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The examination of histopathology images is generally recognised as the gold standard
for the diagnosis of diseases. Clinical diagnostic practice requires pathologists to follow
a descriptive set of guidelines and therefore is prone to suffer from inter-observer vari-
ability due to differences in the interpretation of histological patterns. Furthermore, the
extremely large size of histopathology images makes it impossible for pathologists to
thoroughly inspect every detail of a whole slide image (WSI). Such that the risk of mis-
diagnosis arises. In this thesis, we aim to develop automatic tools that can objectively
analyse and quantify the vast amount of pixel information contained in histopathology
images. More specifically, we focus on the automatic tissue type/component segmen-
tation of histopathology images.

To fulfil our objective, we first revisit the UNet family architectures that are widely used
in medical imaging and then suggest a novel ensemble framework to tackle the short-
comings existing in UNet++-like architectures. We present a novel stage-wise additive
training algorithm that, using ideas from boosting, incorporates resource-efficient deep
supervision in shallower layers and takes performance-weighted combinations of the
sub-UNets to create the segmentation model. To ensure the effectiveness of the ensem-
ble, we designed a scheme in which the diversity of features is guaranteed.

On the other hand, we identify the loss of magnification information as a key barrier to
the application of automatic computational pathology tools. In this regard, we explore
scale equivariant methods that possess the capability of achieving consistent segmenta-
tion to bypass the loss of magnification information. We present the Scale-Equivariant
UNet (SEUNet) for image segmentation by building on scale-space theory. The SEUNet
contains groups of filters that are linear combinations of Gaussian basis filters, whose
scale parameters are trainable but constrained to span disjoint scales through the lay-
ers of the network. By encoding scale equivariance into CNNs, histopathology images
presented at different scales are more likely to be consistently segmented.

Furthermore, due to the inherent rotation symmetry of histopathology images, it is de-
sirable for CNNs to be rotation-equivariant. This guarantees that features transform as
expected with the rotation of the input; thus a consistent segmentation can be produced
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regardless of the presenting angle of the image. To leverage this prior knowledge, we
extend our proposed scale equivariant UNet to a joint rotation-scale equivariant model.
By introducing weight-sharing between multi-scale and multi-orientation filters, the
joint equivariance of rotation and scale is achieved, yet the number of trainable param-
eters is dramatically decreased when compared with conventional CNN filters. The
proposed rotation-scale equivariant method shows the state-of-the-art generalisation
performance in scenarios wherein scale and orientation variations of images exist.
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Chapter 1

Introduction

According to the statistics reported by the World Health Organization (WHO) in 2020,
cancer is a leading cause of death worldwide, accounting for nearly one in six deaths.
Moreover, it is predicted there will be 28 million new cancer cases worldwide each
year by 2040, if incidence remains stable and population growth and ageing continue
in line with recent trends [83]. Early diagnosis of cancer enables patients to receive
timely treatment and then significantly decreases the probability of death [42]. Al-
though there are many methods that can be used to diagnose cancer, the examination
of histopathology images is still regarded as the gold standard [90]. Cancer tissue iden-
tification on histopathology images is currently performed by pathologists. However,
this procedure is labour-intensive, time-consuming, error-prone and relies extensively
on pathologists’ professional experience. In 2018, a survey of the UK histopathology
workforce revealed a serious shortage of pathologists. In detail, only 3% of the depart-
ments have enough pathologists to meet clinical demands, 45% of departments have to
send work away to cope with demand and half of the departments have to use locums
[78]. Moreover, Cancer Research UK’s report indicates that without targeted action
and investment, the number of histopathologists is forecast to reduce from the exist-
ing shortfall by an additional 2% by 2029 [36]. To narrow the gap between increasing
diagnosis demands and decreasing pathology workforce, the community resorts to AI-
Assisted pathological diagnosis. A recent survey study forecasts that AI would be rou-
tinely and impactfully used within anatomic pathology laboratories and pathologist
clinical workflows by 2030 [12]. In this research, we focus on developing computer-
aided algorithms for assisting quantitative assessment of histopathology images. In
this chapter, the background and research objective of this research are introduced and
then the outline of the thesis is provided.
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1.1 Background

1.1.1 Histopathology

Histopathology refers to the microscopic examination of tissue in order to study the
manifestations of disease. In clinical medicine, histopathology refers to the examination
of a biopsy or surgical specimen by a pathologist, after the specimen has been processed
and histological sections have been placed onto glass slides. Before this examination
can take place, the tissue must be appropriately prepared. This preparation consists of
the following steps:

• Fixation. The fixation process preserves the structure of the tissue sample and
prevents it from degradation by introducing chemicals that stimulate cross-linkage
between proteins. The most usually used fixative is Formalin.

• Dehydration. involves immersing the specimen in increasing concentrations of
ethanol to remove the water and formalin from the tissue. Afterwards, xylene is
used to remove the ethanol.

• Embedding. the tissue sample in a solid material for the purpose of thin section-
ing in the next stage. Paraffin wax or plastic resin is often used at this stage.

• Sectioning. Placing the specimen on a microtome and cutting it into sections
of about 5 m, which is the optimal thickness for staining. Then mounting the
sections on glass slides.

• Staining. Most cells are transparent and appear almost colourless when un-
stained. Staining increases contrasts of different components, making tissue struc-
tures more visible and thus easier for visual examination. Haematoxylin and
Eosin (H&E) are the most commonly used dyes that stain nuclei dark blue/pur-
ple and stain extracellular matrix and cytoplasm pink.

During the preparation process, there can be a large variation in the appearance be-
tween different stained tissue samples. For example, differences in a) thickness of sec-
tions, b) temperature, c) stain concentration and d) duration of staining, can lead to
stain colour variation. The stain appearance variation may not impact pathologists’ de-
cisions when diagnosing tissues; however, algorithms are usually negatively affected
by it [102].

Afterwards, visual examinations of tissue slides can be done by pathologists under
microscopes. This examination procedure involves moving glass slides, adjusting il-
lumination, tuning magnification, etc. Finally, a medical diagnosis is formulated as a
pathology report describing the histological findings and the opinion of the patholo-
gist.
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FIGURE 1.1: An illustration of the pyramidal structure a whole slide image contain-
ing different magnifications. Image source:

1.1.2 Digital Pathology

Digital pathology includes the acquisition, management, sharing and interpretation of
pathology information in a digital environment. Through the use of microscopy slide
scanners, glass slides are converted into digital slides, known as Whole Slide Images
(WSIs), that can be viewed, managed, shared and analysed on digital platforms. WSIs
are usually stored in a pyramid format with each level of the pyramid representing a
unique magnification level (see Figure 1.1 for example). Typically, a WSI at 40 objec-
tive magnification contains 20 billion pixels and requires approximately 56GB of mem-
ory [22]. Due to the huge size of the WSI, it is already challenging to load the entire WSI
into GPU or GPU memory with standard image libraries, let alone analyze the entire
image all at once. Fortunately, there are some libraries such as OpenSlide [38] that pro-
vide high-level interfaces for efficient data reading and retrieving from WSIs. There are
also some platforms like Orbit [99] and QuPath [5] given users on-slide visualisation
functions.

1.1.3 Computational Pathology

The advance of digital pathology technology brings researchers the opportunity to ex-
plore computational algorithms to analyse patterns of WSIs, which can help to build
computer-aided diagnosis (CAD) systems and ultimately replace pathologists. Compu-
tational Pathology (CPath) is a branch of pathology where multiple sources of patient
information including pathology image data and meta-data are combined to extract

https://camelyon16.grand-challenge.org/Data/
https://camelyon16.grand-challenge.org/Data/
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patterns and analyse features for the study of disease [1]. As concluded in a recent sur-
vey, although very few algorithms are currently in routine clinical use in pathology, ex-
perts agreed that artificial intelligence would be routinely and impactfully used within
anatomic pathology laboratories and pathologist clinical workflows by 2030 [12]. In
general, research directions of CPath include (1) pre-processing, (2) segmentation, and
(3) Diagnosis/Prognosis [116]. Below we provide a brief introduction to each sub-field.

Pre-processing. As mentioned in Section 1.1.1, colour variations exist in glass slides
due to variations in the tissue preparation procedure. This colour variation remains af-
ter tissue slides are digitalised as WSIs. Furthermore, the digital pathology techniques
used for developing WSIs introduce illumination variation, which also results in colour
variations [105]. The generalisation performance of CPath models is usually negatively
affected by colour variation. Therefore, normalising the colour of different WSIs before
subsequent analysis is important [56]. In the literature, various colour normalisation
methods have been proposed and their effectiveness has been validated by extensive
experiments, such as [75, 102].

Segmentation. Segmentation aims at assigning a label to each pixel inside images. The
segmentation tasks of histopathology images generally include nuclei segmentation,
mitosis detection and tissue type differentiation (gland, cancerous tissue, etc.). The de-
tection, quantification and localisation of these components are crucial indicators for
the diagnosis and prognosis of human cancers. In detail, morphological changes in the
cell nucleus can provide clinically meaningful information during diagnosis, especially
for cancers [18]. Tumour proliferation speed is an important biomarker for breast can-
cer, which is commonly assessed by counting mitotic figures in histological samples
[104]. For colon cancer, the morphology of intestinal glands, including architectural
appearance and glandular formation, is used by pathologists to inform prognosis and
plan the treatment of individual patients [94]. The segmentation of tumour-infiltrating
lymphocytes and characterising their spatial correlation on WSI is crucial in diagnosis,
prognosis, and treatment response prediction for different cancers [26].

Diagnosis/Prognosis. The main challenge of applying algorithms on histopathology
image-based cancer diagnosis and prognosis prediction is that the WSIs are of a large
size (e.g. 100,000 100,000 pixels). It is infeasible to process the entire image at once
by models, both due to the limitation of memory and a huge amount of computation.
In practice, a diagnosis/prognosis prediction system usually adopts either patch-level
based [15, 79, 119, 131] or WSI-level based [17, 92, 109, 122] methods. Patch-level based
methods extract features from selected patches and use them for classification or pre-
diction tasks. This kind of method can capture detailed local information; however,
they do not fully utilise the spatial context and global information present in the en-
tire WSI. In contrast, WSI-level based methods operate on the entire WSI, often at a
lower resolution, to capture spatial relationships between different regions and struc-
tures from a global perspective.
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In this thesis, we adopt existing colour normalisation methods for WSIs standardisation
and focus on segmentation tasks. We leave the diagnosis/prognosis step for future
work.

1.2 Research Objective and Contribution

The demand for a CAD system for pathologists to perform an objective, efficient, re-
producible and quantitative analysis of a histopathology image has been put forward
along with the emergence of digital pathology. To help improve diagnostic efficiency
and to relieve pathologists from exhaustive and laborious manual examination, we aim
to develop automated algorithms for the quantitative assessment of histopathology im-
ages. More specifically, we focus on two aspects, 1) the investigation of methods for the
precise identification of regions within the tissue, which includes tumorous tissues,
glands, and nuclei; 2) the development of methods that exploit rotational and scale
symmetry within histopathology images to improve models’ generalisation capability
and robustness. Algorithms in the areas of machine learning, computer vision, and
group representation theory will serve as the main tools for achieving the aims of this
thesis. In line with the aforementioned aims, the following contributions have been
made:

• We devise ADS UNet, a stage-wise additive training algorithm that introduces
deep supervision in hidden layers for highly discriminative feature learning, utilises
cascade learning for efficient training and adopts AdaBoost for learning diverse
features and model ensemble. The proposed ADS UNet demonstrates state-of-
the-art performance on four histopathology datasets and is much more computa-
tionally efficient.

• We propose Scale-Equivariant UNet (SEUNet), which is a UNet variant with fil-
ters built upon scale-space theory. The SEUNet contains groups of filters that are
linear combinations of Gaussian basis filters, whose scale parameters are train-
able but constrained to span disjoint scales through the layers of the network.
Our proposed SEUNet demonstrates superior performance in generalising the
trained model to unseen scales.

• We propose Rotation-Scale Equivariant Steerable Filters (RSESF), a filter formu-
lation that jointly incorporates rotation equivariance and scale equivariance into
CNNs to improve models’ generalisation performance. The RSESF contains copies
of filters, whose direction is controlled by directional derivatives and whose scale
parameters are trainable but constrained to span disjoint scales in successive lay-
ers of the network. The proposed RSESF exhibits superior performance than other
equivariant methods, with much fewer trainable parameters and fewer GPU re-
sources required.
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1.3 Structure of Thesis

Following this introductory chapter, the rest of the thesis is structured as follows:

Chapter 2 reviews the literature relevant to this study. It covers reviewing deep learning-
based methods for histopathology image analysis, and scale/rotation equivariant neu-
ral networks.

Chapter 3 presents the proposed Adaboosted Deeply Supervised UNet (ADS UNet), a
stage-wise additive training algorithm that incorporates resource-efficient deep super-
vision in shallower layers and takes performance-weighted combinations of the sub-
UNets to create the segmentation model. Empirical evidence on four histopathology
datasets validates the effectiveness of ADS UNet. Extensive ablation study and analy-
sis are provided to reveal the reason for performance gain from the baseline model.

Chapter 4 presents the proposed Scale-Equivariant UNet (SEUNet), a UNet variant
building on the scale-space theory, which demonstrates superior generalization perfor-
mance on histopathology datasets at different scales when compared with the conven-
tional CNN model and other scale-equivariant models.

In Chapter 5, we extend the SEUNet presented in Chapter 4 to be a joint rotation and
scale equivariant architecture, by utilising steerable filters. The Rotation-Scale Equiv-
ariant Steerable Filters (RSESF) is introduced in this chapter to improve the model’s
generalisation capability, by reducing its sensitivity to orientation and scale variation.

Chapter 6 summarises the findings and limitations of the work conducted in this thesis.
We then propose future direction regarding computational histopathology.

1.4 Publications

1) Yang, Yilong, Srinandan Dasmahapatra, and Sasan Mahmoodi. ”ADS UNet: A
nested UNet for histopathology image segmentation.” Expert Systems with Ap-
plications (2023): 120128. [Chapter 3]

2) Yang, Yilong, Srinandan Dasmahapatra, and Sasan Mahmoodi. ”Scale-Equivariant
UNet for Histopathology Image Segmentation.” In Geometric Deep Learning in
Medical Image Analysis, pp. 130-148. PMLR, 2022. [Chapter 4]

3) Yang, Yilong, Srinandan Dasmahapatra, and Sasan Mahmoodi. ”Rotation-Scale
Equivariant Steerable Filters.” In Medical Imaging with Deep Learning. PMRL,
2023 [Chapter 5]
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Chapter 2

Literature review

Although attempts have been made to analyse WSIs based on machine learning algo-
rithms to assist tasks including diagnosis, there are still very few commercial platforms
of automated histopathology image analysis deployed in clinical use. With the rapid
development of both technology and hardware, especially with the help of deep learn-
ing and Graphical Processing Unit (GPU), automated histology image analysis is even-
tually finding its way into clinical practice.

In this chapter, we review the literature related to deep learning-based histopathol-
ogy image segmentation, with a particular focus on convolutional neural networks,
as well as methods that help build models which are more robust and can be trained
in a computationally efficient way. Firstly, some fully convolutional neural networks
and transformer-based neural networks tasked with image segmentation and WSIs seg-
mentation are reviewed. Secondly, approaches related to greedy training of deep neu-
ral networks that contribute to memory-efficient and computationally efficient training
are reviewed. Then the boosting strategy (usually used to achieve better generalisation
performance) and its cases of integration with deep neural networks are introduced. Fi-
nally, we address the fact that biopsy tissue can be captured at arbitrary orientation and
magnification and result in cells appearing at different scales. Incorporating rotation
and/or scale equivariance into neural networks may lower the orientation and scale
sensitivity of models, thus leading to better generalisation. Therefore, literature related
to building rotation and/or scale equivariance into neural networks is reviewed.

2.1 Deep Learning based Image Segmentation

Image segmentation is a key task in computer vision and image processing with im-
portant applications such as scene understanding, medical image analysis, autopilot,
video surveillance, augmented reality, etc. Image segmentation can be formulated as
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(A) UNet (B) UNete (C) UNet++ (D) CENet

(E) Legend

FIGURE 2.1: Comparison of (A) UNet, (B) UNete, (C) UNet++ and (D) CENet. UNet++
is constructed from UNete by introducing skip-connections (red dashed lines in (C))
between decoder nodes. CENet disregards inner decoder nodes and adopts decon-
volution and concatenation to harvest multi-scale context clues between encoder and

decoder nodes.

the problem of classifying pixels with semantic labels (e.g., normal tissue, tumour tis-
sue, in the context of histopathology images). Before the advent of deep learning [63],
most image segmentation algorithms were based on the combination of crafted feature
extraction and machine learning algorithms. However, this field is currently domi-
nated by methods based on deep neural networks. [80] reviewed more than 100 state-
of-the-art deep learning based image segmentation algorithms and grouped them into
10 categories, and concluded that fully convolutional networks and encoder-decoder
based models are two backbone models that are usually adopted and modified as com-
ponents of other models. In 2015, [72] proposed the first end-to-end, pixel-to-pixel deep
learning model which uses up-sampling layers to replace fully connected layers. This
model is known as fully convolutional networks (FCN). The contribution of this work
lies in the following aspects: 1) discarding fully connected layers reduces model com-
plexity to a large extent. 2) using skip connections between the final layers of the model
and feature maps of earlier layers to produce more accurate and detailed segmentation
masks. However, because the encoder module reduces the resolution of the input by
a factor of 32, the up-sampling layers struggle to produce a fine-grained segmentation
mask.

UNet family. Building upon the concept of FCN, [88] proposed UNet that consists of
a down-sampling path to capture context, and a symmetric up-sampling path to ex-
pand feature maps back to the input size. The down-sampling part has an FCN-like
architecture that extracts features with 3 3 convolutions. The up-sampling part uses
deconvolution to reduce the number of feature maps while increasing their area. Fea-
ture maps from the down-sampling part of the network are copied and concatenated
to the up-sampling part to ensure precise localisation.

With the success of UNet, several variants have been proposed to further improve
segmentation performance. Here we describe the networks UNete, UNet++ [128] and
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CENet [126], whose simplified architectures are given in Figure 2.1. UNete is an ensem-
ble architecture, which combines UNets of varying depths into one unified structure.
Note that deep supervision [64] is required to train UNete in an end-to-end fashion.
In order to allow deeper UNets to offer a supervision signal to the decoders of the
shallower UNets in the ensemble and address the potential loss of information. The
UNet++ connects the decoder nodes, to enable dense feature propagation along skip
connections and thus more flexible feature fusion at the decoder nodes. The differ-
ence between UNet++ and UNete is that there are skip connections between decoder
nodes in UNet++ (highlighted in red in Figure 2.1c). [126] proposed the contextual
ensemble network (CENet), where the contextual cues are aggregated via densely up-
sampling the features of the encoder layers to the features of the decoder layers. This
enables CENet to capture multi-scale context information. While UNet++ and CENet
yield higher performance than UNet, they do so by introducing dense skip connec-
tions that result in a huge increase in parameters and computational cost. All of the
methods mentioned above require the developer to manually pre-set the configura-
tion of the network architecture (eg. the number and the size of the filter, the depth
of the network, etc), the training-related parameters (eg. learning rate, weight decay,
etc), and the pre-processing and post-processing strategies. This requires the end user
to have high-level deep learning-related expert knowledge and thus greatly restricts
their application in the medical image domain. To this end, [48] propose nnU-Net, a
UNet-based segmentation method that automatically configures itself including pre-
processing, network architecture, training and post-processing for any new task in the
biomedical domain. The strong performance of nnU-Net is not achieved by a new net-
work architecture, loss function or training scheme (hence the name nnU-Net, ‘no new
U-Net’), but by systematising the complex process of manual method configuration,
which is previously addressed either by cumbersome manual tuning or purely empiri-
cal approaches with practical limitations.

Attention-based Architectures. Most recently, building upon the success of Vision
Transformer [27] on image classification tasks, self-attention modules have also been in-
tegrated into UNet-like architectures for accurate segmentation. [73] proposed the hy-
brid ladder transformer (HyLT), in which the authors use bidirectional cross-attention
bridges at multiple resolutions for the exchange of local and global features between
the CNN- and transformer-encoding paths. The fusion of local and global features
renders HyLT robust compared to other CNN-, transformer- and hybrid- methods for
image perturbations. The comparison conducted on the Gland Segmentation (GlaS)
dataset [94] shows that the HyLT improves the segmentation performance (mIoU score)
by 13.46%, when compared with the UNet. [35] presented MedFormer, in which an
efficient bidirectional multi-head attention (B-MHA) is proposed to eliminate redun-
dant tokens and reduce the quadratic complexity of conventional self-attention to a
linear level. Furthermore, the B-MHA liberates the constraints of model design and
enables MedFormer to extract global relations on high-resolution token maps towards
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the fine-grained boundary modelling. [74] proposed a hierarchical context-attention
transformer-based architecture (HT-Net), which introduces an axial attention layer to
model pixel dependencies of multi-scale feature maps, followed by a context-attention
module that captures context information from adjacent encoder layers. Although the
aforementioned models have achieved state-of-the-art performance in various medical
image segmentation tasks, their training process requires significant GPU memory re-
sources, which greatly limits the application of these models in resource-constrained
platforms.

Deep Supervision. A deeply supervised network (DSN) [64] introduced classification
outputs to hidden layers as well as the last layer output as is the convention. This
was shown to increase the discriminative power of learned features in shallow lay-
ers and robustness to hyper-parameter choice. Despite the fact that the original DSN
was proposed for classification tasks, deep supervision can also be used for image seg-
mentation. [28] introduced deep supervision to combat potential optimisation diffi-
culties and concluded that the model acquired a faster convergence rate and greater
discriminability. Based on the UNet architecture, [129] introduced a supervision layer
to each encoder/decoder block. Their method is very similar to our proposed supervi-
sion scheme (to be described in chapter 3); the difference lies in how the loss between
the larger-sized ground truth and the smaller-sized output of hidden layers is calcu-
lated. Note that the dimensions of feature maps of the hidden layers are gradually
reduced and become much smaller than that of the ground-truth mask, because of the
down-sampling operation. In [28] and [129], deconvolutional layers were used to up-
sample feature maps back to the same size as the ground-truth mask. Evidently, the
additional deconvolutional layers introduce more parameters and more computational
overhead. Although it was pointed out in [72] that one can learn arbitrary interpolation
functions, bilinear interpolation was adopted in [118] to up-sample feature maps with
no reduction in performance compared to learned deconvolutions. All of the aforemen-
tioned literature solve the dimension mismatch problem by up-sampling feature maps.
Moreover, the authors assign balanced weights to the supervised layers, ignoring the
fact that the importance of layers may be different throughout the training.

2.2 Application of CNNs on WSIs segmentation

Due to the large size of whole slide images, the general process of WSIs involves di-
viding the entire image into small patches, feeding these patches into the model to
get output labels or masks and stitching them together to obtain the final segmenta-
tion mask of the entire image. Therefore, we transform the task of whole slide image
segmentation to the segmentation/classification of image patches of this whole slide
image. As a sub-field of image segmentation, automatic whole slide image segmenta-
tion also benefits a lot from the flourishing of deep learning. For example, all of top-10
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segmentation solutions are deep learning based models, as reported in the technical
reviews of the PAIP 2019 challenge [85].

[91] introduced and examined different strategies for the integration of multiple and
widely separate spatial scales into common U-Net-based architectures and then pro-
posed a family of end-to-end, multi-scale, multi-encoder fully-convolutional neural
networks, which was termed msYI-Net. This model achieved 0.6596 mean IoU and
ranked seventh on the leaderboard of the PAIP 2019 Challenge. The backbone of msYI-
Net is UNet. [51] proposed an ensemble approach, which integrates DeepLabV3Plus
[14] and UNets that are enhanced by DenseNet [46] and InceptionResNetV2 [100].
These three models were trained separately. The loss function used in all models is a
linear combination of background dice loss, foreground dice loss and pixel-wise cross-
entropy loss. The predicted probabilities of segmentation maps were averaged to gen-
erate the ensemble model prediction. Their approach achieved 0.7503 mean IoU and
ranked third on the leaderboard of the PAIP 2019 Challenge.

The aforementioned two models resolve whole slide image segmentation by generat-
ing the segmentation mask of each patch, thus providing pixel-level classification. In
contrast, the authors of [54, 106, 123], fed small image patches into models to get a class
label for each image patch. In these approaches, all pixels of one patch share the same
class label. So, it is a patch-level classification rather than a pixel-level classification. In
most patch-level classification approaches, the spatial correlations among neighbour-
ing patches are ignored since each image patch is predicted independently. This can re-
sult in inconsistent predictions over neighbouring patches. That is to say, there may be
some isolated outliers after stitching all patches to form the whole segmentation mask.
To tackle the issue, in [67], a neural conditional random field (NCRF) was proposed to
model the correlation of neighbouring patches and directly incorporated it on top of a
CNN feature extractor. Unlike the two-stage framework adopted in [54, 106, 123], this
network can be trained end-to-end with a standard back-propagation algorithm. How-
ever, an explicit shortcoming of patch-level classification is that it doesn’t consider the
possibility of which boundary goes through an image patch.

2.3 Cascade/Greedy Training of Deep Neural Networks

The cascade learning strategy of artificial neural networks can date back to late 1980.
[29] introduce the Cascade-Correlation learning architecture, which is originally pro-
posed to solve the moving target problem, i.e., since all of the weights in a multi-layer
perceptron are changing at once, each hidden unit sees a constantly changing environ-
ment. This, thus makes the learning of the neural network very slow. Different from
end-to-end training where the topology of a network is fixed and all weights are ad-
justed at once, Cascade-Correlation begins with a small network and then gradually
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adds and trains new hidden units. Once a new unit is added, all previous units are
fixed and the network up to the newly added point acts as a permanent feature extrac-
tor. The key idea of Cascade-Correlation can break into two components: 1) Cascade,
i.e., hidden units are appended into the network one at a time and are frozen after ap-
pending. 2) Correlation, the weight of the new hidden unit is determined by maximising
the magnitude of the correlation between the new unit’s output and the residual error
signal. The strength of Cascade-Correlation can be summarised as follows: 1) Faster
learning, as each unit sees a fixed problem and can move decisively to solve that prob-
lem. 2) Highly flexible architecture. There is no need to decide the size, depth, and
connectivity pattern of the network in advance, as the model grows automatically.

Apart from growing the multi-layer perceptron (MLP) in a unit-wise fashion, gradually
constructing and training neural networks in a coarser way (layer-wise [10, 44, 77],
block-wise [45], module-wise [110]) has also been widely explored in the literature. In
[44], the authors propose a two-stage method to greedily train a deep belief network
one layer at a time. The first stage is unsupervised, i.e., training weights layer by layer
to reconstruct the input data. For each layer, the outputs of the previous layer become
the inputs of the next layer, with the weights of the previous layer being frozen. The
second stage is supervised fine-tuning, i.e., all pre-trained weights of the entire network
are trained to minimise the loss function by running gradient descent. Based on the
work of [44], [10] demonstrated that greedy layer-wise unsupervised learning leads to
better generalisation by initialising weights in an area near local minima. However,
later works reveal that this initialisation is not necessary if specific network designs
such as batch normalisation [47], skip connections [43], and dense connections [46] are
adopted.

Another benefit of adopting cascade/greedy training of deep neural networks is a great
saving in computation cost and GPU memory consumption. While end-to-end train-
ing usually suffers from a high GPU memory footprint, due to the need to store all
intermediate activations for back-propagation. Motivated by the Cascade-Correlation
idea of [29], [77] propose deep cascade learning for efficient training of deep neural net-
works in a bottom-up fashion. As shown in figure 2.2, the training process in cascade
learning is progressively appending one layer to the existing network and only train-
ing the currently added layer and the corresponding output layer, whereas keeping the
previous layers frozen. Experiments conducted in [77] demonstrate that cascade learn-
ing achieves competitive performance when compared with end-to-end training while
showing a remarkable reduction in memory and time requirements. This is because
all previously trained layers are not involved in the weight updating when training
the newly added layer, thus there is no need to cache feature maps produced by those
layers in GPU for back-propagation. Compared with [77] wherein every single layer
is added to the network and then trained, [45] propose a telescoping sum technique
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FIGURE 2.2: End-to-End training v.s. Cascade training. Yellow and green circles de-
note trainable weights and frozen weights, respectively. Left. The end-to-end training
updates the parameters of the entire network after each round of back-propagation.
Right. Cascade training starts from training a single-layer network to generate predic-
tions, followed by appending layers to the top of the network gradually while freezing
the previously trained layers. After all layers are fully trained, the output layers at-
tached to the hidden layers are discarded and only the output layer of the last layer is

kept as the final classifier.

to train a ResNet block-by-block (each residual block contains a mapping and an iden-
tity loop), while incorporating boosting theory for better representation learning. The
resulting architecture is termed BoostResNet. Let M1 and M2 be the memory (or com-
putation) required for one residual block and one linear classifier respectively, then
the memory consumption and computation cost between BoostResNet and end-to-end
trained ResNet is M1 M2 v.s. M1T M2, where T is the number of residual blocks of
the architecture.

Although cascade/greedy training demonstrates significant merit in terms of mem-
ory reduction and computational savings, it is worth mentioning that networks trained
with local supervision usually show inferior performance than their end-to-end trained
counterparts. The reason for this is an open-ended problem while an attempt [110] have
been taken to explain and resolve this. For example, from the information-theoretic per-
spective, [110] believe that simply training local modules greedily with cross-entropy
loss tends to collapse task-relevant information at earlier layers, resulting in the per-
formance degradation of the full model. In other words, greedy training tends to be
short-sighted and learns features that only benefit local modules, while ignoring the
demands of the later layers. Based on this assumption, the authors propose a less
greedy information propagation (InfoPro) loss that aims to encourage local modules
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to propagate forward as much information from the inputs as possible, while progres-
sively abandoning task-irrelevant parts. The authors experimentally demonstrate that
the proposed InfoPro loss effectively prevents collapsing task-relevant information at
local modules and thus yields better performance than other greedy training strategies,
and even outperforms end-to-end trained architecture, while remaining the advantage
of greedy training (fewer computational cost and GPU memory consumption).

2.4 Deep Ensemble Learning

The ensemble learning method is a class of machine learning methods that combine
several individual models to reach better generalisation performance. Deep neural
networks generally demonstrate a better feature extraction capability than traditional
machine learning methods. Combining them results in deep ensemble learning mod-
els that aggregate the strength of both deep learning models and ensemble learning
methods such that the final model exhibit powerful performance [33]. Depending on
how the individual learners are generated, ensemble learning methods can be roughly
grouped into two categories: 1) Bagging, and 2) Boosting [127]. In this subsection, we
review literature that relates to integrating boosting strategies into deep neural net-
works.

AdaBoost. Boosting algorithms start with training a base learner and then update the
weights of the training samples according to the result of the base learner such that in-
correctly classified samples will receive more attention when training subsequent base
learners. The boosting algorithm will finally combine many base learners into a sin-
gle strong classifier whose prediction power is strong. As a representative boosting
method, AdaBoost (Adaptive Boosting) [30] has been widely used in binary classifi-
cation tasks. The idea of AdaBoost is based on the assumption that a highly accurate
prediction rule can be obtained by combining many relatively weak and diverse rules.
This was re-derived in [32] as a gradient of an exponential loss function of a stage-wise
additive model. Such an additive model was extended to the multi-class case in [41],
wherein the SAMME (Stage-wise Additive Modeling using a Multi-class Exponential
loss function) is proposed to naturally extend the original AdaBoost algorithm to the
multi-class case without reducing it to multiple two-class problems. The detailed it-
erative procedure of multi-class AdaBoost is described in Algorithm 1. Starting from
equally weighted training samples, the AdaBoost trains a classifier ft (t 1, 2, ..., T
the iteration index) iteratively, re-weighting the training samples in the process. A mis-
classified item xi is assigned higher weight wt

i so that the next iteration of the training
pays more attention to it. After each classifier ft is trained, it is assigned a weight based
on its error rate t on the training set. For the integrated output of the classifier ensem-
ble, the more accurate classifier is assigned a larger weight t to have more impact on
the final outcome. A classifier with 1

C % accuracy (less than random guessing for C
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Algorithm 1: Multi-class AdaBoost
Input: Training data: X x1, y1 , ..., xm, ym ; Number of weak classifiers: T;

Number of classes: C.
1 w0

i
1
m , i 1, 2, ..., m ;

2 for t 1, 2, ..., T do
3 ht ft X , w ;

4 t
m
i 1 wt

i yi f xi
m
i 1 wt

i
;

5 if t 1 1
C then

6 t
1
2 ln 1 t

t
ln C 1 ;

7 wt
i wt 1

i e t yi f xi , i 1, 2, ..., m;

8 wt
i

wt
i

m
i 1 wt

i
, i 1, 2, ..., m;

9 else
10 t 0;
11 end
12 end

Output: H arg max
C

T
t 1 t ht

target classes) is discarded. T classifiers will be trained after repeating this procedure
for T times. The final labels can be obtained by the weighted majority voting of these T
classifiers.

DNNs with Boosting. Boosting has been widely adopted in the construction of deep
neural networks. [24] propose AdaNet, a boosting-style algorithm that adaptively
learns both the structure of the neural network and its weights. AdaNet uses the tra-
ditional boosting framework where weak classifiers are boosted. In AdaNet, features
of hidden layers have to be fed into a classifier for ensembling, which leads to a very
bushy structure of the model. Building upon the generalisation analysis of AdaNet,
[45] explain the theoretical background for the success of deep residual neural net-
works (ResNet) [43] from the perspective of boosting theory. Based on the proposed
multi-channel telescoping sum boosting framework, the authors introduce BoostResNet,
an algorithm that trains ResNet block-by-block based on the principle of boosting. Dif-
ferent from traditional boosting that ensemble “estimated labels”, BoostResNet boost
over representations/features. In [101] the authors propose Adaboost-CNN, an adap-
tive boosting algorithm for convolutional neural networks to classify multi-class im-
balanced datasets using transfer learning. In AdaBoost-CNN, all the weak classifiers
are convolutional neural networks and have the same architecture. Instead of training
a new CNN from scratch, they transfer the parameters of the prior CNN to the latter
one and then train the new CNN for only one epoch, with the updated sample weights.
This achieves better performance than the single CNN, but at the cost of increasing the
number of parameters several folds.
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Curriculum learning [11] is related to boosting algorithms, in that the training sched-
ule gradually emphasises the difficult examples. In [108], the authors show that a
curriculum-based method can speed up the early layer training of cascade learning by
using meaningful partitioned subsets. Similarly, [25] demonstrated that better perfor-
mance can be achieved by forcing UNet to learn from easy to difficult scenes. However,
the difficulty level of training samples is manually predefined according to some rules,
rather than calculated by the network itself.

2.5 Equivariance in Convolutional Neural Networks

2.5.1 Symmetry, Equivariance, and Invariance

Symmetry. In the context of images, symmetry refers to a property of an object that
remains unchanged under certain operations. There are various types of symmetri-
cal patterns in images, such as translational symmetry, reflection symmetry, rotational
symmetry, scale symmetry, etc.

Equivariance is a concept related to symmetry. Mathematically, equivariance is a form
of symmetry for functions from one space with symmetry to another. In other words,
a function is an equivariant map if its output changes in a predictable way when the
input undergoes a specific transformation, and when the function commute with the
transformation. Considering a function that maps an input space X to an output
space Y and a transformation T acting on both X and Y, is equivariant with respect to
T if T x T x , for all x in X. Figure 2.3 show examples of equivariant map-
ping under rotation, scaling, and joint rotation-scaling transformations, respectively.
Another example of equivariance is the built-in translation equivariance property of

FIGURE 2.3: From left to right, each sub-figures show that a mapping is equivari-
ant under rotation transformation (Tr), scaling transformation (Ts), and joint rotation-
scaling transformation (Tr, s), respectively. Where subscripts r and s denote a rotation

angle and a scaling factor, respectively.



2.5. Equivariance in Convolutional Neural Networks 17

convolutional neural networks, i.e., by utilising spatial weight sharing strategy, it is
guaranteed that a translation of the input will result in the same translation of the fea-
ture maps.

Invariance, on the other hand, refers to a property where the output of a function is
not affected by the transform acting on the input. Mathematically, it means T x

x , x X, where T is the transformation and is a function. Invariance is impor-
tant in image classification tasks where specific features or patterns of interest need
to be recognised regardless of their exact position (translation-invariance), orientation
(rotation-invariance), and scale (scale-invariance). For the consistency of segmentation,
however, the equivariance property of a function is more important than invariance, as
it is expected that the segmentation result of a transformed input should match the seg-
mentation result of the original input.

One of the reasons that CNNs achieve remarkable success is owing to its translation
equivariance. However, unlike translation equivariance, CNNs do not behave well in
situations where large rotation and scale variations exist in the dataset, as those equiv-
ariant properties are not built into CNNs. To handle these variations (orientation, scale,
etc.), most current methods usually make use of dataset augmentation, but this requires
a larger number of model parameters and more training data, and results in signifi-
cantly increased training time and a larger chance of under- or overfitting. The main
reason for these drawbacks is that the learned model needs to capture adequate fea-
tures for all the possible transformations of the input. Another pathway to deal with
this variation is to encode rotation and scale equivariance into models, which have been
explored either in a separate way or in a joint way.

2.5.2 Rotation Equivariant CNNs

There are numerous methods aimed at achieving rotation equivariance in CNNs. We
categorise them into three classes as follows.

Rotating the data. The easiest, but most costly way to retain prediction variation in-
troduced by orientation variation is by feeding the original input and its rotated copies
into the model and then aggregating prediction to generate the final segmentation map.
To this end, [81] propose test-time-augmentation (TTA). However, the inference time
cost of TTA scales up linearly with the number of rotated copies. Training neural net-
works with data augmentation is widely used; however, there is no guarantee that
CNNs trained with rotation augmentation will learn an equivariant representation and
generalise to data with small rotations [4].
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Rotating the filter. Instead of rotating the input, rotating the filter has also been widely
explored. Cohen and Welling [20] propose group equivariant CNNs (G-CNNs), a gen-
eralisation of CNNs where rotation and reflection symmetries are embedded into G-
convolution. G-convolution is built on the theory of symmetry groups. Different from
conventional CNNs, the filter of G-convolution has an additional dimension (rotation
dimension) where the rotated copies of the filter live in. The G-CNNs demonstrate
state-of-the-art performance on classification tasks on rotated MNIST and CIFAR10
datasets, when compared with conventional CNNs. Based on the observation that
histopathology images are inherently symmetric under rotation and reflection, the au-
thors of [103] apply G-CNNs to the task of histopathology image segmentation and
find that exploiting rotation equivariance improves tumour detection performance by
2.3 points (FROC score), on the Camelyon16 [7] dataset. This performance gap in-
creases to 5.3 points in a small dataset regime wherein only 12.5% of data is used for
training. However, the G-CNNs is limited to the discrete rotation group, and more
specifically, the G-convolution proposed in [20] is limited to 90 rotations. To achieve
a more fine-grained rotation equivariance, [9, 60] show that a rotation equivariant G-
CNNs at arbitrary angular resolutions can be built by using bi-linear interpolation.
They experiment on a series of G-CNNs equipped with different degrees of rotation
equivariance (filter rotated by the step of 2 , 4 , 8 ) and demonstrate the effectiveness
of the proposed interpolation method and the superiority of introducing higher degree
of rotation equivariance, on tasks of histopathology image segmentation. In detail, the
authors of [9] demonstrate that increasing angular resolution from 2 to 4 leads to 1.9
points improvement in F1-score, on the task of mitosis detection. However, the pro-
posed interpolation method may introduce artefacts.

Steerable filters. Although restricting G-CNNs to discrete rotation equivariance leads
to performance gain, encoding continuous rotation equivariance into CNNs will boost
the performance further. In [21], the authors present a theoretical framework for un-
derstanding steerable representations in CNNs. The described mathematical theory
can be applied to construct both discrete and continuous rotation equivariant filters.
The benefit of utilising steerability is that it bypasses the issue of interpolation artefacts
introduced by rotating filters by angles of non-90 . In [16], the authors propose to de-
compose the convolutional filters over a joint steerable bases across the space and the
group geometry simultaneously, namely a rotation equivariant CNN with decomposed
convolutional filters (RotDCF). [113] propose Steerable Filter CNNs (SFCNNs), which
allows sampling an arbitrary number of filter orientations which improves the per-
formance until saturation is reached. Experiments confirmed that SFCNNs generalise
learned patterns over orientations and therefore achieve a lower sampling complexity
than CNNs in rotation-equivariant recognition tasks. The authors of [115] introduce H-
Nets (Harmonic Networks) that achieve continuous rotation equivariance by building
filters out of the family of circular harmonics. When compared with a discrete rotation
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equivariant G-CNN [20], the H-Nets reduces the classification error by 26% on the ro-
tated MNIST dataset [61]. The authors of [112] extensively compare a wide range of
steerable CNNs and release a PyTorch-based library1 for equivariant deep learning.

2.5.3 Scale Equivariant CNNs

In the pre-deep learning era, Gaussian scale-space theory [68] was widely used for
multi-scale image representation. Gaussian scale-space theory represents an image as
a one-parameter family of gradually smoothed signals, in which the fine-scale details
are successively suppressed by convolving the image with a set of re-scaled Gaussian
filters and Gaussian derivative filters. Recently, [70] parameterised convolutional filters
as a linear combination of Gaussian derivative filters with different scales, building
neural networks robust to scale variations on image classification tasks. However, the
architecture presented in [70] is only evaluated on image classification tasks, for which
global scale invariance is key to predictive accuracy. For image segmentation tasks,
the output map should scale in proportion to the input, making scale equivariance a
necessary property. Similarly, [87] learn linear combinations of Nth order Gaussian
derivative filters to create the N-Jet convolutional layer. Unlike [70] where the scale
parameters ( ) are fixed, the and sizes of the filters in the N-Jet layer are learned
from the data; this frees the network architect from searching and setting scale-related
parameters for datasets and networks. However, the is shared by all filters in a layer,
thus limiting the representational capacity of an N-Jet layer.

In recent years, group equivariance as an inductive bias for CNNs has influenced the
design of several architectures including scale-equivariant convolutional networks. In
[96], the authors propose Scale-Equivariant Steerable Networks (SESN), where filters
are parameterised by a trainable linear combination of pre-calculated Hermite basis
functions. Similarly, [130] propose Scale Decomposed Convolutional Filters (SDCF)
that decompose the convolutional filters under two pre-determined separable bases
and truncate the expansion to low-frequency components. [114] propose deep scale-
space (DSS) based on the theory of scale-space and semi-groups to model transforma-
tion properties of images under scale transformations, modelling filter re-scaling by
dilation. DSS exhibits 14.79 points higher mAP (mean Average Precision) than non-
scale-equivariant CNN, on the segmentation task of the Cityscapes [23] dataset. How-
ever, the DSS is restricted only to integer scale factors and therefore does not cover a
continuous range of scale variations. To extend DSS to arbitrary scales, the authors of
[97, 98] propose Discrete Scale Convolution (DISCO) wherein the equivariance error
between the non-integer scale factor with its two nearest integer scale factors is min-
imised. Compared with the DSS, the DISCO reduces the classification error by 37.32%
on the STL-10 [19] dataset, with the help of introducing filters that are parameterised

1e2cnn: https://github.com/QUVA-Lab/e2cnn

https://github.com/QUVA-Lab/e2cnn
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with non-integer scale factors. All of the aforementioned methods define filters in the
continuous scale domain and then project them onto pixel grids for a set of given scale
factors. Although SESN and DISCO allow the use of arbitrary scale factors, the best set
of scale factors are dataset and network-dependent and need to be carefully chosen to
maximise model performance.

2.5.4 Rotation-Scale Equivariant CNNs

All of the literature mentioned in sections 2.5.2 and 2.5.3 encode the rotation and scale
equivariance properties into CNNs separately. However, rotation and scale transforma-
tion usually simultaneously exist in real-world data, as images can be captured from
any angle and the scale of objects depends on the distance between the camera and the
scene.

DiscreteRST equivariance. TheRST -CNN [34] is the first attempt to simultaneously
incorporate Rotation, Scaling, and T ranslation symmetries into CNNs. The RST -
CNN achieves discrete rotation and scale equivariance and is robust to nuisance data
deformation. Numerical experiments on rotation and scale augmented MNIST [62],
Fashion-MNIST [117], and STL-10 [19] datasets demonstrate that the proposed model
yields remarkable gains over prior state-of-the-art equivariant methods, especially in
the small data regime where both rotation and scaling variations are present within the
data. In detail, the RST -CNN boosts the classification accuracy on the STL-10 dataset
by 13.7% and 23.38%, when compared with a rotation equivariant model (RESN [113])
and a scale equivariant model (SESN [96]), respectively. The performance gain soars
up to 54.96% when compared with a non-equivariant CNN. However, the training of
RST -CNN requires the computation and GPU memory Nr Ns times more than what
is needed by conventional networks. Where Nr and Ns are the numbers of rotation and
scale channels of the filter, which greatly limits its applicability.

Continuous RST equivariance. Most recently, the Scale and Rotation Equivariant
Network (SREN) [94] which achieves continuous equivariance with respect to both ro-
tation and scaling is proposed. The underlying intuition behind the SREN consists of
two steps: 1) obtaining the local scale and orientation of the image; 2) the captured
information is used to adapt the scale and direction of the filter used for the convolu-
tion. By doing so, the filter is expected to transform as the input is transformed, thus
the equivariance is guaranteed. To fulfil the first step, the authors propose the Scalable
Fourier-Argand Representation to retrieve local geometric information and use it as a
covariance indicator to determine the optimal orientation and scale through the calcu-
lation of the argmax. For step 2, the authors propose the Similarity Convolution (Sim-
Conv), a new convolution-like operation that satisfies the equivalence property. SERN
does not suffer from the scaling of GPU requirements upon the increase of group size
that other methods do. Experiments on the augmented MNIST and STL-10 datasets,
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associated with mathematical analyses highlight the superior generalisation ability of
the SREN on classification tasks when compared with other equivariant methods. The
classification accuracy of the SREN on the STL-10 dataset surpasses that of the RST -
CNN by 5.11 points, owing to its continuous equivariance property.

2.6 Summary

In sections 2.1-2.4, we introduce literature on deep learning based image segmentation,
cascade training and the integration of ensemble learning with neural networks. In
chapter 3, we absorb cascade training and ensemble learning into the nested architec-
ture of the UNet++, resulting in a more efficient and effective segmentation model. In
section 2.5, we review the literature that aims at achieving rotation and scale equiv-
ariance in CNNs. Overall, CNNs equipped with a higher level of equivariance tend
to show better resistance to orientation and scale variations and thus demonstrate bet-
ter generalisation performance. However, making CNNs simultaneously rotation and
scale equivariant has not been fully explored so far. Moreover, applying joint rotation-
scale equivariant CNNs in the field of histopathology image segmentation is under-
explored. In Chapter 4, we first construct a scale equivariant UNet (SEUNet), building
upon scale-space theory. In chapter 5, we then extend SEUNet to be a joint rotation-
scale equivariant CNN, with the help of steerable filters.
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Chapter 3

Enhancing Segmentation via
Ensemble Learning

3.1 Motivation and Contribution

The fully convolutional neural network (FCN) [72], trained end-to-end on per-pixel la-
bels, is considered a milestone in image segmentation using deep networks. It was
then extended by [88] to include a large number of up-sampled features concatenated
using skip connections with the encoded convolutional features. They named the net-
work a UNet after a geometrical layout of the network topology being a U-shape. [128]
modified the UNet architecture by adding more nodes and connections to capture low-
level correlation of distributed semantic attributes. The resulting architectures, known
as UNete (e denotes ensemble) and UNet++, used class labels to guide the outputs of
decoder layers (called deep supervision) to learn highly discriminative features.

Both UNete and UNet++ can be classified as ensemble models, in which multiple mod-
els are created to obtain better performance than each constituent model alone [82]. A
property that is present in a good ensemble is the diversity of the predictions made by
contributing models. However, end-to-end training of deep networks tends to correlate
intermediate layers [49], hence the collaborative learning of constituent UNets adopted
by UNete and UNet++ induces learned features to be correlated. Such learning runs
counter to the idea of feature diversity pursued by ensemble models. Moreover, simple
averaging performed in UNete, disregarding the difference in the performance of each
member also restricts the final predictive performance of the ensemble.

Based on the work of UNete and UNet++, we pose several questions: 1) can each con-
stituent model be forced to extract decorrelated features during training, to guarantee
prediction diversity? 2) can the outputs of constituent models, sensitive to different



24 Chapter 3. Enhancing Segmentation via Ensemble Learning

spatial resolutions, be weighted differently when they are integrated into the final seg-
mentation? 3) can we provide deep supervision for encoders directly rather than by
supervising the up-sampled decoders? To address these questions, we propose the
Adaboosted Deeply Supervised UNet (ADS UNet). The key contributions of our work
can be summarised as follows:

1) We integrate deep supervision, cascade learning, and AdaBoost into the proposed
ADS UNet, a stage-wise additive training algorithm, in which multiple UNets of
varying depths are trained sequentially to enhance the feature diversity of con-
stituent models. Extensive experiments demonstrate that ADS UNet is effective
in boosting segmentation performance.

2) In our deep supervision scheme, we down-sample the mask to have the same
size as feature maps of hidden layers to compute pixel-wise loss, instead of up-
sampling features. This modification retains the advantages of deep supervision
and yet reduces computation cost and GPU memory consumption.

3) Instead of assigning balanced weights to all supervised layers, we introduce a
learnable weight for the loss of each supervised layer to characterise the impor-
tance of features learned by layers.

4) We conduct a comprehensive ablation study to systematically analyse the perfor-
mance gain achieved by the ADS UNet.

3.2 Method

Ensemble learning is often justified by the heuristic that each base learner might per-
form well on some data and less accurately on others for some learned features, to en-
able the ensemble to override common weaknesses. To this end, we seek enhanced seg-
mentation performance of the model by enabling diverse feature maps to be learned.
We propose the ADS UNet algorithm, which adopts a block-wise cascade training ap-
proach [10, 29, 77] but with an added component that re-weights training samples to
train each base learner in sequence. We evaluate the role of feature map diversity in
section 3.5.3.

3.2.1 Computation and Memory Efficient Deep Supervision

As we mentioned in the introduction section, the UNete and UNet++ [128] offer deep
supervision to shallower layers by gradually up-sampling feature maps to the size of
the mask, which is computation and GPU memory expensive. To reduce the computa-
tional burden, we average-pool the mask to have the same size as feature maps. The
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advantage of this change is that we no longer need to train deconvolutional weights
for intermediate blocks to obtain feature maps with the same dimension as the ground-
truth mask. We adopt UNetds, whose hidden layers have been trained with supervi-
sion, as base learners of the proposed ensemble model. Given the input image x and
the network, we define the probability map generated at block Xi,j as:

ŷi,j x softmax Xi,j x (3.1)

The mapping Xi,j : X Ni,j C consists of a sequence of convolution, batch nor-
malisation, ReLu activation and pooling operations, to transform the input image to a
feature representation. Then a softmax activation function is used to map the represen-
tation to a probability map. Here C is the number of classes, Ni,j denotes the number
of pixels of the down-sampled mask, i, j denotes the index of convolutional blocks.
Given mask yi,j Ni,j,C, the loss function used in the block Xi,j is the pixel-wise cross-
entropy loss, which is defined as:

Li,j yi,j, ŷi,j, Ni,j 1
Ni,j

Ni,j

n 1

C

c 1
yi,j

n,clog ŷi,j
n,c , (3.2)

where yi,j
n,c is the ground-truth label of a pixel and ŷi,j

n,c is the probability of the pixel
being classified as class c. Based on equation 3.2, the overall loss function for the deep
supervised UNetd is then defined as the weighted sum of the cross entropy loss from
each supervised block Xi,j:

Ld

i j d

i,j 0

d
i,jLi,j yi,j, ŷi,j, Ni,j , i,j

d 0,
i j d

i,j 0

i,j
d 1, (3.3)

where i,j
d is a weighting factor assigned to the convolutional block Xi,j to characterize

the relative importance of blocks. d denotes the depth of the UNet. In contrast to
previous works [28, 128, 129] that use equal weights i,j

d
1

d 1 , we initialise i,j
d to

1
d 1 and allow the i,j

d to be trainable, and use the softmax function to normalize i,j
d to

guarantee i,j
d 1. However, the feature learning of a block will be restricted if its

i,j
d decreases to 0, during training. In order to guard against this competition exclusion

phenomenon and encourage all supervised blocks to contribute to the segmentation,
we add a constant 1

d 1 to i,j
d to raise its lower limit:

˜ i,j
d

i,j
d

1
d 1

i j d
i,j 0

i,j
d

1
d 1

i,j
d
2

1
2 d 1

, (3.4)
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Since lim
i,j
d 0

i,j
d
2

1
2 d 1

1
2 d 1 and lim

i,j
d 1

i,j
d
2

1
2 d 1

d 2
2 d 1 , ˜ i,j

d is bounded in 1
2 d 1 , d 2

2 d 1 .

Then equation (3.3) is re-written as follows to train each constitute model UNetd:

Ld

i j d

i,j 0
˜ i,j

d L
i,j yi,j, ŷi,j, Ni,j ,

1
2 d 1

˜ i,j
d

d 2
2 d 1

,
i j d

i,j 0
˜ i,j

d 1.

(3.5)

Once the UNetd is trained, the final probability map generated by UNetd is calculated
by:

ŷd x
i j d

i,j 0
˜ i,j

d ŷi,j x , (3.6)

with ŷi,j x and ˜ i,j
d defined in equations (3.1) and (3.4). ŷd x denotes the combined

prediction of model UNetd. We conduct ablation studies in section 3.5.2 to show the
benefits of imposing range constraint on ˜ i,j

d . Moreover, we demonstrate that generat-
ing the final prediction by using the weighted summation of multi-scale outputs yields
better segmentation performance.

3.2.2 Stage-wise Additive Training

The stage-wise additive training process of the ADS UNet is described in Algorithm 2
and visually illustrated in Figure 3.1. The main components of the iterative training
procedure are 1) updating sample weights, 2) assigning weighting factors to base learn-
ers, and 3) freezing trained encoders while training decoders. We will elaborate on
these as follows.

Firstly, given the training images X= x1, ..., xm of n pixels each, and associated masks
Y= y1, ..., ym , we assign a weight wk to each sample xk. These weights are initialised
to w1

k
1
m (line 1 in Algorithm 2). Then, in the first iteration (d=1), the parameters of

the encoder block (X0,0) of the first base learner UNet1 are initialised (line 2). In the
first iteration of the sequential learning approach, parameters of the bottleneck node
X1,0 and decoder nodes X0,1 of the UNet1 are initialised randomly (lines 4-6). Line 7
initialises the weighting factors ˜ i,j

d of supervised blocks. The UNet1 is then trained
on all training samples with the same weight of 1

m (line 8). After the UNet1 is trained,
the training set will be used to evaluate it and to determine its error rate 1 (lines 9-
11). In contrast to AdaBoost, we use mean Intersection over Union (mIoU) error (lines
10) to measure segmentation performance rather than using a misclassification rate. In
detail, given one-hot mask yk,c= k1, , kn , k j 0, 1 for a pixel of image k belonging to
class c and the corresponding one-hot prediction ŷd

k,c= k̂1, , k̂n , k̂ j 0, 1 generated
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(A)
UNet1 (B) UNet2 (C) UNet3 (D) UNet4

(E) ADS UNet (F) scSE

(G) Legend

FIGURE 3.1: The architecture of the proposed ADS UNet. Each circular node in the
graph represents a convolution block. Specifically, yellow nodes indicate that param-
eters are trainable during back-propagation, and green nodes indicate that parame-
ters are frozen. (a-d) UNets of varying depths. All of UNeti are trained with the
same dataset X , but using different sample weights, Wi. (e) Ensemble architecture,
ADS UNet, which combines UNets of varying depths into one unified architecture for
inference. (f) The scSE block. It contains bottom branch channel squeeze and spatial ex-
citation block (sSE), and up branch spatial squeeze and channel excitation block (cSE).

by UNetd, the mIoU score sd
k is calculated by:

sd
k mIoU yk, ŷd

k
1
C

C

c 1

yk,c ŷd
k,c

yk,c yk,c ŷd
k,c ŷd

k,c yk,c ŷd
k,c

, (3.7)

where k is the index of training images, c is the index of class labels, d is the index
of iteration and also denotes the depth of the constituent UNet. If the error rate 1 of
the UNet1 is less than 1- 1

C (line 12), then UNet1 will be preserved for the ensemble,
otherwise, it will be disregarded by setting its weighting factor to 0 (lines 18-19). In
the case that 1 1 1

C , the equation shown in line 13 is used to calculate model
weight d for the ensemble. So far we have obtained the first base learner UNet1, and
its weighting factor 1.
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Algorithm 2: ADS UNet. The ˜ t
i,j term in line 9 is discussed in the context of equa-

tion (3.4); the UNett are described in Figure 3.1.
Input: Number of class: C; Training images: X x1, ..., xm ; Training masks:

Y y1, ..., ym ; Number of iteration: T.
1 w1 w1

k w1
k

1
m , k 1, 2, ..., m ;

2 Initialising convolutional block X0,0 ;
3 for d 1, 2, ..., T do
4 for j 0, 1, ..., d do
5 Initializing convolutional block Xd j,j;
6 end
7 ˜ i,j

d
1

d 1 , i, j 0, i j d ;
8 Train UNetd X ,Y , wd ;

9 ŷd
k

i j d
i,j 0 ˜ i,j

d ŷi,j xk ; (3.6)
10 sd

k mIoU ŷd
k , yk ; (3.7)

11 d
m
k 1 wd

k 1 sd
k ;

12 if d 1 1
C then

13 d
1
2 ln 1 d

d
ln C 1 ;

14 Updating sample weight wd
k using equation (3.8a) and (3.8b);

15 for j 0, 1, ..., d do
16 Freeze convolution block X j,0 ;
17 end
18 else
19 d 0 ;
20 end
21 end

Output: ADS UNet arg max
C

T
d 1 dŷd

We then update sample weights based on mIoU scores (line 14) for the training of the
next iteration:

wd
k wd 1

k e 1 sd 1
k , k 1, 2, ..., m, (3.8a)

wd
k  

wd
k

m
i 1 wd

i
, k 1, 2, ..., m, (3.8b)

Equation (3.8a) assigns greater weight to images that cannot be accurately segmented
by UNetd 1, encouraging UNetd to focus more on their segmentation. Equation (3.8b)
normalizes sample weights to guarantee that m

k 1 wd
k 1.

Before the start of the second iteration, it is necessary to freeze the encoder nodes (X0,0

and X1,0) of the UNet1 (lines 15-17). Otherwise, the process of training UNet2 would up-
date UNet1’s encoder parameters as well, reducing the learned association between the
encoder and decoder paths of UNet1. Furthermore, subsequent sub-networks UNetd,
for d 2 would acquire correlated features. The code block in lines 4-20 is run for
T iterations to obtain T base learners, each weighted by d. Note that all parameters
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of UNet1 are trained as a whole but UNet2 reuses encoder weights of UNet1 and only
its decoder parameters are trained (if 1 1 1

C ). These are shown as yellow nodes
in Figure 3.1b. The purpose of using the updated sample weights w2

k to train UNet2

is to force the decoder layers of UNet2 (because the connection between X1,0 and X2,0

only involves max pooling) to learn features dissimilar to those learned by UNet1. This
procedure is repeated for each of the base learners UNetd, with the additional help of
feature normalisation to be described next.

3.2.3 Feature Re-calibration

The concurrent spatial and channel Squeeze & Excitation (scSE) block [89] is used to re-
calibrate feature maps learned from encoder blocks of UNetd, to better adapt to features
learned from decoder blocks of deeper UNetd a, a 1 layers. For example, features
learned by the encoder block X0,0 and the decoder block X1,0 of the UNet1 can cooperate
well to perform segmentation since their weights are updated in a coordinated end-to-
end back-propagation process. In UNet2, however, features produced by X1,1 and X1,0

(in the same depth) can be very different, since the gradient flow is truncated between
block X1,0 and X2,0. Therefore, although features produced by X0,0 used to cooperate
well with that of X1,0, it is not guaranteed that it can adapt well to that of X1,1. Based
on this analysis, the scSE block is used to re-weight features before concatenating. We
evaluate the role of feature re-calibration in section 3.4. The detailed process of scSE is
illustrated in Figure 3.1f.

Given an input feature map U H W C, The channel squeeze operation generates
a matrix q H W with matrix elements qi,j Wsq Ui,j,k, Wsq

C maps the vector
at each location i, j into a scalar. This matrix is then re-scaled by passing it through a
sigmoid function , which re-weights the input feature map U spatially,

ÛsSE
i,j,k qi,j Ui,j, (3.9)

The global average pooling of the feature map over all pixels produces z with compo-
nents zk,

zk
1

H W

H

i

W

j
Ui,j,k, k 1, 2, . . . , C (3.10)

This vector, z, is transformed to ẑ W1 ReLU W2z , with W1
C C

2 , W2
C
2 C

being weights of two fully connected layers. The range of the activations of ẑ are
brought to the interval [0, 1], by passing it through a sigmoid function . The in-
put feature map U is then re-weighted by the re-scaled vector, with its kth channel

ÛcSE
k ẑk Uk, Uk

H W . (3.11)
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(A) Info flow of UNet1 (B) Info flow of UNet2

FIGURE 3.2: Information flow diagram of base learners. f i,j denotes the output feature
maps of block Xi,j, f i,j

scSE denotes the re-calibrated version of f i,j, a circle with plus sign
denotes feature map concatenation operation, connecting lines with an arrow denote
the flow of features. Showing in red features that can be updated during the training

of UNet2 (after UNet1 is trained), while others are fixed.

In the channel re-calibrated feature maps ÛcSE, the channels that are less important are
suppressed and the important ones are emphasized. Finally, after concurrent spatial
and channel squeeze and excitation (scSE), a location i, j, c of the input feature map
U is then given higher activation when it gets high importance from both, channel re-
scaling and spatial re-scaling.

It is worth mentioning that sample re-weighting and feature re-calibration are utilized
in the ADS UNet for different purposes and are not in conflict with each other. Taking
the pair UNet1 and UNet2 as an example, sample re-weighting aims at achieving fea-
ture diversity between final outputs ( f 0,1 and f 0,2 in Figure 3.2) of two base learners, so
that the ensemble of UNet1 and UNet2 can compensate for each other’s incorrect pre-
dictions, thus leading to better segmentation. When considering feature re-calibration,
UNet1 is trained as a whole with each training sample having the same sample weight
(as described in section 3.2.2). That means feature maps f 0,0 and f 1,0 have a high as-
sociation. In the second iteration, however, UNet2 reuses UNet1’s encoder blocks (X0,0

and X1,0 are fixed now), only newly added blocks (X2,0, X1,1 and X0,2) are trained on
updated sample weights. This reduces the association of f 1,0, f 2,0 and f 0,0, f 1,1 , en-
abling feature de-correlation between fixed and newly added feature maps. Directly
concatenating f 1,0 with f 2,0 and f1,1 with f 0,0 ignores the feature dependence issue and
results in lower performance (validated in Table 3.4). Therefore, to mitigate this feature
mismatching effect, we re-calibrate the fixed features ( f 0,0 f 0,0

scSE, f 1,0 f 1,0
scSE), before

concatenation.

3.2.4 Difference between ADS UNet and UNet++

In section 3.2.1- 3.2.3, we introduced the components and training scheme of the ADS UNet.
For inference, the final probability map for an image x C H W can be generated by
weighted average:

ŷ x ADS UNet x
T

d 1
dŷd x (3.12)
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Here C is the number of classes. ŷd x is the probability map generated by UNetd, as
defined in equation (3.6) and shown in Figure 3.1e.

The proposed ensemble structure differs from the UNet++ in two ways: one differs in
the training method, and the other in the way decisions are made and incorporated
into learning. 1) Embedded vs. isolated training. The UNet++ is trained in an embed-
ded training fashion where the full UNet++ model is trained as a whole, with deep
supervision on the last decoder block X0,i of branch i. In the ADS UNet, however, each
UNetd is trained by isolating features acquired by the deeper encoder and decoder
blocks. Moreover, deep supervision is added to each decoder block of each branch
by down-scaling the label masks, rather than solely on the last decoder node of each
branch. 2) Average vs. weighted average voting. In the ensemble mode of the UNet++, the
segmentation results from all branches are collected and then averaged to produce the
final prediction. UNet++ x arg max

c C

1
T

T
d 1 UNetd x , with UNetd x ŷ0,d. T is

the number of branches of the UNet++. However, the ADS UNet takes performance-
weighted combinations of the component UNets to create the final segmentation map:
ADS UNet x arg max

c C

T
d 1 dŷd , with ŷd UNetd x is calculated from equa-

tion (3.6). d reflects the importance of the UNetd in the ensemble.

3.3 Experiments and Results

Four histopathology datasets are used to check the effectiveness of the proposed meth-
ods.

3.3.1 Datasets

CRAG dataset. The colorectal adenocarcinoma gland (CRAG) dataset [3] contains a
total of 213 Hematoxylin and Eosin images taken from 38 WSIs scanned with an Om-
nyx VL120 scanner under 20× objective magnification). All images are mostly of size
1512 1516 pixels. The dataset is split into 173 training images and 40 test images. We
resize each image to a resolution of 1024 1024 and then crop it into four patches with
a resolution of 512 512 for all our experiments (852 patches in total).

GlaS dataset The Gland Segmentation dataset [94] contains a total of 165 images (20×
objective magnification) which are originally split into 85 images for training and 80
for testing. We crop four corners with the size of 512×512 from each image, resulting in
660 patches in total.
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BCSS dataset. The Breast Cancer Semantic Segmentation dataset [2] consists of 151
H&E stained whole-slide images and ground truth masks corresponding to 151 histo-
logically confirmed breast cancer cases. A representative region of interest (ROI) was
selected within each slide by the study coordinator, a medical doctor, and approved
by a senior pathologist. ROIs were selected to be representative of predominant region
classes and textures within each slide. Tissue types of the BCSS dataset consist of 5
classes (i)tumour, (ii)stroma, (iii)inflammatory infiltration, (iv)necrosis and (v)others.
We slide a 512 512 window over ROIs with the stride of 256 to crop patches from
training and test images, resulting in 4376 image tiles in total. Since the class label of
pixels is quite imbalanced, a weighted categorical cross-entropy loss is used to mitigate
class imbalance, with the weight associated with each class determined by Wc 1 Nc

N ,
where N is the number of pixels in the training dataset and Nc is the number of pixels
belonging to class c.

MoNuSeg dataset. The MoNuSeg dataset [58] is a multi-organ nucleus segmentation
dataset. The training set includes 37 images of size 1000 1000 from 4 different organs
(lung, prostate, kidney, and breast). The test set contains 14 images with more than
7000 nucleus boundary annotations. A 400 400 window is used to slide through the
images with a stride of 200 pixels to separate each image into 16 tiles.

5-fold cross-validation. For each dataset, we gather the image patches cropped from
both training and testing images together and then randomly divide them into 5 subsets
for cross-validation. 5-fold cross-validation strikes a balance between computational ef-
ficiency and obtaining a reliable estimate of the model’s performance. Increasing folds
from 5 to 10 will reduce the risk of over-fitting (especially in a small data regime), thus
reducing the variability in performance estimates and providing a potentially more
accurate reflection of the model’s generalisation performance. However, 10-fold cross-
validation requires more iterations, leading to a higher computational cost compared
to 5-fold cross-validation.

3.3.2 Baselines and Implementation

Since our work is mainly based on UNet, UNete, and UNet++, we re-implement these
three models, as well as CENet, to compare with our proposed methods. We also
compare the proposed ADS UNet with two transformer-based UNet variants, HyLT
[73] and MedFormer [35], using the implementation provided by the authors. For a
fair comparison, the configuration of the outermost convolutional blocks (Xi,0, i

0, 1, 2, 3 and Xi,j, i, j 0, i j 4) of all compared methods are exactly the same
as in the original UNet (both the number and size of filters). All inner decoder nodes
of UNete, UNet++ and ADS UNet are also exactly the same, and all models have the
same hyper-parameters. It is noted that scSE block is not used in UNet, UNete, UNet++
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and CENet, but it is used in the skip-connections of ADS UNet. The models are imple-
mented in Pytorch [86] and trained on one NVIDIA RTX 8000 GPU using the Adam
optimizer [52] with weight decay of 10 7 and learning rate initialised at 0.001 and then
changed according to the 1cycle learning rate policy [95]. The cross-entropy loss is
used to train all compared models, and ADS UNet is trained with the linear combina-
tion of loss functions using equation (3.5). On models with a depth of 4, the number
of filters at each level are 64, 128, 256, 512, and 1024, on the CRAG, GlaS, and BCSS
datasets. This setting is consistent with the standard UNet [88]. However, we change
the number of filters to 16, 32, 64, 128, 256 for all models, when trained on the MoNuSeg
dataset, as our experimental results show that increasing the number of filters leads to
inferior performance. The colour normalisation method proposed in [102] is used to
remove stain color variation, before training. We also compare our methods with the
state-of-the-art nnU-Net [48]. Note that the nnU-Net automatically decides the depth
of the architecture based on its characterisation of the properties of the datasets. In our
experiments, the nnU-Net generated for the MoNuSeg dataset is 6, while it is 7 for the
GlaS, CRAG, and BCSS datasets. The officially released nnU-Net source code is used
in our experiments.

Net CRAG BCSS MoNuSeg GlaS
UNet [88] 84.38 0.95 71.22 1.43 86.07 0.58 91.49 0.95
UNete [128] 84.60 0.74 73.20 0.84 87.07 0.32 92.16 0.68
UNet++ [128] 84.34 0.91 72.35 0.39 87.13 0.38 92.07 0.73
nnU-Net [48] 87.88 1.06 67.94 1.16 83.55 0.40 92.87 0.75
CENet [126] 82.92 1.68 69.06 0.92 86.55 0.44 91.29 0.98
HyLT [73] 86.08 0.98 69.42 1.16 85.62 0.47 88.54 0.35
MedFormer [35] 85.23 0.87 68.64 1.40 83.54 0.39 89.95 0.50
ADS UNet 86.92 0.88 75.73 0.60 87.78 0.41 92.65 0.71

TABLE 3.1: Segmentation results (mIoU std) of UNet variants and ADS UNet. The
boldface highlights the highest score.

3.3.3 Results

Some image patches and their corresponding segmentation maps are depicted in Fig-
ure 3.4. Table 3.1 summarises the segmentation performance achieved by all compared
methods. The performance of the baseline method (VGG-16, FCN-8) used in [2] is also
included for comparison. The number of parameters and computational efficiency of
various UNet variants is reported in Table 3.2.

Among the different networks evaluated, the ADS UNet outperforms all of the other
state-of-the-art approaches on the BCSS and MoNuSeg datasets, achieving competitive
performance on the CRAG and GlaS datasets. UNet++ achieves 1.13, 1.06 and 0.58
higher mIoU scores than UNet on BCSS, MoNuSeg and GlaS datasets by performing
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Net Params (M) FLOPs (G) GPU (GB) Time (s)
UNet [88] 31.04 218.9 5.54 771
UNete [128] 34.92 445.2 9.8 1071
UNet++ [128] 36.17 514.8 9.31 1303
nnU-Net [48] 41.27 65.6 2.92 442
CENet [126] 35.17 471.55 5.99 713
HyLT [73] 42.2 329.11 16.06 1500
MedFormer [35] 99.54 325.76 15.48 1337

ADS UNet
0.41 1.63
6.65 26.72

62.61 114.80
166.93 219.04

4.00 4.92
5.40 5.71

453

TABLE 3.2: The comparison of models in terms of the number of parameters, compu-
tational complexity (measured by FLOPs), required GPU memory, and training time
(seconds) per epoch. The FLOPs and GPU consumption are computed with 512 512
inputs. The GPU memory consumption is measured by nvidia-smi command (batch
size=2). In ADS UNet, base learners require a different amount of GPU memory, since
they vary in depth and the number of parameters (The total number of trainable pa-
rameters of the ADS UNet is 35.41 million). These statistics are measured during the

training on the BCSS dataset.

2.35 times more computation and consuming 1.77 times more GPU memory. In con-
trast, ADS UNet outperforms the UNet++ and yet requires at most 59.51% of the GPU
memory and 42.55% of the floating-point operations required by UNet++ for training.

nnU-Net slightly outperforms the ADS UNet on the GRAG and GlaS datasets but is
much weaker than ADS UNet on the BCSS ( 7.79 ) and MoNuSeg (4.23 ) datasets. The
design choices (pipeline fingerprint) of nnU-Net are not fixed across datasets but are
configured on the fly according to the ‘data fingerprint’ (dataset properties such as
image size, image spacing, number of classes, etc.). The data-dependent ‘rule-based
parameters’ (patch size, batch size, network depth, etc.) of the pipeline is determined
by a set of heuristic rules that models parameter inter-dependencies. Therefore, the
performance of nnUNet can be explained as follows: Firstly, the nnU-Net is deeper (the
depth of the nnU-Net is 6 or 7, as mentioned in section 3.3.2), which means that the
convolutional kernels of the bottleneck layer (the deepest encoder layer) have a larger
receptive field, enabling the model to extract information from a larger region. This
is especially beneficial when the task is to recognise large objects (e.g. glands) since
a larger receptive field can cover the whole object. In models with a depth of 4, the
size of the receptive field of the bottleneck layer is limited. This difference in the depth
of models may explain why nnU-Net outperforms shallower models when trained for
segmenting glands. In contrast, the size of the cell nucleus in the MoNuSeg dataset is
much smaller than glands in the CRAG and GlaS datasets. In this case, the receptive
field of the bottleneck layer of shallow models is large enough to capture the entire
nucleus. Further increasing the depth of the network compresses features leading to
information loss rather than enhancing the features learnt. Therefore, we argue that the
nnU-Net improves segmentation performance by enlarging receptive field size, while
ADS UNet achieves so by ensembling. Image and mask patches presented in Figure 3.3
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(A) (B) (C) (D) (E) (F)

FIGURE 3.3: (A)-(B) Image-mask patch from the MoNuSeg dataset (nucleus segmenta-
tion). (C)-(D) Image-mask patch from the CRAG dataset (gland segmentation). (E)-(F)
Image-mask patch from the BCSS dataset (breast cancer segmentation). All patches

are of size 512 512.

show the size difference of target objects between the nucleus segmentation dataset and
tissue type (gland, tumour) segmentation dataset.

Both transformer-based architectures, HyLT and MedFormer, demonstrate inferior per-
formance on all four datasets. Moreover, it is worth noting that the HyLT and the Med-
Former have 1.19 times and 2.81 times parameters than the ADS UNet does and require
2.81 fold and 2.71 fold increases in GPU memory than the ADS UNet does for training.
The high demand for GPU memory in the HyLT and MedFormer is not surprising, as
the attention blocks introduce extra intermediate feature maps that should be kept in
the GPU memory for back-propagation.

The amount of computation (FLOPs) and GPU memory requirement are the main con-
straints on training speed. Among all compared methods, ADS UNet shows a clear ad-
vantage in training speed, because the lower GPU memory requirement of ADS UNet
allows us to use a larger batch size for faster training. The training speed of nnU-Net is
close to ADS UNet, for the same reason. The transformer-based models (MedFormer
and HyLT) are the slowest ones since they have the highest GPU memory demand and
relatively high computation cost.

3.4 Ablation Studies

3.4.1 Down-sampling masks vs. up-sampling feature maps

We build UNet and UNet as UNet’s counterparts to demonstrate the advantage of us-
ing down-sampled masks for deep supervision. In UNet , feature maps of the UNet are
bilinearly interpolated to fit the size of the original mask, while in UNet , the masks are
down-sampled to fit the size of feature maps. As shown in Table 3.3, UNet with aver-
age pooled masks outperforms UNet by 1.21, 2.30 and 0.05 mIoU on the CRAG, BCSS,
and GlaS datasets. This is achieved with only 0.06% more parameters, 1.26% more GPU
memory consumption and 0.08% more FLOPs. This small increase comes from a 1 1
convolution layer appended to supervised blocks. We attribute this performance gain
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FIGURE 3.4: Visual comparison of segmentation maps. The mIoU score of each pre-
diction is reported below the prediction.
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TABLE 3.3: Comparison between the original UNet (without deep supervision) and
UNet /UNet with deep supervision using up-sampled feature maps/average pooled

masks.

Net PRM FLOPs GPU CRAG BCSS MoNuSeg GlaS

UNet 31.04 218.9 5.54
84.38

0.95
71.22

1.43
86.07

0.58
91.49

0.95

UNet 31.17 260.27 14.03
84.62

1.33
72.75

0.71
87.18

0.34
92.04

0.90

UNet 31.06 219.08 5.61
85.59

1.24
73.52

0.59
85.41

0.28
91.54

0.80

to back-propagation through deep layers enforcing shallow layers to learn discrimina-
tive features. UNet yields 1.77 and 0.50 higher mIoU than UNet on MoNuSeg and
GlaS dataset, but with the higher computation cost. The 18.80% more computation
of the UNet (compared with UNet ) originates from bilinear interpolation operations
when up-sampling feature maps. The GPU memory required in the training process of
UNet is 2.50 times that of UNet . The reason is that during back-propagation the out-
put of all layers is cached during forward propagation, and the size of the feature map
of the supervision layer in UNet is 4 to 256 times the size of the corresponding one in
UNet . Therefore, beyond a small performance improvement, UNet saves more than
1.50 GPU consumption thus enabling us to use a larger batch size and save training
time. However, it is worth noting that UNet even performs worse than UNet on the
MoNuSeg dataset. We argue that this is because down-sampling masks may eliminate
small-sized nuclei, thus offering incorrect labelling information during training and fi-
nally resulting in inferior performance. We further validate this claim in the following
sections.

3.4.2 Tracing the origin of the performance gain of ADS UNet.

To gain insight into the reason why ADS UNet demonstrates superior performance
on segmentation, we construct eight models and evaluate them on the CRAG and
MoNuSeg datasets, with each of them being a combination of deep supervision, scSE
feature re-calibration blocks and sample re-weighting. The configuration of models,
the performance of each constituent UNetd and their ensemble performance are sum-
marised in Table 3.4. To see whether the weighted average voting of base learners is
better than simple average voting or not, the results of different ensemble strategies are
also reported. As the results on CRAG and MoNuSeg datasets are quite different, the
interpretation of Table 3.4 is organised per dataset.

Ablation on CRAG dataset. As seen in the top part of Table 3.4, when compared
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with M0 (none of three components is used), M1, M2 and M4 demonstrate the effec-
tiveness of incorporating deep supervision, scSE feature re-calibration and sample re-
weighting into the training of each constituent UNetd, respectively. Moreover, all con-
stitute UNetds of M1 (with scSE) surpass the counterparts of M0, M2 and M4. This
supports the claim we made in section 3.2.3, namely, features from the encoder block of
UNetd 1 should be re-calibrated before concatenating with features from the decoder
block of UNetd.

In M3, M5 and M6, we either remove deep supervision or sample re-weighting or the
scSE block from the ADS UNet, respectively, to show the importance of each compo-
nent in the composition of the ADS UNet. As seen in Table 3.4, removing any one
of them would lead to lower segmentation performance. The comparison between
each pair of (Mi, Mi 4), i 0, 1, 2, 3 demonstrates that removing deep supervision is
harmful to the performance. Further analysis is provided in section 3.5.2 to reveal the
reason why introducing explicit deep supervision leads to better performance.

The comparison between each pair of (Mi, Mi 1), i 0, 2, 4, 6 demonstrates that
truncating the gradient flow between encoder blocks of UNetd and decoder blocks of
UNetd 1 is detrimental to the final segmentation performance. By introducing feature
re-calibration in skip-connections, features learnt in encoder blocks are re-weighted to
adapt to the ones of decoder blocks, thereby leading to better performance.

In terms of sample re-weighting, the ensemble (ens( )) of ADS UNet surpasses the one
of M5 by 0.11 points. We attribute this to sample weight updating, which allows UNetd

to pay more attention to images which are hard to be segmented by UNetd 1. The
benefit of sample re-weighting is also reflected in comparisons of M1 vs. M3 (0.1 ).

When comparing ensemble strategies, we find weighted voting improves segmentation
performance while average voting negatively affects the performance when compared
with UNet4. This supports the view that integrating multiple models by weighting
each as per its segmenting ability improves the overall performance of the ensemble.
In section 3.5.4, we further investigate how the ensemble strategy works, by evaluating
the diversity of features. Figure 3.5 visualises the mIoU and assigned weighting factor
( i) of each UNeti. As shown in the figure, a UNetd achieving a higher mIoU score is
assigned a larger i value, meaning that it gives more contribution when generating
the final prediction.

Ablation on MoNuSeg dataset. As seen in the bottom part of Table 3.4, the effec-
tiveness of the scSE re-calibration (Mi v.s. Mi 1, i 0, 2, 4, 6 ), sample re-weighting
(Mi v.s. Mi 2, i 0, 1, 4, 5 ) and weighted ensemble strategy (ens v.s.ens) is clearly
supported by experiments and is in line with the claim we made on the CRAG dataset.
When trained on the MoNuSeg dataset, however, we observe that introducing deep
supervision adversely affects the performance of each UNetd and therefore the final
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TABLE 3.4: Ablation study on CRAG and MoNuSeg datasets. Performance mea-
sured by mIoU (highest score per column is highlighted in bold). ”DS” denotes
deep supervision, ”scSE” denotes spatial and channel squeeze & excitation used in
skip-connections. ”ReW” denote training sample re-weighting. ”ens”/”ens ( )” de-
note that segmentation results from all branches are collected and then averaged, or

summed by weights.

Net DS scSE ReW UNet1 UNet2 UNet3 UNet4 ens ens( )

C
R

A
G

M0 ✗ ✗ ✗
66.26

1.13
77.35

1.30
83.11

1.29
85.11

1.23
84.10

1.22
85.62

1.10

M1 ✗ ✓ ✗
69.88

0.94
80.74

0.81
85.18

0.79
86.752

0.79
86.05

0.74
86.79

0.79

M2 ✗ ✗ ✓
66.59

1.16
77.99

1.05
83.30

0.92
85.20

0.99
84.20

0.94
85.71

0.94

M3 ✗ ✓ ✓
70.49

1.13
80.89

0.73
85.36

0.80
86.64

0.76
86.29

0.81
86.89

0.78

M4 ✓ ✗ ✗
66.74

1.17
78.16

1.20
83.64

1.12
85.73

1.20
84.67

1.13
86.01

1.15

M5 ✓ ✓ ✗
70.75

1.21
81.30

0.78
85.11

0.88
86.61

0.92
86.27

0.71
86.81

0.82

M6 ✓ ✗ ✓
66.26

1.13
77.52

1.42
83.48

1.32
85.30

1.32
84.23

1.15
85.91

1.21
ADS UNet

M7
✓ ✓ ✓

70.31
1.06

80.77
0.84

85.36
0.90

86.60
0.84

86.32
0.79

86.92
0.88

M
oN

uS
eg

M0 ✗ ✗ ✗
78.31

0.28
82.75

0.29
90.45

0.47
90.75

0.39
90.23

0.39
90.87

0.39

M1 ✗ ✓ ✗
79.73

0.41
83.57

0.39
90.83

0.38
91.06

0.51
90.64

0.42
91.23

0.42

M2 ✗ ✗ ✓
78.34

0.30
82.68

0.40
90.50

0.34
90.72

0.38
90.27

0.33
90.91

0.33

M3 ✗ ✓ ✓
79.76

0.30
83.82

0.58
90.99

0.59
91.12

0.44
90.78

0.49
91.36

0.49

M4 ✓ ✗ ✗
79.01

0.27
81.92

0.35
86.91

0.43
86.39

0.62
85.93

0.42
86.85

0.44

M5 ✓ ✓ ✗
77.85

0.32
81.29

0.34
87.48

0.46
87.27

0.62
86.30
87.61

87.61
0.58

M6 ✓ ✗ ✓
79.02

0.25
81.93

0.36
86.88

0.43
86.83

0.51
86.15

0.30
87.23

0.40
ADS UNet

M7
✓ ✓ ✓

77.84
0.34

81.30
0.33

87.41
0.43

87.49
0.62

86.44
0.43

87.78
0.41

ensemble as well, by comparing (Mi, Mi 4), i 0, 1, 2, 3 ). Looking back to the im-
age patches and masks we presented in Figure 3.3, the size of the nucleus is drastically
smaller than that of the glands. We suspect that the different experimental results re-
lated to deep supervision originate from the down-sampling of masks and the charac-
teristic of the dataset itself, i.e., the size of objects to be segmented, as down-sampling
masks may introduce incorrect labelling information thus misleading the training of
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FIGURE 3.5: Visualising the performance and d weight of base UNetd’. The bar chart
associated with the left y-axis represents the segmentation performance of each UNetd;
the line chart associated with the right y-axis denotes the corresponding weighting

factor ( d) of UNetd.

hidden layers. In section 3.5.1, we quantify the incorrect labelling information to reveal
the cause behind the results.

Moreover, it is worth mentioning that the segmentation performance of base UNets
on the MoNuSeg dataset is almost saturated at UNet3, and the performance gain from
UNet3 to UNet4 is somehow negligible. Or sometimes UNet3 is even better than UNet4

(e.g., in M4, M5, M6). This observation supports the explanation we made on why the
nnU-Net with a depth of 6 achieves the worst performance on the nucleus segmenta-
tion task. i.e., when the receptive field is already large enough to completely cover the
object, increasing the network depth will not enhance the feature learnt, but compress-
ing features leads to information loss.

3.5 Analysis

3.5.1 Reducing incorrect labelling information by adjusting layer weights.

It is true that down-sampling the ground-truth mask eliminates small objects and leads
to incorrect labels for pixels located on the class boundaries. We quantify the ratio of
incorrect labels of down-sampled masks and present the statistics in Table 3.5. The code

TABLE 3.5: The proportion of incorrect labels in different scaled masks. The (Xi,j)
under the down-scale factor indicates which layers the mask down-sampled by this

down-scale factor is used to supervise.

Data
None

X0,0, X0,4
2

X1,0, X1,3
4

X2,0, X2,2
8

X3,0, X3,1
16

X4,0

CRAG 0 1.01 2.96 6.45 12.49
GlaS 0 1.26 3.58 7.80 15.50
BCSS 0 1.45 4.10 9.03 17.94
MoNuSeg 0 5.24 15.25 32.53 55.26
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(A) ˜ i,j values
(MoNuSeg).

(B) ˜ i,j values
(CRAG).

(C) ˜ i,j values
(BCSS).

(D) ˜ i,j values
(GlaS).

FIGURE 3.6: (a)-(c) figures show how i,j
d changes when the UNet is trained on the

MoNuSeg, CRAG and BCSS datasets. The changing of i,j varies from dataset to
dataset. (e) The training losses of supervision layers (trained on the BCSS dataset).

for calculating the incorrect label ratio is provided in Appendix A. It can be observed
that the proportion of incorrect labels rises as the down-scaling factor becomes larger.
Incorrect labels in the 16 down-scaled mask in the CRAG, GlaS, and BCSS datasets ac-
count for 12.49%, 15.50%, and 17.94% of the total labels, respectively. This figure soars
up to 55.26% in the MoNuSeg dataset. However, it is noteworthy that when these re-
duced masks are used to supervise the training of layers, there is a trainable weight ˜ i,j

d

(defined in equation (3.4)) that dynamically adjusts the strength of each layer being su-
pervised. Figure 3.6a-3.6c shows how the network adjusts ˜i,j during training to assign
weightings to layers and scales that contribute most to the segmentation task. As seen,
at the end of the training, the largest ˜ i,j values of the MoNuSeg, CRAG, BCSS and
GlaS datasets come from ˜0,4, ˜1,3, ˜3,1, and ˜1,3 respectively. That means the UNet
benefits most from the original mask and the mask down-scaled by a factor of 2, 8,
2 when trained on the MoNuSeg, CRAG, BCSS and GlaS datasets. The 2 and 8
down-scaled masks carry 1.01%, 9.03% and 1.26% incorrect label information, respec-
tively. Therefore, For CRAG, BCSS, and GlaS datasets, even though the down-scaled
masks introduce wrong labelling information, the UNet is able to evade this wrong in-
formation to a certain extent and puts attention on the informative mask by adjusting
˜i,j. Despite the (apparently significant) labelling errors introduced by down-sampling,
the overall results of UNet on these 3 datasets (as shown in Table 3.3) are not adversely
affected. However, for the MoNuSeg dataset, due to the characteristics of the dataset
itself, that is, the size of the nucleus to be segmented (and its corresponding mask) is in
small size, the down-sampled mask will introduce wrong label information to a large
extent, or even completely erase the nucleus. Providing overmuch misleading infor-
mation in hidden layers can not be alleviated by adjusting ˜ i,j, thus adversely affecting
the learning process of the network, leading to inferior segmentation. We regard this
as the reason that ADS UNet trained on the MoNuSeg dataset performs worse than its
counterparts wherein the deep supervision is not included (see Table 3.4 for reference).
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3.5.2 Deep Supervision in UNet and ADS UNet

3.5.2.1 Different layers contribute differently at different time stamps.

In UNete and UNet++, all losses have the same weight in the back-propagation pro-
cess, while in UNet and ADS UNet, ˜i,j is trainable. The purpose of this design is
to check whether all layers in the summand of the training loss in equation (3.5) con-
tribute equally. Taking Figure 3.6b as an example, the importance of decoder nodes
X1,3 and X2,2 is ranked in the top two. This means features learned by these 2 layers
contribute more than others, with changes in their importance throughout the train-
ing process. From the perspective of back-propagation, this means that parameters of
layers which have larger i,j values, will have relatively large changes when they are
updated using gradient descent. This fact, therefore, indicates the importance of the
features derived at that length scale to the separability of texture labels. A similar trend
in the changes to ˜ i,j

d in the iterative training process of ADS UNet is also observed in
Figure 3.7e- 3.7h. Figure 3.6c and Figure 3.7e- 3.7h not only show us how the param-
eters of different layers change during the training process, but also indicate that: 1)
the importance of parameter varies from layer to layer; 2) the significance of parame-
ters also vary throughout the training process. This is the effect of normalisation of the
weights ˜ i,j

d , which introduces competition between the layers. And also, 3) the compe-
tition between the layers will continue until equilibrium is reached.

3.5.2.2 Preventing layer weights from vanishing leads to higher segmentation per-
formance.

In equation (3.4), we redefine i,j
d as ˜ i,j

d to enforce all blocks to learn features that are
directly discriminative for classifying textures. We then sum the probability maps pro-
duced by these blocks based on their importance factors ˜ i,j

d to generate the segmenta-
tion map of UNetd (defined in equation (3.6)). To verify if this constraint range and the
weighted combination yield better performance or not, we train ADS UNet in 3 modes:

1) ηd: with its element i,j
d being trained without range constraint. After UNetd is

trained, the output of the layer which has the largest d
i,j value is selected to gen-

erate the final segmentation map. i.e., let i , j arg max i,j
i,j
d , the final prob-

ability map is obtained by ŷd ŷi ,j , with ŷi,j defined in equation (3.1). Then ŷd is
used to compare with the ground truth to calculate the d (the weight of UNetd).

2) η̃d: ˜ i,j
d is bounded in 1

2 d 1
d 2

2 d 1 , according to equation (3.4). The final segmen-
tation map generation and d calculation criteria are the same as 1).
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TABLE 3.6: mIoU score of ADS UNet trained in 3 modes. Each UNetd is trained for 70
epochs.

Constraint UNet1 UNet2 UNet3 UNet4 ens( )
BC

SS
ηd 40.09 0.97 54.15 1.11 63.88 1.14 66.09 1.25 68.34 1.12
η̃d 56.87 1.39 67.15 1.23 72.67 0.67 73.76 0.80 74.87 0.71
η̃d(sum) 56.74 1.34 67.23 0.90 72.68 0.57 74.99 0.56 75.73 0.60

C
R

A
G ηd 61.34 1.08 73.16 1.30 80.89 1.16 82.37 2.13 83.57 1.22

η̃d 70.39 1.06 80.20 .074 85.13 0.68 86.62 0.79 86.86 0.74
η̃d(sum) 70.31 1.06 80.77 0.84 85.36 0.90 86.60 0.84 86.92 0.88

G
la

S ηd 62.06 0.45 73.83 0.28 84.21 0.47 87.90 0.48 88.48 0.53
η̃d 69.86 0.82 83.03 0.93 90.36 0.68 91.97 0.85 92.02 0.95
η̃d(sum) 69.43 0.51 82.23 0.79 90.60 0.69 91.98 0.64 92.65 0.71

3) η̃d (sum): training criteria is the same as 2). While the segmentation map pro-
duced by model UNetd is the weighted summation of multi-scale prediction (us-
ing equation (3.6)), which is then used to calculate the d.

Note that we do not run experiments on the MoNuSeg dataset, as the previous abla-
tion study (Table 3.4 and section 3.5.1) indicates that supervising the learning of hid-
den layers leads to worse performance, due to the small size of the nucleus. The re-
sults of training ADS UNet in 3 different modes are reported in Table 3.6, where all
of ADS UNets with bounded η̃d surpass the unbounded ones. After combining the
probability maps produced by supervision layers based on the layer importance fac-
tors ˜ i,j

d , the mIoU score is further improved by 0.86, 0.06, 0.63 points on BCSS, CRAG,
GlaS datasets. To explain the results of Table 3.6, the loss, i,j

d and ˜ i,j
d of the ADS UNet

(trained in mode 1 and mode 3) are tracked and visualised in Figure 3.7. As observed
in Figure 3.7i-3.7p, when there is no range constraint on i,j

d , only one specific layer’s
loss dominates the learning process and the loss of other layers is almost negligible ( i,j

d

close to 0), after training for a few epochs. But the loss increases (L3,0 in Figure 3.7k and
L4,0 in Figure 3.7l) indicates there is reduced discriminability at the intermediate layers
(X3,0, X4,0) still. However, this phenomenon is eliminated after the range constraint is
imposed, to suppress the weight of the dominant layer and to enable those of the oth-
ers to grow, as shown in Figure 3.7a- 3.7h. That means, by retaining the information
from previous layers, the range of features that are being learned is increased, therefore
leading to better performance. Note that L3,0 in Figure 3.7c and L4,0 in Figure 3.7d keep
decreasing, and differs from that of Figure 3.7k and Figure 3.7l.

3.5.3 Feature Similarity of Hidden Layers

Since deep supervision provides features of intermediate blocks with a direct contribu-
tion to the overall loss, the similarity of features learned by these blocks will be higher
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(A) Li,j, i j
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(B) Li,j, i j
2

(C) Li,j, i j
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1 , i j
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2 , i j
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3 , i j
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4 , i j
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3
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FIGURE 3.7: (a)-(d) Cross-entropy losses of supervision layers during the UNetd train-
ing process (Equation (3.4) is imposed to constraint the range of ˜ i,j

d ). Ld is calculated
from equation (3.5). (e)-(h) The corresponding weights of supervision layers. ˜d

ij re-

flects the importance of node Xi,j while computing the overall loss. (i)-(p) The loss
and the d

i,j values of supervision layers of UNetd, in which d
i,j is trained without con-

straints. Ld shown in (i)-(l) is calculated from equation (3.3). For all plots, the x-axis
indexes the training epoch. These plots are based on the BCSS dataset.

than those of the original UNet. Centered Kernel Alignment (CKA) [55] has been devel-
oped as a tool for comparing feature representations of neural networks. Here we use
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(A) UNet (B) UNet -UNet

FIGURE 3.8: (a) Feature similarity of layers for UNet. (b) The difference in feature sim-
ilarity of layers between UNet and UNet. In (a), each entry shows the CKA similarity
between the two layers. In (b), we calculate the feature similarity matrix for UNet ,
then take the difference between UNet and UNet. These plots are based on the BCSS

dataset.

(A) ADS UNet (B) ADS UNet UNete (C) ADS UNet UNet++

FIGURE 3.9: (a) Feature similarity of the output layers of ADS UNet. (b) and (c) We
calculate the feature similarity matrix for UNete and UNet++, then take the difference

between ADS UNet and UNete, UNet++. These plots are based on BCSS dataset.

CKA to characterize the similarity of feature representations learned by different con-
volutional blocks in UNet . As shown in Figure 3.8b, the similarity of features extracted
by blocks in UNet is mostly higher than in their counterparts in UNet (although 6 of
similarity entries in UNet have lower values than that of UNet), which is consistent
with our expectation (the 20 positive values add up to 1.89 vs. the 6 negative values
add up to -0.47).

3.5.4 Feature Diversity of Output Layers

Ensemble-based learning methods, such as AdaBoost, rely on the independence of fea-
tures exploited by classifiers in its ensemble [31]. If base learners produce independent
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outputs, then the segmentation accuracy of the ensemble can be enhanced by majority
weighting. Figure 3.9a characterize the feature similarity of output layers of ADS UNet.
Figure 3.9b and 3.9c shows that features learned by the output layers of ADS UNet are
less similar than those in UNete (the values add up to -0.29) and UNet++ (the values
add up to -0.59). Our interpretation is that this can be attributed to the stage-wise ad-
ditive learning, followed by the sample weight updating rule of ADS UNet, and may
explain why ADS UNet outperforms UNete and UNet++.

3.6 Summary

In this chapter, we propose a novel stage-wise additive training algorithm, ADS UNet,
that incorporates the AdaBoost algorithm and greedy layer-wise training strategy into
the iterative learning progress of an ensemble model. The proposed method has the
following advantages: 1) The stage-wise training strategy with re-weighted training
samples empowers base learners to learn discriminative and diverse feature represen-
tations. These are eventually combined in a performance-weighted manner to produce
the final prediction, leading to higher accuracy than those achieved by other UNet-like
architectures. 2) In the configuration of base learners, intermediate layers are super-
vised directly to learn discriminative features, without the need for learning extra up-
sampling blocks. This, therefore, diminishes memory consumption and computational
burden. 3) By introducing layer competition, we observe that the importance of feature
maps produced by layers varies from epoch to epoch at the training stage, and dif-
ferent layers contribute differently in a manner that is learnable. 4) ADS UNet is more
computationally efficient (fewer requirements on GPU memory and training time) than
UNete, UNet++, CENet and transformer-based UNet variants, due to its cascade train-
ing regimen.

However, the ADS UNet has the following limitation that we would like to address in
future work:

• Currently, the sample re-weighting training criteria restricts the ADS UNet to
only update the weights of samples at a relatively coarse granularity. In future
work, more fine-grained re-weighting criteria will be explored to guide succes-
sive base learners to pay more attention to regions/pixels that are difficult to dis-
tinguish.

• We currently manually decide whether deep supervision is applied or not, based
on our visual inspection of the datasets’ characteristics. It would be interesting
to explore some decision-making methods that can automatically make choices
about whether deep supervision should be included or not.
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• We are also interested in absorbing and extending the systematic heuristic rules of
nnU-Net into our ADS UNet architecture or exploring neural architecture search-
ing (NAS) techniques that optimise the configurations (depth of the architecture,
the size of filters, etc.) of the network automatically. We believe that making the
framework completely automatic would drive the application of deep learning in
medical imaging further.
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Chapter 4

Scale Equivariance for Robust
Segmentation

4.1 Motivation and Contribution

Pathologists diagnosing biopsy samples view histopathology slices at different mag-
nifications by controlling the microscope’s objective revolver. Neural network based
decision support for digital pathology takes as input digital images scanned from glass
slides. Specimen slides scanned at different medical institutions may use different ob-
jective magnifications to digitalise specimen slides, resulting in whole slide images
(WSI) being at different scales. For example, images provided by the CRAG dataset [3]
are in 20 magnification; For the DigestPath-2019 dataset [66], images are in 40 mag-
nification. Such a large difference in imaging magnification makes digitised WSIs look
significantly different in appearance (see Figure 4.1 for an example). Models such as
Convolutional neural networks (CNNs) trained on images at a specific scale generally
can not generalise to other scales, which greatly restricts the applicability of computer-
aided diagnosis models.

It is true that in general the magnification used to digitalise biopsy specimens is known
and WSIs are usually stored in a pyramid structure (as shown in chapter 1, Figure 1.1),
this makes it possible for the end user to re-scale the WSI to fit it with the neural net-
work trained on images presented at a specific scale. This will thus eliminate the gen-
eralisation issue caused by the magnification level mismatch between the training set
and the test set. However, the scale/magnification generalisation problem still exists
in some scenarios where the magnification level is unknown, for example, snapshots. In
a practical clinical diagnosis procedure, most pathologists still use light microscopy to
examine the tissue and snapshots of critical field-of-views are captured using mounted
cameras for histology examination reports or case studies. Nevertheless, such an in-
valuable collection of snapshots is usually archived without magnification information.
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FIGURE 4.1: Hematoxylin and Eosin (H&E) stained histopathology images were pre-
sented in 40 , 20 and 10 magnifications (clockwise). The 3 3 filter presented at
the bottom left corner of images demonstrates that a filter of fixed size covers the dif-

ferent extent of pixels for images in different scales.

Such loss of magnification information hinders the full use of microscopic snapshots.
It has been witnessed that there are very rare studies that use snapshots for training
neural networks for downstream tasks such as classification, detection, segmentation,
etc., even though they are very representative and carry valuable features and disease
knowledge. To remove the barrier brought about by the unknown magnification, pre-
vious work trains neural networks to recognise or predict the magnification of given
snapshots by either treating it as a classification problem [6, 107, 124] or a regression
problem [84, 125]. Once the magnification level is recognised precisely, the snapshots
can be re-scaled and fed into models for further analysis. We admit that the work of
magnification recognition could advance the full use of snapshots, however, building
models that are less sensitive to magnification variance is more appealing.

CNNs have dominated the computer vision field since the proposal of the AlexNet
[57]. The most widely adopted strategy to cope with scale variation in unseen data
is introducing scale augmentation during training CNNs, where training samples are
randomly scaled before being fed into the network. Other attempts such as scale selec-
tion [37] and scale fusion [53] also help to circumvent scale changes. However, these
methods lack explicit mechanisms to model scale information. Some works such as
[50, 76, 120] achieve scale equivariance by resizing the input or filter, but these methods
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are computationally expensive since they rely on tensor resizing and image interpola-
tion. Other ways of generating filters of different sizes include [8, 96, 130], parameteris-
ing filters by a trainable linear combination of a family of predefined, fixed multi-scale
basis functions (B-Splines, Hermite, Fourier). Such methods, however, require that both
the scale of basis functions and the size of filters should be fixed, once the network has
been initialised. The work presented in Pintea et al. [87] shows that hard-coding the
scale hyper-parameters in the network can be restrictive while learning the scale pa-
rameter is especially beneficial when dealing with inputs at multiple resolutions.

In this chapter, we introduce the Scale-Equivariant UNet (SEUNet), which demon-
strates superior generalisation performance on image datasets at different scales when
compared with the conventional CNN model and other scale-equivariant models. The
main characteristics of our work are as follows:

• We parameterise convolutional filters with learnable Gaussian derivative filters,
instead of using a set of pre-calculated, fixed filter basis.

• We impose range constraints on learnable scale parameters to ensure coverage of
multiple scales, while allowing them to be tuned within disjoint intervals. This
frees up model capacity to find an optimal set of scale parameters that adapt to
training samples by back-propagation.

• Since there is no dependency between feature maps produced by filters at dif-
ferent scales, the model can be viewed as a union of multiple independent sub-
models, each of which can be used separately to save GPU memory consumption
and accelerate inference.

4.2 Methodology

Our work extends Lindeberg [70] from image classification to image segmentation
while also allowing the of each layer to be learnable similar to [87]. Before mov-
ing into the construction of scale equivariant convolution, we give a brief introduction
to scale transformation, scale equivariance, and steerable filters.

Scale transformation. The scaling operator Ts is defined on a function (image) f thus:

Ts f x f s 1x , s 0, (4.1)

where s denotes a scaling factor, we refer to cases with s 1 as up-scalings and to cases
with s 1 as down-scalings.

Scale-Equivariance. For a family of feature mapping operators (typically a convolu-
tional layer), scale equivariance means that the scale transformation should commute
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with the feature mapping operation according to

Ts f Ts f , (4.2)

where denotes some feature map operators within the same family that operates
on the image re-scaled by a factor of s.

Steerable Filters [30]. Steerable filters refer to a class of filters wherein a filter of ar-
bitrary orientation and scale is synthesised as a linear combination of a set of “basis
steerable filters”.

4.2.1 Gaussian derivative filters are equivariant under scale transformation

We construct the convolutional filter by linear combining 2D Gaussian derivative basis.

The 1D Gaussian filter at scale is written as G x; x0, 1
2

e
x x0

2

2 2 which can be
extended to 2D isotropic Gaussian filters as G x, y; x0, y0, G x; x0, G y; y0, .
We will drop the centres x0, y0 to simplify notation. In [70, 87, 121], the authors linearly
combine the 2D Gaussian derivatives,

Gi,j x, y;
i jG x, y;

xi yj

iG x;
xi

jG y;
yj , i, j 0, i j N (4.3)

to construct filters. N refer to the highest order of derivative used in equation (4.3).

Considering two images f and f that are related by a scaling transformation f x , y
f x, y for x sx, y sy, where s 0 is a scaling factor. The scale-space representa-
tion of f and f are denoted as L x, y; G0,0 , ; f , x, y and L x , y ;
G0,0 , ; f , x , y , respectively. denotes 2D convolution. If the scale pa-

rameters and of images f and f are related according to s , the authors of
[69] have proved that Gaussian scale-space representations are equal at matching im-
age points and scales:

L x, y; L x , y ; . (4.4)

Regarding Gaussian derivatives, the general result in equation (4) of [69] suggest that
the spatial derivatives of a Gaussian filter are also related under scaling transformation,

Li,j x, y; : Gi,j , ; f , x, y ,

Li,j x , y ; : Gi,j , ; f , x , y ,

Li, j x, y; Li,j x , y ; ,

(4.5)

where i j N, i, j 0. Therefore, equations (4.4) and (4.5) show that the elements of
a filter basis are scale-equivariant, and so is the filter constructed from linear combina-
tions of the basis.
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FIGURE 4.2: The graphical illustration of filter construction (equation 4.6). The filter
constructed here is based on the order N 2. As shown on the right, by setting
different values, the synthesised filters are in the same shape but vary on scales. The

channel index c and layer index l are ignored For simplicity.
.

4.2.2 Parameterising convolutional filters, layer by layer

Filter construction. In conventional CNNs, a bank of filters Fl of size Cl , Cl 1, h, w is
used to map an input image f 0 or feature map f l 1 Cl 1 H W into f l Cl H W

by convolution. Here l 1 is the layer index, H, W and h, w denote the size of
the feature map and the size of the filter, respectively. Zero padding is applied so that
the size of the feature map output remains the same as the input. We compute scale-
space feature maps by convolving with groups of filters at different scales, with each
convolutional filter a linear combination of Gaussian derivative filters:

Fl
k cl , x, y, l

k; cl 1

i j N

i,j 0

l
i,j,cl ,cl 1

Gi,j x, y; l
k , (4.6)

where l
i,j,cl ,cl 1

are learnable, and independent of k which indexes scale settings
within a layer. A graphical illustration of equation 4.6 is provided in Figure 4.2. We
describe these next, first by explaining the first layer from image to features, and then
by showing how features are composed in subsequent layers. In detail, the Cl channels

in Fl are divided into groups denoted by Fl
k

Cl Cl 1 h w, k 1, . . . , . The

first layer maps the input image f 0 into f 1 F1 f 0, f 1
C1 H W , by convolving

with filters F1
k c1, x, y, 1

k ; c0 at position x, y , input channel c0 , , and output
channel c1 1, , C1 . The first dimension in f 1 represents the scale axis, with
scales indexed by k. Note that the subscript k of l

k denotes that the scale parameter
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varies across groups in the same convolutional layer l, for all l, but is shared across
filters in the same group. The l

i,j,cl ,cl 1
in equation (4.6) does not have a group index k

in its subscript, as we share these learnable weights between groups, in order to ensure
that the convolution kernels generated in different groups are consistent in shape, and
do not mix separated scale factors, thus ensuring scale equivariance. When 1, the
Fl degenerates to N-Jet convolutional filter in which the is shared for the complete
layer [87]..

Scale convolution in hidden layers. For layers l 2 feature maps are divided into

groups f l 1
Cl 1 H W , each representing the response to a specific scale in

f l 1
k

Cl 1 H W . We again use equation (4.6) to construct groups of filters Fl

Fl
1, , Fl , Fl

k

Cl Cl 1 h w to convolve with f l 1
k . After the first layer, we define

the network architecture to have f l
k Fl

k f l 1
k : in subsequent layers, each group of

filters acts only on a subset of scale-matched channels. denotes 2D convolution. This
is in contrast to the first layer (l 1) where the filters act on the entire image to generate
f 1
k : f 1

k F1
k f 0, with all colour channels contributing to the scale-specific

channels in f 1 indexed by k. We thus have the learnable coefficients and l
k range

over channel indices

l
i,j,cl ,cl 1

c0 , , , cl 1, . . . ,
Cl and l

k k 1, . . . , . (4.7)

Thus, the propagation of information captured by the composition of layer-wise con-
volutions does not mix information from different scales. The restriction on network
connections to scale-matched layer outputs is designed to maintain equivariance to in-
put rescaling at layer outputs under composition. Although acting Fl

k on the entire f l

can be another option, an attempt in [96] shows that introducing inter-scale interaction
also introduces extra equivariance error, and leads to lower performance. We further
tune the successive scale factors l

k to track the increase in the receptive field with depth.

4.2.3 Imposing range constraints on scale parameters

The trainable parameters in equation (4.7) in the filters include the scale parameters
l
k learned during back-propagation. However, leaving them to be tuned completely

freely may lead to a problem: all l
ks in the same layer may have the same value, which

means constructed filters are redundant, limiting the scale diversity of filters. As our
original intention is that the network can achieve scale equivariance by learning multi-
scale convolutional filters, we introduce the following constraints to separate l

k values
to lie in disjoint intervals.

l
k x

al
k bl

k
2

tanh x
al

k bl
k

2
, al

k bl
k, b 0 (4.8)
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w h e r e a l
k a n d b l

k a r e h y p e r- p a r a m et e r s f o r t h e u p p e r a n d l o w e r b o u n d s f o r σ of filt e r s at

t h e lt h l a y e r a n d t h e k t h g r o u p. x i s a t r ai n a bl e r e al v a ri a bl e. B y s etti n g a n a p p r o p ri at e

s et of a l
k a n d b l

k : m ulti- s c al e filt e r s c a n b e c o n st r u ct e d a s p e r e q u ati o n s ( 4. 6). O n c e σ l
k

i s k n o w n, t h e f oll o wi n g f o r m ul a u s e d i n [8 7 ] i s e m pl o y e d t o d et e r mi n e t h e si z e τ l
k of

filt e r s f l
k :

τ l
k = 2 2 σ l

k + 1, σ l
k > 0 ( 4. 9)

T hi s e n a bl e s u s t o t r ai n t h e si z e of t h e r e c e pti v e fi el d. I n t h e e n c o d e r p at h of t h e U N et

(l a y e r 1- 8), w e g r a d u all y i n c r e a s e σ , t o i n c r e a s e r e c e pti v e fi el d si z e. T hi s i s i n k e e pi n g

wit h Li n d e b e r g [ 7 0 ]. I n t h e d e c o d e r p at h (l a y e r 1 1- 1 8), w e g r a d u all y d e c r e a s e σ . L a y e r s

9- 1 0 a r e t h e b ottl e n e c k l a y e r s. A n a bl ati o n st u d y wit h r e g a r d t o t h e s etti n g of σ l
k c a n b e

f o u n d i n s e cti o n 4. 4 w hi c h d e m o n st r at e s t h e b e n e fit of i m p o si n g r a n g e c o n st r ai nt s o n

σ l
k .

4. 2. 4 P ar all eli si n g tr ai ni n g b y si m ult a n e o u s o pti mi s ati o n of m ulti pl e l o s s

f u n cti o n s

A s d e s c ri b e d i n s e cti o n 4. 2. 2, filt e r s i n e a c h l a y e r a r e di vi d e d i nt o γ g r o u p s a n d e a c h

g r o u p of filt e r s o p e r at e o nl y o n a n n o n- o v e rl a p pi n g s u b s et of f e at u r e m a p s wit h n o

i nt e r- s c al e f e at u r e i nt e r a cti o n s. T h u s, f e at u r e s l e a r n e d b y t h e s e γ g r o u p s of filt e r s c a n b e

t r ai n e d i n a m ut u all y i n d e p e n d e nt f a s hi o n. A p e n ulti m at e c o n v ol uti o n l a y e r f o r f e at u r e

f u si o n c r e at e s a s c o r e t h at i s p a s s e d t o a s oft m a x f u n cti o n, f oll o w e d b y t h e c al c ul ati o n

of l o s s f u n cti o n. T hi s, h o w e v e r, mi x e s m ulti- s c al e i nf o r m ati o n a n d d e st r o y s t h e s c al e

e q ui v a ri a n c e of t h e f e at u r e s. T h e r ef o r e, t o t r ai n all g r o u p s of filt e r s si m ult a n e o u sl y

w hil e m ai nt ai ni n g e q ui v a ri a n c e b et w e e n m ulti- s c al e f e at u r e s, w e p r o p o s e t o mi ni mi s e

a w ei g ht e d c o m bi n ati o n of m ulti pl e l o s s f u n cti o n s, wit h e a c h of t h e m a cti n g o nl y o n

a si n gl e g r o u p of filt e r s. I n d et ail, gi v e n t h e g r o u n d t r ut h y a n d f e at u r e m a p f L − 1
k

t h at i s p r o d u c e d b y filt e r s F L − 1
k i n a L -l a y e r n et w o r k, a 1× 1 c o n v ol uti o n wit h s oft m a x

a cti v ati o n i s u s e d t o m a p f L − 1
k i nt o a p r o b a bilit y m a p ŷ k f o r e a c h of C cl a s s e s f o r e v e r y

pi x el i n t h e H × W i m a g e. T h e l o s s f u n cti o n u s e d t o t r ai n F L − 1
k i s t h e n o r m c r o s s- e nt r o p y

l o s s:

lk ( y , ŷ k ) = − y l o g( ŷ k ) , y ∈ { 0, 1 } C × H × W , ŷ k ∈ R C × H × W , k = 1, . . . , γ . ( 4. 1 0)

T h e o v e r all l o s s f u n cti o n i s d e fi n e d a s:

L =
γ

∑
k = 1

η k lk ( y , ŷ k ) , η k =
η k + 1

γ

∑
γ
k = 1 ( η k + 1

γ )
, w h e r e 0 ≤ η k ≤ 1,

γ

∑
k = 1

η k = 1,
γ

∑
k = 1

η k = 1.

( 4. 1 1)

η k i s a w ei g hti n g f a ct o r t h at i s a s si g n e d t o F k t o c h a r a ct e ri s e t h e r el ati v e i m p o rt a n c e

b et w e e n s c al e s. It i s q uit e pl a u si bl e t h at t h e l o s s f u n cti o n i s mi ni mi s e d b y a d o mi-

n ati n g c o nt ri b uti o n f r o m a s p e ci fi c s c al e i n d e x e d b y k , d ri vi n g all ot h e r η k t o z e r o, a
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p h e n o m e n o n c all e d c o m p etiti v e e x cl u si o n. It i s t o m ai nt ai n s o m e c o nt ri b uti o n f r o m

f e at u r e s a c q ui r e d at m ulti pl e s c al e s t h at w e i nt r o d u c e t h e a d diti v e c o n st a nt ( 1 / γ ) i n

η k . T hi s c o n st r ai n s t h e t r ai n a bl e η k t o b e i n t h e r a n g e [ 1
2 γ , γ + 1

2 γ ]. I n p r a cti c e, w e i niti ali s e

η k t o 1
γ a n d u s e t h e s oft m a x f u n cti o n t o n o r m ali s e η k t o g u a r a nt e e ∑

γ
k = 1 η k = 1. Fi g u r e 4. 3

s h o w s t h e e nti r e st r u ct u r e of t h e m o d el p r o p o s e d h e r e.

4. 2. 5 Fi n al Pr e di cti o n G e n er ati o n

T h e S E U N et g e n e r at e s p r o b a bilit y m a p s ŷ k ,n , k = 1, . . . , γ f r o m l e a r n e d filt e r s wit h

diff e r e nt s c al e s / si z e s f o r e a c h pi x el n . F o r e a c h pi x el n , l et ŷ k ,n ,c b e t h e p r o b a bilit y of

p r e di cti n g cl a s s c ∈ C b y cl a s si fi e r i n d e x e d b y s c al e k . Gi v e n a n i m a g e wit h u n k n o w n

s c al e i nf o r m ati o n a n d t h e s e γ p r o b a bilit y m a p s, w e e x pl o r e t h e f oll o wi n g st r at e gi e s t o

g e n e r at e t h e fi n al s e g m e nt ati o n m a p.

Arit h m eti c m e a n e n s e m bl e. F o r e a c h pi x el n t h e fi n al s e g m e nt ati o n m a p i s o bt ai n e d

f r o m a r g m a xc ( 1 / γ ) ∑ k ŷ k ,n ,c . We d e n ot e t hi s st r at e g y P A rit h m.

Pr e di cti o n s el e cti o n b a s e d o n pr e di cti o n c o n fi d e n c e. L et ( k , n , c ∗ ) = a r g m a x c ŷ k ,n ,c

a n d ( k , n , c ′) = a r g m a x c ≠ c ∗ ŷ k ,n ,c . T h e n δ n ,k := ( ŷ k ,n ,c ∗ − ŷ k ,n ,c ′ ) , t h e diff e r e n c e b et w e e n

t h e l a r g e st a n d s e c o n d-l a r g e st cl a s s p r o b a bilit y i s a m e a s u r e of t h e p r e di cti v e c o n fi d e n c e

F I G U R E 4. 3: T h e a r c hit e ct u r e of t h e S c al e- E q ui v a ri a nt U N et ( S E U N et) m o d el p r o p o s e d
h e r e. E a c h s q u a r e n o d e i n t h e g r a p h r e p r e s e nt s a c o n v ol uti o n bl o c k t h at c o n si st s of t w o
c o n v ol uti o n al l a y e r s. I n e a c h s q u a r e n o d e, f o u r r e ct a n gl e s i n diff e r e nt c ol o u r s d e n ot e
f o u r g r o u p s of filt e r s t h at a r e p a r a m et e ri s e d b y diff e r e nt σ l

k s, b ut s h a r e t h e s a m e α . All
filt e r s wit h t h e s a m e c ol o u r f o r m a n i n d e p e n d e nt s u b- n et w o r k, a n d all s u b- n et w o r k s
h a v e t h ei r o w n p r e di cti o n a n d l o s s f u n cti o n s { lk | k ∈ { 1, · · · , 4} } . All s u b- n et w o r k s
c a n b e t r ai n e d si m ult a n e o u sl y i n a n e n d-t o- e n d f a s hi o n b y mi ni mi si n g t h e c o m bi n e d

l o s s f u n cti o n.
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of classifier k. We choose the most confident prediction (k arg maxk n,k, so c
arg maxc ŷk ,n,c) for pixel n as its final predicted label. We denote this strategy P Dist.

Prediction ensemble based on prediction confidence. To mitigate against the concern
of an incorrect prediction made with high confidence, we propose P Ens, a per-pixel
ensemble strategy that weights multiple predictions based on their confidence. Thus
multiple less confident predictions can compensate in test cases where the highest con-
fident prediction may be incorrect. The detailed process of generating the final pre-
diction using P Dist or P Ens strategies is described in algorithm 3. We first calculate
the prediction confidence, the difference between the largest and the second largest
probability, then the weighting factor wk of prediction ŷk is determined by the softmax
function, giving larger weights to confident predictions.

Algorithm 3: Per-pixel Prediction Selection/Ensemble based on Probability Dis-
tance.
Input: Probability vectors ŷ1, , ŷ , ŷk

C, k 1, , ; C is the number of
classes. Strategy P Dist or P Ens .

1 D ;
2 for k 1, 2, ..., do
3 pmax = max(ŷk)
4 pmax idx = arg max ŷk)
5 ŷk,pmax idx 1
6 psecond max = max(ŷk)
7 D.append pmax psecond max
8 ŷk,pmax idx pmax

9 end
10 if Strategy==P Dist then
11 k arg max D
12 ŷ arg max

C
ŷk

13 end
14 if Strategy==P Ens then
15 for k 1, 2, ..., do
16 wk

eDk

k 1 eDk

17 end
18 ŷ arg max

C
wkŷk

19 end
Output: ŷ
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4.3 Experiments and Results

4.3.1 Datasets and Evaluation Setting

Datasets. We use CRAG [3], GlaS [94] and MoNuSeg dataset [58], which are introduced
in section 3.3.1, for evaluating our method. For each dataset, 5-fold cross-validation is
used to measure the performance.

Evaluation regime. Since we aim to evaluate the models’ generalisation capability with
respect to images’ scale variation, we re-scale the test set by a series of scale factors
between 0.25 and 4, with a relative scale ratio of 4 2 between adjacent testing scales.
This setting is in line with [70].

4.3.2 Compared methods

We use the standard UNet architecture as a backbone and replace the conventional con-
volutional layers with different types of scale-equivariant convolution to generate four
scale-equivariant UNet variants: SESN-UNet, DISCO-UNet, SDCF-UNet, and the pro-
posed SEUNet. For the UNet with conventional convolutional layers, the number of
filters at each depth is 64, 128, 256, 512, 1024. For a fair comparison, all of the UNet
variants have the same number of scales (refers to the hyper-parameter ). For the
SESN, SDCF and DISCO model, we set as 4 and scale factors as 1, 2, 3, 4 , therefore
the size of filters at each scale is 3, 5, 7, 9 . For SESN model, we set the highest order of
Hermite polynomial as 4 since it demonstrates the best performance. For the proposed
models, we carefully set the lower and the upper bound of l

k to set the size of filters
(derived from equation (4.9)) of the first layer to be consistent with that of SESN, SDCF
and DISCO. The range of each layer is shown in Figure 4.7a (black dashed lines).
We set the highest order of the Gaussian derivative to be 1, since it demonstrates com-
petitive performance yet uses a relatively fewer number of parameters. For all of the
scale equivariant architectures, the number of filters for each scale group is one-quarter
that of the standard UNet, except for the SEUNet , which is configured to match the
number of parameters of the DISCO architecture. The colour normalisation method
proposed in [102] is used to remove stain colour variation, before training. All models
are trained on images at the original scale and then tested on multiple scales. Any scale
augmentation such as random crop and then resize is not used in any of our experi-
ments.

We implement the conventional UNet model and our proposed methods. The officially
released source code of SESN, SDCF and DISCO layers is used in our experiments. All
Models are implemented in PyTorch [86] and trained on one NVIDIA RTX 8000 GPU
using the Adam optimiser [52] with weight decay of 10 6 to minimise the cross-entropy
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loss. The training epoch is set as 50, and the initial learning rate for the Adam optimiser
is set as 0.004 and then changed according to the 1cycle learning rate policy [95]. The
batch size is 16 for training all models.

4.3.3 Results and Discussion

In this section, we report the overall and per-scale segmentation performance of the
compared methods, followed by ablation studies to analyse the performance gain of
our approach. The mean Intersection over Union (mIoU) is used to measure the seg-
mentation performance of models. Examples of images, masks and segmentation maps
generated by models can be seen in Appendix B.2.

Performance of each group of filters. Although we offer 3 strategies to generate the
final segmentation maps from predictions, we first check the segmentation perfor-
mance of each independent group of filters, as well as the proposed ensemble strate-
gies. As shown in Figure 4.4, the best prediction shifts to the one with larger values,
as the scale of images increases. Taking the CRAG dataset as an example, as the scaling
factor increases, the highest mIoU scores for scales between [0.25-0.71], [0.84], [1-1.19],
and [1.41-4.0] come from the branch of 1, 2, 3 and 4, respectively (when ensemble
strategies are not considered). This is consistent with our intuition that to capture the
same information from enlarged images, filter sizes should also increase. Given a list
of re-scaled images, we visualise segmentation maps that are generated by different

FIGURE 4.4: Per-scale mIoU score of each independent group of filters and their en-
semble. The legend shows the mean of mIoU scores over all testing scales. Each dot
denotes the mIoU score of 5-fold cross-validation. Here we use k, k 1, 2, 3, 4 , 1

2 3 4 to denote different group of filters. The sequence of i shown on the top
of each plot denotes the best-fit scale group that achieves the highest mIoU score for
each specific testing scale. For each testing scale, we chose the highest mIoU from all
four groups, calculating the mean std. (Standard Deviation) over all testing scales
and then denoting it as ‘Best’ (shown in the top-left corner). i.e., the ‘Best’ represents

the mean std. of mIoUs achieved by groups of filters shown on the top of the plot.
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FIGURE 4.5: Per-scale prediction visualisation. The IoU score of each prediction is
shown below the segmentation map. The k shown on the left indexes filters param-
eterised with different scale parameters 1 2 3 4 . The re-scaling factors
s are shown on the top of the 4 6 grid. The best match between images and filter
scales are highlighted by a green box and red font (the highest mIoU score within each

column). The image patch is randomly selected from the CRAG dataset.

scale groups to illustrate the shift of the match between filter scales and image scales.
As shown in Figure 4.5, for consistent segmentation, up-scaled images correspond to
larger filter scales and vice versa. The example shown in Figure 4.5 corresponds to
curves shown in Figure 4.4, i.e., the same scale transform should be applied to filters
when the image is zoomed in or zoomed out. In appendix B.1, we visualise the equiv-
ariance error of feature maps to demonstrate the effectiveness of lowering equivariance
error by convolving images with multi-scale filters.

In terms of prediction aggregation strategies, all three methods outperform each single
group of filters, from the perspective of all scales. When looking at a specific scale, how-
ever, all three strategies seem to fail to let the best branch contribute more but resulting
in a performance lying between the best and the worst. Among these strategies, simply
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FIGURE 4.6: Comparison of the Per-scale mIoU score between models. The legend
shows the mean S.E. of mIoU scores over all testing scales. Each dot denotes the

mIoU score of 5-fold cross-validation.

averaging the prediction demonstrates the worst performance on the CRAG and the
GlaS datasets. This suggests that mixing features of all scales equally without consid-
ering the possibility that scale-specific filters have different contributions to the predic-
tion is not the optimal choice. This comparison validates the effectiveness of the P Dist
and P Ens strategy. Although these strategies fail to pick up the most suitable scale
for re-scaled inputs, Figure 4.4 indicates that the SEUNet has the potential of achieving
a better scale generalisation performance if an appropriate prediction aggregation or
prediction selection method is applied.

Comparison with CNN baseline and other equivariant methods. Figure 4.6 shows the
per-scale test performance of different approaches on the CRAG, GlaS and MoNuSeg
datasets. The performance of all models is similar when the test scale is close to the
original training scale. However, as the test scale moves away from the training scale,
the performance of the conventional CNN drops significantly, on the CRAG and GlaS
datasets. Although the performance of SESN, SDCF, DISCO and the proposed method
also drops as the test scale changes, these models look more robust than the CNN.

Table 4.1 compares models in terms of the averaged mIoU scores over different scales,
the number of parameters, required GPU memory, and training speed. As observed
from the table, the proposed SEUNet outperforms the conventional CNN (UNet) by
0.9, 3.69, and 7.49 points on MoNuSeg, CRAG and GlaS datasets respectively, while
using just 2.2% of parameters of the UNet. This dramatic reduction in the number of
parameters is owing to two reasons: 1) the weight sharing among scale groups, i.e.,
filters from different scale groups share the same combination coefficients . 2) learn-
ing combination coefficients of filter basis rather than the filter itself. As a result, this
reduction shrinks the searching space of trainable parameters and may contribute to
a lower risk of over-fitting. However, a model with fewer parameters may lead to a
limited representation learning capability. As seen in the right plot of Figure 4.6, the
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UNet SESN SDCF DISCO SEUNet SEUNet
Params (M) 28.95 9.66 9.66 1.81 0.64 1.81
GPU (GB) 4.69 5.09 5.09 4.62 5.06 8.52
Time (s) 60 296 293 207 374 675

MoNuSeg
70.98

0.95
69.21

1.04
68.83

1.08
69.65

1.01
71.88

0.86
72.46

0.89

CRAG
64.69

1.48
65.54

1.49
65.64

1.52
69.58

1.15
68.38

1.20
70.59

1.20

GlaS
62.01

2.07
65.32

1.96
61.41

2.19
73.42

1.47
69.50

1.57
70.42

1.66

TABLE 4.1: The comparison of models in terms of the number of trainable parameters,
required GPU memory, training time (seconds) per epoch, and segmentation perfor-
mance (measured by mIoU). The GPU consumption and training time are measured
with 512 512 inputs. The mIoU scores reported here are the mean S.E. (Standard Er-
ror) of 85 runs (5-fold cross-validation 17 testing scales). For SEUNet , the number
of filters at each depth is 108, 216, 432, 864 and 1728. The fewest amount of parame-
ters, training time and GPU memory of compared architectures, and the highest mIoU

score achieved by models, are highlighted in bold.

conventional UNet outperforms all the scale equivariant methods on the test set that
is on the same scale as the training set. When compared with other scale equivariant
counterparts, the SEUNet outperforms SESN and SDCF on all three datasets, while us-
ing just 6.63% of their required parameters and consuming almost the same amount
of GPU memory. The SEUNet surpassed DISCO on the MoNuSeg dataset but shows
inferior performance on the CRAG and GlaS datasets. After matching the number of
parameters between SEUNet and DISCO by increasing the number of filters of the SE-
UNet, the result on the CRAG dataset turned over and SEUNet outperforms DISCO
on the MoNuSeg dataset further. By checking the per-scale mIoU plot on the GlaS
dataset that is shown in the middle of Figure 4.6, we see that the gap between SEUNet
and DISCO mainly comes from the down-scaled test sets where DISCO yields higher
mIoU scores. Looking back to Figure 4.4, nevertheless, the 1 branch of SEUNet seems
to achieve similar performance as achieved by the DISCO on down-scaled versions of
the dataset. Moreover, by picking up the best branch, the SEUNet is able to achieve a
competitive performance (73.36 2.88 v.s. 73.42 1.47 achieved by DISCO, on the GlaS
dataset). This again, highlights the necessity of proposing a highly effective aggrega-
tion method, collaborating with multi-scale convolutions.

4.4 Ablation Study

In section 4.2.3, we propose to constrain the value of l
k in some non-overlapping

ranges, to ensure that the constructed filters capture relevant patterns at different scales.
Here, to verify the effectiveness of imposing range constraints and to trace the origin of
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(A) l
k is constrained under equation 4.8.

(B) l
k is trained freely.

FIGURE 4.7: The l
k values of filters in different layers. (A) The l

k of models trained
under range constraints. The black dashed lines show the lower and upper bounds

al
k, bl

k . (B) The l
k of models trained without imposing range constraints.

MoNuSeg GlaS CRAG
Free 69.95 0.93 62.22 1.79 63.59 1.39

Fixed 72.03 0.86 69.23 1.70 68.18 1.32
Cons 72.16 0.87 69.63 1.60 68.63 1.23

TABLE 4.2: The mean S.E. of mIoU of SEUNets trained in different settings.
”Fixed”, ”Free”, and ”Cons” denote that the scale parameters l

ks are either fixed,
trained without range constraint, or trained under the constraint of equation (4.8).

The highest order N is set to 2 for all SEUNets.

the performance gain of the proposed method, we conduct the following two ablation
experiments.

• Fix l
k values. Instead of constraining l

k to the range of al
k, bl

k in equation (4.8),

we fix the l
k to be al

k bl
k

2 .

• l
k being trained freely. Where range constraints are removed.

Table 4.2 summarises the performance achieved by models trained under different l
k

settings. The mIoU score reported in the table is the mean S.E. of the per-scale mIoU
score obtained by P Ens. As shown in the table, models trained with range constraint
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slightly outperform models with l
k being fixed and drastically surpass those trained

completely freely, on all three datasets. Figure 4.7 shows the l
k values of models trained

under different settings. As can be seen in Figure 4.7b, allowing l
k to be trained freely

results in the case that multiple l
ks converge to the same value. This is detrimental to

the feature representation of the model since the same l
k means that the same scale of

the generated filters, thus the resultant feature map is also the same (because the co-
efficient is shared between filters in different groups). Therefore, features are redun-
dant and are not scale equivariant. This is the reason why the model trained without
range constraint demonstrates the worst performance. The model trained with fixed

l
k values performs better than the freely trained one since l

ks are non-overlapping,
thus multi-scale filters can be constructed to extract information from different scaled
images. However, the manually selected l

ks may not be the optimal choice that fits
the dataset best. Moreover, the optimal set of l

ks may vary from dataset to dataset.
This motivated our choice in equation (4.8) to train l

ks to remain in disjoint intervals.
As observed from Figure 4.7a, l

ks trained under constraint deviate from fixed values.
And also, the learned l

ks vary between datasets. That indicates different datasets may
favour different scale parameter settings, allowing scale parameters to be trainable will
thus release the capability of the model to search for the optimal one.

Another benefit of imposing range constraints on l
k is to reduce the computational

complexity of the model. In our experiments, we observe that the model trained with
range constraints required only 1

3 the training time of the freely trained one. Because
the filter of smaller size is less computationally intensive when performing convolution
operations. For example, we observe that the maximum l

k values can reach up to 9.99
during training, resulting in the corresponding filter sizes of 41 41 (calculated from
equation (4.9)). Therefore, the amount of computation required by a 41 41 filter is

5.82 times that of a 17 17 filter, when convolving with an image.

4.5 Summary

In this chapter, we propose a Scale-Equivariant UNet (SEUNet) to address the chal-
lenge of generalising neural network segmentation on histopathology images to unseen
scales. The motivation behind this is to achieve robust segmentation for histopathol-
ogy images of unknown magnification level. To fulfil this objective, we parameterise
multi-scale filters by linearly combining groups of Gaussian derivative filters. The con-
structed filters are then used to learn scale-space representations that have a built-in
scale-equivariant property. We constrain filter scales to be both trainable yet cover dis-
joint ranges. This is useful for finding dataset-adapted scale parameters. The extensive
experimental results on two public datasets demonstrate that the proposed SEUNet
achieves state-of-the-art performance.
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However, the proposed framework has the following shortcomings that we seek to
overcome in the future:

• Since we learn the Gaussian derivatives during training, these derivatives should
be updated after each round of l

k updating, which is more computationally ex-
pensive than using a pre-calculated filter basis. In the future, some effort will be
put to optimise this step to prevent the long processing time of training.

• We currently use a unified predefined range to restrict the values of l
k, while ig-

noring the fact that different datasets may favour different range settings. There-
fore, more range constraints will be explored to enable improved performance, or
furthermore, make range constraints also trainable.

• Although the proposed ensemble strategies P Arithm, P Dist and P Ens are effec-
tive for aggregating probabilities to generate a final prediction, they fail to pick up
a group of filters that fits a specific scale best. Therefore, it would be interesting
to explore other strategies that are able to pull out the most accurate prediction
from multiple parallel branches.

Note that variations in images go beyond scale transformation, and also include rota-
tion transformation. In the next chapter, we integrate rotation equivariance into CNNs
to release neural networks’ representation capacity, thus further enhancing generalisa-
tion performance.
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Chapter 5

Joint Rotation-Scale Equivariance
for Stabilised Segmentation

5.1 Motivation and Contribution

CNNs utilise a weight-sharing strategy to guarantee that a translation of the input will
result in a corresponding translation of the features. This property, known as transla-
tion equivariance, is an inherent property of the CNN and removes the need to learn
features at all spatial locations, resulting in a significant reduction in the number of
learnable parameters. In certain image analysis applications where orientation does
not affect the semantic meaning of images, it is beneficial to extend this property of
equivariance beyond translation to rotation. By doing so, CNNs are empowered to
pick up features regardless of the angle shift of images. Another desirable property
of CNNs is scale equivariance, which can be beneficial for CNNs to recognise features
regardless of the scale variation.

Recent work has shown that exploiting rotation and scale equivariance in convolutional
neural networks can improve models’ generalisation performance [20] and sample effi-
ciency [71, 121]. Domains that benefit most from exploiting both equivariance are those
where the image itself lacks canonical orientation and scale, and where the number of
samples is limited. These are features of digital histopathology images, where localised
patterns can appear in any orientation (see Figure 5.1 for example), and the size of cells
and tissues covary with different choices of objective magnifications used to digitise
specimen slides. In medical image-related tasks (which generally have very limited
samples), one can use offline data augmentation for better generalisation, but this is at
the cost of increasing the number of training samples. Previous work [9, 39, 40, 71, 103]
shows that incorporating rotation equivariance into CNNs leads to better performance
on the classification, detection, and segmentation of histopathology images. In chap-
ter 4, we demonstrate that introducing scale equivariance into CNNs improves models’
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FIGURE 5.1: Cropped central regions from a H&E stained image. Each orientation is
equally as likely to appear.

segmentation performance when tested on histopathology images that are presented in
unseen scales. However, all of these works either consider rotation symmetry or scale
symmetry, which did not fully extract CNNs’ potential for joint rotation-scale equivari-
ance.

In this chapter, we first identify the two reasons why the generalisation performance of
conventional CNNs is limited, on histopathology image analysis: 1) a part of the pa-
rameters of filters are trained to fit rotation transformation, thus decreasing the capabil-
ity of learning other discriminative features; 2) fixed-size filters trained on images at a
given scale fail to generalise to those at different scales. To deal with these issues, we ex-
tend the SEUNet (proposed in chapter 4) and then propose the Rotation-Scale Equivari-
ant Steerable Filter (RSESF), which utilises filter steerability and Gaussian scale-space
theory to parameterise convolutional filters, resulting in an equivariant layer that is sta-
ble to rotation and scale variations. The RSESF contains copies of filters that are linear
combinations of Gaussian derivative filters, whose direction is controlled by directional
derivatives and whose scale parameters are trainable but constrained to span disjoint
scales in successive layers of the network. The main contributions of this chapter are
summarised in Figure 5.2 and listed as follows:

• We extend the scale equivariant only SEUNet to a joint rotation and scale equiv-
ariant framework, by introducing the directional derivatives.

• The constructed framework achieves a higher degree of weight sharing, greatly
beyond CNNs which only have translation equivariance.
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FIGURE 5.2: Model Size vs. Segmentation Performance vs. GPU Requirement.
Models evaluated on out-of-distribution setting. Our RSESF outperforms others on
all of three datasets. Notably, the RSESF achieves state-of-the-art mIoU but is much
smaller and more GPU efficient. The larger the diameter of the marker, the larger the

GPU memory required for model training.

• By decoupling convolutions between rotation channels, RSESF possesses the flex-
ibility of being trained with only one rotation channel but introducing other rota-
tion channels during inference as needed. This not only guarantees generalisation
performance but also enables memory-efficient training.

• We demonstrate state-of-the-art generalisation performance across multiple datasets
on image segmentation tasks.

5.2 Methodology

Rotation-Equivariance. For a rotation operator T defined on a function (image) repre-
sents rotating an image by and for a family of feature mapping operators (typically
a convolutional layer), rotation equivariance means that the rotation transformation
should commute with the feature mapping operation according to

T f T f , 0, 2 , (5.1)

where denotes some feature map operators within the same family that operates
on the image rotated by a angle of .

Joint Rotation-Scale Equivariance. An operator T ,s defined on a function (image)
represents rotating and re-scaling an image by an angle of and by a factor of s. For
a family of feature mapping operators, joint rotation-scale equivariance means that the
transformation should commute with the feature mapping operation according to

T ,s f T ,s f , 0, 2 , s 0. (5.2)
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W h e n θ = 0, t h e t r a n sf o r m ati o n T θ ,s d e g e n e r at e s t o t h e s c ali n g o p e r at o r, a n d e q u ati o n

( 5. 2) d e n ot e s s c al e e q ui v a ri a n c e. W h e n s = 1, t h e t r a n sf o r m ati o n T θ ,s d e g e n e r at e s t o

t h e r ot ati o n o p e r at o r, a n d e q u ati o n ( 5. 2) d e n ot e s r ot ati o n e q ui v a ri a n c e.

5. 2. 1 R ot ati o n- S c al e St e er a bl e G a u s si a n D eri v ati v e Filt er B a si s

I n c h a pt e r 4, w e li n e a rl y c o m bi n e t h e 2 D G a u s si a n d e ri v ati v e s,

G i,j( x , y ; σ ) =
∂ i+ jG ( x , y ; σ )

∂ x i∂ y j
=

∂ iG ( x ; σ )

∂ x i

∂ jG ( y ; σ )

∂ y j
, i, j ≥ 0, i + j ≤ N ( 5. 3)

t o c o n st r u ct filt e r s. O r d e r N r ef e r t o t h e hi g h e st o r d e r of d e ri v ati v e u s e d i n e q u a-

ti o n ( 5. 3). T h e s e b a si s el e m e nt s c a pt u r e v a ri ati o n s al o n g t h e x o r y di r e cti o n s. T o m a k e

filt e r b a si s a bl e t o c a pt u r e f e at u r e s p r e s e nt e d i n a r bit r a r y o ri e nt ati o n, w e d e fi n e filt e r

b a si s el e m e nt s G 1
θ ( x , y ; σ ) r ot at e d b y a n gl e θ :

G 1
θ ( x , y ; σ ) = c o s θ

∂ G ( x , y ; σ )

∂ x
+ si n θ

∂ G ( x , y ; σ )

∂ y
:= c o s θ ∂ x + si n θ ∂ y G ( x , y ; σ )

:= c o s θ G 1
0 ( x , y ; σ ) + si n θ G 1

π
2
( x , y ; σ )

( 5. 4)

wit h c o s θ , si n θ a s i nt e r p ol ati o n f u n cti o n s u s e d i n st e e ri n g t h e o r e m s [ 3 0 ]. U si n g e q u a-

ti o n ( 5. 4), w e c a n si m ult a n e o u sl y c o nt r ol t h e si z e a n d o ri e nt ati o n of c o n v ol uti o n al filt e r s

b y m a ni p ul ati n g σ a n d θ p a r a m et e r s of t h ei r filt e r b a si s. T h e b e n e fit of u si n g a st e e r a bl e

filt e r i s t h at it a v oi d s t h e i nt e r p ol ati o n a rt ef a ct s p r o d u c e d b y di r e ctl y r ot ati n g t h e filt e r.

T h e N = 2 filt e r s a r e ( c o s θ ∂ x + si n θ ∂ y ) 2 G ( x , y ; σ ) a s s h o w n i n A p p e n di x C. 1.

5. 2. 2 Filt er C o n str u cti o n.

We d e n ot e t h e filt e r b a si s r ot at e d b y θ a s G
i,j
θ ( x , y ; σ ) . T h e n w e p a r a m et e ri s e t h e p r o-

p o s e d R ot ati o n- S c al e E q ui v a ri a nt St e e r a bl e Filt e r a s a li n e a r c o m bi n ati o n of di r e cti o n al

G a u s si a n d e ri v ati v e filt e r s:

F l
k ( c

l, x , y , σ l
k , θ r ; c

l− 1 ) =
i+ j≤ N

∑
i,j≥ 0

α l
i,j,c l,c l− 1 G

i,j
θ r

( x , y ; σ l
k ) , 1 ≤ k ≤ γ , θ r =

2 π r

R
, 1 ≤ r ≤ R

( 5. 5)

w h e r e l ≥ 1 i s t h e l a y e r i n d e x, c l− 1 a n d c l a r e t h e c h a n n el i n di c e s of t h e i n p ut a n d

o ut p ut of t h e lt h l a y e r, k i s t h e i n d e x f o r t h e γ s c al e s a n d r i s a n i n d e x r e p r e s e nti n g a n

o ri e nt ati o n o ut of R o ri e nt ati o n s, i n a l a y e r. T h e e x p a n si o n c o ef fi ci e nt s α l
i,j,c l,c l− 1 ∈ R

a n d s c al e p a r a m et e r σ l
k a r e l e a r n a bl e. T h e filt e r F l

k c o n st r u ct e d f r o m e q u ati o n ( 5. 5) i s

of t h e di m e n si o n [C l, C l− 1 , R , h l
k , w

l
k ], w hi c h h a s R r ot ati o n c h a n n el s. ( h l

k , w
l
k ) d e n ot e s

t h e s p ati al si z e of t h e filt e r, w hi c h i s c o nt r oll e d b y t h e s c al e p a r a m et e r σ l
k , i. e., h l

k =

w l
k = 2 2 σ l

k + 1. We c r e at e γ g r o u p s of filt e r s [F l
1 , · · · , F l

γ ], wit h e a c h g r o u p s h a ri n g
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the same expansion coefficients l
i,j,cl ,cl 1 , but with different scale factors l

ks to ensure

scale equivariance. Within each scale, R rotation channels at angular resolution 2
R

implement discrete rotation equivariant filters. Figure 5.3 illustrates the construction
of the filter. We demonstrate that Gaussian derivative filters are equivariant to scale
transformation of images, in section 4.2.1.1, and provide evidence in Appendix B.1 to
support our statement. For joint rotation-scale equivariance of directional Gaussian
derivative filters regarding the transformation of images, the equivariance error plots
are shown in Appendix C.3 as evidence. We then describe feature extraction across
scales in parallel.

5.2.3 Equivariant Convolution

For the first layer, we convolve the image with each group of filters in parallel. For
channel c1, 1 c1 C1 at scale k and rotation r, the convolution f 1

k F1
k f 0

f 1
k,c1,r x, y

c0 , , x0,y0

F1
k c1, x x0, y y0, 1

k , r; c0 f 0
c0 x0, y0

i j N

i,j 0 c0 , , x0,y0

1
i,j,c1,c0 Gi

r
x; x0, 1

k Gj
r

y; y0, 1
k f 0

c0 x0, y0

(5.6)

gives the output f 1
k

C1 R H W for each of the scales.

For subsequent layers l 2 , the feature map from each scale group is only passed
to the corresponding scale also indexed by k, i.e., f l

k Fl
k f l 1

k . Inside each scale
group, for each output channel, feature maps of multiple orientations from the previous
layer are independently convolved with multi-orientated filters and then summed over
orientation channels:

f l
k,c,r

Cl 1

d 1

R

r 1
Fl

k,c,d,r f l 1
k,d,r , c 1, , Cl , k 1, , , (5.7)

where r and r are the indices of the rotation channel for the filter and feature maps,
respectively. The sum over orientation channels renders transformations between hid-
den layers invariant to rotations. Note, features from other orientation channels r

1, , R , r r of the input f l 1
k,c are not involved in the calculation of f l

k,c,r , which
means no orientation information is mixed through convolution. This gives the con-
structed network flexibility to adopt different numbers of rotation channels between
the training and testing phases. This would thus enable the network to reduce the de-
mand on GPU memory required for training while maintaining performance during
inference. We will describe this benefit later.
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5.2.4 Model Training

Decoupled convolution between rotation channels enables memory efficient train-
ing. Within each scale group, equation (5.6) indicates that the input image is convolved
with R copies of rotated filters, separately. Equation (5.7) shows that the input of each
orientation channel of hidden layers is also individually convolved with rotated filters
to generate feature maps. Since there is no inter-rotation interaction between rotation
channels, the information flow is independent across rotation channels. Therefore we

FIGURE 5.3: Here we depict the construction process of an RSESF filter (with 4 scale
channels, 4 rotation channels, 1 input channel and 5 output channels) as matrix mul-
tiplication. The highest order of Gaussian derivative used here is 2. Left. Gaussian
derivative filter basis Gi,j

, , parameterised by different and values from top to bot-
tom, and different orders i, j (with respect to and 2 respectively) from left to right;
Middle. Learnable linear combination coefficients i,j,c, where c is the index of output
channel. Each column vector is shared between scales, and it determines the shape
of the final constructed filter. Right. The constructed multi-scale, multi-orientation
filters (filters vary in shape from left to right, as learnable coefficients (column vectors)
involved in the calculation are different). The red/green lines that connect the Gaus-
sian derivative bases (left), combination coefficients (middle), and constructed filter
(right) show the process of equation (5.5), i.e., the dot product between the Gaussian
derivative bases and combination coefficients produces the convolutional filter. Note,
for visualisation purposes, we set values to 0.4, 0.8, 1.2, 1.6 . However, they are al-

lowed to be tuned in disjoint ranges as described in equation (5.8).
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are allowed to train the network within only one rotation channel, but then other R-1
rotation channels after training are created to reduce the model’s orientation sensitivity
as needed. The filters of newly created rotation channels are guaranteed to be in the
same shape and scale as the trained one, as the expansion coefficients are shared in ro-
tation and scale dimensions. The reduction of the number of rotation channels reduces
GPU memory consumption by a factor of R during the training, as other R-1 feature
maps do not need to be stored in the memory in the back-propagation calculations.
This translates into a two-fold advantage: firstly, a larger number of filters can be used,
thus increasing the feature representation capability of the network; secondly, RSESF
can be trained in GPU resource-limited settings, thus greatly increasing its applicabil-
ity. Moreover, the GPU memory released from the rotation channel can compensate
for the memory needed for using a larger batch-size, to achieve more stable training.
Setting different number of rotation channels R during inference is discussed in section
5.4.2.
Parallel Training between Scales. We adopt the strategy proposed in section 4.2.3 for
simultaneously training filters that are at different scales. The l

ks remain in disjoint
intervals, guaranteeing scale equivariance,

l
k x

al
k bl

k
2

tanh x
al

k bl
k

2
, al

k bl
k 0, al

k 1 al
k, bl

k 1 al
k, (5.8)

where al
k and bl

k are upper and lower bounds for the scale parameters of the filters at the
lth layer and the kth group. x is a trainable real variable. At the last layer (the Lth layer)

FIGURE 5.4: A two-layer example of training v.s. inference of the RSESF. The sub-
scripts si and rj denote the index of scale channels and rotation channels, respectively.
‘channel squeeze’ reduces the dimension of feature maps by squeezing the rotation

channel. Different strategies of ‘channel squeeze’ are discussed in section 5.4.1.
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of t h e n e u r al n et w o r k, f o r a K - cl a s s s e g m e nt ati o n t a s k, a K × C L × 1 × 1 c o n v ol uti o n al

filt e r i s u s e d t o s q u e e z e t h e f e at u r e m a p f L
k ∈ R C L × 1 × H × W (t h e 1 i n t h e s e c o n d di m e n-
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w hi c h i s t h e n u s e d t o c al c ul at e t h e c o m bi n e d c r o s s- e nt r o p y l o s s p e r- pi x el

L = −
K

∑
c = 1

γ

∑
k = 1

η k y l o g( ŷ k ,c ) , η k =
η k

2
+

1

2 γ
, 0 ≤ η k ≤ 1,

γ

∑
k = 1

η k = 1,
γ

∑
k = 1

η k = 1. ( 5. 9)

w h e r e η k i s a t r ai n a bl e r e cti fi e d w ei g hti n g f a ct o r t o c h a r a ct e ri z e t h e i m p o rt a n c e of t h e

k t h s c al e. η k i s b o u n d e d i n [ 1
2 γ , γ + 1

2 γ ], w hi c h e n s u r e s t h at e a c h s c al e c o nt ri b ut e s t o t h e

t r ai ni n g. N ot e t h at f o r t h e s a m e n et w o r k, t h e f e at u r e m a p f L
k i s of t h e di m e n si o n

[C L × 1 × H × W ] f o r t r ai ni n g, b ut i s of t h e di m e n si o n [C L × R × H × W ] i n t h e i n-

f e r e n c e p h a s e. T h e r ef o r e, i n t h e i nf e r e n c e p h a s e, w e m a x- p o ol t h e f L
k o v e r t h e r ot ati o n

c h a n n el t o s q u e e z e it i nt o ( f L
k ) m a x = m a x

1 ≤ r ≤ R
f L
k ,r , ( f L

k ) m a x ∈ R C L × 1 × H × W , s o ( f L
k ) m a x c a n b e

f u rt h e r s q u e e z e d b y t h e f oll o wi n g 1 × 1 c o n v ol uti o n al l a y e r. Ot h e r w a y s of di m e n si o n

r e d u cti o n a r e e x pl o r e d a n d c o m p a r e d i n s e cti o n 5. 4. 1. Fi g u r e 5. 4 s h o w s t h e diff e r e n c e

b et w e e n t h e t r ai ni n g a n d t h e i nf e r e n c e p h a s e of t h e R S E S F.

5. 3 E x p eri m e nt s a n d R e s ult s

5. 3. 1 D at a s et s

Hi st o p at h ol o g y d at a s et s. We u s e C R A G [ 3 ] a n d Gl a S [9 4 ] d at a s et s, w hi c h a r e i nt r o-
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m et h o d o n o ut- of- di st ri b uti o n t e sti n g. I n d et ail, w e c u st o mi z e m a s k s t o e a c h c o nt ai n
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c a p a bilit y (t h e a bilit y t o s e g m e nt i m a g e s t h at a r e p r e s e nt e d i n u n s e e n s c al e s a n d o ri e n-
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1 htt p s: / / m o s ai c. uti a. c a s. c z /
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set four times to create a new test set that has more orientation and scale variations for
out-of-distribution testing.

Evaluation regime. Two criteria are used to evaluate the models’ performance.

• 1) In-Distribution (ID) test, i.e., the training images are randomly rotated (by an
angle uniformly distributed on 0, 2 ) and re-scaled (by a factor uniformly dis-
tributed on [0.5, 4]). Trained models are then evaluated on an augmented test set.

• 2) Out-Of-Distribution (OOD) test, the training images are fed into models without
any rotation and scale augmentation but are randomly horizontally and vertically
flipped. Trained models are then evaluated on an augmented test set.

For each dataset, 5-fold cross-validation is used to measure the performance. Figure 5.6
shows the procedure of ID and OOD evaluation regimes. Note that the configuration
of models is the same for ID and OOD evaluation.

5.3.2 Model Settings and Implementation Details

We use the UNet architecture as a backbone and adopt the conventional convolutional
layer as well as other types of equivariant convolution layers (including RDCF [16],
E(2)CNN [111], H-Nets [115], SDCF [130], SESN [96], DISCO [98], SEUNet [121],RST -
CNN [34], and the proposed RSESF) to investigate 11 models. For the UNet with norm
CNN layers, the number of convolutional channels at each depth is 64, 128, 256, 512,
and 1024. For a fair comparison, we keep the total number of channels of equivariant
UNet variants in line with the conventional UNet. In detail, we split convolutional
channels into N f filter channels, scale channels, R rotation channels, and guarantee
that N f R is the same for all models. The values of N f , and R of each model
are summarised in Table 5.1. For SEUNet and RSESF, we set the highest order of the
Gaussian derivative to be 1. We carefully set the scale factors for SESN and SDCF, so
that their receptive field sizes are consistent with SEUNet and RSESF. For GlaS and
CRAG datasets, the colour normalisation method proposed in [102] is used to remove
stain colour variation, before training. All models are 1) trained with random rotation
and scale augmentation for the In-Distribution test, and 2) trained on images at the

FIGURE 5.5: Pure texture images and generated texture mosaic with the corresponding
mask.
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FIGURE 5.6: ID v.s. OOD Evaluation regimes.

original orientation and scale, without rotation and scale augmentation (only randomly
horizontal and vertical flip augmentation is used).

We implement the conventional UNet model, SEUNet, and our RSESF. We use the
e2cnn library2 to build E(2)CNN and H-Nets. For RDCF, SDCF, SESN andRST -CNN,
the code associated with Gao et al. [34] is used to build equivariant layers. All Mod-
els are implemented in Pytorch [86] and trained on one NVIDIA RTX 8000 GPU (45GB
memory) using the Adam optimizer [52] to minimize the cross-entropy loss. To fully
utilize the GPU memory for efficient training, we set the batch size to 6 forRST -CNN
and 16 for all the other models. The learning rate, training epochs, and weight decay
coefficient are optimized by Random Search [13].

5.3.3 Results

We organise the experimental results by evaluation criteria.

ID testing. Table 5.1 summarises the comparison between models in terms of segmen-
tation performance under In-Distribution evaluation, the number of trainable parame-
ters, and the amount of GPU memory required for training. As shown in Table 5.1, all
of the equivariant models outperform the conventional CNN, except the H-Nets, on the
GlaS and CRAG datasets. This indicates that they are able to extract useful represen-
tations for segmentation, even with much fewer parameters. In detail, RSESF outper-
forms CNN, but its number of parameters is just 2.21% of CNN. The E(2)CNN ranked
at the top among other methods, but the number of its parameters is 10.98 times that

2https://github.com/QUVA-Lab/e2cnn
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of RSESF. Other scale and rotation equivariant models also achieve competitive perfor-
mance but with more parameters, when compared with RSESF. The poor performance
of the RST -CNN model, a UNet with jointly rotation-scale equivariant convolutional
layers, suggests that it is characterised with too few filters to learn adequate features.
By tripling the number of filters we create RST -CNN with improved performance,
but at the cost of tripling the amount of GPU required for training. This memory over-
head is expensive; thus a trade-off between performance and computation resources
needs to be considered. The proposed RSESF, however, is not constrained by the GPU
memory while training. This memory efficiency during training in our RSESF stems
from parallel training and decoupled convolution between rotation channels. The per-
formance gain from SEUNet to RSESF, i.e., from one rotation channel to 8 rotation chan-
nels, is marginal. We attribute this to the presence of rotation augmentation during
training, which makes SEUNet able to memorise features shown in different orienta-
tions and thus achieve a close mIoU score to RSESF. Similarly, E(2)CNN achieves the
best performance. This is due to the fact that on one hand, E(2)CNN is rotation equiv-
ariant and on the other hand, it memories features in various scales because of scaling
augmentation.

OOD testing. In terms of OOD testing, which is designed to evaluate models’ gener-
alisation capacity to rotation and scale variations, the proposed RSESF demonstrates
the best performance on all three datasets, as shown in Figure 5.7, although it has the
second least number of parameters (reported in Table 5.1). The results of OOD and
ID evaluations differ significantly due to the presence or absence of rotation and scal-
ing augmentation. In the absence of any augmentation, models enjoying equivariance

TABLE 5.1: Model comparison for histopathology datasets in terms of the number
of parameters, GPU memory required for training, and mean S.E. of mIoU for In-
Distribution evaluation. Columns N f , , R denote the number of filters, scale channels,
and rotation channels in the first layer of the UNet, respectively. Note that for RSESF,
“R 1, 8” denotes that only 1 rotation channel is used during training but 8 rotation
channels are used during testing. The total number of channels is matched between
theRST -CNN and RSESF. The top-3 performances on each dataset are highlighted in

red, green, and blue, respectively.

Filter Type Param GPU N f R GlaS CRAG Texture
CNN 28.95 4.48 64 1 1 81.02 0.18 73.94 1.05 99.12 0.01
RDCF 2.42 5.07 8 1 8 85.54 0.24 81.65 0.59 99.09 0.05
E(2)CNN 7.03 7.65 8 1 8 88.54 0.18 84.49 0.44 99.57 0.01
H-Nets 13.98 7.65 64 1 1 77.49 0.79 69.17 1.02 98.35 0.07
SDCF 9.66 5.09 16 4 1 84.52 0.38 80.95 0.62 99.10 0.03
SESN 9.66 5.06 16 4 1 83.88 0.38 79.44 0.58 98.61 0.02
DISCO 1.81 4.62 16 4 1 86.44 0.25 83.4 0.66 99.05 0.02
SEUNet 0.64 5.05 16 4 1 85.45 0.32 82.64 0.59 98.47 0.03
RST -CNN 0.15 5.06 2 4 8 81.18 0.54 74.21 0.72 94.97 0.23
RST -CNN 1.36 15.12 6 4 8 85.38 0.39 81.63 0.31 98.83 0.04
RSESF 0.64 5.06 16 4 1,8 85.85 0.37 83.11 0.60 98.48 0.03
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properties demonstrate higher performance. Models without rotation/scale equivari-
ance properties are not able to learn patterns presented in arbitrary orientations and
scales, and thus can not recognise them after being trained without data augmenta-
tions. In contrast, equivariant models are able to recognise patterns without orientation
and scaling augmentations. In detail, 8, 9 and 6 out of 10 equivariant models outper-
form the conventional CNN on the CRAG, GlaS, and texture datasets, respectively. On
histopathology datasets, the top 3 models are the rotation-scale equivariant model (RS-
ESF 1st), and the scale equivariant models (DISCO 2nd, SEUNet 3rd). It is noted that
the 3rd ranked model on the texture dataset is a continuous rotation equivariant model
(H-Nets). Such differences in results among datasets are due to the characteristics of
datasets. For example, glands are equally as likely to appear in every orientation, on the
CRAG and GlaS datasets. However, the texture of the synthetic mosaic is usually asso-
ciated with a specific directionality. Therefore, it is reasonable that an H-Nets achieves
competitive performance on the augmented texture test set as its inferior prediction
on re-scaled images is compensated by its higher rotation equivariance. Notably, by
absorbing rotation equivariance into SEUNet, the mIoU of RSESF on the CRAG, GlaS,
and texture datasets are boosted by 2.50, 4.04, and 19.22 points, respectively. That high-
lights the superiority of joint rotation and scale equivariant models.

The RST -CNN , a counterpart of the joint rotation and scale equivariant method,
ranked 4th and 5th on the GlaS and texture datasets. We attribute this limited segmen-
tation performance, as in the ID case, to the inadequate number of filters (N f 6), thus
leading to inferior learning capacity. However, we are not able to train a RST -CNN
which has more filters, due to the GPU memory constraint.

Orientation-Scaling sensitivity visualisation. In order to get a sense of how the RS-
ESF demonstrates the best generalisation performance on OOD testing, we randomly
pick up a textured mosaic to generate 2650 augmented copies of the original image and
feed them to models trained for OOD evaluation. As shown in Figure 5.8, E(2)CNN

FIGURE 5.7: The OOD testing results of models on evaluated datasets. The mIoU
scores (mean S.E.) of models are sorted in ascending order from left to right for visual

comparison. Different colours are used to distinguish models.
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FIGURE 5.8: Polar scatter plots show mIoU scores for texture mosaics as a function
of the orientation and scaling factor of an input image. 2650 texture mosaics are gen-
erated through randomly rotating (by an angle uniformly distributed on [0, 2 ) and
re-scaling (by a factor uniformly distributed on [0.5, 2.3]) the original mosaic (shown
on the top left). The radii of the five rings from inside to outside are 0.5, 1, 1.5, 2 and
2.3, which represent the corresponding scaling factors. The mIoU of each prediction
is indicated with colours. The mean std of mIoU over 2650 predictions are shown on
top of each plot respectively. The mean mIoU of each ring area that characterises the
model’s performance on different scale ranges 0.5, 1 , 1, 1.5 , 1.5, 2 , 2, 2.3 are also re-

ported on the title of each plot.

and H-Nets show stabilised prediction to rotation variations, but they fail to generalise
accurately to images that are re-scaled by factors approximately smaller than 0.75 and
factors larger than 1.5. The H-Nets show more consistent prediction than E(2)CNN on
images rotated by angles close to 2i 1

8 , i 0, , 7 . This is owing to the fact that
the circular harmonics is used in the filter parameterisation of H-Nets leading to full
rotational equivariance, thus enabling H-Nets to capture orientation features in a fine-
grained way. Although RDCF,RST -CNN andRST -CNN also have 8 rotation chan-
nels, their robustness is manifested only for 4 rotation angles. In terms of scale equiv-
ariant methods, for SDCF and SESN, the ability to achieve consistent segmentation on
up-scaled images is limited. DISCO and SEUNet demonstrate the performance gain
brought by scale equivariance, but this performance enhancement is constrained to a
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FIGURE 5.9: Polar scatter plots show mIoU scores for histopathology image as a func-
tion of the orientation and scaling factor of an input image. 2650 histopathology im-
ages are generated through randomly rotating (by an angle uniformly distributed on
[0, 2 ) and re-scaling (by a factor uniformly distributed on [0.5, 2.3]) the original im-
age (shown on the top left). The test image is from the CRAG dataset. The layout is

the same as that of Figure 5.8.

limited range of orientation variations 4 , 4 , due to the absence of rotation equivari-
ance. By tripling the number of filters,RST -CNN demonstrates higher performance
than RST -CNN, but its sensitivity to orientation and scale variation is not much re-
duced. After extending the number of rotation channels of the SEUNet from one to
eight, we construct the RSESF8. As shown in the bottom right plot of Figure 5.8, the
segmentation performance of our proposed RSESF is not severely adversely affected
by variations in image orientation and scale. The RSESF maintains the performance
gain brought by the scale equivariance property of the SEUNet and further boosts the
performance by spreading this advantage to other orientations. However, it is worth
mentioning that RSESF can only achieve discrete rotation equivariance (in our case,
eight orientations). When comparing the segmentation performance of RSESF and H-
Nets on a subset of images that are re-scaled by factors lie in 1, 1.5 , RSESF demon-
strates inferior performance to H-Nets (90.96 v.s. 94.49). This highlights the superiority
of continuous rotation equivariance and reveals the limitation of RSESF. Note that all of
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the scatter plots show a nearly horizontal and vertical symmetry pattern, this is due to
the presence of randomly horizontal and vertical flip augmentation during the training
of OOD evaluation (mentioned in Figure 5.6). Some segmentation maps are presented
in Appendix C.4, Figure C.5 (histopathology image) and Figure C.6 (texture mosaic).

When evaluating models’ sensitivity to the orientation and scale variations on histopathol-
ogy images, Figure 5.9 illustrates patterns that differ from Figure 5.8. As shown in
Figure 5.9, for all methods, the orientation change of the test image does not cause
a significant decrease in the segmentation performance of the model. In Figure 5.8,
however, models are sensitive to orientation variation. This difference is attributed
to histopathology images’ inherent rotation symmetry property, i.e., features are as
likely to appear in any orientation. Therefore, one can argue that models trained on
histopathology images already saw patterns presented in every orientation, even though
rotation augmentation is not used during training. When comparing scale equivariant
methods (SDCF, SESN, DISCO, SEUNet) with conventional CNN and rotation equiv-
ariant methods (RDCF, E(2)CNN, H-Nets), scale equivariant methods demonstrate bet-
ter generalisation performance than rotation equivariant ones, concerning scale varia-
tion. Surprisingly, the continuous rotation equivariant H-Nets show the worst perfor-
mance on histopathology images. In the future, further analysis is needed to identify
the reason for this. Among all methods compared, the proposed RSESF shows the
strongest capability to resist orientation and scale variation (all of the dots are nearly
red).

5.4 Ablation Study

5.4.1 Channel Squeeze at Rotation Channel

In section 5.2.4 and Figure 5.4, we mentioned that the feature maps of the last layer
from each scale group are max-pooled over rotation channels to be matched with the
following 1 1 convolution layer for channel squeeze and prediction generation. Here,
we explore other dimension reduction methods and summarise their performance in
Table 5.2. Given the feature map f L

k that is computed by the last layer of the kth scale
group, the following strategies are used to transfer f L

k
CL R H W to f L

k
CL H W :

1. Max-pooling f L
k over rotation dimension. f L

k
CL R H W , k 1, ,

has components f L
k,r, r 1, , R for each pixel, then the maximum value over

rotation channels is retained, i.e., f L
k

max max
1 r R

f L
k,r.

2. Selecting a unique rotation channel R for all pixels over CL filter channels.
We sum f L

k along spatial and filter channel dimensions, the resultant tensor thus
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TABLE 5.2: Comparison of the segmentation performance when different channel
squeeze strategies are applied on the last layer. Values in the table are the mean S.E

of mIoU under 5-fold cross-validation.

Channel Squeeze at
the Last Layer

Out-of-Distribution
GlaS CRAG Texture

Pooling over R 78.15 0.15 74.46 0.51 52.88 1.68
Selecting R over Cl 77.48 0.19 73.83 0.70 64.49 2.50
Selecting rc for each c 77.54 0.13 73.88 0.51 54.00 0.71

reflects the overall activation magnitude of each orientation. Then the rotation
channel that has the largest activation value is selected and denoted as R :

R arg max
1 r R

H

x 1

W

y 1

CL

c 1
f L
k,c,r,x,y (5.10)

then for every pixel at each filter channel we obtain f L
k,c,x,y  f L

k,c,R ,x,y.

3. Selecting a specific rotation channel rc
k for all pixels at each filter channel c

1, , CL . We first sum f L
k along spatial dimension, the resultant tensor thus

reflects the overall activation magnitude of each rotation channel r and each filter
channel c. Then the rotation channel with the highest mean activation values in
filter channel c is selected and denoted as rc

k:

rc
k arg max

1 r R

H

x 1

W

y 1
f L
k,c,r,x,y (5.11)

then for every pixel at each filter channel c we obtain f L
k,c,x,y  f L

k,c,rc
k ,x,y.

As shown in Table 5.2, all three strategies yield close performance on CRAG and GlaS
datasets, but the second strategy outperforms others significantly on the texture dataset.
We think the reason is associated with the characteristics of datasets. Within each mask
boundary, the textures of the cells and tissues appear in all orientations in the histol-
ogy datasets. This is not so in texture mosaics, where each texture appears to possess
only one orientation in the training set. Max-pooling over rotation channels shuffles
the orientation information of textures in a mosaic thus leading to incorrect prediction.
Similarly, selecting specific rotation channel rc

k for each filter channel c may also mix up
orientation information, since rc

k rc
k is not always guaranteed, where c , c denotes

different filter channels. It is noted that the best performance in our model is achieved,
if a unique channel R over all CL filter channels is selected, on the texture dataset. It
is therefore reasonable to assume that the reason for this best performance is that the
orientation information is not mixed up among filter channels in the second strategy.
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TABLE 5.3: Comparison of the segmentation performance when a different number of
rotation channels is employed during inference. R 1 is not evaluated as it degener-
ates the RSESF to SEUNet. Values in the table are the mean S.E of mIoU under 5-fold

cross-validation.

DataSet
Number of Rotation Channels (R)

2 4 6 8 10
GlaS 75.18 0.09 76.78 0.14 77.31 0.20 77.48 0.19 77.69 0.23
CRAG 72.39 0.54 73.54 0.67 73.68 0.64 73.83 0.70 73.75 0.66
Texture 48.02 0.60 57.94 2.12 62.95 2.47 64.49 2.50 65.17 2.5

5.4.2 Flexibly Setting R While Inferencing

In section 5.2.4, we demonstrate that RSESF possesses the flexibility of being trained
with only one rotation channel but it enjoys lower orientation sensitivity in inference
where other rotation channels are introduced. Here we set different R values to an
RSESF model that is trained with one rotation channel (no rotation and scale augmen-
tation is performed during training) to create other 5 models, and then evaluate these
models on randomly rotated and re-scaled test sets (OOD test set). The dimension re-
duction strategy adopted in these experiments is “Selecting R over Cl”. For an RSESF
model with R rotation channels, the angular spacing between adjacent channels is 2

R .
GPU memory usage is increased by a factor of R by raising the number of rotation chan-
nels from 1 to R. As can be seen from Table 5.3, some improvements in segmentation
performance are observed in the texture dataset by raising the number of rotation chan-
nels. This is expected since texture mosaics have specific directional texture patterns.
Clearly an RSESF with fewer rotation channels is not able to pick up features presented
with unseen rotational angles. An inferior segmentation is therefore associated with
such an RSESF model.

For the CRAG and GlaS datasets, however, due to the inherent rotational symmetry of
histopathology images, the relationship between the number of rotation channels and
segmentation performance is not as straightforward as it is on the texture dataset. In
histopathology images, texture patterns are already presented in arbitrary orientations
during training. Changing the number of rotation channels can vary a model’s perfor-
mance, but one can not draw a conclusion that more rotation channels lead to better
performance. However, a validation set can be used to search for an optimal R.

5.5 Summary

In this chapter, we propose the RSESF, which can generalise convolutional neural net-
works to segment images presented in scales and orientations that do not exist in train-
ing samples. To this end, we parameterise filters by linearly combining groups of Gaus-
sian directional derivative filters, within each one of the filters there is an additional
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rotation and scale channel to guarantee rotation and scale equivariance. The scale pa-
rameters are set to be both trainable yet cover disjoint ranges. Therefore scale equivari-
ance is achieved and specific scale preference can be found for different datasets. The
rotation channel can have R filters of different orientations, spanning over 360 with
an interval of 2

R to guarantee rotation equivariance. Models with RSESF filters can be
trained in a memory-efficient way, as the nature of decoupled equivariant convolution
gives the model flexibility of training on one orientation but inference in multiple ori-
entations. This property overcomes the limitation of RST -CNN [34] which is highly
memory demanding. We also confirm experimentally that the RSESF achieves higher
sample efficiency when compared with normal CNNs.

However, the RSESF has the following limitations that we seek to overcome in the near
future:

• Although the filter constructed by using steerable basis filters can achieve contin-
uous rotation equivariance in theory, it is intractable to have an infinite number of
rotation channels in practice. This means RSESF is restricted to discrete rotations.
In the future, we will explore generalising discrete rotation angles to continuous
rotation angles while making the model scale equivariant.

• Currently, we squeeze feature maps from Nr channels to channels at the
penultimate layer and then use the strategy proposed in section 4.2.5 for pre-
diction generation. However, other aggregation methods that directly work on
Nr dimensions may pick up the best orientation and scale channels for test
images, to lead to better segmentation.

• The proposed framework is designed for global rotation-scale equivariance, i.e.,
assuming that multiple objects are all in the same scale and orientation, in each
single image. Therefore, the adopted strategy that selects a specific scale and ro-
tation channel for each test image works for this scenario. This, however, ignores
cases where multiple objects may show up in different orientations and scales,
in a single image. Therefore, it would be interesting to extend the RSESF from a
global equivariant to a local equivariant framework.
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Chapter 6

Conclusions and Future Work

This dissertation investigates the problem of segmentation of histopathology images,
using fully convolutional-type neural networks. Several algorithms or frameworks are
proposed to enhance the accuracy of segmentation maps from different perspectives
and address the challenge of magnification level variations. In this chapter, we first
summarise the findings and limitations identified in the previous chapters and then
we discuss potential future directions.

6.1 Conclusions

In chapter 3, we first revisit the UNete and UNet++ architectures and then point out
the limitations of existing frameworks. Firstly, embedded training of the model tends
to correlate learnt features. Such a training scheme would conflict with the nature of
ensemble methods, where features are supposed to be de-correlated. Secondly, sim-
ply averaging the output of constituent models ignores the performance of each in-
dividual UNet within the ensemble architecture and thus results in limited or even
worse segmentation performance. To suppress the negative effects introduced by these
causes, we propose a stage-wise additive training algorithm named as ADS UNet,
wherein constituent UNets with different depths are trained in an isolated fashion
on re-weighted samples for the purpose of forcing them to focus on previously mis-
classified samples. By doing so, we experimentally validate that the diversity of fea-
tures is increased from the indication of decreased CKA similarity of features. After
being trained, we aggregate predictions from base UNets and generate the final pre-
diction by weighted combination, where the weighting factors reflect the performance
of base UNets. The effectiveness of the AdaBoost-based ensemble is experimentally
validated on four histopathology datasets. Apart from achieving better segmentation
performance, we arrive at a more computational and memory-efficient architecture by
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modifying the deep supervision scheme. The limitation of ADS UNet is that the sam-
ple re-weighting criteria is in a coarse granularity that can not highlight regions that
are difficult to distinguish.

Chapter 4 addresses the problem of generalising CNNs to segmentation tasks on histopathol-
ogy images of unknown magnification-level. The lack of magnification information on
histopathology snapshots greatly hinders the quantitative analyses needed for such
snapshots. In chapter 4, we impose scale equivariance to empower CNNs with the ca-
pability of resisting scale variations, to achieve more stable segmentation. We param-
eterised multi-scale convolutional filters with linear combinations of Gaussian deriva-
tive filter basis elements. By arranging scale parameters of filters to span disjoint ranges
and being tuned during training, scale equivariance is guaranteed layer by layer and
the optimal setting of scale parameters for the dataset is decided by the model itself.
The work done in chapter 4 suggests that encoding scale equivariance into CNNs is
beneficial for models’ generalisation capability when scale variations exist between
datasets. The limitation of the proposed scale equivariant UNet is that the optimal
prediction selection/ensemble strategy that could make the best-fit scale branch con-
tribute the most remains unexplored.

In chapter 5, we extend the scale equivariant UNet proposed in chapter 4 to be a joint
rotation-scale equivariant model. The motivation behind this extension is to utilize the
inherent rotation symmetry of histopathology images as prior knowledge, such that
CNNs do not need to devote a large proportion of parameters to explicitly learn feature
patterns that correspond to different orientations. We propose RSESF, which adopts
Gaussian directional derivatives as a basis filter to parameterise groups of multi-scale
multi-orientation convolutional filters. We conduct a thorough comparative analysis
of various rotation and/or scale equivariant CNNs and demonstrate that the RSESF
achieves state-of-the-art generalisation performance on the task of gland segmenta-
tion and texture segmentation with a fraction of the parameter budget of conventional
CNNs and recent top-performing equivariant models. Apart from performance im-
provements, the RSESF can be trained in a memory-efficient way and possesses the
flexibility of adjusting orientation sensitivity by setting different numbers of rotation
channels at inference time. The main limitation of the RSESF is that it can only achieve
discrete rotation-scale equivariance, which limits its generalisation capability to a finite
number of orientations and scales.

6.2 Future work

In the summary sections of chapter 3, 4 and 5, we identify the limitation of our pro-
posed methods and point out the directions that can be explored to eliminate shortcom-
ings of the methods proposed here. Apart from the future work mentioned previously,
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further ideas for future research are highlighted as follows.

6.2.1 Slide-Level Segmentation

WSIs pose unique challenges when training deep learning models. The characteristic
of large size makes it necessary to break each WSI down into small-sized patches for
analysis. In this thesis, all of the proposed algorithms or frameworks primarily focus
on patch-level image segmentation, ignoring the global context correlation of neigh-
bouring patches. However, a slide-level segmentation is more important as it provides
the pathologists with more comprehensive and intuitive information about the sever-
ity of the disease. Stitching segmented patches together is the most straightforward
way to form slide-level segmentation, but it may suffer from inconsistent segmenta-
tion at patch boundaries. Modelling the spatial adjacency between patches could be
beneficial for achieving smooth segmentation, from a global perspective. Some early
attempts have shown that modelling spatial correlations by conditional random fields
[67] or graph neural networks [65, 93] obtains probability maps of patch predictions
with better visual quality. These methods, however, assign a unique label to each patch
ignoring the cases where a class boundary goes through the patch. Therefore, their
slide-level segmentation is in coarse grain. This drawback is especially obvious when
zooming into local regions where boundaries exist. In the future, it would be interest-
ing to explore methods that perform fine-grained and spatially correlated slide-level
segmentation.

6.2.2 Automatic Generation of Diagnostic Report

In a clinical pathology diagnosis workflow, the key step is that pathologists examine
the biopsy slice by either tuning the focal length of the microscope or scrolling the
wheel of the mouse to zoom in or zoom out. During this procedure, some regions of
interest that carry rich diagnostic information will be saved as snapshots for further
investigations. Following this, pathologists will carefully examine those snapshots and
then summarise findings to form a diagnostic report, with representative snapshots at-
tached. Currently, most of the efforts in the research of computational pathology are
put on the examination part, i.e., building AI algorithms to extract features that are
descriptive enough to distinguish healthy and diseased tissues. Although the ultimate
goal of algorithms is to achieve an automatic diagnosis, current works just classify tis-
sues into healthy and diseased groups, without providing the text interpretation of the
diagnosis. Therefore, a computational pathology platform that completes the entire
workflow done by pathologists should also include the automatic generation of diag-
nostic reports. This is not just for the integrity of computational pathology algorithms,
but also for improving their interpretability, and making them more trustworthy.
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Currently, the research on diagnostic report generation mainly relies on existing algo-
rithms and frameworks from natural image caption generation, which is the fusion of
natural language processing and computer vision techniques. However, histopathol-
ogy images have some specific properties such as inherent rotation symmetry that do
not exist in natural images. Directly transferring existing algorithms from the natural
image domain to the histopathology images does not fully utilise this prior knowledge
and thus may lead to limited outcomes. Moreover, existing datasets for histopathol-
ogy image caption generation consist of snapshots and image patches with mixed or
unknown magnification levels. This large magnification variation is another bottle-
neck that makes the task challenging. In the future, we wish to apply our proposed
rotation-scale equivariant method RSESF to the feature encoding part of diagnostic re-
port generation frameworks. We expect that this joint rotation and scale equivariance
of RSESF will extract more descriptive features than conventional CNN, under the do-
main of histopathology, and will thus lead to more accurate caption generation.
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Appendix A

Enhancing Segmentation via
Ensemble Learning

A.1 Python code for counting incorrect labels in down-scaled
masks

Here we provide the detailed Python code for quantifying incorrect labelling informa-
tion existing in down-sampled masks.
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Appendix B

Scale Equivariance for Robust
Segmentation

B.1 Visualising the Scale Equivariance Error

To demonstrate the effectiveness of lowering equivariance error by convolving images
with multi-scale filters, we convolve images at different scales with 5 filters, paring
feature maps and then calculate the equivariance error as:

s,k,k
1
N

N

i 1

Ss Fk fi Fk Ss fi
2
2

Ss Fk fi
2
2

, s , k, k 1, , (B.1)

where fi is an image, Fk and Fk are filters with scale parameters k and k , Ss is a
scaling operation with factor s. Thus, given filters and two images at different scales,
we arrive at a equivariance error matrix. Where each element represents the
equivariance error between feature maps, which are obtained by convolving images of
different scales with different filters. As shown in Figure B.1, for the feature map pair
that produces the maximal matching, the ratio of scales between images is equal (or
close) to the ratio of ks between filters. For example, in Figure B.1p, the ratio between

s and the ratio between image scales is the same ( 2
0.5

4
1 ). The same phenomenon

can be observed from images re-scaled by factors of 0.5 and 2 (Figure B.1e and B.1l).
For images whose scales are not divisible, the matching degree between feature maps
obtained by convolving the filter with the ratio closest to the image ratio is the highest.
For example, in Figure B.1f, the ratio between images ( 1

0.59 1.69) is close to the ratio
between s ( 2.5

1.5 1.67). Thus, we experimentally validated that the scale equivarance
error can be reduced by convolving images at different scales with appropriate filters
whose scale is corresponded to the scale of the images.
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(A) s=0.25 (B) s=0.3 (C) s=0.35 (D) s=0.42

(E) s=0.5 (F) s=0.59 (G) s=0.71 (H) s=0.84

(I) s=1.19 (J) s=1.41 (K) s=1.68 (L) s=2

(M) s=2.38 (N) s=2.83 (O) s=3.36 (P) s=4

FIGURE B.1: Scale equivariance error of feature maps. Each plot shows the equiv-
ariance errors between feature maps of the original image and the re-scaled image.
In the title of each plot, s denotes the scale factor. The x-axis and the y-axis of each
plot denote the of the filter that is used to convolve with the original image and the
re-scaled image, respectively. In each plot, the number on the grid denotes the equiv-
ariance error between feature maps Ss Fk f and Fk Ss f . The lowest equivariance

error in each 5 5 error matrix is highlighted by a red box.

B.2 Visualisation of Model Prediction

To better understand the SEUNet, we visualise segmentation maps generated by the
SEUNet and other compared models on input images at different scales. As shown in
Figure B.2 and B.3, the SEUNet can retain a relatively decent prediction when compared
with other methods.



B.2. Visualisation of Model Prediction 93

FIGURE B.2: Visual comparison on the BCSS dataset. The mIoU score of each predic-
tion is reported below the segmentation map. The highest score is highlighted in bold.
Each column shows segmentation maps of a model on an image re-scaled by different

scaling factors (S 1 denotes the original scale).
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FIGURE B.3: Visual comparison on the MoNuSeg dataset. The IoU score of each pre-
diction is reported below the segmentation map. The highest score is highlighted in
bold. Each column shows segmentation maps of a model on an image re-scaled by

different scaling factors (S 1 denotes the original scale).



95

Appendix C

Joint Rotation-Scale Equivariance

C.1 The Second Order Directional Filter Basis

Here we derive the filter basis of order 2, as the highest order of the Gaussian derivative
used in our experiments is 2. Denoting z G x, y; and z G1 x, y; , then the
second order directional derivative of z with respect to angle can be calculated by:

G2 x, y; cos , sin
z
x

,
z
y

cos
z
x

sin
z
y

cos
G1 x, y;

x
sin

G1 x, y;
y

cos cos
2G x, y;

x2 sin
2G x, y;

x y

sin cos
2G x, y;

y x
sin

2G x, y;
y2

cos 2
2G x, y;

x2 2 cos sin
2G x, y;

y x
sin 2

2G x, y;
y2

cos x sin y
2G x, y;

(C.1)

C.2 Sample Efficiency Analysis

Apart from experiments conducted in section 5.3, here we design experiments in which
UNets with conventional CNN filter and RSESF are trained either with or without ro-
tation augmentation to demonstrate the superiority of RSESF on sample efficiency.

Dataset configuration. We use the Texture dataset for model training and evaluation.
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• Training set 1, in which 80% of texture mosaics are presented in one particular
orientation, is used for model training under the setting without rotation aug-
mentation.

• Training set 2 is the rotation-augmented version of training set 1, where each tex-
ture mosaic is presented in 6 angles (0 , 60 , 120 , 180 , 240 , 300 ). Therefore
there are 3456 texture mosaics in total. The training set 2 is used for model train-
ing under the setting of rotation augmentation.

• Test set. For evaluation, we re-scale and rotate the texture mosaics of the original
texture test set by 36 angles 2 r

36
36
r 1 and 9 scaling factors

4 2
s

2
8
s 0. Therefore

there are 324 subsets of mosaics, consisting of 46656 144 9 36 texture mosaics
in total.

Model settings. We create an UNet with RSESF filters that have 3 scale groups. By
constraint the upper and lower bounds of l

k using equation (5.8), we therefore con-
straint the size of filters at each group to be 5 5 , 7 7 and 9 9 , for every layer.
For a fair comparison, we match the size of norm CNN filters with that of each scale
group of RSESF filters. In detail, we create CNN 5 5 , CNN 7 7 and CNN 9 9 ,
where CNN k k means that the size of filter is set to be k k for every layer of the
UNet. The number of filters is set to be 60, 120, 240, 480 and 960, at each depth of the
CNN-based UNet. For RSESF-based UNet, the number of filter channels is divided by
3. When evaluating, we generate a segmentation map for each scale group and report
their performance separately.
Results. As shown in Figure C.1, when models are trained without rotation augmen-
tation, CNNs only show competitive performance on mosaics that are presented at
the same orientation as training mosaics and a large fluctuation can be seen from Fig-
ure C.1(a). In contrast, as shown in Figure C.1(c), RSESF demonstrates relatively stable
prediction over orientations. When models are trained with rotation augmentation
(with 5 times more training samples), both the performance and robustness of CNNs
are greatly improved, while some fluctuations between orientations still remain. The
overall performance of RSESF-based UNet also benefits from rotation augmentation.
It is worth mentioning that RSESF-based UNet trained on 560 mosaics achieves close
performance to CNN-based UNet trained on 3360 mosaics (CNN 7 7 vs. 2 7 7
and CNN 9 9 vs. 3 9 9 ). In addition, the number of filter channels of RSESF is
only one-third of that of CNN. This comparison highlights the higher sample efficiency
of RSESF.
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FIGURE C.1: mIoU score measured on multi-scale multi-orientation texture mosaics.
Within each column (separated by vertical dashed lines), images are re-scaled by the
same factor shown in the x-axis and rotated by 36 different angles (no show, 0 centred
in each column). The averaged mIoU over all orientations and scales are reported on

legends.

C.3 Visualisation of Equivariance Error

We convolve images that are either rotated, re-scaled, or simultaneously rotated and
re-scaled with RSESF filters possessing 4 rotation and 5 scale channels, pairing their
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FIGURE C.2: Equivariance error of feature maps between the original image and the
image up-scaled by a factor of 2. The y-axis and x-axis denote the angle r, r and the
scale parameter , of filters Fr, and Fr , . Inside each 5 5 block, filters are in the
same orientation but vary in scale. For each angle r of f , the best block of filters with
angle r is highlighted by black borders. Inside the best-matched group of filters, the
best-matched scale of filters is also highlighted in red borders. Here, the ‘best match’

denotes the lowest equivariance error.

feature maps with that of the original image and then calculate the equivariance error
as:

s,k,k
1
N

N

i 1

T ,s Fr, fi Fr , T ,s fi
2
2

T ,s Fr, fi
2
2

, s, , , , r, r 0, 2 . (C.2)

where fi is an image, Fr, and Fr , are filters with orientation and scale parameters
r, and r , , T ,s is a rotation and scaling transformation with angle and scaling

factor s. Thus, given RSESF filters with 4 rotation and 5 scale channels and two images
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FIGURE C.3: Equivariance error of feature maps between the original image and the
image rotated by an angle of .

at different scales and orientations, we arrive at a 20 20 equivariance error matrix.
Each element represents the equivariance error between feature maps, which are ob-
tained by convolving images with different filters. Different settings of and s are used
to evaluate the equivariance capability of RSESF with regard to rotation, scaling, and
joint rotation-scaling transformation:

• Measuring scale equivariance. 0, s 2 . Results shown in Figure C.2

• Measuring rotation equivariance. , s 1 . Results shown in Figure C.3

• Measuring joint rotation-scale equivariance. , s 2 . Results shown in
Figure C.4
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FIGURE C.4: Equivariance error of feature maps between the original image and the
image rotated by an angle of and up-scaled by a factor of 2.

As shown in Figure C.2, for the feature map pair that produces the maximal matching
(minimal equivariance error), the ratio of scales between images is equal to the ratio of

and between filters. For example, the ratio between and and the ratio between
image scales is the same ( 3.0

1.5 2). This observation is consistent with that of Appendix
B.1.

As shown in Figure C.3, differing from Figure C.2, rotating the image results in the
shift of best-matched angle r (shifted from r r to r r ). Since the transformed
image is just rotated but remains in the original scale. The ratio of best-matched scales
of filters is 1, within each highlighted 5 5 block.

Figure C.2 and C.3 measure the scale and rotation equivariance of the RSESF filters,
separately. Figure C.4 measures the equivariance of the RSESF filter under the joint
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rotation-scale transformation. As seen in Figure C.4, rotating and re-scaling the image
result in both the shift of best-matched angle r (consistent with Figure C.3) and the
shift of best-matched scale parameter (consistent with Figure C.2).

C.4 Prediction visualisation

In Figure C.5, we select a randomly rotated and re-scaled image from the test set of
CRAG for visualisation. Some segmentation maps of texture mosaics that are presented
in different scales and/or orientations are shown in Figure C.6.

Figure C.6 provides some visual clues of how different type of models demonstrate
their superiority on different versions of test images. As seen from these two figures,
when the test mosaic is rotated by 58 (without re-scaling it), E(2)CNN, H-Nets and
RSESF can maintain relatively high prediction accuracy (80.90 v.s. 80.22 v.s. 74.82). The
reason that H-Nets outperforms RSESF is that H-Nets has continuous rotation equivari-
ance property while the orientation of 58 is not encoded in RSESF. When the test mo-
saic is re-scaled (without rotating it), all of the scale equivariant models, SDCF (82.46),
SESN (82.44) and SEUNet (92.85) show more accurate segmentation. When the test
mosaic is rotated and re-scaled simultaneously, although the performance of all mod-
els degrades, the RSESF is the one that demonstrates the best performance.

FIGURE C.5: Images, masks, and predictions generated by models. The mIoU score
of each prediction is shown on top of the segmentation map. The rotation angle and
scaling factor of the selected histopathology image are r 184 , s 1.97 . Light blue

and dark blue represent gland and non-gland, respectively.
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FIGURE C.6: Visualisation of segmentation maps and mIoU scores, where the test
image is either rotated, re-scaled, or jointly rotated and re-scaled. The mIoU score is

reported below each prediction.
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