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Abstract: The existing image matching methods for remote sensing scenes are usually based on local
features. The most common local features like SIFT can be used to extract point features. However,
this kind of methods may extract too many keypoints on the background, resulting in low attention
to the main object in a single image, increasing resource consumption and limiting their performance.
To address this issue, we propose a method that could be implemented well on resource-limited
satellites for remote sensing images ship matching by leveraging line features. A keypoint extraction
strategy called line feature based keypoint detection (LFKD) is designed using line features to choose
and filter keypoints. It can strengthen the features at corners and edges of objects and also can
significantly reduce the number of keypoints that cause false matches. We also present an end-to-end
matching process dependent on a new crop patching function, which helps to reduce complexity. The
matching accuracy achieved by the proposed method reaches 0.972 with only 313 M memory and
138 ms testing time. Compared to the state-of-the-art methods in remote sensing scenes in extensive
experiments, our keypoint extraction method can be combined with all existing CNN models that can
obtain descriptors, and also improve the matching accuracy. The results show that our method can
achieve ∼50% test speed boost and ∼30% memory saving in our created dataset and public datasets.

Keywords: remote sensing; image matching; line feature; ship; satellite

1. Introduction

In recent years, space-based information systems have become an important part of
technology for image processing and computer vision [1,2]. They can acquire diverse multi-
modal modern remote sensing data and process them intelligently. At present, the workflow
of most of the space-based information is time-consuming, especially under a complex task.
The satellite needs to transmit the data to the computer on the ground when it receives a
mission, and then the result is sent back to the satellite after completing the task on the
ground, see Figure 1. This complicated process is attributed to the inability of running
large algorithms on the satellite itself because of its limitations in computation power in
that the satellite needs to control its weight, power and heat dissipation within a low value
such that it can run stably in space. Therefore, the main focus of this work is to develop an
efficient and effective remote sensing image matching approach for the particular use on
the satellite.

Ship is a very important object in remote sensing computer vision tasks. It can
be used in different applications, including e.g., monitoring [3,4] and real-time quantity
statistics [5]. At present, most algorithms use local features to match two images after
the introduction of SIFT [6]. Methods based on neural networks e.g., SuperPoint [7] and
based on gradient e.g., SURF [8] are common solutions for extracting local features. In the
remote sensing image matching task, a robust local feature has been proven to be helpful,
and different strategies have been proposed to attain it. For example, the work in [9]
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proposed a novel pixelwise feature representation using orientated gradients of images,
which achieved superior performance in image matching and is computationally efficient;
the work in [10] used the phase congruency instead of image intensity for local feature
detection, and considered the number and repeatability of local features.

Figure 1. A space-based information system.

Except for point features used in image matching tasks, line feature has extra ad-
vantages over the point features. For example, the line feature can represent structural
information more effectively and is more common in ship and many other objects. More-
over, it is more robust to environmental changes, see Figure 2 which depicts the keypoints
obtained using the line features and the comparison to other point detectors (e.g., SIFT,
SUFR, ORB and Harris). In this sense, although the line feature might be more difficult
to parameterize than point features, it can carry more environmental information in di-
verse settings. Recent research in computer vision using line features has attracted lots of
attention, and some works used line features for the application in remote sensing images
(see e.g., Sections 2.1 and 3.1). They share a common limitation, i.e., the power cost and
parameters used are not considered seriously, and therefore they are hard if not impossible
to be used on resource-limited satellites. To address this challenge, we aim to build a
method that can use few but precise keypoints to realise powerful matching results.

Figure 2. Local features extracted by different methods. (a): original image; (b,e–g): point features
extracted by SIFT, SUFR, ORB and Harris, respectively; (c): line features extracted by LSD; and
(d): point features extracted by the proposed approach using the endpoints of line segments.

In this paper, we propose a new remote sensing image ship matching approach by util-
ising the developed novel keypoint extraction strategy named line features based keypoint
detection (LFKD) for particular use on the satellite. The proposed method addresses the
wrong matching caused by dense keypoints and improves the efficiency of the algorithm.
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In addition, our method takes the initiative in focusing on object matching rather than the
whole image matching, which can give more attention to important objects within images.
Our main contributions are as follows:

(1) We propose a keypoint extraction method, utilising line features to assist the keypoint
selection. The keypoints selected in this way are sparse and more reasonable/precise,
which aid to improve the accuracy and efficiency of the algorithm.

(2) We use a function to crop images during the matching process, which achieves end-to-
end matching.

(3) We create new remote sensing image dataset about three kinds of ships (i.e., aircraft
carrier, cargo ship and submarine), with variations in light, angle and size. Using this
created remote sensing data, we experimentally show that too many dense keypoints
are generally unnecessary for this image matching task partly because the fundamental
matrix for image matching can be calculated with only eight points [11].

We demonstrate that our way can enhance the matching accuracy and boost the
computation efficiency. Experiments also show that our method is more effective and
low-consuming, ensuring it meets the conditions for running on satellites.

The remainder of this article is organized as follows. Section 2 reviews the related
work. Section 3 details the proposed method. The experimental results and detailed
comparisons with discussion are given in Section 4. Finally, we conclude in Section 5.

2. Related Work
2.1. Overview of Feature Detectors

Feature detectors are algorithms or methods used in computer vision and image
processing to identify and extract specific features or patterns from images or visual data.
Detected local features represent specific semantic structures in an image and can be
divided into point feature [12–15] and line feature [16–18]. Due to the strong value of local
features, some feature detectors have been designed. For instance, blob detectors Laplacian
of Gaussian (LoG) [19] and the Difference of Gaussians (DoG) [20] identify regions of an
image with uniform intensity or color (typically representing objects or regions of interest);
corner detectors like Harris detector [21] and Shi-Tomasi detector [22] identify locations
in an image where two or more edges intersect or change direction, with applications in
image registration, tracking and object detection; edge detectors [23] identify sharp changes
in pixel intensity (representing edges or boundaries between different regions in an image);
and scale-invariant feature detectors identify features that are invariant to changes in scale,
rotation, and illumination.

Parallel to the above traditional handcrafted methods, machine learning and deep
learning-based methods have gained remarkable attention in recent years. For interest
point detection, decision trees [24] have also been applied successfully to identify the
interest points and the corners. The work in [14] extended the randomized trees [25] with
LoG filters to detect the points at multi-scale levels. Later, machine learning methods
have been combined with some generic algorithms to extract features. The research work
has been carried out in literature based on hybrid methods. Strecha et al. [26] trained
classifiers with WaldBoost learning to select feature points more relevant to the specific task.
Hartmann et al. [27] trained classifiers to predict the most matched descriptors. By adding
a prediction to the pipeline structure, the matching score has been improved without
losing features. Verdie et al. [28] proposed a temporally invariant learned detector to detect
repetitive keypoints. The accuracy of machine learning methods highly depends on the
data representation. If the data is not represented correctly, the accuracy decreases.

According to the recent research, the most popular local feature in image matching
task is point feature. The keypoints are easy to extract and define with a simplified form
compared with the line features, and thus the work related to point feature is the most
popular research area in a decade.
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2.2. Image Matching Models

Image matching can be divided into three stages: feature detection, feature description,
and feature matching. The process of this task is as follows. Firstly, the feature extractor
extracts the features of interest from the image, which will be used for matching. Secondly,
feature description refers to transforming each region around the detected keypoints into a
more compact and stable descriptor. Finally, feature matching is conducted by efficiently
searching for possible matching candidates from other images and establishing a match
between two images. The workflow of image matching can be depicted as Figure 3.

Figure 3. Workflow of the image matching task.

The matching task aims to establish the correct image correspondences between
two images with or without using the feature detection and/or description. Over the
past decades in the image matching area, existing methods can be roughly classified into
two categories, i.e., area-based and feature-based methods. Area-based methods aim for
image registration and establish dense pixel correspondences by directly using the pixel
intensity of the entire image. For example, the correlation-like methods [29,30], which
are regarded as a classical representative in area-based methods, correspond two images
by maximising the similarities of two sliding windows for the image matching task; and
the domain transformed methods based on Fourier shift theorem [31,32] and the Walsh
transform-based methods [33,34] tend to obtain matches on the basis of converting the
original image domain into another. Feature-based methods use keypoints and their local
descriptors extracted from the image pairs to match two images. The type of methods
based on feature detectors and descriptors becomes a mainstream principle. For example,
the work in [35] developed a robust and accurate multi-source matching with deformed
contour segment similarity (DCSS); a CNN-based feature detector aiming to obtain a
strong descriptor was proposed in [36]; and the works in [37,38] are about real-time image
matching with improved accuracy and speed achieved. On the whole, the feature-based
methods can extract distinctive features from images and then match these features across
different images.

2.3. Image Matching in Remote Sensing

The image matching task in remote sensing has made progress based on the above-
mentioned image matching pipeline. The technical framework [39] with affine invariant
feature extraction and RANSAC was proposed for achieving higher correctness. The work
in [40] designed a feature learning way based on two-branch networks to transform the
image matching into a two-class classification problem. The method in [41] shows a
novel descriptor for illumination-robust remote sensing image matching. Some detection
algorithms for remote sensing images were modified based on object matching to address
the challenges raised by the registration accuracy, the radiometric correction accuracy,
and the classification threshold for difference images [42,43]. The work in [44] proposed
a cross-modal feature description matching network using a self-attention module and
cross-fusion module to consider the similarity of cross-modal features for obtaining better
descriptors. The work in [45] designed a visualized local structure generation-Siamese
attention network, which is an effective way to remove mismatches.

Matching between multimodal remote sensing images is a challenging task. In recent
years, an increasing number of methods have been proposed. For example, Zhu et al. [46]
introduced a robust model tackling the difficulty of identifying feature correspondences
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between multimodal images due to the significant differences both in radiation and ge-
ometry. By employing rotation-invariant feature descriptors, the method captures the
rotational invariance of the key points, thereby facilitating stable feature matching. To ad-
dress the problem of scale and rotation variations between multimodal remote sensing
images, Ye et al. [47] proposed a novel descriptor and a fast normalised cross-correlation
similarity measure. Their approach showed excellent performance in multimodal remote
sensing image pairing.

Although great achievements have been made in image matching for remote sensing,
how to simultaneously improve the matching accuracy and efficiency is still a noteworthy
issue, especially for practical applications. In addition, no clear advancement has so far
been seen in the object remote sensing image matching.

3. Proposed Method

In this section, we firstly describe how to extract keypoints using line features in our
solution and then present the developed image matching strategy, see Figure 4 for the
diagram of the proposed method.

Figure 4. Diagram of the proposed image matching method. The keypoints used for matching are
obtained by sifting the SIFT keypoints with mask A obtained by the intersection of marks As and Al ,
which are generated from segmentation and the line feature detector, respectively. The final selected
keypoints are used with our cropping patch function to generate patches, which are then processed
by the CNN descriptor for matching image pairs.

3.1. Keypoints Extraction with Line Features

The number of keypoints extracted by SIFT can be quite large, and lots of the keypoints
extracted are unessential and/or leading to false matches. Meanwhile, using that high
number of keypoints for image matching can be difficult for some close points and quite
demanding in terms of computation cost. To apply the image matching algorithm on
resource-limited satellites, we argue that matching images with a smaller number of
points could be more feasible for applications. Inspired by this claim, below we present
our designed algorithm which needs a much less number of keypoints by the help of
line features.

There are many simple but reliable line detectors to extract line features, e.g., HoughP [48],
fast line detector (FLD) [48] and line segment detector (LSD) [49]. We find that the line
features detected by HoughP are almost horizontal lines, and the FLD detector is more
likely to detect features in the background. In contrast, LSD can extract almost all line
features while being less noisy. In our framework, we use LSD to extract line features,
which will then be used to extract keypoints. Let LLSD be the set of line features extracted
by LSD, containing all the points on the detected lines. Let SLSD ⊂ LLSD be the set of
keypoints used for matching. In particular, SLSD can be a set containing the two endpoints
(according to the Krein–Milman theorem) of every detected line in LLSD.

We firstly generate a mask matrix Al with the same size as a channel of the given
image I (i.e., a colour image with red, green and blue channels) using the line features in
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SLSD. In detail, Al is formed by setting its elements with positions in SLSD to 1 otherwise 0,
and then the elements with value 1 are expanded by applying the dilation operator so that
Al can cover more areas and therefore be more inclusive. In the scene which contains ships
for example, the ship information is more important than that in the background. Therefore,
it is reasonable to tailor the mask Al by removing the background information. This can
be achieved by generating another mask matrix say As, which is obtained by segmenting
the most interesting areas from the images. The segmentation model can be trained on the
remote sensing datasets. Then, the matrix mask, say A, considering both the line features
and the important areas within the images can be obtained by

A = Al � As, (1)

where � represents pointwise multiplication. Note that it is straightforward to generate
a set of keypoints say SA

LSD using mask A, i.e., SA
LSD is composed of all the points whose

values are 1 in mask A. Figure 5 shows the difference of the mask matrices A, Al and As,
from which we can see indeed mask A highlights the main areas (i.e., the ships) within
the image.

Let SSIFT be the set of keypoints obtained by SIFT. We suggest reducing the number of
keypoints in SSIFT by the set of keypoints obtained by line features SA

LSD. In other words,
the set of keypoints we introduce for remote sensing image matching is defined as

S = SSIFT ∩ SA
LSD. (2)

We name this keypoint extraction strategy LFKD (i.e., line features based keypoint detec-
tion). In our finding, mask As and LSD can help to greatly remove keypoints that are not
on the ship, see e.g., Figures 2 and 5. This double-check can enhance the quality of the
keypoints extracted, which will significantly benefit the subsequent matching task.

(a) Image (b) As

(c) Al (d) A

Figure 5. Example of different mask matrices. (a): the given image; (b): mask As obtained by
the segmentation technique; (c): mask Al obtained by utilising the line features; and (d): mask A,
including the line features but with the background information removed.

3.2. Matching Process

We break the matching process into three stages. Firstly, for each given image Ii, we
crop a patch centred on every keypoint in Si (here Si is the set of keypoints for image Ii) by
using the warpAffine [48] function, which can achieve image transformation and cropping.
The size of every patch is set to 32× 32, see Figure 6.
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Figure 6. Image patch cropping corresponding to the keypoints in S .

Secondly, we use the trained CNN to get descriptors for every patch. To do so,
the basic but effective CNN called HardNet, which includes a light backbone L2-Net and
a strong loss function, is used. The descriptors generated in such a way can make the
matching keypoints be selected easily in the matching step. Let φ(·) be the trained CNN
and I1

i , I2
i , · · · , INi

i represent the Ni cropped patches for image Ii. Then the descriptor say
dk

i for patch Ik
i can be obtained by dk

i = φ(Ik
i ). The descriptor set say Di for image Ii can be

formed by combining the descriptors of all the cropped patches, i.e.,

Di = {d1
i , d2

i , · · · , dNi
i }. (3)

In the same way, the descriptor set can be created for any other images.
Finally, a set of matches sayMij between images Ii and I j (i.e., bewteen their sets

of keypoints Si and Sj) can be obtained by nearest neighbor between the descriptor set
Di for image Ii and the descriptor set Dj for image I j. For example, for a matching pair
(p, q) ∈ Mij, where p ∈ Si and q ∈ Sj, then p and q satisfy

q = arg min
k
{‖dp

i − d1
j ‖, · · · , ‖dp

i − dk
j ‖, · · · , ‖dp

i − d
Nj
j ‖},

p = arg min
k
{‖d1

i − dq
j ‖, · · · , ‖dk

i − dq
j ‖, · · · , ‖dNi

i − dq
j ‖}.

(4)

The matching setMij can then be formed by finding all the matching pairs of the keypoints
of images Ii and I j satisfying Equation (4). For implementation, we findMij by using the
OpenCV built-in function BFMatcher.

In sum, the diagram of our developed image matching strategy is given in Figure 4.
It mainly contains two parts, i.e., keypoints extraction and matching process. For a pair
of images, the masks As and Al for each of them are firstly generated by using an image
segmentation method and LSD line detector, respectively. Mask A is obtained by taking the
intersection of masks As and Al . The keypoints are the intersection of the ones selected by
mask A and the ones selected by using SIFT. The keypoints are then used for the matching
process. Each image is cropped into a bunch of patches centred around the keypoints,
which will be used to form a descriptor set by using the trained CNN model. The descriptor
sets for both images are finally used to obtain the matching pairs. The complete matching
process is summarised in Algorithm 1.
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Algorithm 1: Matching algorithm for remote sensing utilising line features

Input: an image pair {Ii, Ij}
Output: the matching setMij

1 Obtain mask A from Equation (1);
2 Get the sets of keypoints Si and Sj using Equation (2) for Ii and Ij, respectively;
3 Get φ(·) from the trained CNN;
4 Crop image patches for Ii and Ij;
5 Obtain the descriptors Di and Dj by using Equation (3) for Ii and I j, respectively;
6 Find all the matching pairs by using Equation (4) and form the matching setMij.

4. Results

In this section, we first introduce the used datasets, i.e., one is from our own and the
other two are publicly available, and the evaluation metrics. Thorough validation of the
performance of the proposed method (shortened as LFKD for simplicity) and comparison
with the relevant state-of-the-art methods are conducted afterwards, including detailed
ablation study.

4.1. Data
4.1.1. Dataset NWPU VHR-10

The NWPU VHR-10 dataset [50], released by Northwestern Polytechnical University
in 2016, is a remote sensing dataset for space object detection. It contains ten different
ground objects, i.e., aircraft, ships, oil tanks, ballpark, tennis courts, basketball courts, track
and field fields, ports, bridges and cars, with a total of 3651 objects. There are 800 images
in the dataset, where 715 RGB images were obtained from Google Earth with a spatial
resolution range from 0.5 to 2 m, and 85 sharpened color infrared images were obtained
from Vaihingen data with a spatial resolution of 0.08 m. The publisher annotated all images
in the form of horizontal annotation boxes and provided annotation information making
it an easy to train and test. We choose the images which include ship objects to test our
proposed remote sensing ship matching method and make comparison.

4.1.2. Dataset HRSC

The HRSC dataset, extracted from six important ports from Google Earth, was released
by Northwestern Polytechnical University in 2016 [51]. It includes 1680 images with sizes
from 300 × 300 to 1500 × 900 pixels. It owns unique characteristics, including a large
number of ship images in different types, making it suitable for the tasks of this paper.

4.1.3. Our Dataset

Our own dataset consists of twelve remote sensing images for three kinds of ships
(i.e., aircraft carrier, cargo ship and submarine), which is created for testing remote sensing
object matching methods. Compared with the other publicly available datasets, the im-
ages in our dataset contain the objects clearly. In each ship category, three factors are
considered—illumination, size of the matching object and angle. Moreover, we also con-
sider images containing multiple objects (see the submarine category). All the images are
obtained from Google Earth. They are colourful and are of size 1600× 900× 3. During
test, we choose one image as the benchmark in each class, and match it with others. Table 1
shows some samples from our own dataset, with brief description of the characteristics of
each category.
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Table 1. Samples from our own ship dataset.

Class Image Characteristic

Aircraft carrier Large size,
near harbors or in the ocean

Cargo ship Small size,
always in the ocean

Submarine Small size,
always near harbors

4.2. Evaluation Metric

We use precision ρ to evaluate the methods’ performance, i.e.,

ρ = Nc/Na, (5)

where Nc and Na refer to the number of the correct matches and the number of all matches,
respectively. To evaluate the methods’ resource consumption, we use M and T to represent
the memory cost and testing time, respectively, i.e.,

M = Mend −Mstart, T = Tend − Tstart , (6)

where the subscripts start and end respectively represent the beginning and end of the
methods’ memory occupation and running time during the matching process.

4.3. Results

We now show the results of our proposed method on the created remote sensing
dataset and make comparison with SIFT and SIFT+CNN, where HardNet [52] is used for
CNN in the experiment. More experiments on the publicly available datasets are given in
the next subsection.

The quantitative results are given in Table 2, showing the number of correct matches
Nc, the number of all matches Na, and the precision ρ of each method. The results in
Table 2 show that SIFT always extracts a large number of keypoints including a lot of wrong
matches at the same time. Using CNN to get descriptors can significantly reduce the number
of matches and incorrect matches and deliver a big improvement in precision. Our method
can further improve the precision compared with SIFT and SIFT+CNN and achieve the best
performance, see also the last row of Table 2 showing the average precision of each method.
Moreover, Figure 7 shows the keypoints extracted by our method from some images,
indicating that these extracted keypoints are indeed reasonable with good distribution
without dense point clusters. This kind of keypoint distribution could effectively assist the
method to avoid wrong matches caused by the positions of keypoints that are too close.
Figure 8 showcases the matching results of our method on some image pairs with changes
in illumination, size and angle, respectively, demonstrating its ability in removing most of
the false matches on the background by using SIFT.
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Figure 7. Keypoints obtained by the proposed method. The first and second columns are the original
images and the keypoints obtained by our method imposed on the original images, respectively.

Table 2. Quantitative matching performance comparison on the created dataset.

Category
SIFT SIFT+CNN LFKD LFKD+CNN

Nc Na ρ Nc Na ρ Nc Na ρ Nc Na ρ

Aircraft Carrier
illumination 14,188 15788 0.898 3346 3446 0.970 7821 7353 0.940 3353 3441 0.974

size 17,287 18,083 0.955 3412 3421 0.997 8705 8454 0.971 3457 3461 0.998
angle 14,962 16,299 0.917 131 135 0.970 8484 8117 0.956 128 132 0.969

Cargo Ship
illumination 27,179 27434 0.990 4230 4235 0.998 630 590 0.936 539 539 1

size 16,182 16,683 0.969 2255 2268 0.994 694 684 0.985 535 535 1
angle 14,022 19,146 0.733 35 44 0.795 539 574 0.939 29 30 0.996

Submarine
illumination 12,904 13,987 0.922 3774 3837 0.983 2528 2397 0.948 1880 1915 0.984

size 10,468 11,733 0.892 3607 3623 0.995 2664 2536 0.951 1950 1955 0.997
angle 8465 14344 0.590 31 40 0.775 2017 1779 0.882 36 43 0.837

Average 0.874 0.941 0.945 0.972

Through the result of these experiments, we found that our method also displays quite
a low resource consumption and running time with high matching accuracy, and thus it
could be equipped on satellites or other resource-limited scenes, see Table 3. In particular,
Table 3 shows the time (ms) and memory (MB) spent of matching two images. It presents
our keypoint extraction method can achieve ∼50% test speed boost and ∼30% memory
saving with or without involving CNN.
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(a) Illumination change (b) Size change

(c) Angle change

Figure 8. Ship matching results by using our method. (a–c) present the matching results on image
pairs with changes in illumination, size and angle, respectively.

Table 3. Matching efficiency comparison in terms of running time and memory.

Method Memory Cost (M) Test Time (T)

SIFT 107 MB 69 ms
SIFT+CNN 532 MB 179 ms

LFKD 64 MB 42 ms
LFKD+CNN 313 MB 138 ms

4.4. Ablation Study

Ablation evaluations are conducted in this section to further demonstrate the effective-
ness and robustness of our method. Firstly, we test all the methods on two different publicly
available datasets, i.e., NWPU VHR-10 [50] and HRSC [51]. We choose three images about
ship from each dataset and apply the same change to them in terms of illumination, size
and angle. Table 4 shows the average precision of each method in different cases, indicating
the superior performance of our method. We also match different ships and show the result
in Table 5. We choose five different kinds of ships and all these images are from the HRSC
dataset. Table 5 shows that the precision of matching two different ships is lower than
matching the same one, which is reasonable, and our method performs the best.
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Table 4. Matching precision comparison on datasets NWPU VHR-10 and HRSC.

Category SIFT SIFT+CNN LFKD LFKD+CNN

NWPU
VHR-10

illumination 0.991 0.983 0.992 0.985
size 0.873 0.885 0.879 0.894

angle 0.720 0.837 0.868 0.954

HRSC
illumination 0.975 0.980 0.977 0.982

size 0.891 0.900 0.900 0.895
angle 0.815 0.850 0.841 0.889

Table 5. Matching precision comparison on different ships.

Category SIFT SIFT+CNN LFKD LFKD+CNN

1 0.879 0.915 0.908 0.920
2 0.729 0.836 0.827 0.898
3 0.902 0.947 0.939 0.964
4 0.835 0.886 0.836 0.844
5 0.895 0.926 0.931 0.939

Furthermore, we also test our method with different CNN backbones, i.e., SOSNet [53]
and CSNet [54], and make a comparison with SIFT being equipped with these CNN models.
The quantitative comparison in precision is shown in Table 6, which further validates that
our method can indeed improve the matching precision in different settings and datasets
in a robust manner.

Table 6. Comparison in precision between SIFT and our method with different CNN models
(i.e., SOSNet and CSNet).

Method
SIFT+
SOSNet

LFKD+
SOSNet

SIFT+
CSNet

LFKD+
CSNet

Aircraft
Carrier

illumination 0.971 0.974 0.971 0.973
size 0.995 0.997 0.995 0.997

angle 0.970 0.970 0.959 0.965

Cargo
Ship

illumination 0.997 0.997 0.998 1
size 0.997 1 0.994 1

angle 0.801 0.993 0.792 0.998

Submarine
illumination 0.980 0.979 0.988 0.982

size 0.995 0.996 0.996 0.995
angle 0.760 0.825 0.779 0.838

Finally, to make the experiments more complete, we also compare our method with
many other common but popular keypoint extraction methods in image matching on
our dataset. Table 7 shows the performance comparison between methods SURF+CNN,
ORB+CNN, Harris+CNN and Superpoint+CNN and ours in terms of effectiveness and
efficiency. From Table 7, we can see that our method achieves nearly the same accuracy as
the state-of-the-art result obtained by Superpoint+CNN (i.e., 0.972 vs. 0.973), but with sig-
nificantly faster testing time and lower memory consumption, demonstrating our method’s
suitability for remote sensing scenes, particularly in resources-limited satellites.
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Table 7. Comparison between our method with other keypoint extraction methods in image matching
with CNN in terms of precision, memory cost and testing time.

Method Precision (ρ) Memory Cost (T) Testing Time (M)

SURF+CNN 0.956 352 MB 162 ms
ORB+CNN 0.906 328 MB 159 ms

Harris+CNN 0.968 375 MB 154 ms
Superpoint+CNN 0.973 526 MB 173 ms

LFKD+CNN 0.972 313 MB 138 ms

4.5. Discussion

We have shown that the proposed matching method can achieve significant improve-
ment in running time and memory saving with great matching accuracy by combining
line features and SIFT. Applying the proposed method and SIFT-related models to a
resource-limited background (i.e., using limited computer parameters to simulate satellite
environments), we found that our method is both more accurate and far more efficient,
as demonstrated in different datasets.

Our method can achieve good performance by combining line features and CNN at
multiple levels. This is comparable to previous results [52–54]. In comparison to previous
studies, our method exhibited two-fold principal advantages in matching precision and
efficiency. We found that our keypoint detector can extract features in important locations
like edges and corners, and can avoid the dense distribution of keypoints compared with
other detectors. That is beacause our method uses strong line features to filter out large
number of unnecessary keypoints rather than only considering gradient. We therefore
believe that more reasonable keypoints can help improve the matching performance, which
is consistent with the conclusion of some existing research. In addition, we found that
the precision achieved by methods compared on our dataset is higher than that from the
publicly available datasets (see Tables 2 and 4). This is because our dataset owns obvious
objects without complicated background. That can help the methods mitigate the number
of wrong matches. Most importantly, our method targets applications more, particularly
in resource-limited satellites, for helping users build a powerful space-based information
system. Some existing works [44,45] focus on matching two whole images using some
special structures like attention model to improve the matching accuracy. Compared with
the above ways, the method proposed in this paper firstly pays more attention to object
matching with an end-to-end matching solution.

5. Conclusions and Future Work

In this paper, we created a new remote sensing dataset for ship matching and proposed
a new method by exploiting line features for the matching task. The proposed method
is simple yet effective for the remote sensing ship matching task, and is particularly
designed for the use on resource-limited satellites. We showed that meaningful keypoints
rather than their large number could boost the matching results dramatically. Thorough
experiments including ablation study demonstrated that the proposed method can obtain
better performance such as matching accuracy (i.e., 0.972 in our dataset, 0.954 and 0.889 in
public datasets), 50% test speed boost and 30% memory saving. In the future, it is of great
interest to work on different kinds of object matching, e.g., applying the proposed method
to more remote sensing object matching applications. Moreover, it may be worthwhile to
take an exploration in quickly determining the object category using the principle of the
highest matching in the data scarcity scenario.
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