and connecting nodes from one set to nodes in the
other set. Bipartite graphs are useful for representing relationships between different
types of entities, such as users and items in recommendation systems or actors and
movies in a film network. The most distinct property of bipartite graphs is the bipartite
structure, where nodes within the same set do not have direct connections, and all
edges connect nodes from different sets.

Two-dimensional Lattices: Two-dimensional lattices (see Fig. 2.1 (d)) represent regular
grid-like networks where nodes are arranged in a two-dimensional grid. Each node
is connected to its neighboring nodes, resulting in a regular lattice structure. Two-
dimensional lattices can be generated by specifying the grid size and connecting nodes
to their adjacent neighbors. The most distinct property of two-dimensional lattices
is their regularity and local connectivity. These networks are used to study spatially
embedded systems, diffusion processes on grids, and lattice-based models in physics
and biology (Kandasamy et al., 2014).

In summary, these network models and fundamental network structures provide valu-
able insights into various aspects of network theory, including connectivity, degree dis-
tributions, influence dynamics, and spatial relationships. By understanding the dis-
tinct properties of these models, researchers can analyze real-world networks, develop
theoretical frameworks, and investigate the impact of network structures on the best
strategies regarding influence maximization and network inference.
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2.2 Diffusion Models

Building upon the understanding of network models, an essential component in study-
ing opinion dynamics and influence maximization is the utilization of diffusion mod-
els. These models provide a framework for analyzing the spread of opinions, informa-
tion, ideas, or behaviors within a network. By incorporating diffusion models into the
context of network models, we can gain insights into the mechanisms through which
opinions and influences propagate throughout a given network structure.

In more detail, diffusion models are designed to capture the dynamics of information
dissemination and adoption across network nodes. In diffusion models, agents in the
network interact with their directly connected neighbours according to a set of reason-
able mathematical rules which represent social mechanisms responsible for opinion
evolution. Resulting from the nontrivial collective effects of agent interactions, opin-
ions propagate in the network and the opinion states of a population evolve accord-
ingly (Li et al., 2018).

In the existing literature, the opinion diffusion models are divided into two categories
(Chen et al., 2013): the progressive diffusion models (e.g., the independent cascade
model, the linear threshold model) and the non-progressive diffusion models (e.g., the
voter model, the susceptible-infected-susceptible (SIS) model, the Ising model). A ma-
jor distinction between progressive and non-progressive models is whether the state of
an agent can be changed back and forth due to agent interactions. In the following, we
introduce the most commonly-used diffusion models for investigating the IM prob-
lem, classified within these two categories (Noorazar, 2020).

2.2.1 Progressive Diffusion Models

Progressive models assume that once a node adopts an opinion or behavior, it remains
in that state indefinitely. Two commonly-used progressive models in the IM problem
are the independent cascade model and the linear threshold model (Li et al., 2018).

The independent cascade model (Kempe et al., 2003) offers a way to model the influence
propagation as a one-off activation. The continually-elapsing time is discretized as
time steps in this model. Each connection between nodes has a chance of transmitting
influence, represented by a probability, and each node can only be influenced once.
The infected node will become inactive after one time step, which means that it can
only propagate its influence to its neighbours during a single time slot. This one-hop
dissemination of influence is cascaded throughout the entire network until all the nodes
in the network are eventually infected, or the propagation stops when nodes fail to
transform their neighbours due to the randomness of the transformed probability.
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In the linear threshold model (Chen et al., 2010), an inactive node is also under the
influence of opinions of its neighbours, but with a more granular rule. Specifically,
in the linear threshold model, the probability on each directed edge is extended to a
non-negative weight. For each node vi ∈ V, the total incoming edge weights sum up
to a maximum of 1. The rule specifically indicates that, at each time step, an inactive
node vi changes its state to “active” if and only if the total weight contributed by its
incoming neighbours is at least θvi . Here, thresholds θvi characterize different levels
of the tendency of the node vi to adopt the opinion of its neighbours. Normally, the
thresholds are determined randomly in classic settings (Kempe et al., 2003).

2.2.2 Non-progressive Diffusion Models

In contrast to progressive models, non-progressive models allow nodes to change states
multiple times. Three seminal non-progressive models are the SIS model, the voter
model, and the Ising model (Li et al., 2018).

The SIS model is originally an epidemiological framework used to study the spread of
infectious diseases in complex networks (Xuan et al., 2020). In this model, individuals
i within a network can exist in either a susceptible (denoted as Fi(t) = 0) or infected
state (denoted as Fi(t) = 1) at time t. The infection process occurs when a susceptible
individual becomes infected through contact with infected neighbors, akin to disease
transmission. Specifically, the infection probability of node i is β ∑j wijFj(t), where
W = {wij} is the adjacency matrix, and β is the infection rate. Then infected indi-
viduals i can recover and revert to being susceptible again with recovery rate µFi(t),
dependent on their own state only (Lee et al., 2013). While the SIS model is effective
for studying disease spreads, it has an important difference compared to the typical
opinion diffusion models like the voter model and Ising model in how state transitions
occur. In opinion dynamics, transitions depend on the states of the node’s neighbors in
both directions, as opinions are influenced by peers in both directions – both in adopt-
ing and abandoning opinions. However, the SIS model lacks this realistic mutual influ-
ence capacity, since recoveries are spontaneous.

The voter model (Clifford and Sudbury, 1973) is a well-studied opinion dynamics model
that has been prominent in the literature for decades (Redner, 2019). In the voter model,
opinions are typically binary, e.g., an agent holding either opinion A or B. The under-
lying diffusion mechanism of the voter model is straightforward: At each time step,
an agent is selected at random from the network, and then it copies the opinion of
a randomly selected neighbor. Mathematically, the voter model can be described by
tracking the evolution of the probability xi(t) of node i holding opinion A at time t
(Mobilia et al., 2007):

dxi

dt
= (1 − xi)

∑j wijxj

ki
− xi

∑j wij(1 − xj)

ki
, (2.3)
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where wij represents the element in the i-th row and j-th column of the adjacency ma-
trix, and ki is the degree of node i. In Eq. (2.3), the first term stands for the probability
of holding opinion B but selecting a neighbor with opinion A, while the second term
stands for the probability of holding opinion A but choosing a neighbor with opinion
B. Note that, in Eq. (2.3), the rates of opinion changes depend linearly on the sum of
neighbors with the same states. This linear relationship enables tractable mathematical
analysis of the model’s properties (Redner, 2019). Additionally, on finite connected net-
works, the voting dynamics asymptotically reach a consensus where one opinion takes
over the population. The specific outcome, whether converging towards opinion A or
B, depends on the initial distribution of opinions and the underlying network structure
(Even-Dar and Shapira, 2011). Notably, sparser connections dramatically slow consen-
sus (Redner, 2019). Moreover, the voter model has been employed to model election
outcomes. For example, empirical evidence of USA and UK election outcomes has sup-
ported the alignment of voting dynamics with actual voting data (Braha and De Aguiar,
2017; Vendeville et al., 2021; Fernández-Gracia et al., 2014).

The Ising model is one of the most popular models in the physics community used
to study opinion dynamics and collective behavior in complex systems (Galam et al.,
1982; Castellano et al., 2009). In the Ising model, each individual is represented as a
spin (node) in a network, and their opinions are described as binary variables (e.g., +1
or −1). The model assumes that individuals are influenced by the opinions of their
connected neighbors, and they tend to align their own opinions with those in their so-
cial vicinity. Following the commonly-used synchronous Glauber algorithm (Glauber,
1963; Galam, 2008) in simulating social dynamics, the Ising dynamics evolve according
to the following probabilities:

Pr(si(t + 1) = 1) =
1

1 + e(−2 ∑j wijsj(t))/τ

Pr(si(t + 1) = −1) = 1 − Pr(si(t + 1) = 1).
(2.4)

Here, Pr(si(t + 1) = 1) and Pr(si(t + 1) = −1) are the probabilities for spin i to have
state 1 and −1 at time t + 1, and τ is the temperature, controlling randomness. At low
temperature τ, the tendency for individuals to align opinions with their neighbors typ-
ically overcomes random opinion fluctuations, leading to consensus and long-range
order in the public opinion characterized by the emergence of majority opinion align-
ment across the population. However, above a critical value τc, individual opinion fluc-
tuations dominate, preventing consensus and keeping the system in a disordered, frag-
mented state macroscopically (Castellano et al., 2009). Moreover, on two-dimensional
lattice graphs, there is a sharp phase transition from an ordered phase to a disordered
phase as the temperature passes the critical point τc. However, network heterogeneity
changes the phase transition, which becomes less sharp, and the critical temperature
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τc increases logarithmically with the network size (Aleksiejuk et al., 2002; Dorogovtsev
et al., 2008).

Unlike the simple contagion observed in the voter model (Redner, 2019), where an
agent can become “infected” with a certain probability after a single exposure to an
infectious entity, the Ising model belongs to the class of complex contagion. In com-
plex contagion, multiple exposures to infectious entities are necessary for an agent to
change its state. In other words, the distinction between the voter model and the Ising
model lies in how agents in the network respond to successive exposures (Min and
San Miguel, 2018). Therefore, the Ising model provides a more accurate description
of opinion adoption if the reinforcement of multiple sources of exposure is required
for the adoption of a new idea (Centola, 2018; Vasconcelos et al., 2019). In Chapters 4
and 5, we address the network inference acceleration problem separately in the voter
model and the Ising model. We first demonstrate that inference convergence can be
accelerated by smartly targeting agents in the network using the voter model. As it is
of interest if similar ideas can be applied in relatively complicated settings of complex
contagion, we further investigate this problem in the Ising model. Different from the
linearity of the voter model, which results in high levels of mathematical tractability,
the non-linearity of the Ising model requires different techniques for analysis such as
Taylor series approximation and mean-field approximation at certain temperature re-
gions.

2.2.3 A Comparison between Progressive Models and Non-progressive Mod-
els

As mentioned in Section 2.2.1, the independent cascade model and the linear thresh-
old model simulate the propagation of influence following a one-off activation, i.e., a
node infected by an opinion remains infected by it. This assumption is appropriate
for opinions that remain unchanged once decided, e.g., adopting a deeply-held belief.
However, in many real-world settings, individuals may repeatedly flip their opinions
back and forth due to peer and media influence, e.g., attitudes towards public or po-
litical issues. Since variants of the independent cascade and linear threshold models
only allow a single activation for each node, they are unsuitable for modelling such
opinion dynamics. Instead, such an opinion-changing process can be described by
non-progressive models like the voter model (Redner, 2019) or Ising model (Lynn and
Lee, 2016). Furthermore, the equilibrium or ground state in non-progressive models
represents the self-optimizing tendency of social networks. As individuals interact, the
system evolves toward configurations of minimal conflict and energy. This emergent
convergence to stable states is absent from the independent cascade model. The self-
organization in non-progressive models thus provides a more compelling analogy to
opinion dynamics and consensus formation within social networks (Liu et al., 2010).
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In Chapter 3, we choose the non-progressive voter model as the underlying opinion
diffusion model for the IM problem for two main reasons. First, the voter model has
been extensively studied in existing literature. For example, its basic properties, such
as the exit probability (the likelihood that a given opinion takes over the entire net-
work) and the consensus time (the expected time until a consensus is reached), have
been analyzed on various network topologies (Redner, 2019; Castellano et al., 2009;
Sood and Redner, 2005). The methodologies used in these analyses, like mean-field
theory (Redner, 2019) and coalescing random walks (Yildiz et al., 2013), can provide
insights into the inter-temporal IM problem. Second, the evolution of opinions in the
voter model can be described by a linear system that can be solved analytically in some
simple topologies (Masuda, 2015).

2.3 External Influence of Opinion Dynamics

In progressive models such as the classic independent cascade model and the linear
threshold model, the diffusion process starts with a set of initially activated nodes in
the network (known as the seed set) (Kempe et al., 2003). The role of external influence
in progressive models is to identify the set of seed nodes in a network to trigger a
cascading behavior or contagion process that maximizes diffusion.

For the voter model, with the inclusion of more than one external influence, mixed-
equilibrium states where multiple opinions coexist will be reached. Specifically, some
work aims at exploring the role of the external influence via either studying the sce-
nario of strategically transforming agents into so-called zealots, where agents commit
to a given opinion (Yildiz et al., 2013), or incorporating the IM problem with network
control where the external influence is treated as an external controller who exerts in-
fluence by building unidirectional connections with agents in the network (Masuda,
2015). Contrary to the less realistic assumption that every agent can be converted into
a zealot, in the network control model, the agent targeted by the external controller is
also subject to peer influence since it has been realized that the individuals in the social
network are exposed to various sources of social influence (Hu, 2017). Besides, it has
been observed that it takes some time for the external influencer to influence individu-
als (Ali et al., 2018). Take the advertising campaign as an example. In order to achieve
the purpose of product promotion, the advertisement needs to be broadcast repeatedly
in a certain period of time to spread its influence. Therefore, we choose network con-
trol as our control model in the voter model when studying influence maximization
and opponent strategy inference.

Originating from statistical physics and condensed matter physics, the Ising model is
commonly used to study real-world systems that are not isolated and can be influenced
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by external factors. To account for these external influences, the Ising model incorpo-
rates a concept known as “external fields” (Lynn and Lee, 2016). When introducing an
external field in the Ising model, an additional term hi is included in Eq. (2.4) to repre-
sent the interaction between the individual spin (node) i and the external field:

Pr(si(t + 1) = 1) =
1

1 + e(−2 ∑j wijsj(t)−2hi)/τ
(2.5)

By adjusting the strength and sign of the external field, one can effectively control the
behavior of spins or nodes in the network, thereby manipulating network dynamics
and guiding the system towards desired configurations. Similar to the voter model,
the external fields can be viewed as building unidirectional connections from external
controllers to agents in the network.

2.4 Existing Frameworks and Techniques for Influence Maxi-
mization

Since Domingos and Richardson first studied IM as an algorithmic problem (Domingos
and Richardson, 2001; Richardson and Domingos, 2002), the IM problem has received
extensive attention and been explored under different settings. We start our discussion
of the related literature with the basic setting of IM where one controller in the net-
work tries to maximize its influence in Section 2.4.1. Due to the limitation of the basic
IM problem that it only considers one controller in a network, the problem has been
extended into a competitive setting where multiple controllers are competing within a
social network. Therefore, we proceed our discussion with the competitive IM problem
in Section 2.4.2. As this work focuses on the inter-temporal allocations of budgets, we
dedicate to introducing the related work and existing gaps in the time-critical IM field
in Section 2.4.3.

2.4.1 Influence Maximization

Influence maximization has been first proposed for the independent cascade model
(Kempe et al., 2003). This model has been formulated as a discrete optimization prob-
lem in which only one controller on a social network tries to maximize the spread of
its opinion. Kempe et al. show that the IM problem is NP-hard and provide a greedy
algorithm with a provable approximation guarantee (Kempe et al., 2003). As this pro-
posed algorithm is computationally demanding for large-scale networks, extensive ef-
forts have been made to improve its effectiveness in two directions. The first is in-
troducing heuristics to accelerate the computation of the spread function for different
seed sets (Leskovec et al., 2007; Chen et al., 2009). The second is restricting the search
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to a small range of nodes as potential candidates for the next seed nodes (Goyal et al.,
2011). As the evaluation function for the independent cascade model cannot be solved
in polynomial time, the accuracy of these algorithms is guaranteed only by the sub-
modularity of the evaluation function.

In addition to the vast use of heuristic strategies to identify the most influential seed
nodes, some studies (Pan et al., 2016; Morone and Makse, 2015) map the diffusion pro-
cess onto other well-studied problems. Specifically, Pan et al. (2016) apply a random
walk to trace the most influential nodes and propose a linear-time complexity algo-
rithm. Moreover, Morone and Makse (2015) translate the IM problem into optimal
percolation, which aims to determine the minimal set of nodes whose removal from a
network breaks down the system into unconnected clusters, and theoretically confirm
that low-degree nodes surrounded by hub nodes are among the most influential nodes.
Nevertheless, these methodologies are applied to progressive influence propagation
models where the changes of states of agents in these models follow a progressive di-
rection and cannot be reversed.

In contrast to progressive models that reach static states with no further cascades of
influence propagation as mentioned in Section 2.2.1, the voter model allows nodes to
change their opinions back and forth. As a result, in the voter model, all agents in a
connected network will eventually align with the only existing external influencer in
the asymptotic equilibrium (Even-Dar and Shapira, 2007). For this reason, the influence
maximization for the voter model is usually explored against an opponent, which may
be passive or actively maximizing their influence, and will be stated in detail in the
next section.

2.4.2 Competitive Influence Maximization

Most studies of competitive IM either focus on the influence maximization problem for
one of the competing controllers or study the game-theoretic aspects of competitive in-
fluence diffusion. For the former case, some research (Bharathi et al., 2007; Carnes et al.,
2007; Budak et al., 2011) follows the idea of solving IM under the framework proposed
by Kempe et al. (2003), and gives different heuristic algorithms for approximately com-
puting the best response to an opponent’s strategy based on independent-cascade-like
models. Others apply the competitive IM to non-progressive diffusion models, utiliz-
ing greedy algorithms (Liu et al., 2010; Masuda, 2015; Brede et al., 2019b; Kuhlman et al.,
2013; Yildiz et al., 2013) and gradient ascent algorithms (Lynn and Lee, 2016; Moreno
et al., 2020; Romero Moreno et al., 2021b). Particularly, Masuda (2015) pioneers a linear-
algebra-based approach for maximizing average vote shares in voter dynamics against
a passive opponent. Moreover, Moreno et al. (2020) are the first to incorporate aspects
of agent heterogeneity with influence maximization by modelling agents in the net-
work with decreased probabilities of adopting a particular opinion. However, all of
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these works only consider how to achieve optimal control in the stationary state. None
of them takes into account the transient dynamics of the opinion propagation process
and considers the non-stationary influence maximization.

For the game-theoretical setting, the competitive IM problem is mainly solved by find-
ing the Nash equilibrium under a budget constraint in the stationary state (Goyal et al.,
2019; Tzoumas et al., 2012; Fazeli and Jadbabaie, 2012; Kermani et al., 2017; Masucci
and Silva, 2014; Chakraborty et al., 2019). Particularly, Goyal et al. (2019) study mixed
Nash equilibria on the linear threshold model, and focus on identifying inefficiency of
resource use at equilibrium. Kermani et al. (2017) obtain the pure Nash equilibrium by
implementing numerical experiments in a real-world data set based on a variant of the
independent cascade model. Although the game-theoretical IM problem based on the
variant of the independent cascade model has been extensively investigated, it has re-
ceived limited attention for non-progressive diffusion models. The most representative
works applying game theory to solve IM on non-progressive models are Fazeli and Jad-
babaie (2012); Masucci and Silva (2014); Chakraborty et al. (2019). Specifically, Fazeli
and Jadbabaie (2012) represent the dynamics of influence spreading as a result of lo-
cal coordination games in which each agent updates its state according to neighboring
interaction. Based on this game-theoretic diffusion process, it describes the Nash equi-
librium for the setting where two competitors simultaneously determine the number of
their initial seeds with budget constraints to maximize the expected number of prod-
uct adoption. Moreover, Masucci and Silva (2014) characterize the game-theoretical IM
problem as optimal resource distribution in the voter model. However, both works
treat the allocation of influence as a single time-step injection rather than continuous
exertion of influence over a period of time. In other words, the controllers only af-
fect the networks at the beginning of the campaign and only change the initial dis-
tribution of opinions. The exception considering continuous exertion of influence for
non-progressive diffusion models is Chakraborty et al. (2019). They study the game-
theoretical IM problem based on the voter model. However, their focus on optimal
strategies is limited to a basic star topology, constraining its applicability to intricate
real-world networks.

2.4.3 Time-critical Influence Maximization

Generally, the IM problem can be investigated from three orthogonal dimensions (Goyal
et al., 2013): the number of seed nodes initially activated (known as the budget), the
time required for the propagation, and the expected spread (i.e., the expected number
of agents adopting a certain opinion). Recently, significant attention has been paid to
the time-related influence maximization problem, which considers temporal factors,
such as time minimization (Goyal et al., 2013; Alshamsi et al., 2017), and the time-
constrained competition (Chen et al., 2012; Liu et al., 2012; Brede et al., 2019a; Ali et al.,
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2018). Specifically, the time-minimization IM minimizes the time to achieve a preas-
signed expected spread under the budget constraint. While, for the time-constrained
IM, it maximizes the expected spread under time and budget constraints.

For the time-minimization IM, Goyal et al. (2013) consider that the controller allocates
all its budget at the beginning of the competition. Furthermore, Goyal et al. (2013) also
show that the time-minimization IM problem is NP-hard and solve it by the greedy
algorithm based on the independent cascade model. In contrast, Alshamsi et al. (2017)
consider to target different individuals at different stages of influence propagation.
They explore the dynamic strategy for time-minimization IM on an independent cas-
cade model. Results show that the controller has to start targeting low-connectivity
individuals and then switch to high-connectivity individuals at certain stages in order
to minimize the time for achieving a predefined expected spread. On top of inter-
temporally targeting, Tong et al. (2020) allow the controller to adjust its seeding strat-
egy based on what it observes after a certain number of diffusion steps. However, all of
the above work is addressed in a non-competitive setting where only a single external
controller spreads its influence in the network. Given that competition for influence is
also common in real-world contexts (e.g., political campaigns (Wilder and Vorobeychik,
2018) or radicalization prevention (Ramos et al., 2015)), the single-controller setting has
a restricted range of applications.

For the time-constrained IM, Chen et al. (2012) incorporate the time delay aspect of
influence diffusion. In more detail, they show that, if the influence delays follow the
geometric distribution, the independent cascade model with delays maintains submod-
ularity. Therefore, this problem can be solved by the greedy algorithm with a provable
approximation guarantee. Furthermore, Liu et al. (2012) consider maximizing influ-
ence under the time constraint in the independent cascade model without influence de-
lays and also prove monotonicity and submodularity of the influence spread function.
However, these two works only consider the IM in the non-competitive setting where
there is only one controller in the network, and assume that the controller allocates its
budget only at the beginning of the campaign. To our best knowledge, only two works
consider the time-constrained IM in the competitive setting. Most related to our mod-
eling approach, Brede et al. (2019a) are the first to explore the effects of time horizons
on IM in voter dynamics. However, their paper does not allow controllers to allocate
different amounts of resources over time. It also does not consider the game-theoretical
setting where competitors have no prior knowledge of the opponent’s strategies. This
contrasts with real-world scenarios like marketing, where the marketers can optimally
distribute their budgets inter-temporally and only have little information of the com-
petitor’s strategy. The only directly related study that solves the time-constrained IM
in the game-theoretical setting by considering when to initiate opinion propagation is
by Ali et al. (2018). They use a technique called q-learning (Clifton and Laber, 2020) to
model the inter-temporal seeding process, where an agent learns to select seed nodes by
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iteratively updating its action values based on the rewards received in different states.
However, to reduce the complexity of the q-learning framework, they only allow the
controllers to select nodes from preassigned seed-combination strategies, which largely
confines the flexibility of node selection. Besides, they focus on verifying the effective-
ness of the q-learning framework from an algorithmic perspective and do not relate the
mechanism behind the optimal strategies to transient dynamics of agents. Moreover,
this work is based on the linear threshold model where, once an individual is influ-
enced by a controller, its opinion will remain unchanged until the end of the diffusion
process. In this sense, it is unsuitable for situations where opinions can be changed
back and forth.

2.5 Network Structure Inference

As mentioned in Challenge 2 in Section 1.1, we are also interested in the question of
how convergence of estimates can be accelerated through targeted interaction with the
networked dynamics. To derive dynamical process parameters or reconstruct network
topology from observational data, it is often necessary to draw on domain-specific ex-
pertise (Brugere et al., 2018). Here, we place the problem of speeding up inference
in the context of opinion dynamics, with a specific focus on the rapid inference of un-
known opponent’s strategies. This focus is crucial for several reasons. First, it enhances
models of real-world opinion dynamics, which involve undisclosed external influence
attempts that conflict with common assumptions of opponent strategy transparency
(Goyal et al., 2019). By quickly uncovering key aspects of such influence attempts,
we can improve understanding of the actual drivers shaping public opinion formation
(Myers et al., 2012). Additionally, with the swift propagation of manipulated messag-
ing, quick identification of dissemination strategies is essential for effective counter-
action before irreversible deception or polarization (Nguyen et al., 2012). Finally, vast
social media datasets present opportunities for guiding influence if key signals can be
quickly extracted. Inferencing faster from online dynamics would enable more respon-
siveness to emerging opinion trends (Willaert et al., 2020).

As we model the way of exerting influence by building unidirectional connections with
agents in the network in our control setting (see Section 2.3), the connections from the
external controllers can be viewed as edges that constitute part of the network topology.
Given this, we present a comprehensive review in the highly relevant area of network
structure inference. More specifically, in Section 2.5.1, we introduce the methodologies
used for network structure inference. In Section 2.5.2, we detail the specific domain of
reconstructing network structure from epidemiology and information networks as well
as the gaps in current literature. In Section 2.5.3, we delve into the reviews of the widely
adopted network inference model in opinion dynamics – the inverse Ising model.
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2.5.1 Methodologies for Network Structure Inference

Existing literature on inferring network topologies from indirect data has been found
in a wide range of domains and solved with domain-specialized knowledge. In the fol-
lowing, we numerate methodologies used for network structure inference categorized
by different model representations. Generally, there are two types of models for net-
work structure inference (Brugere et al., 2018): parametric models and non-parametric
ones.

In more detail, parametric models are based on assumptions about the distributions
of edges related to the input data, e.g., the probabilities of information flow between
nodes in the existence of edges. A commonly-used method for solving parametric in-
ference is the maximum likelihood estimation with major applications in epidemiol-
ogy and information networks (Gomez-Rodriguez et al., 2012). We detail the formation
of applying maximum likelihood estimation to network structure inference in Section
2.5.2. Another representative method in network structure inference is Bayesian in-
ference which integrates Markov chain Monte Carlo to obtain estimations of the joint
posterior distribution of network structure parameters (Young et al., 2020). To use this
method, in addition to the input data, one also needs to provide a high-level description
of how the data depends on the underlying network structure, normally represented by
probability distributions. Instead of returning an exact inferred network, this method
obtains a posterior distribution over possible network structures. Apart from the above
two methods, causal models have been broadly used to infer climate networks and
brain networks (Ebert-Uphoff and Deng, 2012; Dhamala et al., 2008), which generate
causal networks represented as an acyclic digraph for the evolution of the system.

Non-parametric network structure inference refers to methods for learning the topol-
ogy of networks without making assumptions about the form of the underlying model.
One of the most straightforward methods for solving non-parametric network structure
inference is called interaction measures (Kawale et al., 2013). It starts with measuring the
correlations or similarities between two nodes and then chooses a threshold by hand-
tuning or with domain-specific knowledge to determine if there exists a link between
two nodes, which simply reduces the problem of inferring network topology to find-
ing the optimal threshold. Depending on the statistical measure used to determine the
existence of connections between nodes, we further categorize non-parametric models
as correlation measures (Bialonski et al., 2011), entropy measures (Donges et al., 2009),
frequency domain measures (Lachaux et al., 2002), and regression (Haury et al., 2012).
For a more extensive review of methodologies of network structure inference, the read-
ers can refer to Kolaczyk (2009) and Brugere et al. (2018).
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2.5.2 Network Inference From Epidemiology and Information Flow

In this section, we focus on the specific domain of reconstructing network structure
from the perspective of epidemiology and information networks. These fields align
closely with our thesis topic: opinion dynamics inference – a field that has seen limited
research. The manner in which diseases or information spreads in these fields offers a
compelling parallel to the challenges of tracing opinion propagation in networks. By
integrating these viewpoints, we seek to offer a comprehensive review of literature on
opinion dynamics inference. As mentioned at the beginning of Section 2.2, the influence
propagation usually takes place on a network. Even though it is possible to directly ob-
serve when nodes become infected, observing the source of influence, i.e., who infects
whom, or the intensity of influence is often very challenging (Leskovec et al., 2009).
For instance, considering the information propagation on social media, as the users
discover new information, they post it without mentioning the source. Thus, we only
observe the time when the user gets “infected”, but not where it got infected from. In
short, the aim of network structure inference in this field is to discover unobservable
networks from data related to information or infection transmission over time.

A majority of works in this field are based on maximum likelihood estimation or ex-
plored under the expectation maximization frameworks embedded with a variety of
optimization algorithms to obtain a good estimate of the network structure compatible
with observations of information cascades. This method works as follows. Based on
the assumption that the time of infection or discovering new information is observed,
the likelihood of information or infection transmission time difference along an edge
is defined by the underlying diffusion model, which further yields the likelihood that
a node infects another node as well as the likelihood of information propagation se-
quences or trees of infection. Finally, by performing optimization based on the likeli-
hood function, we obtain an estimator of the graph (Brugere et al., 2018).

Starting from the seminal work of Gomez-Rodriguez et al. (2012), inferring networks
using maximum likelihood methods in this area has been extensively explored in a
variety of scenarios. In Gomez-Rodriguez et al. (2012), the authors treat network struc-
ture inference as a binary optimization problem (representing whether or not there is
an edge between two nodes) and propose the NetInf algorithm based on the maxi-
mization of the likelihood of the observed cascades in an independent cascade model.
In more detail, they prove the monotonicity and submodularity of the likelihood func-
tion relative to edge selection and, therefore, select edges greedily with an accuracy
guarantee. Furthermore, to improve the performance of the NetInf algorithm in the
independent cascade model, Rodriguez and Schölkopf (2012) propose the MultiTree
algorithm by including all directed trees in the optimization. In addition, algorithms
have been developed to infer the intensity of connections in a network by Braunstein
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et al. (2019) based on the susceptible–infected–recovered model, which is also a pro-
gressive model. Other works have incorporated prior knowledge about the network
structure (e.g., sparsity (He and Liu, 2017), motif frequency (Tan et al., 2020), or com-
munity structure (Ramezani et al., 2017)) to improve the performance of network infer-
ence with limited amounts of data.

In order to incorporate uncertainty in inference, other works employ Bayesian infer-
ence using Markov chain Monte Carlo methods. Early works in the epidemiology do-
main (Britton and O’Neill, 2002; Meyers et al., 2005) treat the network model (e.g., ER
graph, or scale-free networks) as known, and use Bayesian inference to discover the
network model parameters as well as diffusion model parameters (e.g., infection rate).
However, the assumption of knowing the network model is too restrictive and, in most
cases, inference of structural information is necessary. The most representative work of
using Bayesian inference to reconstruct network structure from information cascades is
the work by Gray et al. (2020), which has improved estimates of network structure, es-
pecially in the presence of noise or missing data, and is also based on the independent
cascade model. However, a major limitation arises from their assumption of a binary
adjacency matrix for modeling the underlying graph. While simpler, this precludes
inferring the intensities of connections between nodes, which limits applicability, as
many real networks require modeling weights, not just topology.

Most of the above-mentioned works reconstruct network structures from observations
of information cascades or infection trees and are based on progressive models. The
exceptions that explore network structure based on non-progressive models are Bar-
billon et al. (2020), Li et al. (2017), Chen and Lai (2018) and Zhang et al. (2018). In
more detail, Barbillon et al. (2020) apply the matrix-tree theorem to infer the network
structure based on a SIS model. To maintain the information cascade as a directed
acyclic graph as work based on progressive models, the information propagation has
been encoded as a matrix with T × N dimensions where N represents the number of
individuals and T is the length of time series. And as a node can flip its state back
and forth, it would appear in the same propagation sequence several times. Unlike
Barbillon et al. (2020) and all work based on progressive models which needs input
sequences of nodes with infection times sorted from a root and monotonically increas-
ing, the works by Li et al. (2017), Chen and Lai (2018) and Zhang et al. (2018) recon-
struct network structure from observations of binary-state dynamics. In more detail, Li
et al. (2017) translate the network structure inference into a sparse signal reconstruction
problem by linearization and solve it via convex optimization. Moreover, Chen and Lai
(2018) develop a model combining compressive sensing and clustering algorithms for
network reconstruction. However, these above works only consider unidirectional in-
fection (e.g., in the SIS model, if a susceptible node is in contact with an infected node,
it will be infected according to a certain probability. Nevertheless, an infected node
will not change to the susceptible state due to contact with another susceptible node
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but according to the systematic recovery rate.). Instead, Zhang et al. (2018) solve the
network inference problem by expectation maximization with a focus on the setting
that two states are equivalent. This approach allows to utilize bidirectional dynamics
to calculate transition probabilities to reduce the amount of data needed for accurate
estimation. However, this work treats an edge as a binary variable (i.e., the existence or
absence of a link between two nodes), and is not suitable for inferring the link weight
between two nodes.

To sum up, most works in the field of epidemiology and information networks infer
network structure from information cascades or infection trees which are identical to
directed acyclic graphs, and are not applicable to situations where opinions can be
changed back and forth. The work closest to our modelling approach is by Zhang
et al. (2018), which uses both directions of transition probabilities to reconstruct net-
works from binary-state dynamics. However, it treats the edge as a binary variable.
On the other hand, reconstructing the strategy of the opponent, which is presented as
weighted links from binary-state dynamics is still largely unexplored in the fields of
epidemiology and information flow. Most importantly, none of these works investi-
gate the network inference problem from the perspective of manipulating the diffusion
process to accelerate the convergence of estimations, which is an important lever if one
wants to obtain an estimate with an accuracy guarantee within a short and limited ob-
servation time.

2.5.3 Inverse Ising Model

Alongside epidemiology and information flow, network inference has also been exten-
sively studied in the statistical physics community. In the field of statistical physics,
network inference is treated as an inverse problem, which aims at inferring structural
and modelling parameters of complex-networked systems from observed system dy-
namics. Due to the development of experimental techniques, which allow for the ac-
cessibility of microscopic-level data, as well as advances in data storage in the last two
decades, the inverse statistical problem has gained increasing interest in a variety of re-
search domains. Recent applications are not limited to social dynamics but also extend
to neuroscience (Cocco et al., 2009), computational biology (Lezon et al., 2006), epi-
demiology (Fajardo and Gardner, 2013), and financial economics (Sornette, 2014). One
of the most typical and canonical settings for the inverse statistical problem is the in-
verse Ising model (Aurell and Ekeberg, 2012). Specifically, for the inverse Ising model,
one aims at reconstructing parameters of the Ising model such as coupling strengths
between spins from data like spins’ states or magnetization.

As a subproblem of the more general problem of statistical inference, the core of most
inference approaches for the inverse kinetic Ising problem is to maximize the likeli-
hood of model parameters given time series of system states (Nguyen et al., 2017). The
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majority of studies in this area concentrate on enhancing the inference performance by
improving the accuracy or the scalability of proposed inference algorithms via utiliz-
ing varying approximations with various regimes of validity (Roudi and Hertz, 2011;
Mézard and Sakellariou, 2011; Kappen and Spanjers, 2000; Zeng et al., 2011; Dunn and
Roudi, 2013; Bachschmid-Romano and Opper, 2014; Battistin et al., 2015; Campajola
et al., 2019; Hoang et al., 2019; Lee et al., 2021). For instance, the mean-field method
(Roudi and Hertz, 2011; Mézard and Sakellariou, 2011) and the Thouless-Anderson-
Palmer approach (Kappen and Spanjers, 2000; Zeng et al., 2011; Dunn and Roudi, 2013)
are utilized to provide approximated solutions for the inverse kinetic Ising problem in
the weak and dense network connection region. Moreover, belief propagation (Zhang,
2012) and replicas analysis (Bachschmid-Romano and Opper, 2014; Battistin et al., 2015)
are used for inference in the strong and sparse network connection region. However,
the above-mentioned methods only give close estimations for the inverse kinetic Ising
problem for large sample sizes. Improving on this and considering the limitation of the
dataset size obtained from experiments, the work of Hoang et al. (2019) utilizes linear
regression to provide accurate estimations for relatively small sample sizes. However,
even though the inverse kinetic Ising problem has been extensively studied from an
algorithmic perspective in the literature mentioned above, the data side has found rel-
atively little attention (Decelle et al., 2016). In other words, little attention has been
put in the aspect of enhancing the inference performance by improving the dataset’s
quality to obtain more accurate estimators with less data. This is, however, of great im-
portance in many real-world applications when the measurements for the dynamical
processes are costly or there are technical limitations in observing the whole process of
networked dynamics such as the early stage of a rumor (or epidemic) spreading.

To the best of our knowledge, there is only one work that considers the inference prob-
lem from the data quality perspective (Decelle et al., 2016). Specifically, the work by
Decelle et al. (2016) measures the amount of information contained in a given dataset
by applying a method that quantifies the effective rank of the correlation matrix. By
removing the less informative rows in the dataset, they obtain a condensed matrix
without loss of much information. By doing so, for the same length of the dataset,
the data matrix obtained by removing the less informative parts will lead to more ac-
curate inference. However, that work still assumes the data to be given and it does not
investigate an active way of generating data for inference. Instead, we are interested
in how to strategically influence networked dynamics with the aim of generating a
higher-quality dataset for speeding up the convergence of inference in the Ising model.
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2.6 Summary

While progressive models like the linear threshold and independent cascade models
are widely used in influence maximization, they cannot model real-world opinion dy-
namics, which involve recurrent changes. Instead, non-progressive such as the voter
model and the Ising model better capture empirical observations of evolving opinions
through social interactions.

As for the frameworks proposed and techniques used to solve the influence maxi-
mization problem, it is a commonly-used method to first verify the submodularity
and monotonicity of the evaluation function and then obtain solutions to the IM prob-
lem with heuristic algorithms by some accuracy guarantees. However, most works
assume to initialize budget allocations from the beginning of the competition and inter-
temporal budget allocation in voter dynamics has not been considered (see challenge
1 in Section 1.1). Moreover, the aspects of heterogeneity in agent behaviour are rarely
explored in influence maximization, especially for non-stationary influence maximiza-
tion (see challenge 1 in Section 1.1).

We then delve into the problem of network inference, starting with its applications in
epidemiology and information flow. Although substantial research has been dedicated
to inferring network structures from observations of information cascades and infection
trees, the exploration of uncovering weighted network connections from binary-state
dynamics remains largely unexplored in the fields of epidemiology and information
flow. Moreover, inferring parameters that describe complex systems from existing data
is a crucial topic in statistical physics. In this regard, we provide a comprehensive re-
view of the paradigmatic inverse Ising model, which serves as a widely-used approach
for modeling opinion dynamics in statistical physics. Following our review, we observe
that no existing work has combined aspects of network control with network structure
inference where external controllers can interact with internal agents to elicit more in-
formation during inference in binary-state dynamics (see challenge 2 in Section 1.1).
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Chapter 3

Inter-temporal Influence
Maximization

In this chapter, we consider a version of an inter-temporal influence maximization
problem. In this problem, one or both of the controllers have the flexibility to deter-
mine when to start control. The goal of the controller(s) is to maximize the share of a
desired opinion in a group of agents who exchange opinions on a social network sub-
ject to voting dynamics.

This chapter is organized as follows: Section 3.1 gives an introduction for studying the
inter-temporal influence maximization problem. Section 3.2 introduces detailed formu-
lations of inter-temporal network control in constant-opponent and game-theoretical
settings. Then, Section 3.3 outlines the algorithm for determining the optimal budget
allocations in the game-theoretical setting. To proceed, Section 3.4.1 analyzes the influ-
ence of different starting times on the transient dynamics of vote shares. Following that,
Section 3.4.2 discusses the optimal strategies against a known constant opponent, and
an unknown opponent. Finally, in Section 3.4.3, we explore the effects of agent hetero-
geneity on optimized starting times and budget allocations within the inter-temporal
influence maximization framework. We conclude in Section 3.5 with an overview of
the main findings.

3.1 Introduction

As discussed in Section 2.4, the IM problem is typically explored without time con-
straints such as deadlines, and is only subject to a budget constraint where there are
limited resources to allocate to agents in the network (Carnes et al., 2007; Budak et al.,
2011; Kermani et al., 2017; Goyal et al., 2019; Romero Moreno et al., 2021b). However,
the voting process towards equilibrium can take a long time (Brede et al., 2019a) and
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many practical applications of IM have clear deadlines, e.g., seasonal promotions and
political campaigns. Indeed, some researchers have incorporated temporal aspects in
IM (Liu et al., 2012; Goyal et al., 2013; Alshamsi et al., 2017; Ali et al., 2018; Brede et al.,
2019a; Tong et al., 2020). Related to our modeling approach, Brede et al. (2019a) are the
first to explore the IM under time constraints in voter dynamics. However, their paper
does not allow controllers to allocate different amounts of resources over time and does
not consider the game-theoretical setting where competitors have no prior knowledge
of the opponent’s strategies. In other words, their assumptions do not properly reflect
real-world scenarios such as marketing, where the marketers can optimally distribute
their budgets inter-temporally and have no information of the competitor’s strategy.
Representative work considering effects of time scales and activating agents depend-
ing on stages of the diffusion process includes the papers by Alshamsi et al. (2017);
Ali et al. (2018); Tong et al. (2020). Specifically, Alshamsi et al. (2017) concentrate on
minimizing the diffusion time by targeting agents with different levels of connectiv-
ity at different stages of the contagion process. In addition to inter-temporal targeting,
Tong et al. (2020) allow the controller to adjust its seeding strategy based on what it
observes after a certain number of diffusion steps. However, the above two works are
addressed in a non-competitive setting where only a single external controller spreads
its influence in the network. Given that competition for influence is also common in
real-world contexts (e.g., political campaigns (Wilder and Vorobeychik, 2018) or radi-
calization prevention (Ramos et al., 2015)), the single-controller setting has a restricted
range of applications. The only directly related study that solves the time-constrained
IM in the game-theoretical setting by considering when to initiate opinion propagation
is the work by Ali et al. (2018). However, it focuses on verifying the effectiveness of a
Q-learning framework from an algorithmic perspective and does not relate the mech-
anism behind the optimal strategies to transients of system dynamics. Furthermore,
like other models discussed above, the diffusion model of Ali et al. (2018) is the in-
dependent cascade model and not appropriate for modeling fast-changing opinions.
In addition to the lack of consideration of game-theoretical setting under the frame-
work of time-constraint IM in most works, agent heterogeneity — in which agents have
different levels of intrinsic bias towards adopting a specific opinion — has not found
much attention (Aral and Dhillon, 2018). As agent heterogeneity is often used to model
partial radicalism of agents, solving IM considering agent heterogeneity will help us
find solutions to reducing the risk of extremism and radicalization. To the best of our
knowledge, the only work that explores the IM problem in the presence of agent het-
erogeneity based on voter dynamics is by Moreno et al. (2020). However, their study
focuses on finding the influence-maximizing strategy in the stationary state and does
not consider agent heterogeneity in the context of the time-constraint IM.

To bridge these gaps in research about inter-temporal influence allocations, we study
the inter-temporal influence maximization problem in voter dynamics under time and
budget constraints for the following two settings: First, we consider an active controller
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competing against a known and fixed-strategy opponent (referred to as the constant-
opponent setting); Following this, we then consider a game-theoretical setting in which
both controllers compete to maximize their influence (referred to as the game-theoretical
setting).

Intuitively, in the context of inter-temporal allocations, one or both controllers have to
design strategies to make efficient use of their budgets over time. This results in the
following trade-off: If the controller starts allocating later, it has more disposable bud-
gets per unit of time but less time left for its influence to become effective. In contrast,
if a controller starts allocating earlier, its influence has much time to become effective,
but part of it may be wasted, because it is spent before the time when vote shares are
evaluated.

Against this background, in this chapter we address the problem of optimal inter-
temporal allocations both analytically and numerically. In order to obtain analytical
solutions for optimal allocations, we first explore the dynamic allocations in a sim-
plified scenario where controllers only have the flexibility to determine when to start
control and, once started, they target all agents equally. Then, we conduct numerical
experiments on a more complicated scenario where one of the controllers optimizes
starting times and budget allocations for individual agents in the network, which is
also referred to as individual optimization. Given that the individual optimization con-
centrates on assigning different starting times and allocations on individual nodes, we
also take agent heterogeneity into consideration and study its influence on dynamic
allocations.

Specifically, in this chapter, we make the following contributions to address research
questions 1a, 1b, and 1c on inter-temporal influence maximization outlined in Section
1.1: 1) To address research question 1a on integrating inter-temporal control into the
classic IM framework, we propose an advanced model in this chapter. Our model
introduces flexibility in budget allocation over time, allowing for strategic distribution
rather than a one-time allocation at the campaign’s beginning. By adjusting budget dis-
tribution over time, this model effectively captures and leverages the transient nature of
opinion dynamics, maximizing influence in both constant-opponent and game-theoret-
ical environments. 2) To address research question 1b on relating optimal inter-tempo-
ral allocation strategies to transients, we leverage the heterogeneous mean-field method
(Brede et al., 2019a) and Taylor expansions to analyze timescales of influence propaga-
tion on networks and how they are affected by optimal allocation strategies given time
horizons and budgets. Our findings indicate that for shorter time horizons, an opti-
mized controller tends to delay the start of control in more heterogeneous networks
compared to less heterogeneous ones. Conversely, for longer time horizons, an early
start is more effective in highly heterogeneous networks. 3) For question 1c of how
strategies differ within constant-opponent and game-theoretical settings, we observe
distinct optimal strategies. In a constant-opponent setting, where one controller starts
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influencing from the beginning, the optimal strategy involves initially allowing the op-
ponent’s influence and then strategically utilizing the budget towards the campaign’s
end. Conversely, in a game-theoretical setting, a controller with a larger budget typ-
ically initiates control earlier to gain an advantage before their opponent starts. Re-
garding Nash equilibrium, due to the complexity of analytically computing equilibria
in continuous games with infinite strategy sets (Bonomi et al., 2012), we apply iterative
gradient ascent (Bonomi et al., 2012). This numerical method, following the minimax
theorem (Rosário Grossinho and Tersian, 2001), iteratively maximizes and minimizes
the vote shares to find each controller’s best response, converging when both have op-
timized their strategies in response to each other.

3.2 Model Description

Below, we consider a social network given by a graph G(V, E) where a set of N agents is
identified with the vertices vi ∈ V and edges eij ∈ E indicate the existence of social con-
nections between agent i and agent j. In line with most studies in the field, we assume
an undirected and positively weighted network without self-loops. The weight of the
link from node j to i is denoted by wji ≥ 0. Agents in the network can hold one of two
opinions: opinion A or opinion B. Apart from the independent agents i = 1, · · · , N,
we assume the existence of two external controllers which either favour opinion A or
B, referred to as controller A and controller B, respectively. By definition, external con-
trollers never change their opinions and are given as elements external to the network
of independent agents. External controllers aim to influence the network, such as to
maximize the vote shares of their own opinions. To achieve this, subject to an overall
budget constraint, both controllers can build up unidirectional connections with inter-
nal agents. In other words, the control gains ai(t), bi(t) by controller A and controller
B are time-varying unidirectional link weights which indicate the allocation of budgets
by A or B to agent i at time t. As we consider the inter-temporal allocation of resources,
the control gains ai(t), bi(t) are functions of time and they must satisfy the budget con-
straints: ∑N

i=1
∫

ai(t)dt ≤ bA and ∑N
i=1
∫

bi(t)dt ≤ bB where bA, bB are the given budgets,
i.e. the total amounts of resources available to the controllers. Apart from the budget
constraint, ai(t), bi(t) also need to be non-negative, i.e. ai(t) ≥ 0, bi(t) ≥ 0.

Specifically, the updating process of opinions in the voting dynamics with the inclu-
sion of two opposing controllers is described as follows (Masuda, 2015). First, one of
the agents in the network, e.g., agent i, is selected randomly. Then, agent i selects an
in-neighbour or a controller at random with a probability proportional to the weight
of the incoming link (including control gains from controllers). Correspondingly, the
probability of copying a specific opinion is wki

∑N
j=1 wji+ai(t)+bi(t)

(to copy the opinion of a

network neighbour k), ai(t)
∑N

j=1 wji+ai(t)+bi(t)
(to copy the opinion of the A controller), and
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FIGURE 3.1: Schematic diagram of how controllers interact with the opinion dynam-
ics and how agents update their opinions. Triangles stand for controllers and agents
are represented by circles. Black and blank symbols indicate that the agents (or con-
trollers) are holding opinions A or B, respectively. The lines between agents corre-
spond to the social connections. External controllers A and B influence opinion dy-
namics by building unidirectional links to agents in the networks. Assuming unity
link weights from the neighbours and controllers, in the next time step, the randomly
picked agent i will have probability 3/4 to stay in opinion A and probability 1/4 to
flip its opinion.

bi(t)
∑N

j=1 wji+ai(t)+bi(t)
(to copy the opinion of the B controller). For a better understanding

of the updating process, an illustration is given in Fig. 3.1. Suppose agent i has been
picked and assume unit-strength connections between agents and from the controllers.
Agent i in Fig. 3.1 is linked with three other agents (one of which holds opinion B and
two who hold opinion A), and is targeted by controller A. Therefore, in the next up-
date, agent i will have probability 3/4 to stay in opinion A and probability 1/4 to flip
its opinion to B.

Here, we follow the mean-field rate equation for probability flows (Masuda, 2015) by
introducing xi as the probability that agent i has opinion A. We then have:

dxi

dt
= (1 − xi)

∑N
j=1 wjixj + ai(t)

∑N
j=1 wji + ai(t) + bi(t)

− xi
∑N

j=1(1 − xj)wji + bi(t)

∑N
j=1 wji + ai(t) + bi(t)

. (3.1)

In Eq. (3.1) the first term corresponds to the probability of holding opinion B but being
converted to opinion A, while the second term presents the probability of having opin-
ion A but picking opinion B. Eq. (3.1) can be further rewritten in a matrix form as

dx⃗
dt

=
[(

∆⃗1T
)
⊙ W + diag(−1)

]
x⃗ + ∆⃗ ⊙ P⃗A, (3.2)

where ∆⃗ = [ 1
∑N

j=1 wj1+a1(t)+b1(t)
, ..., 1

∑N
j=1 wjN+aN(t)+bN(t)

]
T

1×N
, P⃗A = [a1(t), ..., aN(t)]T1×N , x⃗ =

[x1(t), ..., xN(t)]T1×N , 1 is an all-ones vector, diag(−1) denotes an N-dimensional diag-
onal matrix with the elements −1 on the main diagonal, ⊙ is the Hadamard product
(Horn, 1990) which denotes pairwise multiplication and W is the weighted adjacency
matrix of the social network. Specifically, Eq. (3.2) represents the opinion dynamics as
a linear inhomogeneous non-autonomous system of first-order differential equations.
Notably, Brede et al. (2019a) solve Eq. (3.2) in the time-invariant case by eigenvalue de-
composition and find that the eigenvalues of the matrix

[(
∆⃗ 1

T
)
⊙ W + diag(−1)

]
de-

termine the time scales of opinion changes. In more detail, eigenvalues for large-degree
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nodes are smaller which indicates it would take longer for the high-degree nodes to
reach the equilibrium.

Here, instead, we focus on the time-variant scenario of Eq. (3.1) regarding different
starting times of controller A. To obtain an analytical estimate of vote-share trajectories
of agents, we use the heterogeneous mean-field approximation (Dezső and Barabási,
2002) in Section 3.4.1. Additionally, for numerical results, we employ the Runge-Kutta
method (Press et al., 1988) for numerical integration.

Consequently, the objective function for controller A is to maximize the average vote
share obtained by solving Eq. (3.1) at the end of a given time T:

SA(T) =
∑N

i=1 xi(T)
N

. (3.3)

Correspondingly, since an agent in the network can either have opinion A or opinion
B, for controller B, the objective function is SB(T) = 1 − SA(T).

In the following, we present detailed formulations of inter-temporal network control
in the context of constant-opponent and game-theoretical settings. Central to our dis-
cussion is the non-autonomous system, as represented by Eq. (3.1). In essence, a non-
autonomous system, as defined in the field of dynamical systems, is one where its
behavior is influenced by time-dependent factors. This means that unlike autonomous
systems, whose behavior is governed by fixed rules, the governing equations of non-
autonomous systems include variables or parameters that change over time. This tem-
poral evolution adds layers of complexity, making it challenging to handle fully flexi-
ble influence allocations ai(t) and bi(t). Thus, we first consider a simplified model for
inter-temporal influence allocation where the controller has the flexibility to determine
the time of the start of the campaign in Sections 3.2.1 and 3.2.2. Furthermore, given
the difference in transient dynamics of individual agents, we then refine the above as-
sumption by assigning different allocations and starting times for individual agents in
Section 3.4.2.2.

3.2.1 Inter-temporal Budget Allocations against a Constant Opponent

In the constant-opponent scenario, we consider maximizing the vote shares of opin-
ion A at time T (see Eq. (3.3)) against a constant controller B who starts control from
the beginning of the competition. To allow for analytical tractability, we start with a
simplified campaign scheme in which all agents start at the same time with the same
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allocation. Formally, the control gains ai(t), bi(t) (1 ≤ i ≤ N) by controller A and con-
troller B under the above assumption are:

ai(t) =

{
0 0 ≤ t ≤ ta
bA

(T−ta)N ta < t ≤ T,

bi(t) =
bB

TN
0 ≤ t ≤ T

(3.4)

where ta is the starting time of all nodes assigned by controller A. Consequently, this
IM problem is equivalent to determining a single optimal ta that maximizes SA(T), i.e.,

t∗a = arg max
ta

SA. (3.5)

Note that, the optimized t∗a should meet the time constraint, i.e., 0 ≤ t∗a ≤ T. Even
though the simplicity of all nodes having the same starting time allows for analytical
solutions for the optimal campaigning strategy, we are also interested in obtaining nu-
merical results for a more general scenario in which the controller can assign different
starting times and budget allocations for individual nodes by combining optimization
schemes with numerical integration of Eq. (3.1). Specifically, let us consider a case
in which controller A can choose specific campaigning starts ta,i for individual node i
and has the option to split its budget unevenly between nodes by assigning individual
nodes budgets bA,i. To reduce the number of parameters, we still retain the assumption
that once started campaigns proceed with constant intensity, i.e.,

ai(t) =

{
0 0 ≤ t ≤ ta,i

bA,i
(T−ta,i)N ta,i < t ≤ T,

(3.6)

where bA,i and bB,i should satisfy ∑N
i=1 bA,i ≤ bA and ∑N

i=1 bB,i ≤ bB respectively. To
obtain the optimal configurations for controller A in the constant opponent case, we use
the interior-point algorithm (Press et al., 2007) for numerical optimization of Eq. (3.5)
and stochastic hill climbing (Juels and Wattenberg, 1995) for individual optimization
whose strategy space is defined by Eq. (3.6).

3.2.2 Inter-temporal Budget Allocations in the Game-theoretical Setting

In the game-theoretical scenario, we consider a zero-sum game of competitive vote-
share maximization on graph G. Players of the game are controller A and controller B
who have complete knowledge of graph G. Besides, these two players have to simulta-
neously decide on an inter-temporal allocation protocol at time zero. In the simplified
campaign scheme, both controllers have the flexibility to choose the starting time of al-
locations, defined as ta and tb. More precisely, the sets of actions available to controller
A and controller B are ϕA = {ta | 0 ≤ ta ≤ T} and ϕB = {tb | 0 ≤ tb ≤ T} respectively.



38 Chapter 3. Inter-temporal Influence Maximization

Hence, allocations of budgets on agent i (1 ≤ i ≤ N) per unit time are:

ai(t) =

{
0 0 ≤ t ≤ ta
bA

(T−ta)N ta < t ≤ T,

bi(t) =

{
0 0 ≤ t ≤ tb
bB

(T−tb)N tb < t ≤ T.

(3.7)

Moreover, the payoff function for controller A and B are uA = SA(T) and uB = 1 −
SA(T) where the vote shares SA(T) are continuous and satisfy 0 ≤ SA ≤ 1.

While pure-strategy Nash equilibria are theoretically guaranteed to exist in two-player
zero-sum games under continuity, convexity and boundedness assumptions (Lu, 2007),
explicitly calculating these equilibria through analytical means remains challenging for
games with infinite, continuous strategy spaces (Guo et al., 2021). This holds in our
problem setting, where the unknown strategies used by the opponent yield continuous
action spaces that are mathematically intractable for closed-form equilibrium analysis.
Additionally, the absence of closed-form expressions for the payoff functions of either
competing controller further hinders direct analytical tractability for deriving equilib-
ria. Therefore, numerically approximating the Nash equilibria stands as the most viable
alternative. Here, we calculate the Nash equilibria via iterative gradient-based tech-
niques guided by the minimax theorem (Ferreira et al., 2012), which is the most com-
monly used approach to numerically estimate Nash equilibria strategies when explicit
derivation is hindered (Ansari et al., 2019). Details about this algorithm are illustrated
in section 3.3.

3.3 Algorithm for Computing Nash Equilibria

In this section, we present the iterative searching algorithm for computing Nash equi-
libria in the game-theoretical setting in algorithm 1. According to the minimax the-
orem (Ferreira et al., 2012), in a two-player zero-sum game, each player can achieve
their optimal strategy by maximizing their objective function while taking into account
the opponent’s attempt to minimize their objective function. Therefore, we compute
Nash equilibria by maximizing and minimizing SA(T) iteratively until convergence is
achieved (Bonomi et al., 2012). To reduce oscillations during iterations, we introduce
an adaptive learning rate µ (0 ≤ µ ≤ 1) to be inversely proportional to the number of
iterations in the search process (Dixon, 1972).

Specifically, we initialize the algorithm with some initial starting times of controller A
and B, t(0)a and t(0)b (see line 1). Next, we perform a loop (see lines 2-8) and the loop will
end on the condition that if the sum of the absolute changes in the starting times is less
than a small enough preassigned threshold θ = 10−9. We then assume that the iteration
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input : bA, bB, N, T, adjacency matrix W , threshold θ
output: approximations for tNE

a and tNE
b at the Nash equilibrium; vote shares at

time T, SNE
A (T)

1 Initialization: t(0)a = 0; t(0)b = 0; ∆ta = 1; ∆tb = 1; i=0;
2 while |∆ta|+ |∆tb| ≥ θ do

3 t(i+1)
a = t(i)a + µ

(
arg max

ta

{
SA(T)

∣∣∣tb = t(i)b

}
− t(i)a

)
;

4 t(i+1)
b = t(i)b + µ

(
arg min

tb

{
SA(T)

∣∣∣ta = t(i+1)
a

}
− t(i)b

)
;

5 ∆ta = t(i+1)
a − t(i)a ;

6 ∆tb = t(i+1)
b − t(i)b ;

7 i=i+1;
8 end

9 tNE
a = t(i−1)

a ;

10 tNE
b = t(i−1)

b ;
11 SNE

A (T) = {SA(T) | ta = tNE
a , tb = tNE

b }
Algorithm 1: Iterative searching for Nash equilibrium

has converged. For the main body of the loop (lines 3-7), we carry out the optimization
of ta and tb in turn. Note that, as µ = 1/i is in the interval [0, 1], the updated t(i+1)

a and
t(i+1)
b are always in the constraint plane [0, T]. The algorithm ends if both controller A

and controller B have nothing to gain by unilaterally changing their strategies, which
is consistent with the definition of the Nash equilibrium. By doing so, we determine
the starting times of controller A and B in the Nash equilibrium named tNE

a and tNE
b ,

and also the vote share in the Nash equilibrium SNE
A (T).

3.4 Results

The focus of our study is on influence-maximizing strategies for one or both controllers
on heterogeneous networks. Accordingly, in Section 3.4.1, we start our analysis with a
heterogeneous mean-field approximation of Eq. (3.1) to explore the influence of differ-
ent starting times on the transient dynamics of vote shares. Next, to further investigate
the dependence of optimal starting times on network heterogeneity, we proceed with
an analytical exploration of the timescales for the system to approach its equilibrium.
To support and supplement our theoretical analysis, we also carry out detailed numer-
ical experiments based on uncorrelated random scale-free networks with power-law
degree distribution p(k) ∼ k−λ constructed by the configuration model (Catanzaro
et al., 2005) (see Section 2.1 for more details). After gaining some insights about the
dependence of inter-temporal influence allocation on network heterogeneity, we con-
duct optimization in Section 3.4.2 to obtain the optimal strategies for the inter-temporal
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network control in both constant-opponent and game-theoretical settings, as well as
presenting the resulting improvements if we optimize each agent individually.

3.4.1 Heterogeneous Mean-field Analysis

Due to the large number of degrees of freedom of the system described in Eq. (3.1)
which is in the same order of magnitude as the network size and the time-variant term
given by the control gains, it is hard to obtain fully analytical solutions for voter dy-
namics. Here, to obtain an analytical estimate of vote-share trajectories of nodes, we
take the commonly used heuristics called heterogeneous mean-field theory to investi-
gate the complex dynamical processes of Eq. (3.1) in the context of competing against a
constant opponent. Generally, this theory reduces the degrees of freedom of the system
based on the assumption that the dynamics of agents of the same degree are statisti-
cally equivalent. This assumption works well for degree uncorrelated networks where
there is no assortative or dis-assortative mixing by degree (Huang and Chen, 2019).
Therefore, we group nodes of the same degree k and assume they follow roughly simi-
lar dynamics xk(t). We then approximate

∑
j

wjixj ≈ ki ⟨x⟩ , (3.8)

where ki = ∑j wji is the sum of incoming links of node i and ⟨x⟩ represents the average
behaviour of a neighbour. Specifically, ⟨x⟩ is equal to

⟨x⟩ = ∑
k

k
⟨k⟩ pkxk, (3.9)

where pk is the fraction of nodes with degree k and ⟨k⟩ = ∑k kpk is the average degree
of the network. Inserting Eq. (3.8) into Eq. (3.1) and rewriting for the dynamics of
nodes with degree k, we have

ẋk =
ak

k + ak + bk
+

k ⟨x⟩
k + ak + bk

− xk, (3.10)

where ak and bk are influence allocations to nodes of degree k. Multiplying Eq. (3.10)
by kpk/ ⟨k⟩ and summing over k, we obtain a differential equation for ⟨x⟩

d
dt

⟨x⟩ = β + α ⟨x⟩ (3.11)

with coefficients

α = ∑
k

k2 pk

⟨k⟩
1

k + ak + bk
− 1,

β = ∑
k

kpkak

⟨k⟩
1

k + ak + bk
,

(3.12)
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which are constants for a given network. As Eq. (3.11) is a first-order differential equa-
tion, it can be solved by eigenvalue decomposition. Based on the assumption that con-
troller B starts control at time 0 and controller A has the freedom to choose the starting
time ta, we obtain the probability that nodes of degree k have opinion A at time t (t > ta)
and the corresponding vote share as follows:

xk(t) =
akα − βk + keαt(β+αxk(ta))

α+1

α(ak + bk + k)
− e−t

(
akα − βk + k(β+αxk(ta))

α+1

α(ak + bk + k)
− xk(ta)

)
,

SA(t) = ∑
k

pkxk(t),
(3.13)

where

γ = ∑
k

k2 pk

⟨k⟩
1

k + bk
− 1,

xk(ta) = x0e−ta +
k

k + bk
x0(eγta(1 − e−ta)).

(3.14)

Here, xk(ta) is the state of nodes of degree k at time ta. From Figs. 3.4 (b) and (e)
in subsection 3.4.2.1 which show the dependence of vote shares on the starting times,
it can be seen that the mean-field method is a good approximation for the total vote
shares SA(T).

According to Brede et al. (2019a), the equilibration dynamics of a node depend on its
degree, which in turn, influences the optimal strategy in transient control. For exam-
ple, hub nodes would typically have slow equilibration dynamics, which results in the
poor vote shares of hub control for short time horizons. Inspired by that, the network’s
natural timescales towards equilibrium will also have an impact on determining the
optimal inter-temporal budget allocations. Therefore, in the following, we investigate
the dependence of equilibration dynamics in networks with different degrees of het-
erogeneity by systematically analyzing relaxation times as defined in Son et al. (2008)
based on mean-field results of Eq. (3.13). In more detail, the relaxation time calculates
the time required for the system to reach its equilibrium or steady state. In other words,
it measures the speed at which a system stabilizes. To quantify the relaxation times for
nodes with degree k, we define a normalized order parameter as:

rk(t) =
xk(t)− xk(∞)

x(0)− xk(∞)
. (3.15)

Here, we always use the setting that all nodes have the same initial state x(0) = x0.
Then we measure the average relaxation times for nodes with degree k via:

τrelax,k =
∫ ∞

0
rk(t)dt =

∫ ∞

0

xk(t)− xk(∞)

x(0)− xk(∞)
dt

=
α(αx0(ak + bk + k)− akα + βk − kx0)− βk

α(αx0(ak + bk + k)− akα + βk)
.

(3.16)
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FIGURE 3.2: Panel (a) shows dependence of relaxation time τrelax,k on degree k calcu-
lated via direct integration using a Runge-Kutta method, the mean-field estimation of
Eq. (3.16) and a Taylor expansion of Eq. (3.19) in k up to 2nd order on networks with
exponent λ = 1.6. The data is represented in box plots with median, 25th and 75th
percentiles and whiskers extending to the maximum or minimum values. Panel (b)
shows the dependence of relaxation time τrelax on network heterogeneity calculated
numerically via integration and analytically by mean-field approximation. Error bars
indicate 95% confidence intervals. Both results are based on networks with N = 10000,
average degree ⟨k⟩ = 10.5, averaged over 100 realizations. Both controller A and con-
troller B start control at time 0 and allocate 0.1 or 1 resource on each node per unit time
respectively for panels (a) and (b).

Inserting Eq. (3.12)’s α and β into Eq. (3.16) gives an involved expression. To still gain
insight into the dependence of equilibration times on degree, we approximate Eq. (3.16)
in the limit of ak+bk

k < 1 up to the second order and obtain

τrelax,k ≃
α − 1

α
+

ak(x0 − 1) + bkx0

β + αx0
k−1

− α

(
ak(x0 − 1) + bkx0

β + αx0

)2

k−2 + O
(

1
k

)3

.
(3.17)

In particular, if controller A and controller B target all nodes equally, i.e. ak = a and
bk = b, we have:

β + α = −b
a

β. (3.18)

As β is strictly positive and the sum of α and β is negative, we obtain that α is negative
as well. Therefore:

ak(x0 − 1) + bkx0

β + αx0
=

x0(a + b)− a
x0(a+b)−a

a+b α
=

a + b
α

< 0.

Eq. (3.17) can now be simplified to:

τrelax,k ≃
α − 1

α
+

a + b
α

k−1 − (a + b)2

α
k−2 + O

(
1
k

)3

, (3.19)



3.4. Results 43

0.2 0.4 0.6 0.8 1

degree of equilibrium (l)

1

2

3

4

5

6

re
la

x
a
ti
o
n
 t
im

e
 

re
la

x

l

MF, =1.6

RK, =1.6

MF, =5

RK, =5

0.8 0.9 1
5

5.5

6

6.5

(a)

0 10 20 30

time (t)

0

0.2

0.4

0.6

0.8

1

p
e
rc

e
n

ta
g
e

=1.6, high-degree nodes

=1.6, low-degree nodes

=5, high-degree nodes

=5, low-degree nodes

(b)

FIGURE 3.3: Panel (a) shows the dependence of relaxation time on the degree of
equilibrium l and network heterogeneity by Runge-Kutta and mean-field methods.
Panel (b) shows the evolution of average vote share changes in the proportion. “low-
degree nodes” and “high-degree nodes” refer to the first 80% low-degree nodes and
top 20% high-degree nodes. The y-axis shows the proportion of the average state
changes for high-degree nodes and low-degree nodes in the total changes. Both results
are based on networks with N = 10000, average degree ⟨k⟩ = 10.5, represented by
error bars with 95% confidence intervals over 100 realizations. Both controller A and
controller B start control at time 0 and allocate 1 resource on each node per unit time.
The legends “λ = 1.6” and “λ = 5” are identical to power law distribution p(k) ∼
k−1.6 and p(k) ∼ k−5.

which indicates that the approximation of average relaxation times for nodes with de-
gree k is independent of the initial state if both controllers target all nodes uniformly.
Additionally, we find that the trend of τrelax,k with degree k is mainly determined by
the constant term α−1

α and the first-order term a+b
α k−1. Specifically, the coefficient a+b

α

is negative, which leads to the phenomenon that the larger the degree of a node is, the
longer the relaxation time will be. Moreover, the second-order term (a+b)2

α k−2 reduces
the difference between relaxation time for nodes of different degrees.

To proceed, we compare τrelax,k calculated via direct integration using a Runge-Kutta
method, the mean-field estimation of Eq. (3.16) and a Taylor expansion of Eq. (3.17) in
Fig. 3.2(a). From Fig. 3.2(a), it can be seen that xk is monotonically increasing with de-
gree k. This phenomenon is also consistent with the Gershgorin circle theorem (Chien
et al., 2016). According to the Gershgorin theorem, eigenvalues for nodes with degree
k of Eq. (3.2) lie within at least the discs with radii -1 + 1

1+ ak+bk
k

around zero. As we

assume that the controllers target all nodes uniformly, the larger the degree of nodes,
the smaller the absolute values of eigenvalues. In other words, the larger the node’s
degree, the longer its relaxation time scales towards equilibrium. Additionally, we find
that the mean-field method and Taylor expansion are in reasonable agreement with nu-
merical estimates for τrelax,k.
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Furthermore, the overall average relaxation time (i.e., network’s natural timescales to-
wards equilibrium) for the equally targeting case is given by:

τrelax = ∑
k

pkτrelax,k = ∑
k

pk
k(β(a + b) + a) + β(a + b)2

β(a + b)(a + b + k)

≃ ∑
k

pk

(
⟨k⟩
(
k(a + b)− (a + b)2 − k2)

k2(a + b)(∑k
pk
k (a + b)− 1)

+ 1

)
+ O

(
1
k

)3

.

(3.20)

As we investigate networks with different degrees of heterogeneity characterized by
different degree exponents λ, Eq. (3.20) can be written as:

τrelax ≃− ⟨k⟩ λ1(a + b)(⟨k⟩ (λ1 − 2))
1

λ1−2

(λ1 + 1)
(

a − λ1

(
(⟨k⟩ (λ1 − 2))

1
2−λ1

)λ1
+ b
)

+
⟨k⟩

a + b
+ 1 + O

(
1
k

)3

.

(3.21)

Our next aim is to investigate the dependence of overall relaxation times on network
heterogeneity characterized by the degree exponent λ. For this purpose, we numeri-
cally calculate the average relaxation time τrelax for different settings of λ. Fig. 3.2 (b)
shows simulation results for τrelax obtained numerically via Runge-Kutta integration
and compares to mean-field results based on Eq. (3.20). The figure illustrates that the
more heterogeneous the network, the larger its timescales towards equilibrium. Com-
bined with the results in Fig. 3.2(a), we gain an intuition that the long timescales in
highly heterogeneous networks are mainly caused by the higher degree nodes.

In the above, τrelax only represents timescales towards equilibrium. However, we are
also interested in time scales towards reaching non-equilibrium states. Therefore, we
extend the notation of τrelax by introducing the degree of equilibrium l. Here, l describes
to which extent the termination state (depicted by vote share at time T, i.e., SA(T))
approximates the equilibrium state (depicted by vote share at time ∞, i.e., SA(∞)). In
more detail, l = |SA(T)−x(0)|

|SA(∞)−x(0)| . Then, we define the average timescales towards lSA(∞)

as l-percentage relaxation time, given by:

τl
relax =

∫ t′

0
r(t)dt =

∫ t′

0
∑

k
pkrk(t)dt, (3.22)

where t′ is determined implicitly by SA(t′) = lSA(∞) + (1 − l)x(0). This equation
defines an average timescale at which the vote-share dynamics approach the desired
l-percentage vote shares.

To explore the relationship between the l-percentage relaxation time and transient con-
trol, we plot the dependence of relaxation time on the degree of equilibrium l and
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network heterogeneity in Fig. 3.3 (a). We clearly see a cross-over of τl
relax in Fig. 3.3

(a): relaxation times are larger for less heterogeneous networks than for more heteroge-
neous networks for low l, but this ordering is reversed for large degree of equilibrium
(see inset in Fig. 3.3 (a)). We hypothesize that this is a consequence of the characteristic
dynamics toward equilibrium in heterogeneous networks occurring via two stages. To
illustrate this point, we visualize the evolution of vote shares for high-degree and low-
degree nodes in Fig. 3.3 (b). In more detail, we sort nodes according to their degrees
in ascending order. Then we assign the first 80% as low-degree nodes and the rest as
high-degree nodes according to the Pareto principle (Price, 1965). To explore which
role they play in the transient dynamics, we compute the state changes dxi

dt grouped by
low-degree nodes (i.e. ∑low

dxi
dt ) and high-degree nodes (i.e. ∑high

dxi
dt ). Then the average

contribution of low-degree nodes and high-degree nodes to the vote-share changes are:

0.2 ∑low
dxi
dt

0.8 ∑high
dxi
dt + 0.2 ∑low

dxi
dt

, and
0.8 ∑high

dxi
dt

0.8 ∑high
dxi
dt + 0.2 ∑low

dxi
dt

. (3.23)

In this way, we obtain Fig. 3.3 (b), where we also compare vote-share changes for net-
works constructed for different degree exponents. In Fig. 3.3 (b), we see that a large
proportion of vote-share changes is caused by the low-degree nodes at the beginning
of the evolution. As the evolution proceeds, the dynamics of high-degree nodes are
increasingly becoming the leading cause of vote-share changes. Moreover, the degree
of heterogeneity λ of the network will also make a difference in vote-share changes.
For example, in the beginning, the state changes by low-degree nodes in highly hetero-
geneous networks make up a more significant proportion of total vote-share changes
than that by low-degree nodes in less heterogeneous networks. We thus see that the
state changes by high-degree nodes in highly heterogeneous networks account for a
larger proportion in total vote-share changes than those by high-degree nodes in less
heterogeneous networks.

Combining the results in Fig. 3.3 (a) and Fig. 3.3 (b), we obtain the following picture.
For small l, as the state changes of vote shares are mainly driven by low-degree nodes
(see the left front part of Fig. 3.3 (b)), the evolution of vote shares is dominated by the
low-degree nodes. Since highly heterogeneous networks have many more low-degree
nodes, they can approach the desired states faster. In contrast, for large l, the state
changes of high-degree nodes play a crucial role in the total vote-share changes. Net-
works with high heterogeneity have many more high-degree nodes which thus delay
the approach to equilibrium.
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3.4.2 Analysis of Optimal Strategies

Above, we have applied the heterogeneous mean-field theory to investigate the voting
dynamics and measure the equilibration timescales based on the mean-field approx-
imation. After gaining some insights about the dynamics of networks with different
heterogeneity, in this subsection, we carry out numerical experiments to find the op-
timal strategies for inter-temporal budget allocation in both constant-opponent and
game-theoretical settings. Then we look back and explain the configurations of op-
timal inter-temporal allocation schemes by the results in Section 3.4.1. To make the
explanation more explicit, in each setting, we start our analysis with the evolution of
vote shares pertaining to networks with different degrees of heterogeneity. Based on
that, we explore the effects of time horizons and relative budgets on optimal starting
times. Additionally, to test the effectiveness of the simple scenario of assigning the
same starting time for all nodes, we also compare the vote shares obtained by the sim-
ple scenario with the individual optimization setting.

3.4.2.1 Optimal Strategies in the Constant-opponent Setting

We start with finding the optimal strategies in the simple scenario where controller A
only has the flexibility to determine when to start control. Specifically, we obtain the
optimal starting time of controller A by interior-point optimization when controller B
starts its control from time t = 0 subject to equal budgets.

Firstly, in order to have an intuition of how the optimal starting time affects the vote
shares regarding network heterogeneity, we depict the evolution of vote shares for net-
works with degree exponents λ = 1.6 and λ = 5 within time horizons T = 16 and
T = 256 in Figs. 3.4 (a) and (b) respectively. The choice of time horizons T = 16 and
T = 256 allows us to investigate two scenarios whether there is enough time for the
network to approach the equilibrium state or not, which corresponds to what we dis-
cuss in Section 3.4.1 about the degree of equilibrium. Further, the turning points where
vote shares change dramatically in Figs. 3.4 (a) and (b) are the optimal times for con-
troller A to start control.

By comparing the vote-share trajectories in Figs. 3.4 (a) and (b), we obtain the following
observations. First, it is shown in Fig. 3.4 (a) that the optimized controller for networks
with degree exponent λ = 1.6 will start later than for networks with degree expo-
nent λ = 5. Additionally, at the very beginning of the competition, vote shares for
networks with degree exponent λ = 1.6 decline faster, which roughly indicates that
highly heterogeneous networks respond more quickly to the resource injection in the
early stage. Second, in Fig. 3.4 (b), compared with networks with degree exponent
λ = 5, the optimized controller for networks with degree exponent λ = 1.6 has to
start earlier. Moreover, vote shares for networks with degree exponent λ = 1.6 have
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FIGURE 3.4: Panels (a) and (b) show the evolution of total vote shares when controller
A takes optimal control for time horizons T = 16 and T = 256 respectively. The
turning points are the time when controller A takes the optimal control. Panels (c) and
(d) show the dependence of vote shares on controller A’s starting time for time horizon
T = 16 and T = 256 respectively. Panels (e) and (f) show the dependence of the
degree of equilibrium l on starting time. To find the optimal control time, the networks
have to strike a balance between budgets per node and degree of equilibrium. All the
calculations are based on networks with N = 10000 and ⟨k⟩ = 10.5 and tested in 100
realizations. Controller B always starts its control from time 0. The black squares and
blue triangles stand for networks with degree of heterogeneity λ = 1.6 and λ = 5
respectively.
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been exceeded at the end of the competition by networks with degree exponent λ = 5.
Given that, for both networks, the vote shares when controller A starts control are the
same (i.e., SA(ta) = 0), the changes in vote shares can only be a result of budgets and
the network response speed.

Additionally, to prove the accuracy of interior-point optimization, we present data for
the dependence of vote shares on the starting times of controller A in Figs. 3.4 (c) and
(d). We note that the dependence is a convex shape with a maximum, which is marked
with arrows in Figs. 3.4 (c) and (d). The peak values of curves are consistent with the
optimal starting time in Figs. 3.4 (a) and (b) (see the turning points in Figs. 3.4 (a) and
(b)).

In more detail, the maximum values of the vote shares are a result of a trade-off. On the
one hand, if ta is small, the controller will have more time left to influence the network
but with small resource allocations on each node per unit time. In other words, the final
vote shares are determined by lSA(∞). Though an early start shifts the system closer to
the equilibrium (i.e., l becomes larger), small resource allocations result in a small value
of vote share in equilibrium (i.e., SA becomes smaller). On the other hand, if controller
A starts late, it will have more resource allocations on each node per unit time, which
leads to a larger value of vote share in equilibrium, but there will be less time left for
influence to become effective.

To proceed, we move on to determining optimized starting times for different time
horizons T and relative budgets bA/bB. Fig. 3.5 (a) shows the dependence of the opti-
mal control time of the targeting controller, i.e., T − opt{ta} where opt{ta} = t∗a stands
for the optimal starting time of controller A as shown in Eq. (3.5), on network het-
erogeneity and time horizons. Generally, the optimized controller only uses its budget
near the end of the campaign. This means that the system is initially only subject to
the influence of the opponent. Only when close to the end of the campaign T, the op-
timized controller exerts several times the allocations of its opponent on the network.
In doing so, the system approaches equilibrium gradually, which can be seen from the
monotonic rise of votes shares in Figs. 3.4 (a) and (b) for t ≥ ta. In addition, for short-
time horizons, optimal control times for networks with large heterogeneity tend to start
later, while for long-time horizons, optimal control on highly heterogeneous networks
should start slightly earlier. This dependence of optimal starting times on network het-
erogeneity can be explained by our earlier observations in Fig. 3.3 (a).

For short time horizons, the network is still far from equilibrium at the end of the com-
petition. In other words, the network’s degree of equilibrium l is small, which corre-
sponds to the lower-left corner of Fig. 3.3 (a). Therefore, the state changes of vote shares
are dominated by the low-degree nodes, which have shorter timescales. As highly het-
erogeneous networks have more lower-degree nodes, they will respond much quicker



3.4. Results 49

1 16 32 64 128 256 512

time horizons (T)

0

1

2

3

4

5

6

7

o
p
ti
m

a
l 
c
o
n
tr

o
l 
ti
m

e
 (

T
-o

p
t 
t

a
)

//

//

//

//

//

//

=1.6

=3
=5

128 256 512

6.2

6.4

6.6

6.8

(a)

10
-2

10
-1

10
0

10
1

10
2

relative budget (b
A
/b

B
)

9

10

11

12

13

14

15

o
p

ti
m

a
l 
s
ta

rt
in

g
 t

im
e

 (
o

p
t 

t a
) =1.6

=3

=5

(b)

FIGURE 3.5: Panel (a) shows the dependence of the optimal effective control time of
controller A (T − opt{ta}) on network heterogeneity and time horizons. The control
gains of controller B pertaining to each node are all fixed as 1 per unit time from time
0. The total budgets of controller A are set to be the same as controller B’s, e.g., for
T = 10, bA = bB = N × T. The y axis shows the difference between time horizon and
optimized ta. Panel (b) shows the dependence of the optimal starting time of controller
A (opt{ta}) on network heterogeneity and relative budgets. The time horizon is set as
T = 16. The control gains of controller B pertaining to each node are all fixed as 1
per unit time from time 0. The total budgets of controller A are set to be a ratio to the
budget of controller B as shown in the x axis. The calculations are based on networks
with N = 10000 and ⟨k⟩ = 10.5 and tested in 100 realizations. The legend “λ = 1.6”
is identical to networks with power law distribution p(k) ∼ k−1.6. The initial states of
opinion distribution are 0.5 for all nodes in all cases. The curves stand for networks
with different power law exponents. Error bars indicate 95% confidence intervals.

to the resource allocations. Consequently, campaigns on highly heterogeneous net-
works should start slightly later than on less heterogeneous networks. In contrast, for
long time horizons, the network is close to equilibrium at the end of the competition.
In this case, the network’s degree of equilibrium l approaches 1. From Fig. 3.3 (a), for a
sufficiently larger l, the more heterogeneous the network, the larger the relaxation time.
As a result, highly heterogeneous networks respond much more slowly to resource al-
locations, which explains an earlier start in optimized control.

To further confirm our conclusion, we also compare the degree of equilibrium for time
horizon T = 16 and T = 256 in Figs. 3.4 (e) and (f). To this end, Fig. 3.4 (e) shows
that, for short time horizon T = 16, the degree of equilibrium is always less than 0.82.
Furthermore, as shown in Fig. 3.3 (a), when l is less than 0.9, the relaxation time τl

relax

for highly heterogeneous networks is less than that for less heterogeneous networks. In
this case, the highly heterogeneous networks respond faster to the exertion of control,
so they can start later. In contrast, for long time horizons, the degree of equilibrium
approaches 1 (see Fig. 3.4 (f)). In this case, less heterogeneous networks respond rela-
tively faster to control. Therefore, optimal control for these networks can start later.

Fig. 3.5 (b) shows the dependence of the optimal starting times of the targeting con-
troller (i.e., opt{ta} = t∗a ) on network heterogeneity and relative budgets. In this figure,
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we observe that when the optimized controller is in resource superiority, it will start
earlier than when it is in budget disadvantage. Moreover, when relative budgets are
not extremely small or large, there are larger differences in the optimal starting times
for networks with varying levels of heterogeneity.

Network Control settings Opt ta Opt SA SA for ta = 0

Co-authorship
network

T = 16
bA/bB = 0.1 14.588 0.279 0.098
bA/bB = 1 12.658 0.746 0.500
bA/bB = 10 10.652 0.961 0.909

T = 256
bA/bB = 0.1 252.200 0.817 0.091
bA/bB = 1 250.219 0.974 0.500
bA/bB = 10 248.101 0.997 0.909

Email network

T = 16
bA/bB = 0.1 14.812 0.257 0.174
bA/bB = 1 12.554 0.650 0.500
bA/bB = 10 10.149 0.953 0.909

T = 256
bA/bB = 0.1 251.651 0.713 0.091
bA/bB = 1 249.578 0.969 0.500
bA/bB = 10 247.965 0.997 0.909

Online social
network

T = 16
bA/bB = 0.1 14.576 0.225 0.125
bA/bB = 1 12.046 0.667 0.500
bA/bB = 10 10.026 0.954 0.909

T = 256
bA/bB = 0.1 251.334 0.748 0.091
bA/bB = 1 249.603 0.970 0.500
bA/bB = 10 247.949 0.996 0.909

TABLE 3.1: Comparison of optimized start times and shares of opinion A between
two strategies of controller A: one using optimized inter-temporal allocations and the
other one starting at time 0. Calculations are based on the co-authorship network, the
email network, and the online social network, and are tested for varying time horizons
T = 16 and T = 256, as well as different budget ratios bA/bB = {0.1, 1, 10}.

In addition to analyzing synthetic networks with controlled network heterogeneity,
the idea of inter-temporal control can be further tested in real-world networks with
different structures and link types. In Table 3.1, we present the optimized starting
times (Opt ta) and compare the resultant vote shares (Opt SA) of controller A with
the baseline scenario, where controller A begins targeting agents from time 0 (SA for
ta = 0). We evaluate this across different time horizons (T = {16, 256}) and budget
ratios (bA/bB = {0.1, 1, 10}).

Specifically, in Table 3.1, we select real-world networks that allow evaluation on both
unweighted or weighted and undirected or directed graphs: The co-authorship net-
work is an undirected and weighted graph, which depicts collaborations among scien-
tists engaged in network theory (Newman, 2006). Our analysis is based on the largest
connected component of this graph, encompassing 379 nodes and 914 links. This is a
sparse graph with average degree ⟨k⟩ = 2.58. Additionally, the email network in Table
3.1 represents the largest connected component of an email exchange system in Univer-
sity Rovira i Virgili (Guimera et al., 2003). The network is undirected and unweighted,
consisting of 1133 nodes and 5451 links with average degree ⟨k⟩ = 9.62. Moreover,
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FIGURE 3.6: Panel (a) shows the optimization process characterized by the depen-
dence of average relative vote share Sindivi

A (T)/Sconst
A (T) on iterations. Sindivi

A (T) stands
for vote shares at time T calculated by individual optimization while Sconst

A (T) rep-
resents vote shares calculated by assigning a single optimized starting time for the
whole network. The black line, blue line, and red line stand for networks with degree
of heterogeneity λ = 1.6, λ = 3 and λ = 5 respectively. Panels (b) and (c) show the
corresponding distributions of budget allocations and starting times on nodes with
degree k when the system depicted in panel (a) achieves maximum. All the calcula-
tions are based on networks with N = 100 and ⟨k⟩ = 6 and tested in 10 realizations.
The control gains of controller B pertaining to each node are all fixed as 1 per unit time
from time 0. The time horizon T is set as T = 10. The total budgets of controller A are
set to be the same as controller B’s, i.e., bA = bB = N × T. The initial states of opinion
distribution are 0 for all nodes. Error bars indicate 95% confidence intervals.

we use the largest connected component of an online social network among students
at University of California, Irvine (Panzarasa et al., 2009). This network contains 1294
nodes, and 19026 unweighted, directed links with average degree ⟨k⟩ = 10.93. The re-
sults in Table 3.1 are consistent with the conclusions we draw from synthetic networks
that when the optimized controller is in resource superiority, it will start earlier than
it is in a budget disadvantage (see Fig. 3.5). This demonstrates the consistency of the
optimization of starting times across topologies.
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FIGURE 3.7: Panel (a) shows the dependence of average relative vote share
Sindivi

A (T)/Sconst
A (T) on relative budgets bA/bB. Panel (b) shows the dependence of

control gains by individual optimization on nodes’ degrees and relative budgets. All
the calculations are based on networks with degree of heterogeneity λ = 1.6. The net-
work size is N = 100 and ⟨k⟩ = 6 and tested in 10 realizations. The control gains of
controller B pertaining to each node are all fixed as 1 per unit time from time 0. The
time horizon T is set as T = 10. The initial states of opinion distribution are 0 for all
nodes. Error bars indicate 95% confidence intervals.

3.4.2.2 Optimal Strategies in the Individual Optimization Setting

Above, we have investigated the optimal strategy of controller A in a simplified sce-
nario. As it is too restrictive that all nodes start at the same time with the same in-
tensity, a question naturally arises: if the controller has more flexibility to deploy its
resources, will it lead to a considerable improvement in the vote share? Regarding
this, we have proposed the individual optimization scenario (see Eq. (3.6)) where the
controller can choose different starting times and split its resources unevenly for indi-
vidual nodes. Here, we use the stochastic hill climbing algorithm for the optimization.
The procedure is described as follows: (i) Start with a given network configuration and
an initialization of starting times {0 ≤ ta,i <= T} and budget allocations {bA,i} for
each agent i = 1, · · · , N. Note that, the initial budget allocations {bA,i} should meet
the budget constraint ∑i bA,i = bA. In practice, we set the initial budget allocations as
{bA,i} = bA/N. Let Lmax be the maximum number of iterations. Then, compute the
vote share of the initial configuration via Eqs. (3.1) and (3.3). (ii) If the current iteration
is less than Lmax, continue with step (iii). Otherwise, jump to step (iv). (iii) Generate a
random number r according to the uniform distribution with lower bound 0 and upper
bound 1. If r < 0.5, randomly pick two nodes i and j (i ̸= j), and transfer a random frac-
tion of budget allocations from node i to node j. It’s important to note that transferring
budgets between nodes ensures the total budget remains unchanged, thus satisfying
the budget constraint. Otherwise, randomly select one node and randomly modify its
starting time within the range of [0, T]. Update the vote share only if improvements are
achieved via the above modification. Return to step (ii). (iv) The procedure is ended.
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In the following, we present the numerical results for individual optimization accord-
ing to the above procedure. In Fig. 3.6 (a), we evaluate the performance of individual
optimization by comparing the vote shares achieved by node-specific starting times
and budget allocations with the simple scenario where the optimized controller as-
signs a single starting time for the whole network. From our analysis of Fig. 3.6 (a),
we observe that, roughly N2 iterations yield near-optimal allocations, as each node is
updated N times on average and no further improvements are observed beyond this
point. Therefore, in the following experiments, we set Lmax = N2. Due to the limited
improvements (not exceeding 2%, see Fig. 3.6 (a)) achievable via the node-specific opti-
mization, we deviate from using the same initial distribution of opinion states 0.5 (i.e.,
half of the nodes start with opinion B) as shown in Figs. 3.4 and 3.5, which represent
a neutral starting point. Instead, we adopt an initial distribution of opinion states 0
(i.e., all nodes start with opinion B) that will lead to slightly larger improvements com-
pared to the 0.5 distribution (see Appendix A.1 for the quantitatively similar results of
other initial state settings). Even though the improvements in vote shares achieved by
individual optimization are very small, a clear difference in vote shares achievable for
networks with different degrees of heterogeneity is identified. Specifically, individual
optimization is more efficient for networks with larger heterogeneity. A possible ex-
planation for this observation is that: We have confined the average degree of different
networks to be the same. Therefore, the degrees of highly heterogeneous networks are
distributed in a larger range compared with less heterogeneous networks. In the indi-
vidual optimization case, the larger difference between degrees can be fully exploited
in a highly heterogeneous network. For the same reason, bigger improvements can be
achieved for larger networks.

To further confirm our hypothesis, in Figs. 3.6 (b) and (c), we present the dependence
of optimized budget allocations and starting times of controller A for nodes with de-
gree k (denoted as bA,k and tA,k) on nodes’ degrees. We observe an inverse relationship
between the dependence of budget allocation on nodes’ degrees and the dependence
of optimal starting time on nodes’ degrees if both controllers have the same budget
constraints. In more detail, a node with a larger degree should be allocated more re-
sources but start earlier in the equal budget case. Moreover, networks with different
degrees of heterogeneity have a similar distribution of budget allocations and starting
times regarding nodes’ degrees.

To further explore if the limited improvements of vote shares in individual optimiza-
tion are a result of the specific control configuration (i.e., bA = bB and T = 10), we
conduct more numerical experiments based on different relative budgets. Fig. 3.7 (a)
shows the dependence of improvements of vote shares via individual optimization on
relative budgets. We find that for a small relative budget, a large improvement can
be achieved. In Fig. 3.7 (b) we further explain why the individual optimization is
more efficient for small budget scenarios. In more detail, we clearly see two regimes
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FIGURE 3.8: Panels (a) and (b) show the evolution of vote shares in the game-
theoretical setting for networks with degree exponents λ = 1.6 (panel (a)) and λ = 5
(panel (b)) at Nash equilibria. Panel (c) shows the vote shares at Nash equilibria across
degree exponent values. Calculations are based on networks with N = 10000 and
⟨k⟩ = 10.5. The budgets of controller B are 10000 in total and 100000 for controller A.
The initial states of opinion distribution are 0.5 for all nodes and the time horizon is
set as T = 16. The dotted lines distinguish three stages. ta and tb shown by arrows are
the solutions for Nash equilibria.

in Fig. 3.7 (b). For a small budget, the control gains decrease with the nodes’ de-
gree while for a large budget with the increase of degree, the optimized controller puts
a larger allocation on it. Moreover, for small budgets, the optimized controller only
targets nodes with small degrees and ignores large-degree nodes. By doing so, the
optimized controller does not need to waste its resources on nodes with lower control-
lability, and can achieve significant improvements in the vote shares compared with
the non-individual-optimization scenario where the controller has to target all nodes
equally. In conclusion, by applying individual optimization, the vote shares can be im-
proved, especially for highly heterogeneous networks, but the improvement is indeed
very small for equal or large relative budget configurations.
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FIGURE 3.9: Panel (a) shows the dependence of optimized starting times on network
heterogeneity and budgets under the game-theoretical settings. Black squares show
the best strategy for both controller A and controller B in the condition of equal bud-
gets. Blue triangles show the best strategy for controller A if bA = 0.1bB and the best
strategy for controller B if bA = 10bB. Red rhombus show the best strategy for con-
troller A if bA = 10bB and the best strategy for controller B if bA = 0.1bB. Panel (b)
shows the dependence of resource allocations on relative budgets. The black and blue
lines represent the resources for each node per unit time allocated by the controller A
and B respectively. Calculations are based on networks with N = 10000 and ⟨k⟩ = 10.5
and tested in 10 realizations. The time horizon is set as T = 16 for all cases.

3.4.2.3 Optimal Strategies in the Game-theoretical Setting

Similarly, we start our analysis for optimal strategies in the game-theoretical setting by
depicting the evolution of vote shares in the Nash equilibrium. For this purpose, the
Nash equilibria are obtained by the iterative gradient ascent algorithm (see Algorithm
1 in Section 3.3). Due to the symmetry of the game for the equal budget, controllers A
and B will take the same strategy in this scenario.

To fully explore the game-theoretical setting, we start with the context where one of
the controllers is in resource superiority. In more detail, Figs. 3.8 (a) and (b) show the
evolution of vote shares for a short time horizon T = 16 subject to control in a Nash
equilibrium when controller A has a larger budget than controller B. We note that, in
both Figs. 3.8 (a) and (b), controller A always starts earlier than controller B. Given that
the initial setup for controller A and controller B is the same except for the budgets, we
see that the controller with a budget advantage will start control earlier.

Furthermore, a closer inspection of Figs. 3.8 (a) and (b) gives us an insight into the game
played by controller A and controller B to maximize their respective pay-off functions.
In general, the evolution of vote shares can be divided into three stages (see the se-
quence numbers in Figs. 3.8). (i) No controller exerts influence. (ii) The first mover
changes system states. (iii) The second mover starts control and the system is subject
to both controllers. In contrast to the vote-share trajectories in the constant-opponent
setting where the vote shares increase monotonically when the active controller starts
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control, we note that there are turning points in the intersection of the second stage
and the third stage. In the game-theoretical setting, the controller with budget advan-
tages (i.e., controller A) always starts control first to seize the initiative. In contrast, the
other controller will concentrate its resources in the final stage in order to use limited
resources more effectively and achieve some pull-back from the other controller’s ini-
tial advantage.

In addition, we observe that the starting times of the first and second movers in highly
heterogeneous networks tend to be later than in less heterogeneous networks. This
phenomenon can be explained by our earlier observations about network’s timescales
towards equilibrium in Section 3.4.1. Since for short time horizons (e.g., T = 16), highly
heterogeneous networks respond to the resource allocation faster, the networks with
degree exponent λ = 1.6 tend to start control later compared with networks with de-
gree exponent λ = 5.

Building upon the prior analysis showing the evolution of vote shares over time for net-
works with specific degree exponents of λ = 1.6 (Fig. 3.8 (a)) and λ = 5 (Fig. 3.8 (b)),
Fig. 3.8 (c) expands the examination across a range of degree exponent values from 1.6
to 5. While the previous figures focused on the dynamic changes in vote shares within
a given network structure, this aggregated view captures the end-state vote shares ob-
tained at Nash equilibria. The consistency of vote shares at equilibria, with values
ranging from 0.717 to 0.733 despite differing degree heterogeneity and controller tim-
ing, highlights the robustness of the proposed approach.

Next, we consider the effect of relative budgets on optimal control. The optimal starting
times of controller A and controller B for different budget ratios in networks with dif-
ferent degrees of heterogeneity characterized by different degree exponents are shown
in Fig. 3.9 (a). It becomes clear that the controller with a budget advantage will always
start earlier compared with the controller with a lower budget. Moreover, for a short
time horizon (e.g., T = 16), controllers in highly heterogeneous networks will start
later, which is shown by the monotonically descending curves. This is consistent with
the results in the constant-opponent case.

We further explore the dependence of allocation per node on the budget ratio in Fig. 3.9
(b). It is clear that, although the controller with budget advantages tends to start earlier,
it allocates more resources on each node per unit time as well. Therefore, for stage (3) in
Figs. 3.8 (a) and (b), the second mover can only buffer the increase of SA, it is impossible
for the second mover to gain a larger vote share than the first mover.

3.4.3 Individual Optimization Considering Agent Heterogeneity

After investigating optimized but different starting times and budget allocations for in-
dividual agents, a natural extension is to combine agent heterogeneity with individual
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FIGURE 3.10: Panel (a) compares vote shares calculated via analytical solution (see
Eq. (3.27)) and direct integration using a Runge-Kutta method of Eq. (3.26). In panel
(a), all nodes are assigned with zealotry q = 0.2 and the control gains of controller A
pertaining to each node are all fixed as 1 per unit time from time 0 while controller
B does not target nodes. Panel (b) compares the evolution of vote shares with and
without zealots. The blue dotted line presents vote-share trajectory in the absence
of controller B but considering the zealotry of all nodes as q = 0.2, while the black
dotted line and the “x” line are for vote shares in the presence of controller B but not
zealots with different relative budget b = 15a and b = 20a. Calculations are based on
complete networks with N = 100. The initial states of opinion distribution are 0.5 for
all nodes.

optimization. Existing literature for the voter model has introduced so-called zealots
(Mobilia et al., 2007) to represent agents that have biases towards adopting one of the
opinions. Here, we model the level of zealotry with qi, which describes the decreased
chances of adopting opinion A for node i. Following Moreno et al. (2020), the rate equa-
tion for the probability of agent i holding opinion A changes to

dxi

dt
=(1 − qi)(1 − xi)

∑j wjixj + ai(t)

∑j wji + ai(t) + bi(t)
− xi

∑j(1 − xj)wji + bi(t)

∑j wji + ai(t) + bi(t)

=(1 − qi + qixi)
ai + ∑j wijxj

ki + ai + bi
− xi.

(3.24)

Before exploring the influence-maximizing strategies in the context of agent hetero-
geneity, we first show the impact of zealotry on the evolution of vote shares. It is in-
tuitive from Eq. (3.24) that a larger qi will result in a smaller probability for an agent
to change from opinion B to opinion A. To have a quantitative understanding of the
role of different levels of zealotry, we further investigate Eq. (3.24) in a simple scenario
where there are two agents with zealotry q1 and q2 (q1 > q2) in the absence of external
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FIGURE 3.11: Panels (a) and (b) show the dependence of control gains and starting
times on zealotry qi and relative budget bA/bB obtained via the individual optimiza-
tion method on a complete network with size N = 100. Panel (c) shows the resulting
improvements in vote shares via individual optimization compared with assigning a
single and optimal starting time for the whole network for varying relative budgets.
The control gains of controller B pertaining to each node are all fixed as 1 per unit
time from time 0. The time horizon T is set as T = 10. The initial states of opinion
distribution are 0 for all nodes.

controllers. Assuming both nodes start from the same initial state x0, then at the begin-
ning of the evolution of the vote share, we have

dx1

dt
− dx2

dt
=(1 − q1 + q1x0)− (1 − q2 + q2x0)

=(q2 − q1)(1 − x1) < 0.
(3.25)

As dx1
dt − dx2

dt is a negative value, a larger zealotry will lead to a faster decrease of vote
shares xi.

It is clear that the presence of an opposing controller will also lead to a decrease in vote
shares. However, what is the difference between the influence of the opposing con-
troller and zealotry towards the opponent on the evolution of vote-share trajectories?
To isolate the effects of zealotry towards the opponent and the opposing controller, we
solve Eq. (3.24) analytically in the following two scenarios. One is that all nodes have
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the same level of zealotry q but only controller A exerts equal budget allocation a on
every node. The other is controller B allocates equal budget b on every node in the ab-
sence of agent heterogeneity, i.e., q = 0. To further simplify the expression, we assume
a fully connected network with size N.

For the first scenario, Eq. (3.24) can be written as

dx
dt

=
qN

N + a
x2 +

aq − qN − a
N + a

x +
(1 − q)a

N + a
. (3.26)

Solving Eq. (3.26), we obtain

x(t) =
a(q − 1) + Nq

e
ax

a+N −qx
(a(q−1)+Nqx0)

x0−1 − Nq
+ 1 (q ̸= 0), (3.27)

where x0 is the initial state of the system. To verify the correctness of Eq. (3.27), we
compare x(t) calculated in two ways in Fig. 3.10 (a). One is by numerically integrating
Eq. (3.26) using the Runge-Kutta method. The other is by using the analytical solu-
tion given in Eq. (3.27). The close agreement between the two curves in Fig. 3.10 (a)
confirms that Eq. (3.27) provides the correct solution to the differential equation in Eq.
(3.26).

For the second scenario, Eq. (3.24) can be written as

dx
dt

=
a + Nx

N + a + b
− x. (3.28)

Solving Eq. (3.28), we obtain

x(t) =
(a(x0 − 1) + bx0)e−

x(a+b)
a+b+N + a

a + b
. (3.29)

To intuitively demonstrate the difference between the influence of the opposing con-
troller and zealotry on network dynamics, we proceed with numerical results based on
complete networks in Fig. 3.10 (b) where we squeeze the vote-share trajectory in the
presence of zealots by tuning the relative budget b/a. In 3.10 (b), we find that zealotry
has a significant effect on the evolution of vote shares as a small fraction of zealotry has
a similar influence on vote shares as more than 10 times of the budget ratio b/a.

To further gain more intuition about how different levels of zealotry influence the
optimal starting times and budget allocations of individual agents, we explore the
influence-maximizing strategies in the complete network with a uniform distribution
of zealotry in the range [0, 1]. From Figs. 3.11 (a) and (b), we find that there are two
regimes of optimal control gains and starting times. For a small or not large enough
budget ratio (e.g., bA/bB = 0.1, 8), controller A will only target nodes with low levels
of zealotry. In these scenarios, the control gains decrease with the increase of zealotry,
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FIGURE 3.12: Panels (a) and (b) show the dependence of budget allocations and start-
ing times on nodes’ degrees for varying zealotry obtained by individual optimization
for zealots. Panels (c) and (d) are the dependence of budget allocations and starting
times on nodes’ degree obtained by individual optimization for normal agents. Cal-
culations are based on heterogeneous networks with N = 100, ⟨k⟩ = 6, degree of
heterogeneity λ = 1.6 and tested in 10 realizations. In each realization, we randomly
choose 20% population of the network becoming zealots with the zealotry marked by
q, i.e., q = 0.1, q = 0.5, q = 0.9. The control gains of controller B pertaining to each
node are all fixed as 1 per unit time from time 0. The time horizon T is set as T = 10.
The initial states of opinion distribution are 0 for all nodes. Error bars indicate 95%
confidence intervals.

while the optimal starting times become later for highly zealous nodes. However, for
sufficiently large budget (e.g., bA/bB = 100), within a certain scope of levels of zealotry,
the optimized controller A will allocate more resources and start earlier for more zeal-
ous nodes. This pattern changes when the curve reaches a critical point of zealotry
from where with the increase of zealot, the optimized controller will distribute fewer
resources and starts later. Similar to Fig. 3.7 (a), the individual optimization is more
efficient for small budgets as it can choose only to target a few nodes with high control-
lability.

Next, we focus on heterogeneous networks to further explore how the zealotry and
nodes’ degrees affect optimal starting times and budget allocations. For our exper-
iments, we randomly select 20% of the population to become zealots with the same
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zealotry q, and keep the remaining nodes as normal agents. In Figs. 3.12 (a)-(d) we
show the relationship between optimal control gains and node degree and level of
zealotry. We find that for medium and large zealotry, most resources will be allocated to
normal agents. Moreover, zealots will behave in the opposite way of normal agents. In
more detail, with the increase of degree, zealots will be allocated with fewer resources
while normal agents will be targeted with larger resources. For the starting times, the
optimized controller will start later for larger-degree zealots, however it will start ear-
lier for larger-degree normal agents.

3.5 Summary

This chapter investigates the influence maximization problem from the perspective of
inter-temporal budget allocations on the voter model. In doing so, we relate the prob-
lem of influence maximization to network control where external controllers exert in-
fluence via building unidirectional connections with agents in the network. We then
integrate the time information into the opinion dynamics by exploring the optimal cam-
paign starting times to achieve a maximum vote share within limited time horizons.

Intuitively, in the context of inter-temporal network control, one or both controllers
have to design strategies to make efficient use of their budgets over time. This results
in the following trade-off: If the controller starts allocating later, it has more dispos-
able budget per unit of time but less time left for its influence to become effective.
Here, in order to obtain analytical solutions for optimal allocations, we first explore the
inter-temporal budget allocation in a simplified scenario where controllers have only
the flexibility to determine when to start control, and once started, they have to target
all agents equally. Then we conduct numerical experiments on a more complicated
scenario where the controller optimizes starting times and budget allocations for indi-
vidual agents in the network, which is referred to as individual optimization. Given
that the individual optimization concentrates on assigning different starting times and
allocations on individual nodes, we also take agent heterogeneity into consideration
and study the influence of agent heterogeneity on inter-temporal budget allocations.

By doing so, our main findings are as follows:

1. In the constant-opponent setting, as we fix one controller to start control from
the very beginning, the optimal strategy for the optimizing controller is to ini-
tially leave the system subject to the influence of the opposing controller and
then only use its budget closer to the end of the campaign. Moreover, in the
game-theoretical setting, the controller with a budget advantage will start control
earlier than the controller with a smaller budget to ensure that, by the time its
opponent begins to take control, it has gained an advantage in vote shares.
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2. For short time horizons, the optimized controller tends to start control later in
highly heterogeneous networks compared to less heterogeneous networks. In
contrast, for long-time horizons, an earlier start is preferred for highly heteroge-
neous networks.

3. Compared with the simplified scenario of finding an equal and optimal start-
ing time for all agents, the individual optimization only has limited superiority
for equal or larger budget settings. However, if the optimized controller is at a
budget disadvantage, by applying individual optimization, it will only focus on
low-degree nodes and thus gain a large improvement in the vote share.

4. When considering agent heterogeneity in the context of individual optimization,
we find that nodes with lower controllability (i.e., zealots with zealotry within a
certain threshold) will receive more budget allocations and start earlier if the ac-
tive controller has a large budget. Conversely, these nodes receive fewer budgets
and activate later when budgets are limited. Further analysis of networks with
heterogeneous degree distributions reveals the hierarchy of control difficulties:
Zealots at hubs are the most difficult to control, followed by periphery zealots,
normal hub nodes, and lastly normal periphery nodes. Optimal budget alloca-
tions and starting times appear to involve balancing budget availability with the
difficulties of controlling each node.
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Chapter 4

Opponent-strategy Reconstruction
in the Voter Model

In this chapter, we explore the issue of accelerating the convergence of inference by
discovering more informative observational data. More specifically, we develop and
explore a framework of how convergence of estimates can be accelerated through tar-
geted interaction with the networked dynamics. Our framework thus supposes that the
observer can influence the dynamical process on the network and we explore how such
influence can be optimally deployed to improve the inference of unknown parameters
of the dynamics. To be more concrete, this chapter explores the problem of opponent
strategy inference in the setting of competitive voting dynamics. The problem we are
interested in is that one of the controllers can change its control allocations to acceler-
ate its learning of the opposing controllers’ targeting through observation of the voting
dynamics.

This chapter is organized as follows: Section 4.1 sets the context and motivation for
studying the inference acceleration problem in the voter model. Section 4.2 formal-
izes the problem of accelerating opponent strategy inference for the voter model and
presents heuristics for solving the opponent strategy inference problem. Section 4.3
shows the corresponding results after applying the heuristics. Section 4.4 summarises
the main findings.

4.1 Introduction

As mentioned in Section 2.5, most previous research has focused on the network re-
construction problem under the assumption that the entire time series of the network
dynamics is accessible to ensure sufficient information is provided for accurate net-
work inference. However, as investigated by the work of Braunstein et al. (2019), in
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many real-world cases such as neuron cascades and epidemic spreading, the first stage
of propagation is hard to measure and only a limited number of data points will be
observed. Despite the experimental or technical limitations for data collection, obtain-
ing high-precision estimations with less data is always desirable, especially when the
measurement for the dynamical quantities is costly (Guo and Luk, 2013). Motivated by
the dilemma between the availability of observational data and the accuracy of infer-
ence, in this chapter, we explore the issue of accelerating the convergence of inference
by discovering more informative observational data. However, different from previous
literature such as Braunstein et al. (2019), we develop and explore a framework of how
the convergence of estimates can be accelerated through targeted interaction with the
networked dynamics. Our framework thus supposes that the observer can influence
the dynamical process on the network and we explore how such influence can be opti-
mally deployed to improve the inference of unknown parameters of the dynamics.

To derive dynamical process parameters or reconstruct network topology from obser-
vational data, it is often necessary to draw on domain-specific expertise (Brugere et al.,
2018). Here, we place the problem of speeding up inference in the context of opin-
ion dynamics using the well-known competitive influence maximization framework
(Li et al., 2018; Goyal et al., 2019), which studies the competition among external con-
trollers who aim to maximally spread their opinions in the network through strategi-
cally distributing their influencing resources. Specifically, a common assumption while
investigating the competitive influence maximization problem is that the external con-
trollers are unaware of the strategy being used by their opponents during the competi-
tion. However, the need of inferring the opponent’s behaviour in a short time frame is
observed in many real-world contexts, such as finding out the source of fake news as
soon as possible in the social network to stop it from spreading (Nguyen et al., 2012),
analysing the provenance of extreme opinions to prevent radicalization (Galam and
Javarone, 2016), and uncovering the strategy of the opposing political parties before a
given deadline to gain advantages in the election (Hegselmann et al., 2014). Therefore,
accelerating the inference to obtain better estimates of opponent’s strategies from dy-
namical data within a short time frame is an important problem relevant to competitive
influence maximization.

To be more concrete, in this chapter, we explore the problem of opponent strategy in-
ference in the setting of the competitive voting dynamics as studied in Masuda (2015);
Romero Moreno et al. (2021a); Brede et al. (2019a). This choice is motivated by the pop-
ularity of the voter model in opinion dynamics as well as its high levels of tractability
(Redner, 2019). Specifically, in the voting dynamics, opinions are represented as bi-
nary variables, and each agent in the network holds one of two opinions. On top of
the internal agents, following the work of Romero Moreno et al. (2020, 2021a); Brede
et al. (2019a), the external controllers exert their influence on the network by building
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unidirectional connections with agents, in which the intensity of their targeting is rep-
resented by link weights. The opinion propagates according to the rules that agents flip
their opinion states with probabilities proportional to the number of agents with oppos-
ing opinions and link weights from opposing controllers (Masuda, 2015). The problem
we are interested in is that one of the controllers can change its control allocations to
accelerate its learning of the opposing controllers’ targeting through observation of the
voting dynamics.

Since we model the way of exerting influence from external controllers by building
unidirectional connections with agents in the network, the connections from the exter-
nal controller can also be viewed as edges that constitute part of the network topol-
ogy. Therefore, our research problem of opponent strategy inference is closely related
to the topic of network structure inference. There is a rich literature in the field of
reconstructing network structure from information flows (Brugere et al., 2018), and a
detailed review of the related work within the domains of epidemiology and informa-
tion spreading is given in Section 2.5. Most relevant to our modelling approach, Li et al.
(2017); Chen and Lai (2018); Zhang et al. (2018) infer the network topology from time
series of binary-state data. More specifically, Li et al. (2017); Zhang et al. (2018) treat the
connections between agents as binary variables, and transform the network inference
problem to identify the existence of binary links between agents. Hence, these ap-
proaches are unsuitable for inferring continuous interaction intensity between agents
and the external controllers. Further to the works of Li et al. (2017); Zhang et al. (2018),
Chen and Lai (2018) remove the binary restriction and consider the network inference
problem in a continuous space by developing a data-driven framework to predict link
weights. Nevertheless, none of these works investigate the network inference problem
from the perspective of manipulating the opinion diffusion process to accelerate the
convergence of estimation, which is an important lever if one wants to obtain an esti-
mate with an accuracy guarantee within a short and limited observation time.

To address the current gaps in accelerating the convergence of inference, in this chap-
ter, we relate the problem of accelerating opponent strategy inference with network
control. By doing so, we assume an active strategic controller who tries to minimize
the uncertainty of inference of an opponent’s strategy by optimally allocating its con-
trol resources to agents in the network based on the voter model. In other words, we
explore how a controller can modify network dynamics such that the influence of op-
ponents becomes easier to identify. Note that, we always assume only limited resources
are available for the active controller to interfere with the network dynamics, since for
most real-world applications (Goyal et al., 2019; Masucci and Silva, 2014), there are nat-
ural resource constraints.

Specifically, in this chapter, we make the following contributions to address research
question 2 on network inference acceleration outlined in Section 1.1: 1) To address re-
search questions 2a and 2b, we introduce a new perspective of strategically interacting
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with opinion dynamics to quicken network inference. Here, we derive estimators of
the opponent’s strategy via maximum likelihood estimation and provide uncertainty
quantification of estimators via the Fisher information (Ly et al., 2017). This, in turn, is
used to inform decisions on the optimal allocations and understand the process of infer-
ence acceleration. Moreover, we’ve developed several heuristic algorithms to minimize
estimator variance, thereby speeding up inference. 2) To address research questions 2d
and 2e, we make the following findings. Optimal resource allocations vary with con-
trol scenarios: it’s inversely proportional to neighboring opinion states in single-node
control and depends on resource availability in multi-node control, focusing on the in-
ferred node with limited resources and on neighbors with more resources. Strategic
allocations gain importance with increased resources, especially in less heterogeneous
networks. This highlights how both the network topology and budget availability crit-
ically influence the effectiveness of budget allocations in revealing an opponent’s strat-
egy.

4.2 Model Description

We consider a population of N agents exchanging their opinions through a social net-
work. The undirected social connections between agents are represented by a symmet-
ric adjacency matrix W = {wij}N

i,j=1, with wij = 1 indicating the existence of a social
link between agent i and agent j and wij = 0 otherwise. Note that, agents i and j are
called neighbours if they are directly linked. Moreover, we assume that each of the
N agents holds a binary opinion at time t, denoted as si(t) ∈ {0, 1} (i = 1, ..., N). In
addition to internal agents, we introduce two external controllers: A and B. These con-
trollers are zealots who have fixed opinions: sA(t) = 1 for controller A and sB(t) = 0
for controller B for all t ≥ 0.

This chapter departs from the framework in Chapter 3. There, we were engaged in
a detailed exploration of how best to distribute different quantities of budget alloca-
tion across time, ensuring we neither surpassed the set budget nor the temporal con-
straints. This process was defined using the terms ai(t) and bi(t), and was bounded by
constraints of the cumulative integration: ∑N

i=1
∫

ai(t)dt ≤ bA and ∑N
i=1
∫

bi(t)dt ≤ bB.
However, in this chapter, our primary interest lies in a stepwise optimization of the
budget without the inter-temporal considerations of Chapter 3.

To avoid terminological confusion with Chapter 3, we introduce notation for the control
gains from controllers A and B to agent i at time t as JA,i(t) and JB,i(t) respectively. By
building unidirectional and non-negatively weighted links JA,i(t) ≥ 0 and JB,i(t) ≥ 0 to
agent i at time t, the two external controllers A and B exert their influences on the social
network and therefore interact with the intrinsic opinion dynamics. Here, the sum of
the link weights are subject to budget constraints at each step, i.e., ∑N

i=1 JA,i(t) ≤ bA and
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∑N
i=1 JB,i(t) ≤ bB, where bA and bB are the total resources available to controller A and

B respectively.

In this study, we adopt the synchronous voter model (Gastner, 2015) for opinion prop-
agation through the social network. Different from the asynchronous voting dynamics
we described in Section 3.2 where only one agent is updated at each time step, the syn-
chronous voter model considers a simultaneous update for the whole network, with the
aim of encoding more information in shorter time series. Specifically, one significant
drawback of the asynchronous approach is that nodes remain silent for the majority of
the time, leading to vast periods of inactivity. This not only results in slower propa-
gation of information but also provides less data for inference, potentially missing out
on capturing rapid opinion changes. For instance, in a network with size N = 1000,
on average it will take 1000 time steps for a node to update its state once in the asyn-
chronous voting dynamics. Instead, the synchronous voter model assumes a parallel
and discrete-time opinion updating for the whole population as follows: at time t, agent
i (i = 1, ..., N) updates its opinion to si(t + 1) = 1 with probability

Pr(si(t + 1) = 1) =
JA,i(t) + ∑N

j=1 sj(t)wij

∑N
j=1 wij + JA,i(t) + JB,i(t)

, (4.1)

and to si(t + 1) = 0 with probability

Pr(si(t + 1) = 0) =
JB,i(t) + ∑N

j=1
(
1 − sj(t)

)
wij

∑N
j=1 wij + JA,i(t) + JB,i(t)

. (4.2)

As shown in the equations of Pr(si(t + 1) = 1) and Pr(si(t + 1) = 0), the opinion
transition probabilities are determined only by the neighbouring states of the updated
agent and the weighted links from the controllers, and they are independent of the
current opinion of the updated agent.

From the perspective of external controllers, they aim to maximize their influence by
strategically allocating resources to agents in the network under the context of compet-
itive influence maximization. According to Romero Moreno et al. (2021b), knowing the
opponent’s strategies allows for an efficient budget allocation to maximize influence.
However, even though it may be possible to directly observe agents’ opinions at each
time step, observing the strategies of controllers, i.e., if an agent is targeted by the ex-
ternal controller, or even how strong the intensity of influence from the controllers is,
are often very challenging (Leskovec et al., 2009).

To solve this problem of opponent-strategy reconstruction from observable data, we
model the updating process of agent i (i = 1, ..., N) as a non-homogeneous Markov
chain (Brémaud, 2020) where the Markov property is retained but the transition prob-
abilities Pr(si(t + 1) = 1) and Pr(si(t + 1) = 0) depend on time. Further to this for-
malization, we assume an active controller A that infers the strategy of the passive and
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constant controller B who has fixed budget allocations (i.e., JB,i(t) = JB,i(0), i = 1, ..., N,
∀t ≥ 0) from the time series of agents’ opinion changes. Here, the time series are
given by a matrix S = [si(t)]N×T where T is the length of the observation period. In
other words, while updating the voting dynamics, we obtain a data matrix S with N
rows and T columns in which each row of S denotes the binary opinion dynamics of
an agent over an observation period of length T. Taking the data matrix S as an in-
put, we are interested in decoding the unknown parameters JB,i(t) (referred to as JB,i in
the following) from the input. Given the transition probabilities Pr(si(t + 1) = 1) and
Pr(si(t + 1) = 0) of the opinion flow between agents in the existence of controllers, a
commonly-used method for solving such parametric inference is maximum-likelihood
estimation (MLE) (Gomez-Rodriguez et al., 2012). Specifically, replacing si(t + 1) and
sj(t) with data actually observed along time series from 0 to T yields the log-likelihood
function of agent i

Li(T) = ∑
t∈[0,T−1]

[
si(t + 1) log

JA,i(t) + ∑N
j=1 wijsj(t)

JA,i(t) + JB,i + ki
+

(1 − si(t + 1)) log (
JB,i + ∑N

j=1 wij(1 − sj(t))
JA,i(t) + JB,i + ki

),

] (4.3)

where ki is the degree of node i, i.e., ki = ∑N
j=1 wij. This log-likelihood function gives the

likelihood of observing an agent’s time series, given the parameter JB,i. Depending on
the opinion states in the next step si(t + 1), either Pr(si(t + 1) = 1) or Pr(si(t + 1) = 0)
is taken into account in the log-likelihood function of Eq. (4.3). We then estimate the
budget allocations of controller B to be the values JB,i that are most likely to generate
the given data matrix S after T observations. According to the approach of MLE, we
maximize the log-likelihood function Li(T) in Eq. (4.3) with respect to the budget allo-
cations of controller B to obtain an estimate of JB,i, denoted as ĴB,i in the following.

According to the consistency of maximum likelihood estimates (Myung, 2003), for a
sufficiently large dataset, the estimator asymptotically converges to the true value.
However, we are interested in the problem of whether the observations of opinion
states can be improved by interfering with the opinion dynamics so that we will ob-
tain good-fit estimates with fewer observations. To achieve this, instead of passively
observing, we assume that the controller A is an active controller who strategically al-
locates its resources to accelerate the inference of the strategy of its opponent (i.e., JB,i,
1 ≤ i ≤ N). To evaluate the goodness of fit of the inference obtained from MLE, a
commonly-used measurement is the Fisher information (Ly et al., 2017). Specifically,
Fisher information is used to test if the maximum likelihood estimators are aligned
with the dataset and to derive a measure of dispersion between the true value and the
estimator. Following the work of Ly et al. (2017), the Fisher information I(JB,i, T) about
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JB,i is given by the expectation of second-order partial derivative of Eq. (4.3) with re-
spect to JB,i, which is given by

I(JB,i, T) = E[
∂2

∂J2
B,i

Li(T)] = − ∑
t∈[0,T−1]

JA,i(t) + ∑N
j=1 wijsj(t)

(JA,i(t) + JB,i + ki)2(ki + JB,i − ∑N
j=1 wijsj(t))

= ∑
t∈[0,T−1]

[
(JA,i(t) + JB,i + ki)

−2 −
(
(JA,i(t) + JB,i + ki)(ki + JB,i −

N

∑
j=1

wijsj(t))

)−1]
.

(4.4)
For ease of exposition, let

βi(t) =

[
(JA,i(t) + ki + JB,i)(ki + JB,i −

N

∑
j=1

wijsj(t))

]−1

,

and
Ψi(t) = (JA,i(t) + ki + JB,i)

−2.

Given this, Eq. (4.4) can be written as

I(JB,i, T) = ∑
t∈[0,T−1]

(Ψi(t)− βi(t)).

Moreover, in Eq. (4.4) we have,

JA,i(t) + ∑N
j=1 wijsj(t)

(JA,i(t) + JB,i + ki)2(ki + JB,i − ∑N
j=1 wijsj(t))

≥ 0.

Correspondingly, the negative sum of the above equation over t from 0 to T − 1 is non-
positive, and will decrease as the length of observation T increases. Hence, the Fisher
information I(JB,i, T) is also non-positive and monotonically decreasing as T increases.

As mentioned above, knowledge of the Fisher information can be used to determine
whether the maximum likelihood estimator is close to the true value. Specifically, for a
large enough sample (i.e., T → ∞), the maximum likelihood estimator ĴB,i converges in
distribution of a normal distribution to the true value JB,i (Myung, 2003), i.e.

( ĴB,i − JB,i)
D→ N (0,−I(JB,i, T)−1), as T → ∞ (4.5)

where N (0,−I(JB,i, T)−1) stands for a normal distribution with mean µ = 0 and vari-
ance σ2(JB,i, T) = −I(JB,i, T)−1 for agent i. As the Fisher information is non-positive
and monotonically decreasing with the number of observations, the variance is always
positive and, after a long period of observations, we will obtain more information and
produce an estimator ĴB,i closer to the true value JB,i. Moreover, by taking the first order
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partial derivative of σ2(JB,i, T) with respect to JB,i, one obtains

∂σ2(JB,i, T)
∂JB,i

=
∂{−I(JB,i, T)−1}

∂I(JB,i, T)
∂I(JB,i, T)

∂JB,i

= I(JB,i, T)−2 ∑
t∈[0,T−1]


(

JA,i(t) + ∑N
j=1 wijsj(t))(JA,i(t) + 3(JB,i + ki)− 2 ∑N

j=1 wijsj(t)
)

(JA,i(t) + JB,i + ki)3(JB,i + ki − ∑N
j=1 wijsj(t))2


≥ 0,

(4.6)
and we find that the variance is monotonically increasing with the increase of JB,i re-
gardless of the values of JA,i and si. Note that, the variance in Eq. (4.5) is calculated from
Fisher information at the true value. As the true value of JB,i is unknown, in practical
calculations, we later replace the true value of JB,i with ĴB,i to calculate the estimated
variance σ̂2( ĴB,i, T).

By introducing the Fisher information, we transform the problem of accelerating op-
ponent strategy inference by interacting with the opinion dynamics into strategically
deploying the budget of controller A to maximally decrease the variance of estimates.
As the Fisher information can be represented in a recursive way, where the Fisher in-
formation at time t is calculated by Fisher information at time t − 1 plus two additional
terms, the variance can also be calculated recursively via

σ̂2( ĴB,i, t) = −I( ĴB,i, t)−1
= −

[
I( ĴB,i, t − 1) + Ψ̂i(t − 1)− β̂i(t − 1)

]−1
, (4.7)

where

β̂i(t) =

[
(ki + ĴB,i −

N

∑
j=1

wijsj(t))(JA,i(t) + ki + ĴB,i)

]−1

,

Ψ̂i(t) = (JA,i(t) + ki + ĴB,i)
−2,

and σ̂2( ĴB,i, t) represents the expected variance at time t.

Inspired by the recursive expression for the variance in Eq. (4.7), we propose two types
of heuristics in which we explore configurations of the budget allocations of controller
A at time t for node i (i.e., JA,i(t), i = 1, ..., N) to maximally decrease the expected
variance of the estimators in future updates. Because of the combinatorics involved
when dealing with arbitrary numbers of updates, we limit considerations to looking
one or two steps ahead and correspondingly label the resulting heuristics one-step-ahead
optimization and two-step-ahead optimization.

Our strategy here is as follows. At time t, controller A has an estimate of the influence
of controller B and an estimate of the variance around it. It then allocates its influence
in such a way as to minimize the expected variance of its next estimate either one or
two updating steps in the future.



4.2. Model Description 71

In the following, we delve into how the budget allocation on a single node i is op-
timized in order to minimize the variance of the corresponding estimator, ĴB,i. We
present the formal expressions for this optimization in both one-step-ahead and two-
step-ahead scenarios. The extensions of these two heuristics will be further discussed
in Section 4.3 in which we consider optimizing the budget allocations over multiple
nodes to minimize the sum of variance for the entire network.

4.2.1 One-step-ahead Optimization

Specifically, for the one-step-ahead optimization scenario, the argument of the objective
function through which we aim to minimize the one-step-ahead variance of estimator
ĴB,i is

J∗A,i(t) = arg min σ̂2( ĴB,i, t + 1) = arg min−I( ĴB,i, t + 1)−1

= arg min−
[
I( ĴB,i, t) + Ψ̂i(t)− β̂i(t)

]−1 (4.8)

where J∗A,i(t) is the optimized budget allocation for controller A at time t returned by
the argument function “arg” where the expected variance at time t + 1 takes its mini-
mum value. Analogous to Eq. (4.7), we have

β̂i(t) =

[
(ki + ĴB,i −

N

∑
j=1

wijsj(t))(JA,i(t) + ki + ĴB,i)

]−1

,

and
Ψ̂i(t) = (JA,i(t) + ki + ĴB,i)

−2.

By doing so, instead of relying on passive inference that uses a fixed dataset, our ap-
proach step-wisely generates time-series data based on what was previously learned.
In further refining our methodology, we define an experimental setup that focuses on
obtaining a step-wise optimized budget allocation J∗A,i(t) for node i at each time step t,

while maintaining other nodes’ budget allocations as J f
A. This optimized, adaptive ap-

proach to data collection guides us in designing specific experiments to clarify model
uncertainties and achieve highly accurate estimators.

More specifically, the one-step-ahead optimization algorithm then proceeds according
to the following steps:

(i) To satisfy the premise of enough samples before using the Fisher information to
calculate the variance of a maximum likelihood estimator, we let controller A
target all nodes equally with fixed budget allocation J f

A = bA/N for the first T0

updates and record the likelihood at time T0 as Li(T0) (The determination of T0 is
further discussed in Section 4.3.2.).
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(ii) If the current updating step t is less than the length of total time series T, we cal-
culate the current estimator ĴB,i by maximizing the likelihood function Li(t) with
respect to JB,i and evaluate the Fisher information I( ĴB,i, t). Then, we calculate the
expectation of the variance defined in Eq. (4.8). Next, we obtain the optimized
J∗A,i(t) by applying the interior point optimization algorithm (Press et al., 2007).
Finally, we update the network with a new assignment of J∗A,i(t) and simulate the
stochastic voting dynamics to gain the next-step states for all nodes.

(iii) The procedure is terminated when a fixed number of observations T have been
made.

This procedure is more formally presented in Algorithm 2. The main body of Algo-
rithm 2 (lines 3-7) corresponds to step (ii). After applying Algorithm 2, we obtain a
sequence of J∗A,i(t) where T0 ≤ t ≤ T. Note that the initial states of agents are gener-
ated randomly to ensure that 50% of the initial opinions of agents are 0 or 1.

input : targeted node i, length of observations T, fixed budget allocation J f
A,

number of updates before calculating the variance T0, initial states of
agents sj(0) for 1 ≤ j ≤ N

output: optimized budget allocation for node i, J∗A,i(t) for T0 ≤ t ≤ T

1 Initialization: update the network with fixed J f
A for the first T0 steps; let t = T0;

2 while t ≤ T do
3 maxJB,i Li(t) ⇒ ĴB,i ;
4 calculate I( ĴB,i, t) ;
5 J∗A,i(t) = arg min σ̂2( ĴB,i, t + 1);
6 update the network by simulating the stochastic voting dynamics ;
7 t = t + 1;
8 end

Algorithm 2: One-step-ahead optimization

4.2.2 Two-step-ahead Optimization

For the two-step-ahead optimization scenario, we label the optimized budget alloca-
tions for node i at time t and t + 1 as J∗A,i(t) and J∗A,i(t + 1). Then, the objective function
for minimizing the two-step-ahead variance is calculated by the expected negatively
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inverse Fisher information two steps ahead given by:

{J∗A,i(t), J∗A,i(t + 1)} = arg min σ̂2( ĴB,i, t + 2) = arg min−I( ĴB,i, t + 2)−1

= arg min−
[

I( ĴB,i, t) + E[si(t + 1)(Ψ̂i(t) + Ψ̂i(t + 1)) + s̄i(t + 1)(Υ̂i(t) + Υ̂i(t + 1))]
]−1

= arg min−
[

I( ĴB,i, t) + Pr(si(t + 1) = 1)Pr(si(t + 2) = 1)(Ψ̂i(t) + Ψ̂i(t + 1))

+ Pr(si(t + 1) = 0)Pr(si(t + 2) = 0)(Υ̂i(t) + Υ̂i(t + 1))

+ Pr(si(t + 1) = 1)Pr(si(t + 2) = 0)(Ψ̂i(t) + Υ̂i(t + 1))

+ Pr(si(t + 1) = 0)Pr(si(t + 2) = 1)(Υ̂i(t) + Ψ̂i(t + 1))
]−1

(4.9)
where

s̄i(t + 1) = 1 − si(t + 1),

Υ̂i(t) = −
(JA,i(t) + ∑N

j=1 wijsj(t))(JA,i(t) + 2ki − ∑N
j=1 wijsj(t) + 2 ĴB,i)

(JA,i(t) + ki + ĴB,i)2(ki − ∑N
j=1 wijsj(t) + ĴB,i)2

,

Ψ̂i(t) = (JA,i(t) + ki + ĴB,i)
−2.

Note that the probabilities of agent i having opinion 1 or 0 at the current time step are
dependent on its neighbouring states at the previous time step. As in the one-step-
ahead procedure, when performing the optimization of Eq. (4.9), si(t) for 1 ≤ i ≤ N
are known. Therefore, the expressions for Pr(si(t + 1) = 1) and Pr(si(t + 1) = 0)
only contain one unknown parameter, which is JA,i(t). However, in the expressions
of Pr(si(t + 2) = 1) and Pr(si(t + 2) = 0), the sum of their respective neighbouring
opinions ∑N

j=1 wijsj(t + 1) is unknown, and thus the full expressions for Pr(si(t + 2) =
1) and Pr(si(t + 2) = 0) are obtained via applying the law of total probability

Pr(si(t + 2) = 1) = ∑
m=0,..,ki

Pr(si(t + 2) = 1 |
N

∑
j=1

wijsj(t + 1) = m)Pr(
N

∑
j=1

wijsj(t + 1) = m)

= ∑
m=0,..,ki

JA,i(t + 1) + m
JA,i(t + 1) + JB,i + ki

Pr(
N

∑
j=1

wijsj(t + 1) = m)

Pr(si(t + 2) = 0) = 1 − Pr(si(t + 2) = 1),
(4.10)

where

Pr(∑
j

wijsj(t + 1) = m) =
l

∑
ρ=1

∏
j∈cρ

Pr(sj(t + 1) = 1) ∏
j∈(Nei(i)\cρ)

Pr(sj(t + 1) = 0). (4.11)

In the above, l stands for the number of combinations leading to ∑N
j=1 wijsj(t + 1) =

m and the elements of C = {c1, .., cl}, represented as cρ for 1 ≤ ρ ≤ l, indicate all
possible combinations of the neighbourhood of node i adding up to m at time t + 1.
If we denote the neighbourhood of node i as Nei(i), then Nei(i)\cρ returns the set of
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elements in Nei(i) but not in cρ. Inserting Eqs. (4.10) and (4.11) into Eq. (4.9) yields the
full expression for the goal function.

The optimization procedure for the two-step-ahead scenario then follows along the
lines of Algorithm 2 except for updating every two steps in step (ii) using Eq. (4.9), as
we optimize JA,i(t) and JA,i(t + 1) in one loop. As shown in Eqs. (4.10) and (4.11), to
calculate the probability that node i has state 1 at time t+ 2, we have to list all combina-
tions of nodes leading to having a sum of neighbouring states from 0 to ki. Therefore,
the time complexity for calculating Eq. (4.11) is O(ki!) and will grow factorially if we
look more than two steps ahead. As it will become infeasible to calculate the combina-
torics for more than two steps ahead for large networks, in this thesis, we only consider
looking one or two steps ahead.

4.3 Results

In this section, our focus is on exploring the best strategies of controller A who aims
to accelerate the opponent-strategy reconstruction process by optimally allocating its
budget to minimize the variance of estimators of controller B’s targeting. In order to
gain some first intuition about how the budget allocations influence the inference of
the opponent’s strategy, we start our analysis by exploring the dependence of vari-
ance of MLE on different budget allocations in the equally targeting scenario in Section
4.3.1. These results also provide a benchmark for later comparison to our optimization
heuristics. Next, to investigate the efficiency of the one-step-ahead and two-step-ahead
optimization algorithms, we proceed with a numerical exploration of the performance
of these two algorithms in Sections 4.3.2 and 4.3.3, respectively. In more detail, we start
with using the one-step-ahead and two-step-ahead algorithms to infer the opponent’s
control at a single node, and then extend the above setting to optimizing multiple nodes
with the aim to minimize the sum of variance. To further investigate the dependency
of the optimal budget allocations for inference acceleration on network heterogeneity,
we carry out detailed numerical experiments based on uncorrelated random scale-free
networks with power-law degree distribution p(k) ∼ k−λ constructed according to the
configuration model (Catanzaro et al., 2005). Here, k is the node’s degree, and λ indi-
cates the degree exponent. After that, in Section 4.3.4, we propose an algorithm called
optimally equally targeting, which has reduced time complexity compared with the
two-step-ahead algorithm at the cost of very little performance loss.

4.3.1 Opponent Strategy Inference in the Equally Targeting Scenario

We start with exploring the influence of budget allocations on the variance calculated
from Eq. (4.7) in the equally targeting scenario where all nodes are targeted with the
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FIGURE 4.1: Panel (a) shows the dependence of averaged variance of estimators for
controller B’s budget allocations over all agents on the budget allocations of controller
A. Differently coloured curves correspond to different lengths of the observation pe-
riods T. The results are based on 100 repetitions of the experiment on random regular
networks with N = 1000 nodes and average degree ⟨k⟩ = 10, and we use a setting in
which controller B targets all nodes equally with budget JB,i = 10 for 1 ≤ i ≤ N. Error
bars indicate 95% confidence intervals. Panel (b) shows an example of one realization
of the evolution of the estimator ĴB,1 over increasing numbers of observations. The
true value of controller B’s budget allocation is presented by the red line.

same budget allocation. To proceed, in Fig. 4.1 (a) we present numerical results for the
dependence of the averaged variance over all agents in random regular networks on
the varying budget allocations by the controller A for different observation periods T.
In more detail, in panel (a) of Fig. 4.1, we observe a concave and asymmetric shape of
the dependence of the averaged variance on the budget allocated by controller A, and
clear minimum values of averaged variance can be identified for curves of different
observation periods T. Moreover, the x-axis of Fig. 4.1 (a) starts from 0, which is iden-
tical to the scenario of no interference from controller A. In this scenario, agents will
align with controller B after the first few updates and keep their opinions unchanged
thereafter. As information is only gained in state flips, estimation in the scenario of no
interference is almost impossible. Similarly, extremely small or large allocations (e.g.,
allocations less than 10−1 or bigger than 102) will cause difficulties in inferring the op-
ponent’s strategy as agents keep their opinions static in most updates. Further to the
comparison of curves of different observation periods T in Fig. 4.1 (a), we find that,
with the increase of the length of observation periods, the variance of the estimator de-
creases monotonically. In other words, a more accurate estimator will be obtained after
a longer observation period, which is consistent with our analysis in Eqs. (4.4) and (4.5)
where the variance will decrease monotonically with the increase of observational data.
Additionally, we present the convergence of the maximum likelihood estimation for the
opponent budget inference in Fig. 4.1 (b) by showing the dependence of the estimator
of MLE on updates. With the increase of the number of observations, the estimator is
approaching the true value.



76 Chapter 4. Opponent-strategy Reconstruction in the Voter Model

10
2

10
3

Observations

10
0

V
a

ri
a

n
c
e

one-step-ahead optimization

equally targeting

(a)

0 1 2 3 4 5 6 7 8 9 10

Sum of neighbouring states

0

5

10

15

20

O
p

ti
m

a
l 
b

u
d

g
e

t 
a

llo
c
a

ti
o

n

 o
n

 t
h

e
 i
n

fe
rr

e
d

 a
g

e
n

t

(b)

FIGURE 4.2: Panel (a) compares the variance at a single inferred agent calculated by
the one-step-ahead optimization with the variance calculated by the equally target-
ing strategy with increasing numbers of observations. Error bars in panel (a) present
95% confidence intervals. Panel (b) shows the dependence of the optimal budget al-
locations J∗A,i(t) over updates t = 100 to t = 1000 calculated by the one-step-ahead
optimization in panel (a) on the sum of neighbouring states ∑N

j=1 wijsj(t), where i indi-
cates the inferred agent i. Data in panel (b) is organized as box plots, where the central
horizontal lines represent the median and the bottom and top box edges are for the
25th and 75th percentiles. The whiskers extend to the maximum or minimum data
points. Results in both panels (a) and (b) are based on random regular networks with
N = 1000 nodes and average degree ⟨k⟩ = 10, and are averaged over 100 realizations
of the experiment. Controller B targets all nodes equally with budget 10 and except
for the inferred node, controller A targets all the other nodes with budget 20.
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FIGURE 4.3: Relative sum of variance ∑i σ2
opt,i/ ∑i σ2

equ,i achievable by the one-step-
ahead optimization compared to the equally targeting strategy for varying relative
budgets bA/bB. Differently coloured curves correspond to different lengths of the ob-
servation periods T. Results are based on 100 repetitions of the experiment on scale-
free networks with a power-law degree distribution of degree exponent λ = 1.6, net-
work size N = 1000, average degree ⟨k⟩ = 10 and are constructed according to the
configuration model. We use a setting in which controller B targets all nodes with
allocations randomly sampled from a uniform distribution, and the budget allocation
by controller B per node on average is 10. Error bars indicate 95% confidence intervals.
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4.3.2 Results for the One-step-ahead Optimization

To test the efficiency of the one-step-ahead optimization algorithm (see Algorithm 2),
we start with exploring the optimal budget allocation for a single agent i according to
Eq. (4.8) with the aim of minimizing the expected variance of the inferred agent step by
step. In more detail, in Fig. 4.2 (a), we compare the variance of MLE calculated by the
one-step-ahead optimization from Eq. (4.8) with the variance of the estimator obtained
after applying the equally targeting strategy based on random regular networks. As
indicated in Fig. 4.1 (a), for JB,i = 10, the optimal minimum average variance points
cluster around JA,i = 20 across varying observation lengths T. Therefore, in Fig. 4.2 (a),
we apply the same control parameters, i.e., JB,i = 10 and JA,i = 20 for 1 ≤ i ≤ N,
for the equally targeting scenario to assess the performance of the one-step-ahead op-
timization algorithm. In Fig. 4.2 (a), we find that, compared to the case of equally
targeting, the one-step-ahead optimization algorithm achieves only a slight improve-
ment in speeding up the convergence of the estimate (see the marginal difference in the
dependence of variance on the number of observations in Fig. 4.2 (a)). Nevertheless, in
order to shed light on the targeting strategy of controller A, in Fig. 4.2 (b), we further
plot the dependence of the optimal budget allocations of controller A calculated by the
one-step-ahead optimization averaged over updates t = T0 to t = T on the sum of
neighbouring states ∑N

j=1 wijsj(t), where i represents the inferred agent. Note that, as
depicted in Algorithm 2, T0 represents the number of initialized updates before calcu-
lating the variance, and here we assign it as 100. As a result, we observe a clear pattern
of the dependence of optimized budget allocations on the sum of neighbouring states:
the larger the sum of neighbouring states, the lower the optimized budget allocation.
In other words, to speed up estimates, controller A tends to target node i whenever all
the node’s neighbours differ from controller A.

In the following, we further generalize from the setting of attempting to infer the tar-
geting of the B-controller at a single node to attempting to infer the targeting of the
B-controller on all nodes. As a measure for the quality of estimates we use the sum of
the variance of estimates at individual nodes and hence we aim at minimizing the sum
of the variance of estimators for all agents. By extending Eq. (4.8), we have

{
N agents in the network︷ ︸︸ ︷
J∗A,1(t), ..., J∗A,N(t) } = arg min

N

∑
i=1

σ̂2( ĴB,i, t + 1) = arg min
N

∑
i=1

−
[
I( ĴB,i, t) + Ψ̂i(t)− β̂i(t)

]−1

subject to

J∗A,1(t) + · · ·+ J∗A,N(t) ≤ bA,
(4.12)

where
Ψ̂i(t) = (JA,i(t) + ki + ĴB,i)

−2,
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FIGURE 4.4: Panels (a-c) and (d-f) show the dependence of optimized average al-
locations for the one-step-ahead optimization and correspondingly normalized sum
of variance of estimates on percentages of nodes being targeted. We use a setting
in which controller B targets certain percentages of nodes with allocations randomly
sampled from a uniform distribution, and the budget allocation per node on average
by controller B is 1 (a,d), 5 (b,e), and 10 (c,f). The average allocations or variance are
calculated by adding up the optimized allocations or variance for a certain percentage
of targeted nodes and then divided by the number of nodes targeted. Black and red
curves correspond to networks constructed according to the configuration model with
a power-law degree distribution of exponent λ = 1.6 and λ = 3, respectively. Blue
curves represent random regular networks. Results are based on 20 repetitions of the
experiment on networks with size N = 1000, average degree ⟨k⟩ = 10. Error bars
indicate 95% confidence intervals.
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β̂i(t) =

[
(ki −

N

∑
j=1

wijsj(t) + ĴB,i)(JA,i(t) + ki + ĴB,i)

]−1

,

and J∗A,i(t) stands for the optimized budget allocation for agent i by the controller A.
Note that, the sum of the optimized budget allocations should be subject to the bud-
get constraint at each time step, denoted as J∗A,1(t) + · · · + J∗A,N(t) ≤ bA in Eq. (4.12).
Similar to Fig. 4.2 (a), in Fig. 4.3, we explore the one-step-ahead optimization algorithm
in the scenario of minimizing the sum of variance of estimators in comparison with
the equally targeting scenario for varying relative budgets bA/bB. In more detail, the
improvement achieved by the one-step-ahead optimization is represented by the rela-
tive values of the ratios of the sum of variance ∑i σ2

opt,i/ ∑i σ2
equ,i at the end of iterations,

where ∑i σ2
opt,i denotes the sum of variance of estimators calculated by the one-step-

ahead optimization and ∑i σ2
equ,i stands for the sum of variance by the equally targeting

strategy. After a careful inspection of Figure 4.3, we find that the one-step-ahead opti-
mization can achieve a considerable improvement in reducing the variance compared
with the equally targeting scheme if the active controller has much more budget than
its opponent (i.e., bA ≫ bB). In other settings, the one-step-ahead optimization only
makes a slight improvement in minimizing the sum of variance, especially when the
active controller has almost the same amount of available budget as its opponent. This
indicates that the strategic allocation is more critical in accelerating the inference, if
the active controller has more resources. In addition, we also find that with an in-
crease in the length of the observation period, the relative values of sum of variance

∑i σ2
opt,i/ ∑i σ2

equ,i decreases. In other words, more benefits can accrue from the one-
step-ahead optimization the longer the period of observation.

Above, in Fig. 4.3, we consider a scenario in which all agents in the network are subject
to the control of the controller A, and the active controller wants to infer the budget allo-
cations of its opponent over the entire network. However, in many real-world scenarios
such as marketing, the controllers only focus on a subset of agents in the network, e.g.
those who are most likely to buy their products. Inspired by this, we further assume
that the controller A only distributes its budget among a certain fraction of agents tar-
geted by controller B and tries to minimize the sum of variance among these agents.
Additionally, we are also interested in the implications of network structure on the op-
ponent strategy inference. Therefore, in Figs. 4.4, we show the dependence of average
variance achievable by the one-step-ahead algorithm on the percentage of nodes being
targeted by controller B.

The results in Fig. 4.4 are compared among regular random networks and scale-free
networks with power-law degree exponents λ = 1.6 and λ = 3. Here, the average
variance is calculated only within the targeted nodes, i.e., the average variance is equal
to the sum of variance of the inferred agents divided by the number of nodes being
targeted. More specifically, results for the dependence of averaged optimized budget
allocation by the one-step-ahead optimization on varying percentages of nodes being
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targeted are given in Figs. 4.4 (a) - (c), where panels correspond to controller B targeting
nodes with allocations randomly sampled from a uniform distribution, and the budget
allocation per node on average is 1, (Panel (a)), 5 (Panel (b)) and 10 (Panel (c)).

For the corresponding settings, the dependence for the optimized average variance are
presented in Figs. 4.4 (d) - (f). From Figs. 4.4 (a) - (f), we obtain the following ob-
servations about the strategic allocations of the active controller. First, we see similar
patterns in Figs. 4.4 (a) - (c) where with an increase in the number of agents being tar-
geted, on average more resources are needed for the controller A to perform optimal
inference. Depending on the budget availability of the controller B, the optimized con-
troller A allocates more resources on each targeting node on average accordingly as bB

increases for the same amount of nodes being targeted, e.g., comparing the y-axis of
the blue line in panel (a) to the blue line in panel (c). Meanwhile, in Figures 4.4 (d) - (f),
as budget allocations from the opponent increase, the variance of the estimators rises.
This is consistent with the analytical results in Eq. (4.6), which indicates that a higher
value of budget allocation is harder to predict. Second, by comparing the curves of
optimized budget allocations for different types of networks, we find that, only when a
large portion of nodes are targeted then there is a significant difference in the optimized
budget allocations among networks with different degree distributions. Otherwise, the
optimized budget allocations are fairly close for networks with different degree hetero-
geneity. However, if we zoom in and compare the ordering of curves in Figs. 4.4 (a)
- (c) for a small number of nodes being targeted with a large number of nodes being
targeted, we find that there are two regimes for the strategy of the optimized controller
depending on the network heterogeneity. In more detail, the optimized controller will
allocate more resources on a more heterogeneous network than on a less heterogeneous
network if only a small portion of nodes are targeted. The opposite holds if a large num-
ber of nodes are under control of the active controller. Third, in Figs. 4.4 (d) - (f), we
find that more degree-heterogeneous networks always have higher average variance,
i.e. opponent strategies are the more difficult to infer the more heterogeneous the net-
work.

In Fig. 4.4, we always assume that the opponent targets nodes with allocations ran-
domly sampled from a uniform distribution. However, we are also interested in the ef-
fects of the opponent’s strategy on the predictability of the optimized controller. There-
fore, in the following, we further explore the strategic allocations of the active controller
based on different budget allocation strategies of its opponent. To proceed, we consider
a scenario in which the opponent allocates resources as a function of the node’s degree.
More specifically, suppose the opponent generates random numbers ri (1 ≤ i ≤ N)

from the interval of [0, kα
i ] for each of the N nodes, where ki is the degree of node i

and the exponent α indicates the varying strategies of the opponent. For instance, for
α = 0 an opponent would allocate independent of degree based on uniform random
numbers, for α = 1 the opponent would on average allocate proportional to degree,
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FIGURE 4.5: Panel (a) shows the dependence of averaged variance obtained by the
one-step-ahead optimization on the opponent strategy exponent α, where the budget
allocation of the controller B is generated proportional to the random number within
the interval [0, kα

i ]. Different colours correspond to different degree exponents λ of the
scale-free networks and “reg” corresponds to random regular graphs as indicated in
the legend. Results are based on 100 repetitions of the experiment on networks with
size N = 1000, average degree ⟨k⟩ = 10. Error bars indicate 95% confidence intervals.
For the setting corresponding to λ = 1.5 in panel (a), panel (b) shows the dependence
of corresponding averaged variance of networks on the node’s degrees for varying
opponent strategy exponents α.

whereas for α = −1 average allocations would be inversely proportional to degree. By
then normalizing the random numbers ri to satisfy the budget constraint of controller
B, we obtain different budget allocations JB,i.

In Fig. 4.5, we plot the dependence of optimized averaged variance obtained by the
one-step-ahead optimization on the opponent strategies represented by the varying
exponents α. We observe a concave shape of the averaged variance along with the
changing exponents α, with minima near α = 0. For all settings of α we generally also
observe larger average variance the more heterogeneous the networks. To proceed,
Fig. 4.5 (b) shows the dependence of averaged variance on nodes’ degree. We find
that, generally, nodes with a larger degree are more difficult to predict as the averaged
variance of estimators is larger. In a similar vein, nodes being allocated larger budgets
by the opposing controller are also harder to predict which can be seen from the curves
for α = −1,−2, as in this setting low degree nodes have larger averaged variance than
the high degree nodes.

4.3.3 Results for the Two-step-ahead Optimization

In this section, we proceed with testing the efficiency of the two-step-ahead optimiza-
tion algorithm. Similar to Section 4.3.2, we start by minimizing the variance of a single
agent using the two-step-ahead optimization over random regular networks with net-
work size N = 1000 and average degree ⟨k⟩ = 10. In more detail, in Fig. 4.6, we
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FIGURE 4.6: Relative variance σ2
two/σ2

one of the estimate for a single inferred node
achievable by the two-step-ahead optimization compared to the one-step-ahead
scheme for varying relative budgets bA/bB. Differently coloured curves correspond
to different lengths of the observation periods T. Results are based on 100 repetitions
of the experiment on random regular networks with size N = 1000, average degree
⟨k⟩ = 10. Controller B targets all nodes equally with allocation 10 and except the in-
ferred node, controller A targets all the other nodes with budget 10. Error bars indicate
95% confidence intervals.

compare the variance of the estimator on a single node i calculated by two-step-ahead
heuristics with the one-step-ahead optimization for varying relative budget constraints
bA/bB based on different observation periods T. Note that, for the two-step-ahead op-
timization, we set the constraint bA separately for time steps t and t + 1. Therefore,
assigning the optimized allocation obtained by the two-step-ahead algorithm at time
steps t and t + 1 as J∗A,i(t) and J∗A,i(t + 1), we have J∗A,i(t) ≤ bA and J∗A,i(t + 1) ≤ bA.
By observing the results in Fig. 4.6, we find that, similar to the results of Fig. 4.3, the
two-step-ahead optimization can achieve a considerable improvement in reducing the
variance compared with the one-step-ahead scheme only if the active controller has
much more budget than its opponent.

Notice that, in the log-likelihood function of Eq. (4.3) composed of transition probabil-
ities Pr(si(t + 1) = 1) =

JA,i(t)+∑j wjisj(t)
JA,i(t)+JB,i+ki

and Pr(si(t + 1) = 0) =
JB,i+∑j wji(1−sj(t))

JA,i(t)+JB,i+ki
, the

budget allocation from the controller A (i.e., JA,i(t)) is not the only determinant that
influences the inference of JB,i. Instead, the sum of the neighbouring states ∑j wjisj(t)
of the inferred node i is also taken into consideration when inferring JB,i. Therefore, a
natural extension for the above scenario of minimizing the variance of a single node by
only targeting that inferred node is to optimize the inference at the focus node by tar-
geting it and its neighbours. For clarification, a schematic illustration of optimizing the
budget allocations for the inferred node and its neighbourhood to minimize the vari-
ance of the central node is given in Fig. 4.7. In more detail, in Fig. 4.7, we have shown
that to minimize the variance of the estimator ĴB,i for node i at time step t + 2 (marked
as output), we have to optimize the budget allocation for the inferred node one step
ahead and its neighbours two steps ahead (circled in red). A reason for optimizing the
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(a)

FIGURE 4.7: Schematic illustration of a variant of the two-step-ahead optimization in
the context of optimizing the budget allocations for an inferred node i and its neigh-
bourhood. Here, we assume that node j and node n are the two neighbours of node i.
Each column presents the state dynamics of a node from time t to t + 2. The arrows
indicate interactions between nodes and controller A which determine the transition
probabilities. For example, the state of node i at time t + 1 depends on the states of
node j and node n at time t, as well as the budget allocation JA,i(t). Therefore, there
are arrows from node j and node n at time t point to node i at time t + 1, as well as a
horizontal arrow indicating the budget allocation from controller A at time t labelled
by JA,i(t). The state of node i at time t + 2 is determined by JA,i(t + 1) and states of
node j and n at time t + 1. To influence states of node j and n at time t + 1, we have
to change the budget allocations at time t. Therefore, the inputs of the optimization
of minimizing the variance of node i by optimizing the budget allocations for the in-
ferred node and its neighbourhood are JA,i(t + 1), JA,j(t) and JA,n(t) (see the variables
circled by the red dashed line).

budget allocation of the neighbouring nodes two step ahead is that by doing so, we
could influence the sum of neighbouring states at time t + 1, and afterwards the vari-
ance of the inferred node at time t + 2. Therefore, the optimization in this scenario can
be viewed as a variant of the two-step-ahead optimization of Eq. (4.9), and the objective
function is given by

{J∗A,i(t + 1),

neighbours of node i︷ ︸︸ ︷
J∗A,j(t), ..., J∗A,n(t)} = arg min σ̂2( ĴB,i, t + 2)

= arg min−
[

Pr(si(t + 2) = 1)× Ψ̂i(t + 1) + Pr(si(t + 2) = 0)× Υ̂i(t + 1)) + I( ĴB,i, t + 1)
]−1

subject to

J∗A,i(t + 1) + J∗A,j(t) + · · ·+ J∗A,n(t) ≤ bA
(4.13)

where Pr(si(t + 2) = 1) and Pr(si(t + 2) = 0) represent the probabilities for node i
to have opinion 1 and 0 at step t + 2, respectively. Moreover, Ψ̂i(t + 1) and Υ̂i(t + 1)
are consistent with the definition in Eq. (4.9). Inserting Eq. (4.10) and Eq. (4.11) into
Eq. (4.13) yields the full expression. Here, we use the interior-point method for the
optimization of Eq. (4.13), and the corresponding time complexity to obtain J∗A,i(t +
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FIGURE 4.8: Panel (a) shows the dependence of normalized budget allocations J̃A,j =
JA,j(ki+1)

bA
after the first T = 1000 updates calculated by Eq. (4.13). The black trian-

gles are the budget allocations for each neighbouring node where differences in allo-
cations to different neighbours are characterized by error bars. Panel (b) shows the
dependence of variance of MLE of the central node on varying total budgets at update
T = 1000 based on four budget allocation strategies: only targeting the central node
(red squares), equally targeting neighbours only (red circles), optimization described
in Eq. (4.13) (black triangles), and equally targeting (blue triangles). The results are
based on 20 realizations of random regular networks with 1000 nodes and average de-
gree ⟨k⟩ = 10. Controller B targets all nodes equally with budget 5, and except for the
inferred node and its neighbours, controller A targets all the other nodes with budget
5. Error bars indicate 95% confidence intervals.

1), J∗A,j(t), · · · , J∗A,n(t) is O(ki!T), where ki is the degree of node i and T is the length of
the observation period.

To distinguish differences in allocations made by the optimized controller to the central
inferred node and on its neighbours, we partition the budget allocations for these two
types of nodes into two groups and normalize by the average budget allocation to any
node. We thus have J̃A,i =

JA,i(ki+1)
bA

for the central node and for the neighbouring

nodes j ∈ Nei(i) we have J̃A,j =
JA,j(ki+1)

bA
. In Fig. 4.8 (a), we show the dependence

of the normalized optimized budget allocations to the central node and its neighbours
on varying budget availability bA of controller A. We clearly observe two regimes of
budget allocations for the central node and its neighbours. For small enough budget
availability to controller A, all of the resources will be focused on only the central node.
However, with an increase of the budgets available to the optimized controller, more
and more resources will be diverted to its neighbours until a crossing point is reached.
Finally, for large enough budget bA, only the neighbouring nodes will be targeted.

Motivated by the optimized schemes of budget allocations for the central and neigh-
bouring nodes in the context of extremely small and large budget constraints in Fig.
4.8, we propose two other heuristics. One is allocating all of the resources on the central
node and leaving its neighbours un-targeted. The other is targeting the neighbouring
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FIGURE 4.9: Panel (a) compares the sum of expected variance of MLE calculated by the
two-step-ahead optimization with the total constraint for every two updates (marked
by “opt”) and equally targeting strategy (marked by “equal”) based on three different
relative budget constraints bA/bB = 0.1, bA/bB = 1 and bA/bB = 10 with increasing
numbers of observations. Panel (b) compares the sum of the expected variance of MLE
calculated by 5 different methods under the control setting of bA = 10bB. Here, “two-
step opt but only update one step” stands for using the two-step-ahead algorithm but
only updating the budget allocation for the next step. “one-step-ahead opt” presents
the one-step-ahead algorithm. Results are based on 20 repetitions of the experiment on
ring networks with size N = 10. Controller B targets nodes with allocations randomly
sampled from a uniform distribution, and the budget allocation per node on average
by controller B is 2. Error bars indicate 95% confidence intervals.

nodes equally, but leaving the central node empty. In Fig. 4.8 (b), we compare the vari-
ance for the central node calculated by only targeting the central node (represented by
red squares), by only equally targeting the neighbours (light blue circles), and by the
optimization of Eq. (4.13) (marked as black triangles), and also the strategy of equally
targeting all node (including the central node and its neighbours) as the benchmark.
The results in Fig. 4.8 (b) are consistent with what we observe in Fig. 4.8 (a). Although
the optimized strategy has the best performance in reducing the variance of the central
node for all values of budget constraints compared with the three other strategies in
Fig. 4.8 (b), for small total budgets, the variance calculated by the strategy of only tar-
geting the central node is close to the variance by the optimized strategy. Meanwhile,
for large total budgets, the strategy of only equally targeting the neighbours has almost
the same performance as the optimized strategy. Our finding suggests that, instead of
applying the optimization of Eq. (4.13) whose time complexity is O(ki!T), we could
substitute it with simple heuristics of targeting the central node or neighbours only
without sacrificing much in performance.

In the following, we extend the scenario of minimizing the variance of a single node
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to minimizing the sum of variance of estimators over the whole network with the two-
step-ahead heuristics. In this context, we have[

J∗A,1(t) · · · J∗A,N(t)
J∗A,1(t + 1) · · · J∗A,N(t + 1)

]
= arg min

N

∑
i=1

σ̂2( ĴB,i, t + 2)

= arg min
N

∑
i=1

−I( ĴB,i, t + 2)−1.

(4.14)

Generally, there are two options to set the constraint for the two-step-ahead optimiza-
tion in the context of minimizing the sum of variance for the entire network. One is to
set the budget constraint separately for each update, i.e., JA,1(t) + · · ·+ JA,N(t) ≤ bA,
referred to as SCEU in the following. The other is to set a total constraint for every two
updates where JA,1(t) + · · ·+ JA,N(t) + JA,1(t + 1) + · · ·+ JA,N(t + 1) ≤ 2bA, referred
to as TCEW. Due to the factorial time complexity of the two-step-ahead algorithm with
respect to the network size N, we start our analysis of the optimal budget allocations
for minimizing the sum of variance by numerical experiments conducted on a small
ring graph of N = 10 nodes.

In more detail, Fig. 4.9 (a) compares the sum of variance calculated by the two-step-
ahead method (marked as “opt”) and the equally targeting strategy (marked as “equal”)
for varying budget constraints bA/bB = 0.1, 1, 10 with increasing numbers of observa-
tions. Moreover, we use a setting in which controller B targets all nodes with allocations
randomly sampled from a uniform distribution, and the budget allocation per node on
average is 2. After a careful inspection of Fig. 4.9 (a), we obtain a similar observation
as in the case of optimizing one node by the two-step-ahead optimization in Fig. 4.6.
The two-step-ahead optimization can make a significant improvement in reducing the
sum of variance of estimators compared with the equally targeting strategy only when
the active controller has much more budget than its opponent. This suggests the two-
step-ahead optimization is more effective if the optimized controller has more available
resources.

Since the substantial improvement in minimizing the sum of variance by the two-step-
ahead optimization has only been observed when controller A is in budget superiority,
we only investigate this scenario further. In the following, we proceed by comparing
the sum of variance obtained by applying the one-step-ahead optimization, the two-
step-ahead optimization and the equally targeting strategy in Fig. 4.9 (b) under the
same network setting as Fig. 4.9 (a) and control setting of bA/bB = 10. From Fig. 4.9
(b), we find that the “two-step opt but only update one step” heuristics which uses a
two-step-ahead algorithm but only updates the budget allocation for the next step has
the best performance in the scenario of controller A having more budget than controller
B. An explanation for this is: by optimizing two steps ahead, this heuristics accounts
for the indirect influence between nodes, while, by only updating one step ahead, the
controller can adjust its prediction of two-step-ahead variance after one update, as well
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as adjust its budget allocation for the next step. Additionally, even though SCEU and
TCEW are separated by different ways of imposing the budget constraint, there is no
significant difference in the sum of variance obtained by these two methods. Moreover,
as expected we also observe that the one-step-ahead method has the worst performance
among all the heuristic methods, but is nevertheless still better than the equally target-
ing strategy.

4.3.4 Optimally Equally Targeting

As seen in Figs. 4.3 and 4.9, the one-step-ahead and two-step-ahead optimization al-
gorithms have better performance in reducing the variance of estimators of the oppo-
nent’s budget allocations compared with the equally targeting strategy. However, the
cubic and factorial time complexity of the one-step-ahead and two-step-ahead opti-
mization algorithms in terms of network size N make them unsuitable for application
to large-size networks. To address this issue of scalability of the one-step-ahead and
two-step-ahead optimizations, we propose a new heuristic algorithm named optimally-
equally-targeting strategy (OETS), where we attempt to find an optimal equal alloca-
tion for all nodes in the network. Specifically, the heuristics of the optimally-equally-
targeting strategy are motivated by the observations in Fig. 4.8 (b) which shows that
putting too many resources on the inferred agent only will deteriorate the accuracy of
the inference. Moreover, Figs. 4.3 and 4.9 also indicate that only limited improvement
of variance reduction will be achieved by the one-step-ahead and two-step-ahead al-
gorithms compared with the equally targeting strategy when the active controller has
less or equal budgets compared to its opponent.

Formally, the objective function of the OETS is given by

J∗A = arg min
N

∑
i=1

σ̂2( ĴB,i, T) = arg min−
N

∑
i=1

[
T−1

∑
t=0

(
Ψ̂i(t)− β̂i(t)

)]−1

, (4.15)

subject to
0 ≤ J∗A ≤ bA/N,

where J∗A is the optimal budget allocation for all nodes to achieve a minimum sum
of variance after T observations, bA is the budget constraint for controller A, Ψ̂i(t) =

(JA + ki + ĴB,i)
−2, β̂i(t) =

[
(ki − ∑N

j=1 wijsj(t) + ĴB,i)(JA + ki + ĴB,i)
]−1

. Here, by propos-
ing the optimally-equally-targeting strategy, we have reduced the parameter space
from N (the one-step-ahead optimization) or 2N (the two-step-ahead optimization) to
1 and the time complexity to O(T) without sacrificing much of the performance.

To explore how the budget availability and network structures affect the optimally
equally targeting strategy, in Fig. 4.10 (a), we show the corresponding sum of vari-
ance of MLE for varying equal budget allocations by the active controller on networks
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FIGURE 4.10: Panel (a) shows the dependence of sum of variance of estimators for
controller B’s budget allocations over all agents on the equal budget allocations of
controller A at update T = 1000. Differently coloured curves correspond to varying
budget constraints of controller B, e.g., the red lines marked with bB/N = 1 indicate
controller B targets each node with 1 on average. Circles and squares correspond to
scale-free networks with degree exponent λ = 1.6 and random regular networks, re-
spectively. The results are based on 20 repetitions of the experiment on networks with
N = 1000 nodes and average degree ⟨k⟩ = 6. Controller B targets nodes with alloca-
tions randomly sampled from a uniform distribution. Controller A targets all nodes
equally. Panels (b) and (c) present the dependence of the corresponding variance of
estimators achieved by equally targeting each node with allocations 10, 20, and 40
in Panel (a) on nodes’ degrees (b) and budget allocations (c) by the opponent for the
scale-free networks with degree exponent λ = 1.6 under the context of bB/N = 10.
Note that JA = 20 is the optimal budget allocation for equally targeting obtained from
Panel (a) (the minimum point) for bB/N = 10. In Panel (c), we group the value of
the x-axis into bins with width 1 and lower limits are inclusive, e.g., [0,1). Error bars
indicate 95% confidence intervals.

with different heterogeneity in the context of the opponent targeting each node with
average budget 1, 5 and 10. Additionally, controller B targets nodes with allocations
randomly sampled from a uniform distribution. Note that, the optimally equally tar-
geting strategy for each scenario in Fig. 4.10 (a) is marked by the arrows. By comparing
curves for networks with different degree heterogeneity in Fig. 4.10 (a), we find that,
similar to the results of Figs. 4.4, the variance of estimators for random regular net-
works is always smaller than that for the heterogeneous networks.
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As the main difference of networks of different types is the degree distribution, to ex-
plore how the degree of nodes plays a role in OETS, we present the dependence of
variance of estimators on nodes’ degrees in Fig. 4.10 (b). Clearly, we observe a positive
relationship between the variance and nodes’ degree. This result has further explained
the degree-based heuristics for the link weight prediction in Chen and Lai (2018) about
why the solution obtained from a lower-degree node is preferred. Moreover, with a
careful inspection of Fig. 4.10 (b), we observe two regimes. For low-degree nodes, a
large equal allocation by controller A (e.g., JA = 40) will result in a worse performance
in predicting the budget allocations. However, for the hub nodes, a larger allocation
is preferable in improving the accuracy of the prediction. Furthermore, by compar-
ing the patterns of the dependence for equal budget allocations by controller A for
JA = 10, 20, 40 in Fig. 4.10 (b), we find that the OETS results from a trade-off. On the
one hand, heterogeneous networks have more low-degree nodes, therefore relatively
high budget allocations from the controller A should be avoided. On the other hand, as
the hub nodes normally have much higher variance than low-degree nodes, low bud-
get allocations from the controller A is inefficient in minimizing the sum of variance.

Another important factor in the strategy inference is the budget allocation by the oppo-
nent. Therefore, in Fig. 4.10 (c), we present the dependence of variance on opponent’s
budget allocations. Note that, as the budget allocations by the opponent are randomly
sampled from a uniform distribution, for ease of observation, we group values into
bins with width 1, i.e., {[0, 1), [1, 2), · · · } in Fig. 4.10 (c). Similar to Fig. 4.10 (b), with
an increase of opponent’s budget allocations, the variance of estimates rises monoton-
ically. However, curves for different budget allocations JA are fairly close and a larger
JA will not result in a lower variance for nodes which are allocated more resources by
the opponent.

4.4 Summary

In this chapter, we have proposed an approach to apply network control in the con-
text of a network inference problem. In our setting, an active controller interacts with
a process of opinion dynamics on a network and aims to influence the resulting opin-
ion dynamics in such a way that estimates of an opposing controller’s strategy can be
accelerated. Existing approaches related to such types of inference problems are often
based on the assumption that the inference is performed using given data. In contrast,
our approach aims to strategically interfere with the networked dynamics to generate
more informative datasets.

By using the variance deduced from the Fisher information as a criterion of inference
uncertainty, we have proposed several optimization heuristics. In the first step, in a
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benchmark scenario in which an active controller can target nodes uniformly by an ad-
justable amount of influence, we have demonstrated that interference with the system’s
dynamics can substantially accelerate the convergence of estimates about opponents.
We have then proceeded to develop more sophisticated optimization heuristics, based
on step-wise updating of the interference with the dynamics and have shown that such
approaches are typically effective if the active controller has a relatively large budget.

Next we have explored the one-step-ahead and two-step-ahead heuristics systemati-
cally in a variety of scenarios. First, in a scenario in which the active controller only
aims at inference of a single node, we find that only very limited acceleration can
be achieved by targeting only this node. However, far more substantial results can
be achieved by also targeting the node’s neighbours. For the latter setting we have
demonstrated the effectiveness of simple heuristics, which relies on targeting only the
focal node when the controller’s budget is small and only conditionally influencing
the focal node’s neighbours when budget availability is large. Conditional targeting of
neighbours should be carried out whenever a majority of them are not aligned with the
active controller.

Furthermore, we have explored the effectiveness of inference acceleration for networks
with varying amounts of degree heterogeneity for different settings of the opponent’s
influence allocations. As one might expect, we find that both, predicting opponent in-
fluence at nodes with large degrees, and precisely predicting large opponent influence
nodes, are difficult. The first is essentially due to the presence of a large changing en-
vironment of the node which makes it difficult to distinguish the influence of control
from the influence of neighbours. This finding is consistent with results presented in
Chen and Lai (2018) in the context of link inference from static data. The second is due
to the effect that large opponent control tends to fix a node in a static state, which makes
it difficult to precisely predict the amount of opponent’s influence.

As a consequence of the above, if an opponent targets uniformly at random, the in-
ferrability of its influence is strongly related to the number of high-degree nodes on a
network. Correspondingly, using our optimization schemes, we find that inference is
the more difficult the larger the degree-heterogeneity of a network. The above finding
also holds when opponent’s influence strengths are drawn randomly with inverse pro-
portionality to node degrees. In this case, networks with higher degree heterogeneity
will also have larger average variance, since they have more low-degree nodes with
large opponent influence, which also impedes inference.
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Chapter 5

Opponent-strategy Reconstruction
in the Ising Model

In this chapter, we extend the previous framework of inference acceleration in Chap-
ter 4, which was initially applied to the voter model, to the inverse Ising model. The
purpose is to evaluate the applicability and adaptability of this framework as we move
from a linear model to a relatively intricate non-linear model. Similar to Chapter 4,
instead of passively observing the dynamics for inference, we focus on strategically
manipulating dynamics to generate data that give more accurate estimators with fewer
observations. For this purpose, we consider the inference problem rooted in the Ising
model with two opposite external fields, assuming that the strength distribution of one
of the fields (labelled as passive) is unknown and needs to be inferred. In contrast, the
other field (labelled active) is strategically deployed to interact with the Ising dynamics
in such a way as to improve the accuracy of estimates of inferring the opposing passive
field.

The structure of this chapter is organized as follows. In Section 5.1, we introduce the
context and motivation for studying the inference acceleration problem in the Ising
model. In Section 5.2, we give a formal description for the framework of accelerating
the convergence of inference under the inverse Ising context and present heuristics of
how to optimally interact with the Ising dynamics to generate more informative data.
In Section 5.3, we provide analytical and numerical results for the optimal configura-
tion of budget allocations by the active controller. In Section 5.4, we summarise the
main findings and contributions.

5.1 Introduction

As discussed in Section 2.5.3, even though much effort has been devoted to the inverse
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Ising problem, it remain challenging, especially when only a limited amount of ob-
servational data is available (Yang et al., 2017; Braunstein et al., 2019). Therefore, in
this chapter, we focus on addressing the inverse Ising problem from the perspective of
speeding up the convergence of inference with the aim of obtaining accurate estima-
tions for the model parameters with less data. Our approach contrasts with the aim
of most of the prior studies such as Yang et al. (2017); Braunstein et al. (2019); Hoang
et al. (2019), which assume the existence of a given dataset, and focus on methods for
inference. Instead, in this chapter, we are interested in how data can best be generated.
Similar to Chapter 4, our principal idea is that we allow strategic interference in the dy-
namics while observations are being gathered, and we focus on how to best apply such
interference with an aim to generate a more informative dataset that allows accurate
inference with less data in the inverse Ising model.

Different from the linearity of the voter model, which results in high levels of math-
ematical tractability (Sood and Redner, 2005), the non-linearity of the Ising model re-
quires different techniques for analysis. Inspired by the utilization of network control,
we treat the external magnetic fields as external controllers who exert influence in the
network by building weighted and unidirectional links. Without loss of generality,
we assume the existence of two opposing controllers. One is considered as passive,
whose strategies are unknown and need to be inferred. The other controller is the fo-
cus of our investigation, and is devoted to minimizing the uncertainty of inference of
its opponent’s strategy by optimally manipulating the Ising dynamics with the aim
of generating more informative data. Corresponding to the natural resource limits in
real-world contexts, we also assume there are only limited resources available for the
strategic controller.

Specifically, in this chapter, we make the following contributions to address research
question 2 on network inference acceleration outlined in Section 1.1: 1) To address
the research question (2c) on the applicability of inference acceleration across different
opinion diffusion models, we contrast the approaches used in the linear voter model
and the non-linear Ising model. In the voter model, transition probabilities are linear
functions of neighboring states, and we employed greedy local optimization heuristics,
such as a one-step-ahead algorithm, to minimize variance at individual nodes. How-
ever, in the non-linear Ising model, where transition probabilities are sigmoid func-
tions of neighbor states, optimization becomes more complex. We adapted by using
approximation methods, like high-temperature Taylor series expansion and mean-field
approximation. These techniques help linearize the model’s dynamics at high tempera-
tures, offering a way to estimate optimal allocations in a non-linear system. Our results
establish that the convergence of inference in non-linear Ising systems can also be ac-
celerated by smartly targeting agents in the network with optimized control gains to
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improve the quality of the generated dataset for inference. 2) To address research ques-
tions 2d and 2e, we make the following findings. Our study identifies two primary pat-
terns for optimal budget allocation in network influence strategies, depending on the
presence or absence of budget constraints. Without budget constraints, optimal alloca-
tions are governed solely by the neighborhood characteristics of the targeted node and
the opponent’s influence strength. However, when budget limitations are considered,
the strategy shifts to recalibrating these optimal allocations based on the uncertainty
levels in other agents’ estimations. Specifically, agents with greater uncertainty in their
estimations are more likely to receive resources aligned with their ideal, unconstrained
allocations.

5.2 Model Description and Methods

Following the work by Galam (2008), we interpret the Ising model in the context of
opinion formation. In more detail, spins in the Ising model are considered as agents
connected by a network. In the following, we consider a system consisting of N agents.
Each agent is identical to a node embedded in the social network where the social links
between agents are given by a weighted adjacency matrix W = {wij}N

i,j=1. Agents i
and j are considered to be neighbours if there is a weighted link wij > 0 between them.
We further assume that each agent holds one of two possible opinions at time step
t. In contrast to Chapters 3 and 4, where we denote the node states as 0 or 1 in the
voter model, here, we follow the norm in the Ising model and label the node states as
si(t) = −1 or si(t) = 1 for i = 1, · · · , N and t ≥ 0. Here, we assume the existence of two
opposite external fields A and B, also referred to as controllers A and B. To be more
specific, controllers A and B are treated as external positive and negative fields that
correspond to zealots who have unchanged opinions sA(t) = 1 and sB(t) = −1 for ∀t ≥
0. In addition, external controllers influence the Ising dynamics via unidirectional and
positively-weighted connections to node i in the network at time t, denoted as JA,i(t) ∈
R+ and JB,i(t) ∈ R+, respectively. Note that, here we assume that the resources bA

and bB available for controllers A and B at each time step are limited, i.e., the sum of
control gains JA,i(t) and JB,i(t) at each time step t are subject to the budget constraints:

∑i JA,i(t) ≤ bA, ∑i JB,i(t) ≤ bB.

Following the commonly-used Glauber algorithm (Glauber, 1963; Galam, 2008) in sim-
ulating social dynamics, the parallel and discrete-time Ising dynamics consist of the
following three steps: (i) Sum the weighted neighboring states of node i (i = 1, ..., N)

at time t, which is denoted as Si(t) = ∑j wijsj(t). (ii) Compute the changes in the en-
ergy level of the Ising system if node i flips at time t, which is ∆Ei(t) = 2si(t)Si(t) +
2JA,i(t)si(t) − 2JB,i(t)si(t). (iii) Flip the state of node i at time t + 1 with probability
e−∆Ei(t)/τ/

(
1 + e−∆Ei(t)/τ

)
where τ is the temperature. Correspondingly, the time-

varying transition matrix Pi(t) describing the probabilities of state changes of node i
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at time t is given by

Pi(t) =
[

Pr(si(t + 1) = −1) Pr(si(t + 1) = 1)
]

=

[
e(−2Si(t)−2JA,i(t)+2JB,i(t))/τ

1+e(−2Si(t)−2JA,i(t)+2JB,i(t))/τ

1
1+e(−2Si(t)−2JA,i(t)+2JB,i(t))/τ

]
.

(5.1)

Here, Pr(si(t + 1) = ±1) stands for the probability of node i to have state ±1 at time
t + 1. From the third term of Eq. (5.1), we observe that the transition probabilities are
independent of the updated node’s current opinion state and are only determined by
the node’s neighbouring states and the control gains from external controllers.

As mentioned above, the external controllers interact with the internal Ising dynam-
ics by targeting nodes with positively-continuous weighted links. In this chapter, we
are interested in addressing the problem of accelerating the reconstruction of the ex-
ternal controllers’ strategy from agents’ opinion changes. Specifically, we assume that
controller A is an active controller who strategically distributes its control gains to al-
ter the data generation with the aim of obtaining more accurate estimates of controller
B’s budget allocations within fewer observations. For this purpose, we assume that
controller B is a constant opponent who has fixed budget allocations from time 0, i.e.,
JB,i(t) = JB,i(0) for ∀t ≥ 0. For simpler notation, we refer to JB,i(t) as JB,i in the follow-
ing.

To obtain estimators for controller B’s budget allocations, we use maximum likelihood
estimation (MLE) (Myung, 2003) for parametric inference. More specifically, given the
transition probabilities of opinion flips in Eq. (5.1), the logarithm of the likelihood
function for observing time series of opinion changes during time span [0, T] for node
i is

Li(T) = ∑
t∈[0,T−1]

[
1 + si(t + 1)

2
log (Pr(si(t + 1) = 1)) +

1 − si(t + 1)
2

log (Pr(si(t + 1) = −1))
]

.

(5.2)
Inserting Pr(si(t + 1) = 1) and Pr(si(t + 1) = −1) from Eq. (5.1) into Eq. (5.2) yields
the full expression. By maximizing the likelihood function of Eq. (5.2) regarding the
budget allocations of controller B, we obtain estimators of JB,i, denoted as ĴB,i.

In accordance with the consistency of the MLE method, given sufficiently long time
series of agents’ opinion changes, the estimators ĴB,i asymptotically approach the true
value of JB,i (Myung, 2003). Nevertheless, considering the cost of data collection in
most real-world scenarios, it is always preferable to obtain more accurate estimators
within a shorter observation period.

To assess the accuracy of the inference, we use the frequently-used Fisher information
(Ly et al., 2017) as a metric to evaluate the quality of fit of the estimators derived by MLE
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as in Chapter 4. The Fisher information gives a measure for the dispersion between the
deducted estimators from MLE and actual values. According to Efron and Hinkley
(1978), the Fisher information I(JB,i, T) pertaining to JB,i is defined as the expectation of
the second-order partial derivative of Eq. (5.2) with respect to JB,i, i.e.,

I(JB,i, T) = E

[
∂2Li(T)

∂J2
B,i

]
= − ∑

t∈[0,T−1]

sech2
(

JA,i(t)−JB,i+Si(t)
τ

)
τ2

 . (5.3)

As the function domain of hyperbolic secant (sech(·)) is limited within the range of
(0, 1], the Fisher information I(JB,i, T) is negative for all possible values of independent
variables, i.e., JA,i(t) ∈ R+, JB,i ∈ R+ and Si(t) ∈ R. Moreover, as the length of obser-
vation T increases, the value of I(JB,i, T) decreases accordingly. Thereafter, by taking
the negative reciprocal of Fisher information, one can generate confidence intervals for
the MLE estimators (Gao et al., 2018). In more detail, for a large enough data sample,
the estimators ĴB,i obtained from MLE converge in a normal distribution to the actual
value JB,i. Therefore, we have

(
ĴB,i − JB,i

) D→ N
(

0, [−I(JB,i, T)]−1
)

. (5.4)

Here, N (0, [−I(JB,i, T)]−1) represents the normal distribution with standard deviation
[−I(JB,i, T)]−1/2 > 0, and mean value 0. Moreover, as I(JB,i, T) monotonically decreases
with respect to an increase in the number of observations, we will obtain unbiased
estimators ĴB,i with lower standard deviation as we use more system updates. Note
that, in Eq. (5.4), the true values of controller B’s budget allocations are used to calculate
the standard deviation. However, as the true values are what we want to infer and are
normally unknown, in practical calculations, we substitute the true values JB,i (1 ≤ i ≤
N) with the estimated ones ĴB,i (Ly et al., 2017).

In the following, to improve estimates of opponents, we minimize the standard devia-
tion deduced by the Fisher information in Eq. (5.3). By doing so, we have transformed
the problem of accelerating the convergence of inference to strategically choosing the
allocations of controller A’s budget to minimize the standard deviation of the estima-
tors. Moreover, from Eq. (5.3), we observe that the Fisher information can be calculated
in a recursive way, i.e.,

I(JB,i, t + 1) = I(JB,i, t)−
sech2

(
JA,i(t)−JB,i+Si(t)

τ

)
τ2 . (5.5)

Accordingly, for the estimated standard deviation of node i at current estimates ĴB,i, we
have

σ̂i( ĴB,i, t + 1) =

−I( ĴB,i, t) +
sech2

(
JA,j(t)− ĴB,j+Sj(t)

τ

)
τ2


−1/2

. (5.6)
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Extending our previous framework in Chapter 4, we apply the heuristics called the one-
step-ahead optimization to the inverse kinetic Ising problem. In more detail, we optimize
the configuration of controller A’s budget allocations at the current step with the aim of
minimizing the sum of the expected standard deviations in the next step. By doing so,
we aim at a step-wise generation of a more informative dataset. Formally, the objective
function for the inference acceleration problem is given by

{
N agents in the network︷ ︸︸ ︷
J∗A,1(t), ..., J∗A,N(t) } = arg min

N

∑
i=1

σ̂i( ĴB,i, t + 1)

= arg min
N

∑
i=1

−I( ĴB,i, t) +
sech2

(
JA,i(t)− ĴB,i+Si(t)

τ

)
τ2

−1/2

subject to
N

∑
i=1

J∗A,i(t) ≤ bA

J∗A,i(t) ≥ 0 for 1 ≤ i ≤ N.

(5.7)

Here, J∗A,i(t) represents the optimized budget allocation by controller A for node i, and
the sum of optimized J∗A,i(t) (for 1 ≤ i ≤ N) should satisfy the budget constraint bA.
Since the weighted sum of neighbouring states Si(t) can be observed and estimators ĴB,i

can be computed by maximizing Eq. (5.2), the only unknown parameters in Eq. (5.7)
will be JA,i(t).

As Eq. (5.7) contains transcendental terms, it is challenging to obtain a closed-form so-
lution for the optimization. However, by considering the expected standard deviation
for each node separately in Eq. (5.6) and taking JA,i(t) as the only independent variable,
we have the following analytical findings for each single node in the absence of budget
constraints. First, the expected standard deviation for node i, σ̂i( ĴB,i, t + 1), is symmet-
ric against the vertical line JA,i(t) = ĴB,i − Si(t) if we relax the domain of JA,i(t) to R.
Second, σ̂i( ĴB,i, t + 1) has a global minimum (see Appendix A.2 for a detailed proof),
given by

JA,i(t) =

{
ĴB,i − Si(t), ĴB,i ≥ Si(t)
0, ĴB,i < Si(t)

. (5.8)

Additionally, by taking the second-order derivative of Eq. (5.6), we find that for lower
temperatures τ, the function of σ̂i( ĴB,i, t + 1) has larger curvature at the minimum point
JA,i(t) = ĴB,i(t) − Si(t) compared with a setting of higher temperatures when curva-
tures are smaller (for the proof, see Appendix A.3).
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5.2.1 High-temperature Taylor Expansion

To investigate the optimal allocations in more depth, we use the Taylor expansion to
come up with an analytical approximation for the optimal budget allocations. As the
Taylor expansion for the standard deviation (see Eq. (5.6)) does not exist for low tem-
peratures, in the following, we focus on the approximation in the high-temperature
regime. Formally, for high temperatures, we have

σ̂i( ĴB,i, t + 1) =σ̂i( ĴB,i, t)−
σ̂3

i ( ĴB,i, t)
2τ2 +

3σ̂5
i ( ĴB,i, t)
8τ4 +

(JA,i(t)− JB,i + Si(t))2σ̂3
i ( ĴB,i, t)

2τ4 +O
((

1
τ

)5
)

.
(5.9)

Here, the O represents the Big O notation.

Next, to obtain an analytical solution for the minima of Eq. (5.7) subject to the inequality
constraint ∑N

i=1 JA,i(t) ≤ bA, we apply the Lagrange multiplier technique (Bertsekas,
2014) based on the approximation shown in Eq. (5.9). In order to handle the inequality
constraint in the objective function, we introduce slack variables q and di (1 ≤ i ≤ N).
By letting

f (JA(t)) =
N

∑
i=1

[
σ̂i( ĴB,i, t)−

σ̂3
i ( ĴB,i, t)

2τ2 +
3σ̂5

i ( ĴB,i, t)
8τ4 +

(
JA,i(t)− ĴB,i + Si(t))2σ̂3

i ( ĴB,i, t
)

2τ4

]
,

(5.10)
where JA(t) = {JA,i(t)}N

i=1, Eq. (5.7) is converted into

{

N agents in the network︷ ︸︸ ︷
Japprox

A,1 (t), ..., Japprox
A,N (t)} = arg min f (JA(t))

subject to

h (JA(t)) =
N

∑
i=1

Japprox
A,i (t)− bA + q2 = 0

gi (JA(t)) = −Japprox
A,i (t) + d2

i = 0 for 1 ≤ i ≤ N,

(5.11)

Here, Japprox
A,i (t) for 1 ≤ i ≤ N denote the optimal budget allocations obtained from the

Taylor expansion. Therefore, the Lagrangian is defined as:

L(JA(t), λ, {βi}N
i=1) = f (JA(t)) + λh (JA(t)) +

N

∑
i=1

[βigi (JA(t))] . (5.12)
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To obtain the optimal solution of Eq. (5.11), we set the gradients of Eq. (5.12) to be 0:

∂L
∂JA,i

=

(
JA,i(t)− ĴB,i + Si(t)

)
σ̂3

i ( ĴB,i, t)
τ4 + λ − βi = 0

∂L
∂λ

=
N

∑
i=1

JA,i(t)− bA + q2 = 0

∂L
∂q

= 2λq = 0

∂L
∂βi

= −JA,i(t) + d2
i = 0

∂L
∂di

= 2βidi = 0.

(5.13)

In accordance with the Krush-Kuhn-Tucker conditions (Bertsekas, 2014), the inequality
constraints should satisfy the complementary slackness condition, i.e., either the La-
grange multipliers are equal to zero or the inequality constraints are active. Moreover,
for the minimization, the Lagrange multipliers should be non-negative, i.e.,

λ ≥ 0

βi ≥ 0.
(5.14)

By solving the system of equations (5.13) and (5.14), we find that there are two possible
cases for Japprox

A,i (t):

(i)

If
N

∑
i=1

Japprox
A,i (t) ≤ bA, then Japprox

A,i (t) =

{
ĴB,i − Si(t), ĴB,i ≥ Si(t)
0, ĴB,i < Si(t)

.

(5.15)
That is, if controller A has a large enough budget, the approximated solution will
be the same as the optimized one in the absence of a budget constraint (see Eq.
(5.8)).

(ii) Otherwise, let

ϕi(t) =
(

ĴB,i − Si(t)
)
+

[
bA − ∑Japprox

A,j (t) ̸=0

(
ĴB,j − Sj(t)

)]
σ̂−3

i ( ĴB,i, t)

∑Japprox
A,j (t) ̸=0 σ̂−3

j ( ĴB,j, t)
. (5.16)

Here, ∑Japprox
A,j (t) ̸=0 stands for summing up all the j where the budget allocations

from the controller A on nodes j are not 0. Thus, we have

Japprox
A,i (t) =

{
0, ĴB,i ≤ Si(t) or ϕi(t) ≤ 0

ϕi(t), ϕi(t) > 0
. (5.17)
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In this case, by summing up the approximated budget allocations over all nodes, we
have ∑N

i=1 Japprox
A,i (t) = bA. In practice, we compute Japprox

A,i (t) as follows: (i) Calculate
the approximation of optimal budget allocations Japprox

A,i (t) according to Eq. (5.15) and
then sum up Japprox

A,i (t) for 1 ≤ i ≤ N. If the sum exceeds the budget constraint bA,
continue with step (ii). Otherwise, the procedure is terminated. (ii) Let Japprox

A,i (t) = 0 for
ĴB,i ≤ Si(t). (iii) Set the rest of the non-zero approximated optimal budget allocations
Japprox

A,i (t) = ϕi(t), and then proceed with determining whether all Japprox
A,i (t) are non-

negative. If so, the procedure is terminated. Otherwise, set the negative Japprox
A,i (t) to be

0 and recalculate the rest of the non-zero Japprox
A,i (t) according to Eq. (5.16). (iv) Repeat

step (iii) until all Japprox
A,i (t) are non-negative. Note that, the approximated solutions for

the optimized budget configurations in Eq. (5.17) are to re-weight the unconstrained
solutions in Eq. (5.8) by counting the standard deviation of other agents’ estimations.
Generally, an agent with larger standard deviation in estimations will be allocated with
resources closer to its unconstrained optimized budget allocation.

5.2.2 High-temperature Mean-field Approximation

From the analytical solution of the high-temperature Taylor approximation shown in
Eqs. (5.15) and (5.17), we find that the approximated optimal budget allocations are de-
pendent on the neighbouring states of the targeted nodes. However, in some practical
applications, it might be hard to keep track of the state changes at each step. Therefore,
in the following we consider replacing the real states of nodes with mean-field approx-
imated states. Specifically, assume that ⟨si⟩ denotes the average of the node i’s states
over the opinion dynamics. Using ri to approximate ⟨si⟩ and employing the mean-field
approximation (e.g., see (Lynn and Lee, 2016)), we obtain

ri = tanh

[(
∑

j
wijrj + JA,i − JB,i

)
/τ

]
(5.18)

for the opinion dynamics following the Glauber dynamics. Because of the hyperbolic
term in Eq. (5.18), it is hard to obtain an explicit solution for ri. In the following, we
consider the mean-field approximation in the high-temperature region. Therefore, by
applying the Taylor expansion for high temperatures with respect to Eq. (5.18), we have

ri =
∑N

j=1 wijrj + JA,i − JB,i

τ
+O

(
τ−3) (5.19)

To further simplify the solution of Eq. (5.19), we assume that all nodes are affected by
the same mean field, in which we have:

ri ≈
ki ⟨r⟩+ JA,i − JB,i

τ
(5.20)
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where
⟨r⟩ = 1

N ∑
i

ri. (5.21)

Here, ki = ∑j wij represents the weighted degree for node i. By summing Eq. (5.20)
over all nodes, we obtain

∑
i

ri = N ⟨r⟩ = N ⟨k⟩ ⟨r⟩+ ∑i JA,i − bB

τ
(5.22)

i.e.,

⟨r⟩ = ∑i JA,i − bB

TN − ⟨k⟩ N
(5.23)

where ⟨k⟩ represents the averaged linking weights of the network. Inserting Eq. (5.23)
into Eq. (5.20) yields the full expression for ri. Note that ⟨r⟩ is dependent on the real
budget used by controller A, which could be less or equal to the budget constraint bA.

By replacing the actual sum of weighted neighbouring states Si with the sum of mean-
field states ki ⟨r⟩ in Eqs. (5.15) and (5.17), we have

JMF
A,i =

{
ĴB,i − ki ⟨r⟩ , ĴB,i ≥ ki ⟨r⟩

0, ĴB,i < ki ⟨r⟩
, If

N

∑
i=1

JMF
A,i ≤ bA. (5.24)

and otherwise

JMF
A,i = ( ĴB,i − ki ⟨r⟩) +

(bA − ∑JMF
A,j ̸=0 ĴB,j + ∑JMF

A,j ̸=0 k j ⟨r⟩)σ̂−3
i ( ĴB,i, t)

∑JMF
A,j ̸=0 σ̂−3

j ( ĴB,j, t)
. (5.25)

Here, JMF
A,i represents the high-temperature mean-field approximation for the optimal

budget allocation of node i. Eq. (5.25) exists only when JMF
A,i is non-negative. Impor-

tantly, for the special case of bA ≥ bB, JMF
A,i = ĴB,i holds. This means that, even when the

active controller has more budget compared with its opponent, it will only spend the
same amount of budget as its opponent for better inference in the mean-field scenario.
According to Eq. (5.6), to compute σ̂−3

j ( ĴB,j, t), we also need the neighbouring states.
To further simplify Eq. (5.25), we apply the Taylor expansion on Î( ĴB,i, T) for high tem-
peratures, in which we have

I( ĴB,i, T) =
T−1

∑
t=0

[
− 1

τ2 +

(
JA,i(t)− ĴB,i + Si(t)

)2

τ4 +O
(
τ−5)] ≈ ∑

(
− 1

τ2 +
r2

i
τ2

)
.

(5.26)
Assume that node i is in equilibrium state. Then, for the mean-field approximation of
the standard deviation σ̂i( ĴB,i, T), we have

σ̂i( ĴB,i, T) ≈
(

T − r2
i T

τ2

)−1/2

(5.27)
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where T is the length of the observation. Generally, for high temperatures, ri is small.
Therefore, we have

σ̂i( ĴB,i, T)−3 =

(
T
τ2

)3/2

− 3
2

r2
i

(
T
τ2

)3/2

+O
(

r4
i

)
. (5.28)

If we only consider the first term in Eq. (5.28) and replace σ̂i( ĴB,i, T)−3 with it in Eq.
(5.25), we obtain

JMF
A,i ≈ ĴB,i +

bA − ∑JMF
A,j ̸=0 ĴB,j

Z
+

bA − bB

τN − ⟨k⟩ N

(
∑JMF

A,j ̸=0 k j

Z
− ki

)
, (5.29)

Where Z counts for the number of no-zero JMF
A,i . Eq. (5.29) exists when JMF

A,i is non-
negative.

5.2.3 Numerical One-step-ahead Optimization

The approximated solutions for optimal budget allocations obtained in Sections 5.2.1
and 5.2.2 are deduced in the premise of high temperatures. To obtain comprehensive
results for the optimized budget allocations regardless of the temperature constraints,
we use the interior-point method (Kim et al., 2007) for numerical optimization of Eq.
(5.7) in all temperature regions. By doing this, we aim at getting step-wise optimal bud-
get allocations Jopt

A,i for i = 1, · · · , N that can be different at each time step t, and name
this as the numerical one-step-ahead optimization. The procedure for the numerical
one-step-ahead optimization is formalized in Algorithm 3.

Specifically, the detailed experimental setup for the numerical one-step-ahead opti-
mization shown in Algorithm 3 is given as follows: (i) To meet the assumption of
having enough samples before leveraging Fisher information to compute the standard
deviation of MLE estimators given by Eq. (5.4), all nodes in the network are targeted
by the same budget allocation J f

A by controller A for the first T0 updates in the ini-
tialization part of Algorithm 3. We also keep track of the likelihood functions for the
first T0 updates for all nodes, denoted as Li(T0) for i = 1, · · · , N. (ii) Record the current
observation time step t. If t is smaller than the total number of observations T1, we com-
pute the estimators ĴB,i for all nodes based on current maximum likelihood functions
Li(t) described in Eq. (5.2). Thereafter, we compute the Fisher information defined
in Eq. (5.5) and insert them into the objective function in Eq. (5.7). By optimizing Eq.
(5.7) with the interior point method, we obtain a set of optimized budget allocations
for controller A, denoted as Jopt

A,i (t). Finally, the network is updated with the new set
of allocations Jopt

A,i (t) following the Ising dynamics to obtain the next states at t + 1 for
all nodes. Lines 3-7 of Algorithm 3 codify the contents of this step. (iii) When the time
step t exceeds the total number of observations T1, the procedure is terminated. Note
that the time complexity of the one-step-ahead optimization is O

(
(T1 − T0)N3).
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input : Adjacency matrix W , total number of observations T1, fixed budget
allocation J f

A, length of updates before computing the standard deviation
T0

output: optimized budget allocation, Jopt
A,i (t) for T0 ≤ t ≤ T1, 1 ≤ i ≤ N

1 Initialization: 50% of the initial opinions of agents si(0) are −1 or 1; update the network

with J f
A for the first T0 steps; let t = T0;

2 while t ≤ T1 do
3 ĴB,i = maxJB,i Li(t) for 1 ≤ i ≤ N;
4 obtain Jopt

A,i (t) by optimizing Eq. (5.7);
5 update the network following stochastic Ising dynamics with {Jopt

A,i (t)}N
i=1 ;

6 t = t + 1;

7 end

Algorithm 3: Numerical one-step-ahead optimization

5.3 Results

In this section, we present the main results for the inference acceleration problem, with
a special focus on exploring the configuration of the optimized budget allocations by
the active controller A. First, in Section 5.3.1, we explore the inferrability of nodes in
the case of no interference from controller A. Then, to gain some insights into how the
inference is affected by the budget allocations, we target all nodes with equal budget
allocations. The results from the equally targeting scenario then work as the bench-
mark to verify the effectiveness of the proposed one-step-ahead heuristics. Second, we
proceed with an investigation of the approximated configuration of the optimized bud-
get allocations in the high-temperature region obtained by the high-temperature Taylor
expansion in Section 5.3.2. Third, we further explore the profiles of optimized budget
allocations in the scenario of not having priori knowledge about the neighbourhood by
utilizing the high-temperature mean-field approximation in Section 5.3.3. Furthermore,
in Section 5.3.4, we discuss the influence of budget availability on the optimal control.

The numerical experiments in this work are performed on uncorrelated random scale-
free networks with network size N = 1000 and average degree ⟨k⟩ = 10, generated
according to the configuration model (Catanzaro et al., 2005). To ensure a large degree
heterogeneity, the degree distribution of the constructed networks is pk ∼ k−2 where k
represents the node’s degree. The results shown in the following context are all based
on 50 repetitions of the corresponding experiments.
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5.3.1 Benchmark – the Equally Targeting Scenario

Before investigating the influence of budget allocations by the active controller on the
inference, we are interested in the accuracy of inference without interference from con-
troller A. Here, we use the standard deviation of estimators in Eq. (5.4) to quantify
the accuracy of inference. For a preliminary investigation, we assume the passive con-
troller B targets each node with random control gains drawn from a uniform distribu-
tion U(0, 20) with the first moment of the distribution ⟨JB,i⟩ = 10 equal to the average
degree of the networks. To proceed, in Fig. 5.1, we present the dependence of the stan-
dard deviation of estimators for the opponent’s strategies on nodes’ degrees in panel
(a) and on the allocations from controller B in panel (b). In Panels (a) and (b) of Fig. 5.1,
we observe clear patterns for the corresponding dependence. In the absence of inter-
ference from controller A, nodes are the harder to predict the larger their degrees and
the larger the budget allocations from controller B. These results are consistent with
the conclusion drawn for the voter model in Chapter 4.
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FIGURE 5.1: (a) Dependence of the standard deviation of estimators for controller B’s
control gains on nodes’ degrees in the absence of controller A. (b) Dependence of
the standard deviation of estimators for controller B’s control gains on controller B’s
budget allocations in the absence of controller A. The standard deviation is calculated
at time step 1000 and temperature τ = 20. We use a setting in which controller B
targets all nodes with allocations randomly sampled from a uniform distribution, and
the budget allocation by controller B per node on average is 10. We group the value
of the x-axis into bins with width 1 and lower limits are inclusive, e.g.,[0,1). Error bars
indicate 95% confidence intervals.

We then proceed with the qualitative exploration of the opponent strategy inference
problem in the equally targeting scenario where the active controller A targets all nodes
with the same control gain. By doing so, we aim at gaining some intuitions about how
the inference is affected by the interference from the active controller A. Furthermore,
we will later use the equally targeting strategy as a benchmark which will give insights
into improvements in the estimations that can be obtained by optimisation.
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To proceed, in Fig. 5.2 (a), we show the dependence of the mean standard deviation σ̄eq

for the equally targeting scheme over all nodes on varying temperatures τ and different
relative budget constraints bA = 0.5bB (black circles), bA = bB (blue triangles), bA = 2bB

(red squares). After a careful inspection of Fig. 5.2 (a), we make the following observa-
tions. First, as shown in the upper-left corner of Fig. 5.2 (a), it is hard to gain accurate
estimations of the opponent’s strategy in the low-temperature regions. The main rea-
son for the inaccuracy of the inference is that, at low temperatures, the system falls into
stabilization which leads to spontaneous magnetization (Chandler, 1987). Some nodes
are keeping their states unchanged during the whole updating process. Therefore, no
information would be obtained from the observation. Second, in the inset of Fig. 5.2
(a), we find that, for extremely high temperatures, the inference errors are roughly the
same for different equally targeting budgets. Together with the probabilities of state
flips in Eq. (5.1), we can thus understand why the Ising system is harder to control for
inference acceleration as the temperature increases: In the context of high temperatures,
nodes have nearly equal probabilities to change to state 1 or −1. In this case, the tem-
perature is the main factor for state flipping. As the control gains are divided by a large
temperature, they have little influence in determining the agents’ next states. Third, by
combining the inset and the whole picture in Fig. 5.2 (a), we find that the dependence
of mean standard deviation on temperatures is a convex shape. This means that there
is a temperature at which predictions of opponent strategies are the most accurate.

Next, to figure out if the inference of opponent budget allocations could be accelerated
or not by the proposed one-step-ahead optimization algorithm, we compare the mean
standard deviation of estimators σ̄eq computed by the equally targeting strategy with
the mean standard deviation σ̄opt calculated by applying the optimized budget alloca-
tions of Algorithm 3 in Fig. 5.2 (b). To focus on the improvements of inference in the
high-temperature region, we consider the relative mean standard deviation σ̄eq−σ̄opt

σ̄eq
for

different budget constraints bA/bB = {0.5, 1, 2} in Fig. 5.2 (b). It becomes clear that the
optimization works best for extremely low temperatures with a reduction of the relative
standard deviation close to 100%. Moreover, with an increase in temperatures, the opti-
mized standard deviation gets closer to the equally targeting one. However, more than
5% or about 1% improvements are achieved in the intermediate or high-temperature
regions compared with the equally targeted strategy. Additionally, we observe that the
one-step-ahead optimization has a better performance in reducing the standard devia-
tion of estimators if the active controller A has more budget than the passive controller
B.

5.3.2 Results for High-temperature Taylor Series Approximation

As the approximated solutions in Eq. (5.17) for the optimal budget allocations are
deducted under the assumption of high temperatures, identifying the feasible region
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(a) (b)

FIGURE 5.2: (a) Dependence of the mean standard deviation σ̄eq of estimators for con-
troller B’s control gains over all nodes at time step 1000 on varying temperatures
τ when controller A targets all nodes equally. Different relative budget constraints
bA/bB = {0.5, 1, 2} are shown by different colours of curves. (b) Dependence of the
relative mean standard deviation σ̄eq−σ̄opt

σ̄eq
on varying temperatures τ. σ̄opt is calculated

by averaging the standard deviation of estimators obtained via applying the one-step-
ahead optimization over all nodes at time step 1000. The three horizontal lines show
the percentages of improvements in reducing the standard deviation by the optimiza-
tion compared with the equally targeting strategy. We use a setting in which controller
B targets all nodes with allocations randomly sampled from a uniform distribution,
and the budget allocation by controller B per node on average is 10. Error bars indi-
cate 95% confidence intervals.

(a)

FIGURE 5.3: (a) Dependence of the relative mean standard deviation σ̄approx−σ̄opt
σ̄opt

on
varying temperatures τ. σ̄approx stands for the mean standard deviation of estimators
obtained via applying the high-temperature Taylor series approximation shown as
Eqs. (5.15) and (5.17) over all nodes after the system initialization. Different relative
budget constraints bA/bB = {0.5, 1} are shown by different colours of curves. We use
a setting in which controller B targets all nodes with allocations randomly sampled
from a uniform distribution U(0, 20), in which the budget allocation by controller B
per node on average is 10. Error bars indicate 95% confidence intervals.

where the Taylor series approximation has close performance to the optimization is
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crucial. To proceed, in the panels of Fig. 5.3, we compare the mean standard devia-
tion over all nodes calculated via the one-step-ahead optimization of Algorithm 3 with
the Taylor series approximation in Eq. (5.17). In more detail, in Fig. 5.3 (a), we show
the dependence of relative mean standard deviation σ̄approx−σ̄opt

σ̄opt
on the temperature τ at

update 1000. Here, σ̄approx stands for the mean standard deviation computed by the
Taylor series approximation (see Eqs. (5.15) and (5.17)). To obtain σ̄approx, we consider
the following procedure: After the first T0 = 100 updates of system initialization as
mentioned in Algorithm 3, we replace the optimization by the Taylor series approxi-
mation and obtain the approximated budget allocations at each update. Thereafter, we
update the network with the approximated values following Ising dynamics. By doing
this, the results of σ̄approx are purely based on the approximated budget allocations but
not the optimal budget allocations. Note that, unlike Fig. 5.2, we only present two
budget cases bA = 0.5bB and bA = bB in Fig. 5.3 (a). The reason for not presenting
the results for bA = 2bB is that: if controller A has sufficient budget, the optimized
budget allocations will be the same as the approximated ones as indicated in Eqs. (5.8)
and (5.15). As a consequence, the mean standard deviation σ̄opt and σ̄approx will also
be the same, and thus the relative mean standard deviation σ̄approx−σ̄opt

σ̄opt
= 0 can not be

presented in a logarithmic figure.

Continuing with the results in Fig. 5.3 (a), we find that even though the approximation
is based on the assumption of high temperatures, it also works well in the interme-
diate temperature region. For instance, for bA = bB, the approximation will result in
a performance loss of less than 10% compared with the optimization at temperatures
above 10. Therefore, in the medium and high-temperature region, one could substitute
the optimized budget allocations with the approximated ones to reduce the compu-
tational complexity from O

(
(T1 − T0)N3) to O(T1 − T0) without sacrificing much of

the performance. Moreover, consistent with the high-temperature assumption, the rel-
ative difference of standard deviation between the Taylor series approximation and
the numerical optimization gets smaller with increasing temperatures. However, in
the low-temperature region (T < 6), the high-temperature Taylor series approximation
will lead to the performance loss of σ̄approx−σ̄opt

σ̄opt
≥ 1. This is particularly pronounced for

the insufficient budget scenario bA = 0.5bB, as demonstrated in the upper-left corner of
Figure 5.3 (a), where the relative mean standard deviation will exceed 102. The signifi-
cant performance loss in the case of bA = 0.5bB is a result of budget insufficiency, which
leads to bad initial estimations ĴB,i for most nodes after the first T0 = 100 updates after
system initialization. The subsequent utilization of Eqs. (5.15) and (5.17) for approxi-
mated solutions allocates budgets only to nodes with extremely high standard devia-
tions, leaving other nodes untargeted. The division of budgets across a large number
of nodes with extremely high standard deviations prevents targeted nodes from receiv-
ing sufficient control gains to flip their states. Meanwhile, other untargeted nodes are
hard to flip at low temperatures. Consequently, the approximated budget allocations
and system states remain almost constant, leading to almost no information gain. This
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results in a persistently high mean standard deviation in the approximated solution. In
contrast, for the bA = bB scenario, the system initialization yields poor initial estima-
tions for only a few nodes. Allocating resources to these nodes prompts state flips and
thereafter leads to a relatively lower standard deviation compared to the bA = 0.5bB

case.

5.3.3 Results for High-temperature Mean-field Approximation
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FIGURE 5.4: (a) Dependence of the absolute relative mean standard deviation
|σ̄MF−σ̄opt|

σ̄opt
on varying temperatures τ. σ̄MF is computed by averaging Eq. (5.27) over

all nodes. Different relative budget constraints bA/bB = {0.5, 1, 2} are shown by dif-
ferent shapes of symbols. (b) Dependence of the mean budget allocations by controller
A over updates on the budget allocations by controller B. The triangles, squares and
lines represent for the results calculated by the optimization, Taylor expansion and
mean-field approximation, respectively. The blank symbols and solid line are for bud-
get constraint bA = 0.5bB, while the filled symbols and dashed line are for bA = bB.
The values of the x-axis are grouped into bins with width 1 and lower limits are inclu-
sive, e.g.,[0,1). Error bars indicate 95% confidence intervals.

In the following, we consider a more practical scenario in the real-world context where
we do not have access to real-time tracking of the system dynamics. In this scenario,
we apply the high-temperature mean-field solutions presented in Section 5.2.2 to ob-
tain a guess for nodes’ neighbouring states and thereafter generate approximations for
the optimized budget allocations in the high-temperature region. Similar to Section
5.3.2, we start with identifying the region where the mean-field approximation has
close performance to the numerical one-step-ahead optimization. For this purpose,
we evaluate the performance of the high-temperature mean-field approximation based
on different temperatures. Fig. 5.4 (a) shows the dependence of the absolute relative

mean standard deviation |σ̄MF−σ̄opt|
σ̄opt

on the temperature. Here σ̄MF is computed by av-
eraging Eq. (5.27) over all nodes. Notice that, on the y-axis, instead of calculating
the relative values as Figs. 5.2 and 5.3, we compute the absolute difference between
the numerical optimization and the mean-field approximation. The reason for this is
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that in some cases σ̄MF will be smaller than σ̄opt. For example, consider the setting of
bA ≥ bB. In the scenario of bA ≥ bB, the mean-field states ri will be zero. Therefore,
based on Eq. (5.27), σ̄MF =

( T
τ2

)−1/2
, which only considers the first term of the Taylor

expansion of the Fisher information in Eq. (5.26) and ignores the non-negative term of
(JA,i(t)−JB,i+Si(t))2

τ4 at each time step. This makes the high-temperature mean-field approx-
imation of the standard deviation smaller than its actual value. To facilitate the analysis
of the high-temperature mean-field approximation, we consider the relative standard
deviation under three control settings, where controller A has less budget bA = 0.5bB,
equal budget bA = bB, and more budget bA = 2bB in Fig. 5.4(a). Consistent with
the results of the high-temperature Taylor series approximation, the high-temperature
mean-field approximation has the worst performance if the active controller has less
budget compared with its opponent in the low-temperature region (see the upper-left
corner of Figs. 5.3(a) and 5.4(a)). However, the approximated standard deviation grad-
ually converges to the optimized one as the temperature rises for these three budget
settings. More importantly, even though the high-temperature mean-field approxima-
tion is deduced under the assumption of high temperatures, it works well also in the
intermediate temperature region where the difference in the standard deviation is less
than 10% for temperatures over 10 when bA ≥ bB.

Moreover, in Figure 5.4(a), for bA = 0.5bB, after T = 5.5, we observe an increase in
the absolute values of the relative mean standard deviation for 6.5 ≤ T ≤ 13. The
jump is mainly caused by the quality of the approximations. To be more specific, σ̄MF

is computed by averaging Eq. (5.27), where M and T are given and ri is dependent on
⟨r⟩ = ∑i JA,i−bB

TN−⟨d⟩N (see Eq. (5.23)). As the experiments are carried out on networks with
average degree ⟨d⟩ = 10, and given |∑i JA,i − bB| ≫ 0 for bA = 0.5bB , we obtain high
|⟨r⟩| for temperatures around 10 (i.e., 6.5 ≤ T ≤ 13). This further leads to high r2

i and

σ̂i( ĴB,i, M) ≈ 0 (see Eq. (5.27)). As a result, |σ̄MF−σ̄opt|
σ̄opt

are close to 1 for 6.5 ≤ T ≤ 13 in
the setting of bA = 0.5bB. In contrast, for bA = bB and bA = 2bB, according to Eq. (5.23),
⟨r⟩ is dependent on the real budget used by controller A, which could be less or equal
to the budget constraint. In these cases, |∑i JA,i − bB| is very close to 0, and will not
result in significant increases in the mean-field standard deviations for temperatures
around 10.

We next investigate the pattern of the budget allocations obtained via the numerical
optimization and approximations. As the approximations have better performance in
the intermediate and high-temperature regions, we first present the profile of budget
allocations by controller A for an intermediate temperature τ = 20. In more detail,
in Fig. 5.4 (b), we present the dependence of the mean budget allocations by con-
troller A averaged over updates on the opponent’s budget allocations at τ = 20. Note
that, for ease of observation, we group opponent’s budget allocations on the x-axis into
bins with width 1 in Fig. 5.4 (b). Results shown in this figure are obtained from three
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different algorithms where the triangles represent the numerical one-step-ahead opti-

mization calculated as
〈

Jopt
A,i

〉
=

∑
T1
t=T0

Jopt
A,i (t)

T1−T0
, circles are for Taylor series approximation〈

Japprox
A,i

〉
=

∑
T1
t=T0

Japprox
A,i (t)

T1−T0
and lines stand for mean-field approximation JMF

A,i . Moreover,
the influence of budget constraints is also considered in Fig. 5.4(b), where the marked
symbols and the dashed line represent bA = bB, and blank symbols and the solid line
are for bA = 0.5bB. By observing the trends of budget allocations by controller A for
varying budget allocations from the opponent, we find that for agents targeted by the
opponent with larger budget allocations, the active controller tends to allocate more
resources on average as well. Moreover, we find that the high-temperature mean-field
and Taylor series methods provide good approximations for the optimized budget allo-
cations for both budget constraints. Note that, consistent with the analytical result ob-
tained from the high-temperature mean-field method in which for bA ≥ bB JMF

A,i = ĴB,i,
we observe a nearly linear dependence in Fig. 5.4 (b) for bA = bB.
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FIGURE 5.5: (a) Dependence of the standard deviation of estimators for controller B’s
control gains on nodes’ degrees. The inset shows the dependence of the absolute dif-
ference in standard deviations calculated by the optimization and by the Taylor expan-
sion on degrees. (b) Dependence of the standard deviation of estimators for controller
B’s control gains on controller B’s budget allocations. The inset shows the dependence
of the absolute difference in standard deviations calculated by the optimization and
by the Taylor expansion on budget allocations by controller B. The standard devia-
tion is calculated at time step 1000 and temperature τ = 20. The red triangles, blue
circles and lines are for results calculated by the one-step-optimization, Taylor expan-
sion and mean-field approximation separately. We use a setting in which controller B
targets all nodes with allocations randomly sampled from a uniform distribution, and
the budget allocation by controller B per node on average is 10. Error bars indicate
95% confidence intervals.

To proceed, we investigate the accuracy of inference for agents after we performed the
optimal control and compare it with the results for the no interference scenario in Fig.
5.1. Similar to Fig. 5.1 (a), we show the dependence of standard deviation of estima-
tions on nodes with different degrees when applying the optimization of Algorithm 3
or using high-temperature Taylor and mean-field approximations in Fig. 5.5 (a). By
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observing Fig. 5.5 (a), we find that the high-temperature Taylor approximation pro-
vides close performance in explaining the influence of node degree heterogeneity on
inference accuracy compared with the exact numerical optimization. Moreover, consis-
tent with the no interference case in Fig. 5.1 (a), we find also when optimizing that it
is harder to predict a higher degree node. In Fig. 5.5 (b), we present the dependence
of the standard deviation of estimators on opponent budget allocations. We find that,
compared with Fig. 5.1 (b), the application of optimal control strongly alleviates the
difference of standard deviation for nodes targeted by the opponent with various val-
ues (i.e., we observe that values vary by less than 0.01 as opposed to nearly 1 in Fig. 5.1
(b)). Nevertheless, we still observe a clear negative correlation, i.e. the less the resource
a node is targeted by the opponent, the harder it is to predict. This conclusion differs
from the pattern observed in the no interference case in Fig. 5.1 (b), where we observed
that nodes targeted with higher control gains are harder to predict.

5.3.4 Influence of Budget Availability
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FIGURE 5.6: Dependence of the fitness of the relationship of mean budget allocations
by controller A on the allocations by controller B calculated by approximations com-
pared with the optimization on relative budget constraints bA/bB. Here the fitness
is calculated by taking square root of the sum of squares of difference between cor-
responding points calculated by optimization and by Taylor series or mean-field ap-
proximations calculated by Eqs. (5.30) and (5.31), respectively. The distance is further
normalized by the actual budget used by controller A in the optimization. The blue
squares show the normalized distance between Taylor expansion and the one-step-
ahead optimization while the black squares are for the normalized distance between
mean-field approximation and the one-step-ahead optimization. Panel (a) shows the
results for temperature τ = 20, and Panel (b) is τ = 50.

To facilitate the analysis of the configurations of the budget allocations by the active
controller, we further investigate the relationship between the budget allocations by the
active controller and its opponent on the ratio of the budget constraints bA/bB. Similar
to Fig. 5.4 (b), we group budget allocations by the opponent into bins with width 1 and
calculate the corresponding mean value of

〈
Jopt

A,i

〉
,
〈

Japprox
A,i

〉
and JMF

A,i within the given
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bins, denoted as J̄opt,m
A , J̄approx,m

A and J̄MF,m
A for bins with higher limit m. Therefore, the

distance of the dependence of mean budget allocations by the active controller on ĴB,i

between the numerical optimization and the high-temperature Taylor approximation
is calculated as √

∑
m

(
J̄opt,m

A − J̄approx,m
A

)2
/b∗A. (5.30)

Similarly, the distance of the dependence between the mean-field approximation and
numerical optimization is √

∑
m

(
J̄opt,m

A − J̄MF,m
A

)2
/b∗A. (5.31)

Here b∗A represents the actual total budget that the controller A has used during the
optimization in Figs. 5.6.

For comparison, Fig. 5.6 (a) is computed at intermediate temperature τ = 20 while
(b) is for high-temperature at τ = 50. By observing Fig. 5.6 (a), we find that the
distances of budget allocations between the numerical optimization and approxima-
tions calculated by Eqs. (5.30) and (5.31) are smaller for larger relative budgets bA/bB.
This implies that the approximations work better if the active controller has more bud-
get than its opponent. However, we also note thresholds at which if the bA exceeds a
certain value then increasing bA does not result in improvements of the performance
of the approximations. By comparing the normalized distance for different tempera-
tures, we find that, temperatures will shift the “best” points of relative budgets where
the high-temperature Taylor expansion will have the best performance in approach-
ing the same budget allocations as the numerical optimization algorithm. For exam-
ple, for τ = 20, the performance of the high-temperature Taylor expansion is close
to the numerical optimization when bA/bB ≥ 1.2. However, for higher temperature
τ = 50, high-temperature Taylor expansion has close performance to the optimization
at bA/bB ≥ 0.9.

5.4 Summary

Existing literature related to the inverse Ising problem has been restricted to conduct-
ing the inference of linking weights based on a given and fixed dataset. In contrast,
in this chapter, we have investigated how to speed up the convergence of inference
via strategically interfering with the Ising dynamics with the aim of generating a more
informative dataset in a step-wise way. To achieve this, we place the inference acceler-
ating problem in the scenario of two opposing controllers. One is actively interacting
with the opinion dynamics via optimizing its allocations step-wisely to minimize the
uncertainty of its opponent’s unknown strategies.
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By comparing with the benchmark scenario in which the active controller targets all
nodes equally, we establish that interacting with the Ising dynamics strategically will
substantially speed up the convergence of inference. Specifically, in the low-temperature
region, the proposed heuristics will decrease the uncertainty of inference by almost
100 percent compared with the benchmark case. This agrees with the finding of De-
celle et al. (2016), who demonstrate that out-of-equilibrium data will result in a much
more accurate inference compared with equilibrium/stationary data. Moreover, even
though the external controllers have limited power in manipulating the networked dy-
namics at higher temperatures, the proposed heuristics will still make some improve-
ments in speeding up the convergence of estimators of opponent strategies in the high-
temperature region.

As a second contribution, we have provided a comprehensive exploration of the con-
figuration of the optimal allocations both analytically and numerically. We find that if
the active controller has a sufficient budget, it will allocate resources equal to the dif-
ference between the current estimators of opponent’s allocations and the sum of the
targeted node’s neighbouring states. In the case of an insufficient budget, we utilize
the Taylor approximation and find that the optimized allocations will be re-weighted
according to the standard deviation of current estimators based on the solutions for the
sufficient budget case, in order to meet the budget constraints. By observing the profile
of the mean optimized allocation over updates, we find a clear positive dependence of
mean optimized allocation on nodes’ degree. Moreover, even by performing the opti-
mal control, high degrees will impede nodes from being inferred accurately. The main
reason for this is, for nodes with large degrees, when it changes its state, it is hard to
distinguish whether the change is a result of control or its neighbours. This pattern is
consistent with the findings presented in Chen and Lai (2018) and Cai et al. (2022b).
However, contrary to the results obtained from the voter model in Chapter 4, nodes
targeted by the opponent with larger allocations will have higher inferrability.

Furthermore, we have extended our heuristics of optimally interacting with the net-
worked dynamics to the case of no access to tracking the system states at each time
step by substituting the real states with the mean-field states. This assumption makes
our algorithm applicable to a wide range of scenarios when real-time tracking for feed-
back from the population is infeasible. For a more extreme case, the results obtained via
the mean-field approximation can be used as a guideline to have accurate estimators
for opponent’s strategies when only very limited data is accessible.
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Chapter 6

Conclusions and Future Work

This thesis focuses on the dual challenges of inter-temporal influence maximization
and accelerating the convergence of inference. To this end, we have presented various
studies targeting different facets of these challenges. The subsequent sections of this
chapter summarize the findings derived from these studies and outline potential direc-
tions for future research.

6.1 Conclusions

In this thesis, we mainly tackle two research topics, including influence maximiza-
tion, and its inverse problem named network inference, with a focus on the opponent-
strategy reconstruction. As mentioned in Section 2.2, the solutions to influence max-
imization and opponent-strategy reconstruction are closely related to the underlying
influence diffusion models. In this work, we choose the paradigmatic voter model and
the Ising model as the opinion diffusion models, owing to their rich history. Further-
more, we assume the external influences interact with the internal opinion dynamics
of nodes via strategically building connections to nodes in the network with the aim
to maximally spread their opinions or expedite opponent strategy inference. In this
approach, external influences effectively model targeted advertising or political cam-
paigns in which nodes targeted by them are not assumed to be immediately committed
to a given opinion but also subject to peer influence in the network.

In Chapter 3, we study the IM problem under the framework of inter-temporal network
control in voter dynamics with time and budget constraints. This is explored under the
constant-opponent setting where one active controller competes against a known and
fixed-strategy opponent, and the game-theoretical setting in which both controllers si-
multaneously decide on an inter-temporal allocation protocol at time zero. By doing so,
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we have obtained the following main findings as well as solved questions of challenge
1 in Section 1.1.

1. By assuming controllers have the flexibility to choose when to start control, we
integrate the inter-temporal network control into the opinion dynamics (see ques-
tion 1a). After an extensive investigation of the dependency of optimal starting
times on the network configurations, we find that, for short time horizons, max-
imum influence is achieved by starting relatively later on more heterogeneous
networks than in more homogeneous networks, while the opposite holds for long
time horizons (see question 1b). Moreover, for the constant-opponent setting, the
optimized controller will only use its budget closer to the end of the campaign. In
contrast, for the game-theoretical setting, the controller with budget superiority
will start earlier (see question 1c).

2. We extend the simple scenario in which all agents have the same starting time and
budget allocation to a more generalized setting named individual optimization
by assuming that each agent has individual starting times and budget allocations.
In the individual optimization, we find that the strategic allocation is effective
only when fewer resources are available to the controller, as it will only focus on
low-degree nodes and leave high-degree nodes untargeted.

In Chapters 4 and 5, to address challenge 2 about reconstructing opponent’s strate-
gies from binary-state dynamics, we use maximum likelihood estimation to obtain es-
timates of opponent’s budget allocations. Instead of passively observing the opinion
dynamics, we integrate the network control into network reconstruction and aim to
speed up the convergence of estimates of opponent’s budget allocations via interfer-
ence from the active controller. As the variance of a maximum likelihood estimate at
each step can be derived from the Fisher information, the problem of accelerating the
convergence of estimates is transformed into minimizing the variance of estimates by
optimally distributing the budget allocations of the active controller over time. By do-
ing so, we have obtained the following main findings as well as solved questions 2a,
2b, 2d, and 2e. Specifically, in Chapter 4, we have the following findings:

1. We find that it is possible to accelerate the inference process by strategically inter-
acting with the network dynamics in the simple contagion model like the voter
model.

2. We first consider accelerating the inference of the opponent strategy at a single
node, when only the inferred node is controllable. In this setting, we find that the
optimized resource allocation is inversely proportional to the sum of neighbour-
ing opinion states.
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3. We then consider minimizing the variance of the opponent influence at the in-
ferred node when both the inferred node and also its neighbours are control-
lable. In this setting, we observe two regimes of the optimized resource alloca-
tions based on varying amounts of available resources for the active controller. If
the active controller has very limited resources, then it should target the inferred
node only. In contrast, if resources are large, a better strategy is to not target the
inferred node, but instead focus only on neighbouring nodes.

4. In the scenario of inferring opponent strategies over entire networks, strategic al-
locations become increasingly important as more resources are available for the
active controller. We also find that nodes with lower degrees and targeted with
smaller amounts of resources by the opponent will generally have a smaller vari-
ance in inference.

Subsequently, in Chapters 5, we find:

1. Even in a setting with complex contagion, i.e., the Ising dynamics, the conver-
gence of inference can be accelerated by selectively targeting agents in the net-
work with optimized control gains to improve the quality of the generated dataset
for inference.

2. There are two general patterns for the configuration of optimal budget allocations
in the absence or presence of budget constraints. When not considering budget
constraints, optimal allocations are determined only by the targeted node’s neigh-
borhood and the influencing strength from the opponent. When budget con-
straints are taken into account, the optimal allocations are to re-weight the uncon-
strained optimal allocations by counting the uncertainty of all the other agents’
estimations. More specifically, agents with larger uncertainty in estimation will
have a larger chance to be allocated resources closer to their unconstrained opti-
mal allocations.

3. When the real-time tracking of the system states is inaccessible, the mean-field
approximation can provide a close performance to the optimal heuristics in the
medium and high-temperature regions. Generally, agents targeted by the oppo-
nent with higher influences will be allocated more resources on average by the
active controllers so as to even out the inaccuracy for inferring larger values.

Note that, the research presented in Chapters 4 and 5 focus specifically on developing
and validating the framework of network inference acceleration. By testing the appli-
cability and accuracy of the inference acceleration techniques in isolation, the aim is to
comprehensively understand and optimize the inference process itself, without added
complexities from the influence maximization scenario. However, integrating inference
within influence maximization can be a potentially promising real-world application.
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Nevertheless, this integration introduces many additional complexities that could ob-
scure improvements directly attributable to the inference methodology. Therefore, a
strategic phased approach was adopted here. The first phase, presented in Chapters 4
and 5, aim to establish a solid foundation in network inference before layering on the
complexity of influence maximization algorithms. Time constraints also necessitated
this staged prioritization. With the validation of the inference acceleration process, the
future phase is to integrate it with influence maximization models as discussed in the
future work in Section 6.2.

While this thesis aims to further understand influence and opinion dynamics in social
networks, it is important to consider the ethical implications. The voter model and Ising
model provide insights into how opinions spread, which could potentially be misused
for propaganda or radicalization purposes. However, they only offer simplified rep-
resentations of opinion spread in social networks, where real-world influences such as
complex personal and social factors are not considered in these models. Therefore, this
thesis represents an initial step toward mathematically characterizing influence pro-
cesses and focuses on theoretical modeling and simulation. Any practical application
would require extensive additional inputs from specific real-world systems. Moreover,
further research could explore ways to mitigate potential harms, such as using influ-
ence modeling to promote diversity and reduce polarization.

6.2 Future Work

We have enriched the extensive and evolving research realm of opinion dynamics, con-
centrating on influence maximization and opponent strategy inference. Given the com-
plexity of real-world social systems, there are many potential extensions and variations
of our frameworks, that could deepen our understanding of the studied opinion phe-
nomena. In the following, we will outline the possible research directions in the future.

An intriguing avenue for future exploration involves integrating inter-temporal influ-
ence maximization with network inference acceleration. Although this thesis exam-
ines these two research problems separately, the inter-temporal influence maximiza-
tion problem can be contextualized within scenarios of revealing unknown opponent
strategies or network structures, by strategically allocating resources to interact with
opinion dynamics. In more detail, we can assume an active controller that simulta-
neously attempts to acquire new knowledge about the network structure or opponent
strategy and optimize its decisions based on existing knowledge. In other words, the
agent attempts to balance the exploration and exploitation in order to maximize its to-
tal expected spreads over the period of time considered (Kuleshov and Precup, 2014).
Note that, there is an inherent cost associated with not knowing the opponent’s strat-
egy and budget in influence maximization scenarios. This lack of knowledge can lead
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to suboptimal decisions and strategies, potentially resulting in less effective influence
campaigns. Quantifying this cost is crucial to understand the baseline against which
the efficiency of the inference process should be measured. Therefore, the exploration
should involve comparing the cost of performing the inference process with the cost
of not knowing the opponent’s strategy. This involves evaluating the resources (time,
computational power, etc.) required for inference and weighing them against the po-
tential losses incurred due to a lack of opponent strategy insights.

Furthermore, our analysis has been confined to a single layer of social connections.
However, societies often involve simultaneous interactions of diverse types, and these
distinctions could be integrated into the formulation of opinion dynamics. This can
be elegantly captured through multiplex networks (Battiston et al., 2017), which en-
compass multiple graph layers sharing a common vertex set yet potentially differing
edge sets. The dynamics across these layers may unfold on varying timescales or adopt
different propagation models. A compelling challenge arises in indirectly shaping the
dynamics of one layer through control exerted on the other layers.

Additionally, when addressing the problem of opponent-strategy reconstruction, we
still assume that the controller has complete knowledge of the network topology. There-
fore, another interesting direction for future work is to reconstruct the network topol-
ogy as well as the continuous influence intensity between agents from binary-state
dynamics. Consistent with the idea of obtaining improved performance of network
inference from limited data, one can investigate the problem of inferring the network
coupling strengths from partially observed time series data from the perspective of
experimental design. In more detail, by assuming that only a certain fraction of obser-
vations for agent states are available, we could study how an observer, who wants to
maximize the accuracy of the network inference, should distribute a limited number of
observations to generate data that allow for the most accurate possible inference.
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Appendix A

A.1 Improvements of Vote Shares Gained via Individual Opti-
mization for Varying Initial Conditions
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FIGURE A.1: Dependence of relative vote share Sindivi
A (T)/Sconst

A (T) on varying initial
states. Sindivi

A (T) stands for vote shares at time T calculated by individual optimiza-
tion while Sconst

A (T) represents vote shares calculated by assigning a single optimized
starting time for the whole network. All the calculations are based on networks with
N = 100, degree of heterogeneity λ = 1.6, and ⟨k⟩ = 6 and tested in 10 realizations.
The control gains of controller B pertaining to each node are all fixed as 1 per unit time
from time 0. The time horizon T is set as T = 10. The total budgets of controller A
are set to be the same as controller B’s, i.e., bA = bB = N × T. Error bars indicate 95%
confidence intervals.
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A.2 Global Minima for a Single Node

Specifically, to find the minima for σ̂i( ĴB,i, t+ 1) in Eq. (5.6), we take a first-order deriva-
tive of σ̂i( ĴB,i, t + 1) with respect to JA,i. By doing so, we obtain

∂σ̂i( ĴB,i, t + 1)
∂JA,i(t)

=

τ tanh
(

JA,i(t)− ĴB,i+Si(t)
τ

)
sech2

(
JA,i(t)− ĴB,i+Sj(t)

τ

)
(

sech2
(

JA,i(t)− ĴB,i+Sj(t)
τ

)
− I( ĴB,i, t)τ2

)2

σ̂i( ĴB,i, t + 1)

. (A.1)

By letting Eq. (A.1) equal to 0, we find that, JAj = ĴB,i − Si(t) is always a solution for
Eq. (A.1) and it is independent of the value of last-step Fisher information I( ĴB,i, t). Fur-
thermore, the sign of Eq. (A.1) is determined by the term of

(
τ tanh

(
JA,i(t)− ĴB,i+Si(t)

τ

))
,

and we have

tanh
(

JA,i(t)− ĴB,i + Si(t)
τ

)
> 0 for JA,i(t) > ĴB,i(t)− Si(t)

tanh
(

JA,i(t)− ĴB,i + Si(t)
τ

)
< 0 for JA,i(t) < ĴB,i − Si(t).

(A.2)

This means that the function of Eq. (5.6) increases monotonically when JA,i(t) > ĴB,i(t)−
Si(t) and decreases monotonically when JA,i(t) < ĴB,i(t) − Si(t). Therefore, JA,i(t) =

ĴB,i(t)− Si(t) is a global minima for the standard deviation σ̂i( ĴB,i, t + 1) if we consider
JA,i(t) in the domain ofR. However, as the budget allocation can not be negative, when
ĴB,i(t)− Si(t) < 0, the global minima is JA,i(t) = 0.

A.3 Curvature of Expected Standard Deviation

The second-order derivative of Eq. (5.6) with respect to JA,i(t) is given by

∂2σ̂i( ĴB,i, t + 1)
∂J2

A,i
= −

sech4
(

JA,i(t)− ĴB,i+Si(t)
τ

) (
I( ĴB,i, t)τ2 cosh

(
2(JA,i(t)− ĴB,i+Si(t))

τ

)
− 2I( ĴB,i, t)τ2 + 1

)
(

I( ĴB,i, t)τ2 − sech2
(

JA,i(t)− ĴB,i+Si(t)
τ

))3
σ̂i( ĴB,i, t + 1)

.

(A.3)
By letting JA,i(t) = ĴB,i(t)− Si(t) in Eq. (A.3), we have

∂2σ̂i( ĴB,i, t + 1)
∂J2

A,i

∣∣∣∣∣
JA,i(t)= ĴB,i(t)−Si(t)

=
(

τ−1 − I( ĴB,i, t)
)1/2

. (A.4)

For a larger temperature τ, the value of Eq. (A.4) is smaller. Therefore, the curve of Eq.
(5.6) is flatter for a high temperature compared with a lower temperature.
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Albert-László Barabási and Eric Bonabeau. Scale-free networks. Scientific american, 288
(5):60–69, 2003.
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Vı́ctor M Eguı́luz. Is the voter model a model for voters? Physical review letters,
112(15):158701, 2014.

M. Ferreira, Marina Andrade, Maria Cristina Peixoto Matos, J. Filipe, and M. Coelho.
Minimax theorem and nash equilibrium. The International Journal of Latest Trends in
Finance and Economic Sciences, 2:36–40, 2012.

Serge Galam. Sociophysics: A review of galam models. International Journal of Modern
Physics C, 19(03):409–440, 2008.

Serge Galam and Marco Alberto Javarone. Modeling radicalization phenomena in het-
erogeneous populations. PloS one, 11(5):e0155407, 2016.

Serge Galam, Yuval Gefen, and Yonathan Shapir. Sociophysics: A new approach of
sociological collective behaviour. i. mean-behaviour description of a strike. Journal of
Mathematical Sociology, 9(1):1–13, 1982.

Xu Gao, Daniel Gillen, and Hernando Ombao. Fisher information matrix of binary time
series. Metron, 76:287–304, 2018.



REFERENCES 127

Michael T Gastner. The ising chain constrained to an even or odd number of positive
spins. Journal of Statistical Mechanics: Theory and Experiment, 2015(3):P03004, 2015.

Roy J Glauber. Time-dependent statistics of the ising model. J. Math. Phys., 4(2):294–
307, 1963.

Manuel Gomez-Rodriguez, Jure Leskovec, and Andreas Krause. Inferring networks of
diffusion and influence. ACM Transactions on Knowledge Discovery from Data (TKDD),
5(4):1–37, 2012.

Amit Goyal, Wei Lu, and Laks VS Lakshmanan. Celf++ optimizing the greedy algo-
rithm for influence maximization in social networks. In Proceedings of the 20th inter-
national conference companion on World wide web, pages 47–48, 2011.

Amit Goyal, Francesco Bonchi, Laks VS Lakshmanan, and Suresh Venkatasubrama-
nian. On minimizing budget and time in influence propagation over social networks.
Social network analysis and mining, 3(2):179–192, 2013.

Sanjeev Goyal, Hoda Heidari, and Michael Kearns. Competitive contagion in networks.
Games and Economic Behavior, 113:58–79, 2019.

Caitlin Gray, Lewis Mitchell, and Matthew Roughan. Bayesian inference of network
structure from information cascades. IEEE Transactions on Signal and Information Pro-
cessing over Networks, 6:371–381, 2020.

Adrien Guille, Hakim Hacid, Cecile Favre, and Djamel A Zighed. Information diffusion
in online social networks: A survey. ACM Sigmod Record, 42(2):17–28, 2013.

Roger Guimera, Leon Danon, Albert Diaz-Guilera, Francesc Giralt, and Alex Arenas.
Self-similar community structure in a network of human interactions. Physical review
E, 68(6):065103, 2003.

Ce Guo and Wayne Luk. Accelerating maximum likelihood estimation for hawkes
point processes. In 2013 23rd International Conference on Field programmable Logic and
Applications, pages 1–6. IEEE, 2013.

Shaoyan Guo, Huifu Xu, and Liwei Zhang. Existence and approximation of continuous
bayesian nash equilibria in games with continuous type and action spaces. SIAM
Journal on Optimization, 31(4):2481–2507, 2021.

Anne-Claire Haury, Fantine Mordelet, Paola Vera-Licona, and Jean-Philippe Vert. Ti-
gress: trustful inference of gene regulation using stability selection. BMC systems
biology, 6(1):1–17, 2012.

Xinran He and Yan Liu. Not enough data? joint inferring multiple diffusion networks
via network generation priors. In Proceedings of the Tenth ACM International Conference
on Web Search and Data Mining, pages 465–474, 2017.



128 REFERENCES

Rainer Hegselmann, Stefan König, Sascha Kurz, Christoph Niemann, and Jörg Ram-
bau. Optimal opinion control: The campaign problem. arXiv preprint arXiv:1410.8419,
2014.

Danh-Tai Hoang, Juyong Song, Vipul Periwal, and Junghyo Jo. Network inference
in stochastic systems from neurons to currencies: Improved performance at small
sample size. Physical Review E, 99(2):023311, 2019.

Petter Holme and Beom Jun Kim. Growing scale-free networks with tunable clustering.
Physical review E, 65(2):026107, 2002.

Roger A Horn. The hadamard product. In Proc. Symp. Appl. Math, volume 40, pages
87–169, 1990.

Haibo Hu. Competing opinion diffusion on social networks. Royal Society open science,
4(11):171160, 2017.

Feng Huang and Han-Shuang Chen. An improved heterogeneous mean-field theory
for the ising model on complex networks. Communications in Theoretical Physics, 71
(12):1475, 2019.

Ari Juels and Martin Wattenberg. Stochastic hillclimbing as a baseline method for eval-
uating genetic algorithms. Advances in Neural Information Processing Systems, 8, 1995.

WB Vasantha Kandasamy, Florentin Smaradache, and K Ilanthenral. Pseudo Lattice
graphs and their applications to fuzzy and neutrosophic models. Infinite Study, 2014.

HJ Kappen and JJ Spanjers. Mean field theory for asymmetric neural networks. Physical
Review E, 61(5):5658–5663, 2000. .

Jaya Kawale, Stefan Liess, Arjun Kumar, Michael Steinbach, Peter Snyder, Vipin Ku-
mar, Auroop R Ganguly, Nagiza F Samatova, and Fredrick Semazzi. A graph-based
approach to find teleconnections in climate data. Statistical Analysis and Data Mining:
The ASA Data Science Journal, 6(3):158–179, 2013.
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